1
|
Pidot SJ, Klatt S, Ates LS, Frigui W, Sayes F, Majlessi L, Izumi H, Monk IR, Porter JL, Bennett-Wood V, Seemann T, Otter A, Taiaroa G, Cook GM, West N, Tobias NJ, Fuerst JA, Stutz MD, Pellegrini M, McConville M, Brosch R, Stinear TP. Marine sponge microbe provides insights into evolution and virulence of the tubercle bacillus. PLoS Pathog 2024; 20:e1012440. [PMID: 39207937 PMCID: PMC11361433 DOI: 10.1371/journal.ppat.1012440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Reconstructing the evolutionary origins of Mycobacterium tuberculosis, the causative agent of human tuberculosis, has helped identify bacterial factors that have led to the tubercle bacillus becoming such a formidable human pathogen. Here we report the discovery and detailed characterization of an exceedingly slow growing mycobacterium that is closely related to M. tuberculosis for which we have proposed the species name Mycobacterium spongiae sp. nov., (strain ID: FSD4b-SM). The bacterium was isolated from a marine sponge, taken from the waters of the Great Barrier Reef in Queensland, Australia. Comparative genomics revealed that, after the opportunistic human pathogen Mycobacterium decipiens, M. spongiae is the most closely related species to the M. tuberculosis complex reported to date, with 80% shared average nucleotide identity and extensive conservation of key M. tuberculosis virulence factors, including intact ESX secretion systems and associated effectors. Proteomic and lipidomic analyses showed that these conserved systems are functional in FSD4b-SM, but that it also produces cell wall lipids not previously reported in mycobacteria. We investigated the virulence potential of FSD4b-SM in mice and found that, while the bacteria persist in lungs for 56 days after intranasal infection, no overt pathology was detected. The similarities with M. tuberculosis, together with its lack of virulence, motivated us to investigate the potential of FSD4b-SM as a vaccine strain and as a genetic donor of the ESX-1 genetic locus to improve BCG immunogenicity. However, neither of these approaches resulted in superior protection against M. tuberculosis challenge compared to BCG vaccination alone. The discovery of M. spongiae adds to our understanding of the emergence of the M. tuberculosis complex and it will be another useful resource to refine our understanding of the factors that shaped the evolution and pathogenesis of M. tuberculosis.
Collapse
Affiliation(s)
- Sacha J. Pidot
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Stephan Klatt
- Department of Molecular Biology and Biochemistry, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Louis S. Ates
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Wafa Frigui
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Fadel Sayes
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Laleh Majlessi
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Hiroshi Izumi
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Ian R. Monk
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jessica L. Porter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Ashley Otter
- UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - George Taiaroa
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicholas West
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Nicholas J. Tobias
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - John A. Fuerst
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Michael D. Stutz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Malcolm McConville
- Department of Molecular Biology and Biochemistry, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
The ESX-1 Substrate PPE68 Has a Key Function in ESX-1-Mediated Secretion in Mycobacterium marinum. mBio 2022; 13:e0281922. [PMID: 36409073 PMCID: PMC9765416 DOI: 10.1128/mbio.02819-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mycobacteria use specialized type VII secretion systems (T7SSs) to secrete proteins across their diderm cell envelope. One of the T7SS subtypes, named ESX-1, is a major virulence determinant in pathogenic species such as Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. ESX-1 secretes a variety of substrates, called Esx, PE, PPE, and Esp proteins, at least some of which are folded heterodimers. Investigation into the functions of these substrates is problematic, because of the intricate network of codependent secretion between several ESX-1 substrates. Here, we describe the ESX-1 substrate PPE68 as essential for secretion of the highly immunogenic substrates EsxA and EspE via the ESX-1 system in M. marinum. While secreted PPE68 is processed on the cell surface, the majority of cell-associated PPE68 of M. marinum and M. tuberculosis is present in a cytosolic complex with its PE partner and the EspG1 chaperone. Interfering with the binding of EspG1 to PPE68 blocked its export and the secretion of EsxA and EspE. In contrast, esxA was not required for the secretion of PPE68, revealing a hierarchy in codependent secretion. Remarkably, the final 10 residues of PPE68, a negatively charged domain, seem essential for EspE secretion, but not for the secretion of EsxA and of PPE68 itself. This indicates that distinctive domains of PPE68 are involved in secretion of the different ESX-1 substrates. Based on these findings, we propose a mechanistic model for the central role of PPE68 in ESX-1-mediated secretion and substrate codependence. IMPORTANCE Pathogenic mycobacteria, such Mycobacterium tuberculosis and Mycobacterium marinum, use a type VII secretion system (T7SS) subtype, called ESX-1, to mediate intracellular survival via phagosomal rupture and subsequent translocation of the mycobacterium to the host cytosol. Identifying the ESX-1 substrate that is responsible for this process is problematic because of the intricate network of codependent secretion between ESX-1 substrates. Here, we show the central role of the ESX-1 substrate PPE68 for the secretion of ESX-1 substrates in Mycobacterium marinum. Unravelling the mechanism of codependent secretion will aid the functional understanding of T7SSs and will allow the analysis of the individual roles of ESX-1 substrates in the virulence caused by the significant human pathogen Mycobacterium tuberculosis.
Collapse
|
3
|
Immunological Characterization of Proteins Expressed by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions Encoding the ESAT6-like Proteins. Vaccines (Basel) 2021; 9:vaccines9010027. [PMID: 33430286 PMCID: PMC7825740 DOI: 10.3390/vaccines9010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
The 6 kDa early secreted antigen target (ESAT6) is a low molecular weight and highly immunogenic protein of Mycobacterium tuberculosis with relevance in the diagnosis of tuberculosis and subunit vaccine development. The gene encoding the ESAT6 protein is located in the M. tuberculosis-specific genomic region known as the region of difference (RD)1. There are 11 M. tuberculosis-specific RDs absent in all of the vaccine strains of BCG, and three of them (RD1, RD7, and RD9) encode immunodominant proteins. Each of these RDs has genes for a pair of ESAT6-like proteins. The immunological characterizations of all the possible proteins encoded by genes in RD1, RD7 and RD9 have shown that, besides ESAT-6 like proteins, several other proteins are major antigens useful for the development of subunit vaccines to substitute or supplement BCG. Furthermore, some of these proteins may replace the purified protein derivative of M. tuberculosis in the specific diagnosis of tuberculosis by using interferon-gamma release assays and/or tuberculin-type skin tests. At least three subunit vaccine candidates containing ESAT6-like proteins as antigen components of multimeric proteins have shown efficacy in phase 1 and phase II clinical trials in humans.
Collapse
|
4
|
Li Z, Zheng C, Terreni M, Tanzi L, Sollogoub M, Zhang Y. Novel Vaccine Candidates against Tuberculosis. Curr Med Chem 2020; 27:5095-5118. [PMID: 30474525 DOI: 10.2174/0929867326666181126112124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
Ranking above AIDS, Tuberculosis (TB) is the ninth leading cause of death affecting and
killing many individuals every year. Drugs’ efficacy is limited by a series of problems such as Multi-
Drug Resistance (MDR) and Extensively-Drug Resistance (XDR). Meanwhile, the only licensed vaccine
BCG (Bacillus Calmette-Guérin) existing for over 90 years is not effective enough. Consequently,
it is essential to develop novel vaccines for TB prevention and immunotherapy. This paper
provides an overall review of the TB prevalence, immune system response against TB and recent
progress of TB vaccine research and development. Several vaccines in clinical trials are described as
well as LAM-based candidates.
Collapse
Affiliation(s)
- Zhihao Li
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Changping Zheng
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Lisa Tanzi
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Matthieu Sollogoub
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Yongmin Zhang
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
5
|
Gallant J, Mouton J, Ummels R, Ten Hagen-Jongman C, Kriel N, Pain A, Warren RM, Bitter W, Heunis T, Sampson SL. Identification of gene fusion events in Mycobacterium tuberculosis that encode chimeric proteins. NAR Genom Bioinform 2020; 2:lqaa033. [PMID: 33575588 PMCID: PMC7671302 DOI: 10.1093/nargab/lqaa033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/16/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen responsible for causing tuberculosis. The harsh environment in which M. tuberculosis survives requires this pathogen to continuously adapt in order to maintain an evolutionary advantage. However, the apparent absence of horizontal gene transfer in M. tuberculosis imposes restrictions in the ways by which evolution can occur. Large-scale changes in the genome can be introduced through genome reduction, recombination events and structural variation. Here, we identify a functional chimeric protein in the ppe38-71 locus, the absence of which is known to have an impact on protein secretion and virulence. To examine whether this approach was used more often by this pathogen, we further develop software that detects potential gene fusion events from multigene deletions using whole genome sequencing data. With this software we could identify a number of other putative gene fusion events within the genomes of M. tuberculosis isolates. We were able to demonstrate the expression of one of these gene fusions at the protein level using mass spectrometry. Therefore, gene fusions may provide an additional means of evolution for M. tuberculosis in its natural environment whereby novel chimeric proteins and functions can arise.
Collapse
Affiliation(s)
- James Gallant
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa.,Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Jomien Mouton
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Roy Ummels
- Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Corinne Ten Hagen-Jongman
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Nastassja Kriel
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, 001-0020, N20 W10 Kita-ku, Sapporo, Japan
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Wilbert Bitter
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands.,Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Tiaan Heunis
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Samantha L Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
6
|
Damen MPM, Phan TH, Ummels R, Rubio-Canalejas A, Bitter W, Houben ENG. Modification of a PE/PPE substrate pair reroutes an Esx substrate pair from the mycobacterial ESX-1 type VII secretion system to the ESX-5 system. J Biol Chem 2020; 295:5960-5969. [PMID: 32184351 DOI: 10.1074/jbc.ra119.011682] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/13/2020] [Indexed: 01/20/2023] Open
Abstract
Bacterial type VII secretion systems secrete a wide range of extracellular proteins that play important roles in bacterial viability and in interactions of pathogenic mycobacteria with their hosts. Mycobacterial type VII secretion systems consist of five subtypes, ESX-1-5, and have four substrate classes, namely, Esx, PE, PPE, and Esp proteins. At least some of these substrates are secreted as heterodimers. Each ESX system mediates the secretion of a specific set of Esx, PE, and PPE proteins, raising the question of how these substrates are recognized in a system-specific fashion. For the PE/PPE heterodimers, it has been shown that they interact with their cognate EspG chaperone and that this chaperone determines the designated secretion pathway. However, both structural and pulldown analyses have suggested that EspG cannot interact with the Esx proteins. Therefore, the determining factor for system specificity of the Esx proteins remains unknown. Here, we investigated the secretion specificity of the ESX-1 substrate pair EsxB_1/EsxA_1 in Mycobacterium marinum Although this substrate pair was hardly secreted when homologously expressed, it was secreted when co-expressed together with the PE35/PPE68_1 pair, indicating that this pair could stimulate secretion of the EsxB_1/EsxA_1 pair. Surprisingly, co-expression of EsxB_1/EsxA_1 with a modified PE35/PPE68_1 version that carried the EspG5 chaperone-binding domain, previously shown to redirect this substrate pair to the ESX-5 system, also resulted in redirection and co-secretion of the Esx pair via ESX-5. Our results suggest a secretion model in which PE35/PPE68_1 determines the system-specific secretion of EsxB_1/EsxA_1.
Collapse
Affiliation(s)
- Merel P M Damen
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Trang H Phan
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Alba Rubio-Canalejas
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Edith N G Houben
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Retention of EsxA in the Capsule-Like Layer of Mycobacterium tuberculosis Is Associated with Cytotoxicity and Is Counteracted by Lung Surfactant. Infect Immun 2019; 87:IAI.00803-18. [PMID: 30602503 DOI: 10.1128/iai.00803-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis, the pathogen that causes tuberculosis, primarily infects macrophages but withstands the host cell's bactericidal effects. EsxA, also called virulence factor 6-kDa early secretory antigenic target (ESAT-6), is involved in phagosomal rupture and cell death. We provide confocal and electron microscopy data showing that M. tuberculosis bacteria grown without detergent retain EsxA on their surface. Lung surfactant has detergent-like properties and effectively strips off this surface-associated EsxA, which advocates a novel mechanism of lung surfactant-mediated defense against pathogens. Upon challenge of human macrophages with these M. tuberculosis bacilli, the amount of surface-associated EsxA rapidly declines in a phagocytosis-independent manner. Furthermore, M. tuberculosis bacteria cultivated under exclusion of detergent exert potent cytotoxic activity associated with bacterial growth. Together, this study suggests that the surface retention of EsxA contributes to the cytotoxicity of M. tuberculosis and highlights how cultivation conditions affect the experimental outcome.
Collapse
|
8
|
Phan TH, van Leeuwen LM, Kuijl C, Ummels R, van Stempvoort G, Rubio-Canalejas A, Piersma SR, Jiménez CR, van der Sar AM, Houben ENG, Bitter W. EspH is a hypervirulence factor for Mycobacterium marinum and essential for the secretion of the ESX-1 substrates EspE and EspF. PLoS Pathog 2018; 14:e1007247. [PMID: 30102741 PMCID: PMC6107294 DOI: 10.1371/journal.ppat.1007247] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/23/2018] [Accepted: 07/26/2018] [Indexed: 12/31/2022] Open
Abstract
The pathogen Mycobacterium tuberculosis employs a range of ESX-1 substrates to manipulate the host and build a successful infection. Although the importance of ESX-1 secretion in virulence is well established, the characterization of its individual components and the role of individual substrates is far from complete. Here, we describe the functional characterization of the Mycobacterium marinum accessory ESX-1 proteins EccA1, EspG1 and EspH, i.e. proteins that are neither substrates nor structural components. Proteomic analysis revealed that EspG1 is crucial for ESX-1 secretion, since all detectable ESX-1 substrates were absent from the cell surface and culture supernatant in an espG1 mutant. Deletion of eccA1 resulted in minor secretion defects, but interestingly, the severity of these secretion defects was dependent on the culture conditions. Finally, espH deletion showed a partial secretion defect; whereas several ESX-1 substrates were secreted in normal amounts, secretion of EsxA and EsxB was diminished and secretion of EspE and EspF was fully blocked. Interaction studies showed that EspH binds EspE and therefore could function as a specific chaperone for this substrate. Despite the observed differences in secretion, hemolytic activity was lost in all M. marinum mutants, implying that hemolytic activity is not strictly correlated with EsxA secretion. Surprisingly, while EspH is essential for successful infection of phagocytic host cells, deletion of espH resulted in a significantly increased virulence phenotype in zebrafish larvae, linked to poor granuloma formation and extracellular outgrowth. Together, these data show that different sets of ESX-1 substrates play different roles at various steps of the infection cycle of M. marinum. M. tuberculosis is a facultative intracellular pathogen that has an intimate relationship with host macrophages. Proteins secreted by the ESX-1 secretion system play an important role in this interaction, for instance by orchestrating the escape from the phagosome into the cytosol of the macrophage. However, the exact role of the ESX-1 substrates is unknown, due to their complicated interdependency for secretion. Here, we study the function of ESX-1 accessory proteins EccA1, EspG1 and EspH in ESX-1 secretion in Mycobacterium marium, the causative agent of fish tuberculosis. We found that these proteins affect the secretion of different substrate classes, which offers an approach to study the roles of these substrate groups. An espG1 deletion broadly aborts ESX-1 secretion and thus resulted in severe attenuation in a zebrafish model for tuberculosis, whereas EccA1 is only crucial under specific growth conditions. The most surprising results were obtained for EspH. This protein seems to function as a molecular chaperone for EspE and is as such involved in the secretion of a small subset of ESX-1 substrates. Disruption of espH showed a dual character: whereas this gene is essential for the successful infection of macrophages, deletion of espH resulted in significantly increased virulence in zebrafish larvae. These data convincingly show that different subsets of ESX-1 substrates play different roles at various steps in the mycobacterial infection cycle.
Collapse
Affiliation(s)
- Trang H. Phan
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lisanne M. van Leeuwen
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Coen Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Gunny van Stempvoort
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Alba Rubio-Canalejas
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Connie R. Jiménez
- Department of Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Astrid M. van der Sar
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Edith N. G. Houben
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
9
|
Ates LS, Dippenaar A, Sayes F, Pawlik A, Bouchier C, Ma L, Warren RM, Sougakoff W, Majlessi L, van Heijst JWJ, Brossier F, Brosch R. Unexpected Genomic and Phenotypic Diversity of Mycobacterium africanum Lineage 5 Affects Drug Resistance, Protein Secretion, and Immunogenicity. Genome Biol Evol 2018; 10:1858-1874. [PMID: 30010947 PMCID: PMC6071665 DOI: 10.1093/gbe/evy145] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium africanum consists of Lineages L5 and L6 of the Mycobacterium tuberculosis complex (MTBC) and causes human tuberculosis in specific regions of Western Africa, but is generally not transmitted in other parts of the world. Since M. africanum is evolutionarily closely placed between the globally dispersed Mycobacterium tuberculosis and animal-adapted MTBC-members, these lineages provide valuable insight into M. tuberculosis evolution. Here, we have collected 15 M. africanum L5 strains isolated in France over 4 decades. Illumina sequencing and phylogenomic analysis revealed a previously underappreciated diversity within L5, which consists of distinct sublineages. L5 strains caused relatively high levels of extrapulmonary tuberculosis and included multi- and extensively drug-resistant isolates, especially in the newly defined sublineage L5.2. The specific L5 sublineages also exhibit distinct phenotypic characteristics related to in vitro growth, protein secretion and in vivo immunogenicity. In particular, we identified a PE_PGRS and PPE-MPTR secretion defect specific for sublineage L5.2, which was independent of PPE38. Furthermore, L5 isolates were able to efficiently secrete and induce immune responses against ESX-1 substrates contrary to previous predictions. These phenotypes of Type VII protein secretion and immunogenicity provide valuable information to better link genome sequences to phenotypic traits and thereby understand the evolution of the MTBC.
Collapse
Affiliation(s)
- Louis S Ates
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Anzaan Dippenaar
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Fadel Sayes
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Alexandre Pawlik
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Christiane Bouchier
- Department of Genomes and Genetics, Institut Pasteur, Genomics Platform, Paris, France
| | - Laurence Ma
- Department of Genomes and Genetics, Institut Pasteur, Genomics Platform, Paris, France
| | - Robin M Warren
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wladimir Sougakoff
- Sorbonne Universités, INSERM, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Team 13 (Bacteriology), Paris, France
- Laboratoire de Bactériologie-Hygiène, Centre National de Référence des Mycobactéries (NRC MyRMA), Hôpitaux Universitaires Pitié-Salpêtrière – Charles Foix, Paris, France
| | - Laleh Majlessi
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Jeroen W J van Heijst
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Florence Brossier
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
- Sorbonne Universités, INSERM, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Team 13 (Bacteriology), Paris, France
- Laboratoire de Bactériologie-Hygiène, Centre National de Référence des Mycobactéries (NRC MyRMA), Hôpitaux Universitaires Pitié-Salpêtrière – Charles Foix, Paris, France
| | - Roland Brosch
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| |
Collapse
|
10
|
Vidyarthi A, Khan N, Agnihotri T, Siddiqui KF, Nair GR, Arora A, Janmeja AK, Agrewala JN. Antibody response against PhoP efficiently discriminates among healthy individuals, tuberculosis patients and their contacts. PLoS One 2017; 12:e0173769. [PMID: 28319170 PMCID: PMC5358785 DOI: 10.1371/journal.pone.0173769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis continues to be one of the most devastating global health problem. Its diagnosis will benefit in timely initiation of the treatment, cure and therefore reduction in the transmission of the disease. Tests are available, but none can be comprehensively relied on for its diagnosis; especially in TB-endemic zones. PhoP is a key player in Mycobacterium tuberculosis virulence but nothing has been known about its role in the diagnosis of TB. We monitored the presence of anti-PhoP antibodies in the healthy, patients and their contacts. In addition, we also measured antibodies against early secretory antigens ESAT-6 and CFP-10, and latency associated antigen Acr-1 to include proteins that are associated with the different stages of disease progression. Healthy subjects showed high antibody titer against PhoP than patients and their contacts. In addition, a distinct pattern in the ratio of Acr-1/PhoP was observed among all cohorts. This study for the first time demonstrates a novel role of anti-PhoP antibodies, as a possible marker for the diagnosis of TB and therefore will contribute in the appropriate action and management of the disease.
Collapse
Affiliation(s)
| | - Nargis Khan
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | | | - Girish R. Nair
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ashish Arora
- CSIR-Central Drug Research Institute, Lucknow, India
| | | | | |
Collapse
|
11
|
Ates LS, van der Woude AD, Bestebroer J, van Stempvoort G, Musters RJP, Garcia-Vallejo JJ, Picavet DI, Weerd RVD, Maletta M, Kuijl CP, van der Wel NN, Bitter W. The ESX-5 System of Pathogenic Mycobacteria Is Involved In Capsule Integrity and Virulence through Its Substrate PPE10. PLoS Pathog 2016; 12:e1005696. [PMID: 27280885 PMCID: PMC4900558 DOI: 10.1371/journal.ppat.1005696] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 05/20/2016] [Indexed: 11/18/2022] Open
Abstract
Mycobacteria produce a capsule layer, which consists of glycan-like polysaccharides and a number of specific proteins. In this study, we show that, in slow-growing mycobacteria, the type VII secretion system ESX-5 plays a major role in the integrity and stability of the capsule. We have identified PPE10 as the ESX-5 substrate responsible for this effect. Mutants in esx-5 and ppe10 both have impaired capsule integrity as well as reduced surface hydrophobicity. Electron microscopy, immunoblot and flow cytometry analyses demonstrated reduced amounts of surface localized proteins and glycolipids, and morphological differences in the capsular layer. Since capsular proteins secreted by the ESX-1 system are important virulence factors, we tested the effect of the mutations that cause capsular defects on virulence mechanisms. Both esx-5 and ppe10 mutants of Mycobacterium marinum were shown to be impaired in ESX-1-dependent hemolysis. In agreement with this, the ppe10 and esx5 mutants showed reduced recruitment of ubiquitin in early macrophage infection and intermediate attenuation in zebrafish embryos. These results provide a pivotal role for the ESX-5 secretion system and its substrate PPE10, in the capsular integrity of pathogenic mycobacteria. These findings open up new roads for research on the mycobacterial capsule and its role in virulence and immune modulation.
Collapse
Affiliation(s)
- Louis S Ates
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
| | - Aniek D van der Woude
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands.,Department of Molecular Microbiology, VU University, Amsterdam, the Netherlands
| | - Jovanka Bestebroer
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
| | | | - René J P Musters
- Department of Physiology and Cardiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Daisy I Picavet
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
| | - Robert van de Weerd
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Coenraad P Kuijl
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
| | - Nicole N van der Wel
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands.,Department of Molecular Microbiology, VU University, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Sun T, Han H, Hudalla GA, Wen Y, Pompano RR, Collier JH. Thermal stability of self-assembled peptide vaccine materials. Acta Biomater 2016; 30:62-71. [PMID: 26584836 DOI: 10.1016/j.actbio.2015.11.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/27/2015] [Accepted: 11/12/2015] [Indexed: 12/15/2022]
Abstract
The majority of current vaccines depend on a continuous "cold chain" of storage and handling between 2 and 8°C. Vaccines experiencing temperature excursions outside this range can suffer from reduced potency. This thermal sensitivity results in significant losses of vaccine material each year and risks the administration of vaccines with diminished protective ability, issues that are heightened in the developing world. Here, using peptide self-assemblies based on the fibril-forming peptide Q11 and containing the epitopes OVA323-339 from ovalbumin or ESAT651-70 from Mycobacterium tuberculosis, the chemical, conformational, and immunological stability of supramolecular peptide materials were investigated. It was expected that these materials would exhibit advantageous thermal stability owing to their adjuvant-free and fully synthetic construction. Neither chemical nor conformational changes were observed for either peptide when stored at 45°C for 7days. ESAT651-70-Q11 was strongly immunogenic whether it was stored as a dry powder or as aqueous nanofibers, showing undiminished immunogenicity even when stored as long as six months at 45°C. This result was in contrast to ESAT651-70 conjugated to a protein carrier and adjuvanted with alum, which demonstrated marked thermal sensitivity in these conditions. Antibody titers and affinities were undiminished in mice for OVA323-339-Q11 if it was stored as assembled nanofibers, yet some diminishment was observed for material stored as a dry powder. The OVA study was done in a different mouse strain and with a different prime/boost regimen, and so it should not be compared directly with the study for the ESAT epitope. This work indicates that peptide self-assemblies can possess attractive thermal stability properties in the context of vaccine development. STATEMENT OF SIGNIFICANCE Almost all current vaccines must be maintained within a tight and refrigerated temperature range, usually between 2 and 8°C. This presents significant challenges for their distribution, especially in the developing world. Here we report on the surprisingly robust thermal stability of a self-assembled peptide vaccine. In particular a self-assembled peptide vaccine containing a tuberculosis epitope maintained all of its potency in mice when exposed to an extreme thermal treatment of six months at 45°C. In a different mouse model, we investigated another model epitope and found some storage conditions where potency was diminished. Overall this study illustrates that some self-assembled peptide vaccines can have remarkable thermal stability.
Collapse
Affiliation(s)
- Tao Sun
- Department of Surgery, University of Chicago, 5841 S. Maryland Ave. MC 5032, Chicago, IL 60637, USA
| | - Huifang Han
- Department of Surgery, University of Chicago, 5841 S. Maryland Ave. MC 5032, Chicago, IL 60637, USA
| | - Gregory A Hudalla
- Department of Surgery, University of Chicago, 5841 S. Maryland Ave. MC 5032, Chicago, IL 60637, USA
| | - Yi Wen
- Department of Surgery, University of Chicago, 5841 S. Maryland Ave. MC 5032, Chicago, IL 60637, USA
| | - Rebecca R Pompano
- Department of Surgery, University of Chicago, 5841 S. Maryland Ave. MC 5032, Chicago, IL 60637, USA
| | - Joel H Collier
- Department of Surgery, University of Chicago, 5841 S. Maryland Ave. MC 5032, Chicago, IL 60637, USA.
| |
Collapse
|
13
|
Mustafa T, Leversen NA, Sviland L, Wiker HG. Differential in vivo expression of mycobacterial antigens in Mycobacterium tuberculosis infected lungs and lymph node tissues. BMC Infect Dis 2014; 14:535. [PMID: 25284264 PMCID: PMC4287340 DOI: 10.1186/1471-2334-14-535] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background The clinical course of tuberculosis (TB) infection, bacterial load and the morphology of lesions vary between pulmonary and extrapulmonary TB. Antigens expressed in abundance during infection could represent relevant antigens in the development of diagnostic tools, but little is known about the in vivo expression of various M. tuberculosis antigens in different clinical manifestations. The aim of this study was to study the differences in the presence of major secreted as well as somatic mycobacterial antigens in host tissues during advanced rapidly progressing and fatal pulmonary disease with mainly pneumonic infiltrates and high bacterial load, and to compare this to the presence of the same antigens in TB lymphadenitis cases, which is mainly chronic and self-limiting disease with organised granulomas and lower bacterial load. Methods Human pulmonary (n = 3) and lymph node (n = 17) TB biopsies, and non-TB controls (n = 12) were studied. Ziehl-Neelsen stain, nested PCR 1S6110 and immunohistochemistry were performed. Major secreted (MPT32, MPT44, MPT46, MPT51, MPT53, MPT59, MPT63, and MPT64) and somatic mycobacterial antigens (Mce1A, Hsp65, and MPT57) were detected by using rabbit polyclonal antibodies. Results Plenty of bacilli were detectable with Ziehl-Neelsen stain in the lung biopsies while no bacilli were detected in the lymph node biopsies. All the cases were shown to be positive by PCR. Both secretory and somatic antigens were expressed in abundance in pulmonary infiltrates, while primarily somatic antigens were detected in the lymphadenitis cases. Of the secreted antigens, only MPT64 was consistently detected in both cases, indicating a preferential accumulation of this antigen within the inflammatory cells, even if the cells of the granuloma can efficiently restrict bacterial growth and clear away the secreted antigens. Conclusions This study shows that major secreted mycobacterial antigens were found in high amounts in advanced pulmonary lesions without proper granuloma formation, while their level of staining was very low, or absent, in the lymph node TB lesions with organised granulomas and very low bacillary load, with one exception of MPT64, suggesting its role in the persistence of chronic infection. These findings have implication for development of new diagnostic tools. Electronic supplementary material The online version of this article (doi:10.1186/1471-2334-14-535) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tehmina Mustafa
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
| | | | | | | |
Collapse
|
14
|
Immunoinformatics study on highly expressed Mycobacterium tuberculosis genes during infection. Tuberculosis (Edinb) 2014; 94:475-81. [DOI: 10.1016/j.tube.2014.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 06/04/2014] [Accepted: 06/08/2014] [Indexed: 12/22/2022]
|
15
|
Araujo Z, Giampietro F, Bochichio MDLA, Palacios A, Dinis J, Isern J, Waard JHD, Rada E, Borges R, Fernández de Larrea C, Villasmil A, Vanegas M, Enciso-Moreno JA, Patarroyo MA. Immunologic evaluation and validation of methods using synthetic peptides derived from Mycobacterium tuberculosis for the diagnosis of tuberculosis infection. Mem Inst Oswaldo Cruz 2014; 108:131-9. [PMID: 23579789 DOI: 10.1590/0074-0276108022013001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 11/07/2012] [Indexed: 11/22/2022] Open
Abstract
The goal of this study was to demonstrate the usefulness of an enzyme-linked immunosorbent assay (ELISA) for the serodiagnosis of pulmonary tuberculosis (PTB) and extrapulmonary TB (EPTB). This assay used 20 amino acid-long, non-overlapped synthetic peptides that spanned the complete Mycobacterium tuberculosis ESAT-6 and Ag85A sequences. The validation cohort consisted of 1,102 individuals who were grouped into the following five diagnostic groups: 455 patients with PTB, 60 patients with EPTB, 40 individuals with non-EPTB, 33 individuals with leprosy and 514 healthy controls. For the PTB group, two ESAT-6 peptides (12033 and 12034) had the highest sensitivity levels of 96.9% and 96.2%, respectively, and an Ag85A-peptide (29878) was the most specific (97.4%) in the PTB groups. For the EPTB group, two Ag85A peptides (11005 and 11006) were observed to have a sensitivity of 98.3% and an Ag85A-peptide (29878) was also the most specific (96.4%). When combinations of peptides were used, such as 12033 and 12034 or 11005 and 11006, 99.5% and 100% sensitivities in the PTB and EPTB groups were observed, respectively. In conclusion, for a cohort that consists entirely of individuals from Venezuela, a multi-antigen immunoassay using highly sensitive ESAT-6 and Ag85A peptides alone and in combination could be used to more rapidly diagnose PTB and EPTB infection.
Collapse
Affiliation(s)
- Zaida Araujo
- Laboratorio de Inmunología de Enfermedades Infecciosas, Instituto de Biomedicina, Universidad Central de Venezuela, Caracas, Venezuela.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Goyal B, Kumar K, Gupta D, Agarwal R, Latawa R, Sheikh JA, Verma I. Utility of B-cell epitopes based peptides of RD1 and RD2 antigens for immunodiagnosis of pulmonary tuberculosis. Diagn Microbiol Infect Dis 2014; 78:391-7. [PMID: 24485599 DOI: 10.1016/j.diagmicrobio.2013.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 11/25/2022]
Abstract
Tuberculosis (TB) continues to be a major health problem due to lack of accurate, rapid, and cost-effective diagnostic tests. Serodiagnostic tests incorporating highly specific region of difference (RD) antigens (early secretory antigenic target 6 [ESAT-6], culture filtrate protein 10 [CFP-10], culture filtrate protein 21 [CFP-21], and mycobacterial protein from species tuberculosis 64 [MPT-64]) have recently been shown to be promising for specific diagnosis of TB in our lab. However, only few studies have reported the use of synthetic peptides of RD antigens, and none has used them to differentiate TB from sarcoidosis, a close mimic of smear-negative pulmonary TB (PTB) with entirely different management. The present study was conducted with an aim to study the utility of B-cell epitopes based peptides of RD1 (ESAT-6, CFP-10) and RD2 (CFP-21, MPT-64) antigens for immunodiagnosis of PTB for which sputum smear-positive PTB patients, sputum smear-negative PTB patients, sarcoidosis patients, and healthy controls (n = 24/group) were recruited. Bioinformatic software Bcepred was used to predict linear B-cell epitopes, using physico-chemical properties on a non-redundant dataset. Seven peptides as representative B-cell epitopes of ESAT-6, CFP-10, CFP-21, and MPT-64 were evaluated as targets of the antibody responses in TB patients and controls by enzyme-linked immunosorbent assay (ELISA). The current study showed sensitivity with individual peptides ranging from 37.5% to 83.3% for smear positive, 25% to 58.3% for smear negative as compared to 4.16% to 20.8% for sarcoidosis. Four out of 7 peptides that showed higher reactivity with TB patients and better discrimination from sarcoidosis patients representing ESAT-6, CFP-10, CFP-21, and MPT-64 were selected for multiepitope ELISA. The combination of peptides yielded 83.3% sensitivity for smear positive, 62.5% for smear negative, and only 4.16% for sarcoidosis. The specificity, however, for all the peptides/combination was 100%. Combination of peptides has proven to be better than individual peptides as per the latest criteria of the World Health Organization according to which a test that can replace smear microscopy with sensitivity of >90% for smear-positive patients and >65% for smear-negative TB patients with a specificity >95%, and thus, the present study suggests that a test based on combination of peptides selected from mycobacterial RD1 and RD2 antigens could be important for promoting an early diagnosis and management of otherwise difficult to diagnose smear-negative PTB patients. Moreover, it can also be used to discriminate sarcoidosis from PTB, thus preventing the misdiagnosis and mismanagement.
Collapse
Affiliation(s)
- Bela Goyal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh, India
| | | | - Dheeraj Gupta
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh, India
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh, India
| | - Romica Latawa
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh, India
| | - Javaid Ahmad Sheikh
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh, India
| | - Indu Verma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh, India.
| |
Collapse
|
17
|
Mohamud R, Azlan M, Yero D, Alvarez N, Sarmiento ME, Acosta A, Norazmi MN. Immunogenicity of recombinant Mycobacterium bovis bacille Calmette-Guèrin clones expressing T and B cell epitopes of Mycobacterium tuberculosis antigens. BMC Immunol 2013; 14 Suppl 1:S5. [PMID: 23458635 PMCID: PMC3582440 DOI: 10.1186/1471-2172-14-s1-s5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recombinant Mycobacterium bovis bacille Calmette–Guèrin (rBCG) expressing three T cell epitopes of Mycobacterium tuberculosis (MTB) Ag85B antigen (P1, P2, P3) fused to the Mtb8.4 protein (rBCG018) or a combination of these antigens fused to B cell epitopes from ESAT-6, CFP-10 and MTP40 proteins (rBCG032) were used to immunize Balb/c mice. Total IgG responses were determined against Mtb8.4 antigen and ESAT-6 and CFP-10 B cell epitopes after immunization with rBCG032. Mice immunized with rBCG032 showed a significant increase in IgG1 and IgG2a antibodies against ESAT-6 and MTP40 (P1) B cell epitopes and IgG3 against both P1 and P2 B cell epitopes of MPT40. Splenocytes from mice immunized with rBCG018 proliferated against Ag85B P2 and P3 T cell epitopes and Mtb8.4 protein whereas those from mice-immunized with rBCG032 responded against all Ag85B epitopes and the ESAT-6 B cell epitope. CD4+ and CD8+ lymphocytes from mice immunized with rBCG018 produced primarily Th1 type cytokines in response to the T cell epitopes. Similar pattern of recognition against the T cell epitopes were obtained with rBCG032 with the additional recognition of ESAT-6, CFP-10 and one of the MTP40 B cell epitopes with the same pattern of cytokines. This study demonstrates that rBCG constructs expressing either T or T and B cell epitopes of MTB induced appropriate immunogenicity against MTB.
Collapse
Affiliation(s)
- Rohimah Mohamud
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | | | | | | | | | | | | |
Collapse
|
18
|
Yang H, Chen H, Liu Z, Ma H, Qin L, Jin R, Zheng R, Feng Y, Cui Z, Wang J, Liu J, Hu Z. A novel B-cell epitope identified within Mycobacterium tuberculosis CFP10/ESAT-6 protein. PLoS One 2013; 8:e52848. [PMID: 23308124 PMCID: PMC3538682 DOI: 10.1371/journal.pone.0052848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/21/2012] [Indexed: 11/29/2022] Open
Abstract
Background The 10-kDa culture filtrate protein (CFP10) and 6-kDa early-secreted target antigen (ESAT-6) play important roles in mycobacterial virulence and pathogenesis through a 1∶1 complex formation (CFP10/ESAT-6 protein, CE protein), which have been used in discriminating TB patients from BCG-vaccinated individuals. The B-cell epitopes of CFP10 and ESAT-6 separately have been analyzed before, however, the epitopes of the CE protein are unclear and the precise epitope in the positions 40 to 62 of ESAT-6 is still unknown. Methods In the present study, we searched for the B-cell epitopes of CE protein by using phage-display library biopanning with the anti-CE polyclonal antibodies. The epitopes were identified by sequence alignment, binding affinity and specificity detection, generation of polyclonal mouse sera and detection of TB patient sera. Results One linear B-cell epitope (KWDAT) consistent with the 162nd–166th sequence of CE and the 57th–61st sequence of ESAT-6 protein was selected and identified. Significantly higher titers of E5 peptide-binding antibodies were found in the sera of TB patients compared with those of healthy individuals. Conclusion There was a B-cell epitope for CE and ESAT-6 protein in the position 40 to 62 of ESAT-6. E5 peptide may be useful in the serodiagnosis of tuberculosis, which need to be further confirmed by more sera samples.
Collapse
Affiliation(s)
- Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haizhen Chen
- Clinical Laboratory Diagnostics, Shanxi Medical University, Taiyuan, China
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruiliang Jin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yonghong Feng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenling Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinming Liu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail: (JL); (ZH)
| | - Zhongyi Hu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail: (JL); (ZH)
| |
Collapse
|
19
|
Shouman W, El-Gammal M, Shaker A, El-Shoura A, Marei A, El-Ahmady M, Boghdadi G. ESAT-6-ELISpot and interferon γ in the diagnosis of pleural tuberculosis. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2012. [DOI: 10.1016/j.ejcdt.2012.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
20
|
Roles and underlying mechanisms of ESAT-6 in the context of Mycobacterium tuberculosis-host interaction from a systems biology perspective. Cell Signal 2012; 24:1841-6. [PMID: 22634089 DOI: 10.1016/j.cellsig.2012.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 05/14/2012] [Indexed: 01/08/2023]
Abstract
The 6kDa early secreted antigenic target (ESAT-6), an important and intensively studied virulence factor of Mycobacterium tuberculosis, acts alone or in combination with CFP-10 to influence the outcome of the host-pathogen interaction. Secreted ESAT-6 can disturb the activation of macrophages, induce apoptosis and subvert host immunity. ESAT-6 mediated autophagosome formation and TLR signaling deviation lead to abnormal activation of NF-κB and subsequent erroneous expression of NF-κB-dependent genes. The C-terminal amino acid residues 90-95 in ESAT-6 are essential for the interaction with host. In-depth appreciation of the multiple roles of ESAT-6 upon host can inform improvements for novel vaccines and diagnostic tools for tuberculosis.
Collapse
|
21
|
van der Woude AD, Sarkar D, Bhatt A, Sparrius M, Raadsen SA, Boon L, Geurtsen J, van der Sar AM, Luirink J, Houben ENG, Besra GS, Bitter W. Unexpected link between lipooligosaccharide biosynthesis and surface protein release in Mycobacterium marinum. J Biol Chem 2012; 287:20417-29. [PMID: 22505711 DOI: 10.1074/jbc.m111.336461] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mycobacterial cell envelope is characterized by the presence of a highly impermeable second membrane, which is composed of mycolic acids intercalated with different unusual free lipids, such as lipooligosaccharides (LOS). Transport across this cell envelope requires a dedicated secretion system for extracellular proteins, such as PE_PGRS proteins, which are specific mycobacterial proteins with polymorphic GC-rich sequence (PGRS). In this study, we set out to identify novel components involved in the secretion of PE_PGRS proteins by screening Mycobacterium marinum transposon mutants for secretion defects. Interestingly, most mutants were not affected in secretion but in the release of PE_PGRS proteins from the cell surface. These mutants had insertions in a gene cluster associated with LOS biosynthesis. Lipid analysis of these mutants revealed a role at different stages of LOS biosynthesis for 10 novel genes. Furthermore, we show that regulatory protein WhiB4 is involved in LOS biosynthesis. The absence of the most extended LOS molecule, i.e. LOS-IV, and a concomitant accumulation of LOS-III was already sufficient to reduce the release of PE_PGRS proteins from the mycobacterial cell surface. A similar effect was observed for major surface protein EspE. These results show that the attachment of surface proteins is strongly influenced by the glycolipid composition of the mycobacterial cell envelope. Finally, we tested the virulence of a LOS-IV-deficient mutant in our zebrafish embryo infection model. This mutant showed a marked increase in virulence as compared with the wild-type strain, suggesting that LOS-IV plays a role in the modulation of mycobacterial virulence.
Collapse
Affiliation(s)
- Aniek D van der Woude
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tyagi AK, Nangpal P, Satchidanandam V. Development of vaccines against tuberculosis. Tuberculosis (Edinb) 2011; 91:469-78. [DOI: 10.1016/j.tube.2011.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/14/2011] [Accepted: 01/16/2011] [Indexed: 12/20/2022]
|
23
|
Proposing low-similarity peptide vaccines against Mycobacterium tuberculosis. J Biomed Biotechnol 2010; 2010:832341. [PMID: 20625421 PMCID: PMC2896900 DOI: 10.1155/2010/832341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/02/2009] [Accepted: 03/24/2010] [Indexed: 12/03/2022] Open
Abstract
Using the currently available proteome databases and based on the concept that a rare sequence is a potential epitope, epitopic sequences derived from Mycobacterium tuberculosis were examined for similarity score to the proteins of the host in which the epitopes were defined. We found that: (i) most of the bacterial linear determinants had peptide fragment(s) that were rarely found in the host proteins and (ii) the relationship between low similarity and epitope definition appears potentially applicable to T-cell determinants. The data confirmed the hypothesis that low-sequence similarity shapes or determines the epitope definition at the molecular level and provides a potential tool for designing new approaches to prevent, diagnose, and treat tuberculosis and other infectious diseases.
Collapse
|
24
|
Floss DM, Mockey M, Zanello G, Brosson D, Diogon M, Frutos R, Bruel T, Rodrigues V, Garzon E, Chevaleyre C, Berri M, Salmon H, Conrad U, Dedieu L. Expression and immunogenicity of the mycobacterial Ag85B/ESAT-6 antigens produced in transgenic plants by elastin-like peptide fusion strategy. J Biomed Biotechnol 2010; 2010:274346. [PMID: 20414351 PMCID: PMC2855997 DOI: 10.1155/2010/274346] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/15/2010] [Indexed: 12/02/2022] Open
Abstract
This study explored a novel system combining plant-based production and the elastin-like peptide (ELP) fusion strategy to produce vaccinal antigens against tuberculosis. Transgenic tobacco plants expressing the mycobacterial antigens Ag85B and ESAT-6 fused to ELP (TBAg-ELP) were generated. Purified TBAg-ELP was obtained by the highly efficient, cost-effective, inverse transition cycling (ICT) method and tested in mice. Furthermore, safety and immunogenicity of the crude tobacco leaf extracts were assessed in piglets. Antibodies recognizing mycobacterial antigens were produced in mice and piglets. A T-cell immune response able to recognize the native mycobacterial antigens was detected in mice. These findings showed that the native Ag85B and ESAT-6 mycobacterial B- and T-cell epitopes were conserved in the plant-expressed TBAg-ELP. This study presents the first results of an efficient plant-expression system, relying on the elastin-like peptide fusion strategy, to produce a safe and immunogenic mycobacterial Ag85B-ESAT-6 fusion protein as a potential vaccine candidate against tuberculosis.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/biosynthesis
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Blotting, Western
- Cattle
- Cell Growth Processes/genetics
- Cell Survival/genetics
- Elastin/genetics
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Hypersensitivity, Delayed
- Mice
- Mice, Inbred BALB C
- Mycobacterium tuberculosis/genetics
- Peptides/genetics
- Plant Leaves/chemistry
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/isolation & purification
- Spleen/cytology
- Swine
- Nicotiana/genetics
- Nicotiana/metabolism
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Doreen Manuela Floss
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- Institute of Biochemistry, Christian Albrechts University, Olshausenstrasse 40, 24118 Kiel, Germany
| | | | - Galliano Zanello
- Institut National de la Recherche Agronomique (INRA), UR1282, Infectiologie Animale et Santé Publique, 37380, Nouzilly (Tours), France
| | - Damien Brosson
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), Equipe Interactions Hôtes-Parasites, 24, avenue des landais, 63177 Aubière Cedex, France
| | - Marie Diogon
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), Equipe Interactions Hôtes-Parasites, 24, avenue des landais, 63177 Aubière Cedex, France
| | | | - Timothée Bruel
- Institut National de la Recherche Agronomique (INRA), UR1282, Infectiologie Animale et Santé Publique, 37380, Nouzilly (Tours), France
| | | | | | - Claire Chevaleyre
- Institut National de la Recherche Agronomique (INRA), UR1282, Infectiologie Animale et Santé Publique, 37380, Nouzilly (Tours), France
| | - Mustapha Berri
- Institut National de la Recherche Agronomique (INRA), UR1282, Infectiologie Animale et Santé Publique, 37380, Nouzilly (Tours), France
| | - Henri Salmon
- Institut National de la Recherche Agronomique (INRA), UR1282, Infectiologie Animale et Santé Publique, 37380, Nouzilly (Tours), France
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | | |
Collapse
|
25
|
Immune response to Mycobacterium tuberculosis specific antigen ESAT-6 among south Indians. Tuberculosis (Edinb) 2010; 90:60-9. [DOI: 10.1016/j.tube.2009.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 09/23/2009] [Accepted: 10/06/2009] [Indexed: 11/20/2022]
|
26
|
Hall LJ, Clare S, Pickard D, Clark SO, Kelly DLF, El Ghany MA, Hale C, Dietrich J, Andersen P, Marsh PD, Dougan G. Characterisation of a live Salmonella vaccine stably expressing the Mycobacterium tuberculosis Ag85B-ESAT6 fusion protein. Vaccine 2009; 27:6894-904. [PMID: 19755145 PMCID: PMC2789253 DOI: 10.1016/j.vaccine.2009.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 08/20/2009] [Accepted: 09/01/2009] [Indexed: 11/08/2022]
Abstract
A recombinant Salmonella enterica serovar Typhimurium (S. Typhimurium) vaccine strain was constructed that stably expressed the Mycobacterium tuberculosis fusion antigen Ag85B–ESAT6 from the chromosome. Live oral vaccination of mice with the Salmonella/Ag85B–ESAT6 strain generated a potent anti-Ag85B–ESAT6 TH1 response with high antibody titres with a IgG2a-bias and significant IFN-γ production lasting over a 120-day period. When mice primed with the Salmonella/Ag85B–ESAT6 vaccine were mucosally boosted with the Ag85B–ESAT6 antigen and adjuvant the IFN-γ responses increased markedly. To determine the protective efficacy of this vaccine strain, guinea pigs were immunised and followed for a 30-week period after aerosol challenge with M. tuberculosis. The heterologous prime-boost strategy of live Salmonella vaccine followed by a systemic boost of antigen and adjuvant reduced the levels of M. tuberculosis bacteria in the lungs and spleen to the same extent as BCG. Additionally, this vaccination regimen was observed to be statistically equivalent in terms of protection to immunisation with BCG. Thus, live oral priming with the recombinant Salmonella/Ag85B–ESAT6 and boosting with Ag85B–ESAT6 plus the adjuvant LTK63 represents an effective mucosal vaccination regimen.
Collapse
Affiliation(s)
- Lindsay J Hall
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu S, Gong Q, Wang C, Liu H, Wang Y, Guo S, Wang W, Liu J, Shao M, Chi L, Zhao K, Wang Z, Shi Y, Huang Y, guli A, Zhang C, Kong X. A novel DNA vaccine for protective immunity against virulent Mycobacterium bovis in mice. Immunol Lett 2008; 117:136-45. [DOI: 10.1016/j.imlet.2008.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/27/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
|
28
|
Weldingh K, Andersen P. ESAT-6/CFP10 skin test predicts disease in M. tuberculosis-infected guinea pigs. PLoS One 2008; 3:e1978. [PMID: 18431468 PMCID: PMC2292253 DOI: 10.1371/journal.pone.0001978] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 03/10/2008] [Indexed: 11/19/2022] Open
Abstract
Background Targeted preventive chemotherapy of individuals with progressive subclinical (incipient) disease before it becomes contagious would break the chain of tuberculosis transmission in high endemic regions. We have studied the ability of a skin test response to ESAT-6 and CFP10 (E6/C10) to predict later development of tuberculosis disease in the guinea pig model. Methods and Findings Guinea pigs, either vaccinated with BCG or unvaccinated, were infected with a low dose of Mycobacterium tuberculosis by the aerosol route and the development of delayed type hypersensitivity responses to E6/C10 and to purified protein derivative (PPD) were followed until the onset of clinical disease. We demonstrated a negative correlation between the size of the skin test response and the time to the onset of clinical disease; a large E6/C10 skin test response correlated to a shorter survival time post skin testing, while a small E6/C10 skin test reaction correlated with a longer survival time (r = −0.6 and P<0.0001). No correlation was found using PPD. Conclusions Our data suggest that it may be possible to develop a prognostic skin test based on E6/C10 that will allow the identification of individuals with incipient disease, who have the highest risk of developing active tuberculosis in the near future.
Collapse
Affiliation(s)
- Karin Weldingh
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | | |
Collapse
|
29
|
Meher AK, Lella RK, Sharma C, Arora A. Analysis of complex formation and immune response of CFP-10 and ESAT-6 mutants. Vaccine 2007; 25:6098-106. [PMID: 17629379 DOI: 10.1016/j.vaccine.2007.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 04/30/2007] [Accepted: 05/12/2007] [Indexed: 11/22/2022]
Abstract
ESAT-6 and CFP-10 form a 1:1 heterodimeric complex which contributes to the virulence of Mycobacterium tuberculosis H37Rv. Based on the structure of CFP-10-ESAT-6 complex, we have selected four point mutations each of CFP-10 and ESAT-6 and have analyzed complex formation for the 25 possible combinations between wild-type and mutant CFP-10 and ESAT-6 proteins. We observed that the mutations L25R or F58R of CFP-10 and L29D or L65D of ESAT-6 lead to disruption of complex formation. We have evaluated the immunogenic responses of the wild-type and mutant CFP-10 and ESAT-6 proteins, the wild-type CFP-10-ESAT-6 complex, six complex-forming and two non-complex-forming combinations of wild-type/mutant CFP-10 and ESAT-6 proteins. CFP-10 mutants I21R, L25R, and W43R were found to have better immunogenic potential than wt-CFP-10, while none of the ESAT-6 mutants were better than wt-ESAT-6. Very interestingly, we have discovered that the non-complex-forming mixture of CFP-10-I21R and ESAT-6-L29D gives a strong immunogenic response.
Collapse
Affiliation(s)
- Akshaya K Meher
- Molecular and Structural Biology, Central Drug Research Institute, Lucknow 226001, India
| | | | | | | |
Collapse
|
30
|
Hoff ST, Abebe M, Ravn P, Range N, Malenganisho W, Rodriques DS, Kallas EG, Søborg C, Mark Doherty T, Andersen P, Weldingh K. Evaluation of Mycobacterium tuberculosis--specific antibody responses in populations with different levels of exposure from Tanzania, Ethiopia, Brazil, and Denmark. Clin Infect Dis 2007; 45:575-82. [PMID: 17682991 DOI: 10.1086/520662] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 05/29/2007] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND New, simple, and better-performing diagnostic tools are needed for the diagnosis of tuberculosis (TB). Much effort has been invested in developing an antibody-based test for TB, but to date, no such test has performed with sufficient sensitivity and specificity. A key question remaining is the extent to which the disappointing performance of current tests is associated with a high background prevalence of latent TB. METHODS We compared Mycobacterium tuberculosis-specific ESAT-6 and CFP-10 antibody responses in a total of 565 human serum samples from M. tuberculosis-uninfected donors and donors with latent infection, as well as samples from patients with active TB. Our study included samples from 4 countries, representing environments with low, intermediate, and high TB incidences. RESULTS We demonstrated significant increases in antibody levels in latently infected contacts, compared with M. tuberculosis-uninfected individuals, and in patients with active TB disease, compared with latently infected contacts. Furthermore, we found a striking increase in the magnitude of the antibody responses in samples obtained from infected Ethiopian individuals (with and without disease), compared with Danish and Brazilian infected individuals; this was presumably the result of higher exposure levels. CONCLUSIONS Our study confirms the presence of ESAT-6 and CFP-10 antibodies in patients with TB, and we demonstrate that significant antibody responses are not restricted to active TB disease but can reflect latent infection, particularly in areas with high levels of exposure to M. tuberculosis. This finding is important for the understanding of the poor discriminatory power of current serodiagnostic tests in regions of endemicity, and it may have major implications on the future development of serologic tests.
Collapse
Affiliation(s)
- Soren T Hoff
- Department of Infectious Diseases Immunology, Statens Serum Institute, Copenhagen S, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Heym B, Chinet T. Méthodes diagnostiques de l'infection tuberculeuse en 2007: intradermoréaction à la tuberculine ou interféron-γ? Rev Med Interne 2007; 28:147-50. [PMID: 17258356 DOI: 10.1016/j.revmed.2006.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
|
32
|
Hamdi H, Mariette X, Godot V, Weldingh K, Hamid AM, Prejean MV, Baron G, Lemann M, Puechal X, Breban M, Berenbaum F, Delchier JC, Flipo RM, Dautzenberg B, Salmon D, Humbert M, Emilie D. Inhibition of anti-tuberculosis T-lymphocyte function with tumour necrosis factor antagonists. Arthritis Res Ther 2007; 8:R114. [PMID: 16859506 PMCID: PMC1779425 DOI: 10.1186/ar1994] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 06/08/2006] [Accepted: 06/20/2006] [Indexed: 11/30/2022] Open
Abstract
Reactivation of latent Mycobacterium tuberculosis (Mtb) infection is a major complication of anti-tumour necrosis factor (TNF)-α treatment, but its mechanism is not fully understood. We evaluated the effect of the TNF antagonists infliximab (Ifx), adalimumab (Ada) and etanercept (Eta) on anti-mycobacterial immune responses in two conditions: with ex vivo studies from patients treated with TNF antagonists and with the in vitro addition of TNF antagonists to cells stimulated with mycobacterial antigens. In both cases, we analysed the response of CD4+ T lymphocytes to purified protein derivative (PPD) and to culture filtrate protein (CFP)-10, an antigen restricted to Mtb. The tests performed were lymphoproliferation and immediate production of interferon (IFN)-γ. In the 68 patients with inflammatory diseases (rheumatoid arthritis, spondylarthropathy or Crohn's disease), including 31 patients with a previous or latent tuberculosis (TB), 14 weeks of anti-TNF-α treatment had no effect on the proliferation of CD4+ T lymphocytes. In contrast, the number of IFN-γ-releasing CD4+ T lymphocytes decreased for PPD (p < 0.005) and CFP-10 (p < 0.01) in patients with previous TB and for PPD (p < 0.05) in other patients (all vaccinated with Bacille Calmette-Guérin). Treatments with Ifx and with Eta affected IFN-γ release to a similar extent. In vitro addition of TNF antagonists to CD4+ T lymphocytes stimulated with mycobacterial antigens inhibited their proliferation and their expression of membrane-bound TNF (mTNF). These effects occurred late in cultures, suggesting a direct effect of TNF antagonists on activated mTNF+ CD4+ T lymphocytes, and Ifx and Ada were more efficient than Eta. Therefore, TNF antagonists have a dual action on anti-mycobacterial CD4+ T lymphocytes. Administered in vivo, they decrease the frequency of the subpopulation of memory CD4+ T lymphocytes rapidly releasing IFN-γ upon challenge with mycobacterial antigens. Added in vitro, they inhibit the activation of CD4+ T lymphocytes by mycobacterial antigens. Such a dual effect may explain the increased incidence of TB in patients treated with TNF antagonists as well as possible differences between TNF antagonists for the incidence and the clinical presentation of TB reactivation.
Collapse
MESH Headings
- Adalimumab
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/drug effects
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antigens, Bacterial/immunology
- Arthritis, Rheumatoid/complications
- Arthritis, Rheumatoid/immunology
- Bacterial Proteins/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Crohn Disease/complications
- Crohn Disease/immunology
- Drug Administration Schedule
- Etanercept
- Humans
- Immunoglobulin G/administration & dosage
- Immunoglobulin G/pharmacology
- Infliximab
- Lymphocyte Activation/drug effects
- Mycobacterium tuberculosis/immunology
- Receptors, Tumor Necrosis Factor/administration & dosage
- Spondylarthropathies/complications
- Spondylarthropathies/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tuberculin/immunology
- Tuberculosis/complications
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factors/metabolism
Collapse
Affiliation(s)
- Haïfa Hamdi
- INSERM UMR-S764, Service d'Hépato-Gastro-Entérologie and Service de Microbiologie-Immunologie Biologique, Hôpital Antoine Béclère, Assistance Publique – Hôpitaux de Paris (AP-HP), Institut Paris-Sud sur les Cytokines, Université Paris-Sud, INSERM U764, 32 rue des Carnets, 92140, Clamart, France
| | - Xavier Mariette
- Service de Rhumatologie, Hôpital Bicêtre, AP-HP, Université Paris-Sud, INSERM U802, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
| | - Véronique Godot
- INSERM UMR-S764, Service d'Hépato-Gastro-Entérologie and Service de Microbiologie-Immunologie Biologique, Hôpital Antoine Béclère, Assistance Publique – Hôpitaux de Paris (AP-HP), Institut Paris-Sud sur les Cytokines, Université Paris-Sud, INSERM U764, 32 rue des Carnets, 92140, Clamart, France
| | - Karin Weldingh
- Department of Infectious Disease and Immunology, Statens Serum Institut, Copenhagen S, 5 Artillerivej, 2300 Denmark
| | - Abdul Monem Hamid
- Service de Pneumologie, Hôpital A. Béclère, AP-HP, Université Paris-Sud, 157 rue de la Porte-de-Trivaux, 92140 Clamart, France
| | - Maria-Victoria Prejean
- INSERM UMR-S764, Service d'Hépato-Gastro-Entérologie and Service de Microbiologie-Immunologie Biologique, Hôpital Antoine Béclère, Assistance Publique – Hôpitaux de Paris (AP-HP), Institut Paris-Sud sur les Cytokines, Université Paris-Sud, INSERM U764, 32 rue des Carnets, 92140, Clamart, France
| | - Gabriel Baron
- Département d'Epidémiologie, Biostatistique et Recherche Clinique, Groupe Hospitalier Bichat Claude-Bernard, AP-HP, Université Paris VII, INSERM U738, 46 rue Henri-Huchard, 75018 Paris, France
| | - Marc Lemann
- Service de Gastro-entérologie, Hôpital St. Louis, AP-HP, 1 avenue Claude-vellefaux, 75475 Paris, France
| | - Xavier Puechal
- Service de Rhumatologie, Centre hospitalier du Mans, 194 avenue Rubillard, 72037 Le Mans, France
| | - Maxime Breban
- Service de Rhumatologie, Hôpital A. Paré, AP-HP, 9 avenue Charles-de-Gaulle, 92100 Boulogne, France
| | - Francis Berenbaum
- Service de Rhumatologie, Hôpital St. Antoine, AP-HP, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Jean-Charles Delchier
- Service de Gastro-entérologie, Hôpital H. Mondor, AP-HP, 51 rue du Maréchal de Lattre de Tassigny, 94400 Créteil, France
| | - René-Marc Flipo
- Service de Rhumatologie, Hôpital C. Huriez, rue Michel Polonovski, 59037 Lille, France
| | - Bertrand Dautzenberg
- Service de Pneumologie, Hôpital Pitié-Salpétrière, AP-HP, 83 boulevard de l'Hôpital, 75013 Paris, France
| | - Dominique Salmon
- Service de Médecine interne et maladies infectieuses, Hôpital Cochin, 27 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Marc Humbert
- Service de Pneumologie, Hôpital A. Béclère, AP-HP, Université Paris-Sud, 157 rue de la Porte-de-Trivaux, 92140 Clamart, France
| | - Dominique Emilie
- INSERM UMR-S764, Service d'Hépato-Gastro-Entérologie and Service de Microbiologie-Immunologie Biologique, Hôpital Antoine Béclère, Assistance Publique – Hôpitaux de Paris (AP-HP), Institut Paris-Sud sur les Cytokines, Université Paris-Sud, INSERM U764, 32 rue des Carnets, 92140, Clamart, France
- Service de Microbiologie – Immunologie Biologique, Hôpital A. Béclère, AP-HP Université Paris-Sud,, 157 rue de la Porte-de-Trivaux, 92140 Clamart, France
| |
Collapse
|
33
|
Bennekov T, Dietrich J, Rosenkrands I, Stryhn A, Doherty TM, Andersen P. Alteration of epitope recognition pattern in Ag85B and ESAT-6 has a profound influence on vaccine-induced protection against Mycobacterium tuberculosis. Eur J Immunol 2007; 36:3346-55. [PMID: 17109467 DOI: 10.1002/eji.200636128] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To analyze the effect of vaccine delivery systems on antigen recognition and vaccine efficacy, we compared immune responses in mice immunized either with an adenovirus vector expressing a fusion of Ag85B and ESAT-6 or with the recombinant fusion protein in a liposomal adjuvant. Both vaccines induced high levels of antigen-specific IFN-gamma production. The adjuvanted protein vaccine induced primarily a CD4 T cell response directed to the epitope Ag85B(241-255) and gave efficient protection against subsequent Mycobacterium tuberculosis infection. In contrast, the adenoviral construct induced a strong CD8 response predominantly targeted to the epitope ESAT-6(15-29) and no significant protection against infection. Vaccination with the protein vaccine resulted in highly accelerated recall of Ag85B(241-255)-specific T cells immediately post M. tuberculosis challenge whereas the ESAT-6(15-29) epitope was barely recognized during infection. Delivery of the viral construct in cationic liposomes switched the immune response to a protective one dominated by CD4 T cells targeted to the Ag85B(241-255) epitope. These data demonstrate that the nature of the T cell response to a vaccine antigen is more important than its magnitude with respect to protective efficacy and that vaccine-mediated changes in immunodominance can result in T cell responses of limited relevance during the natural infection.
Collapse
MESH Headings
- Acyltransferases/genetics
- Acyltransferases/immunology
- Acyltransferases/metabolism
- Adenoviridae/genetics
- Adenoviridae/immunology
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Cell Line
- Epitope Mapping
- Female
- Immunologic Memory/genetics
- Mice
- Mice, Inbred C57BL
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Tuberculosis/immunology
- Tuberculosis/prevention & control
- Tuberculosis Vaccines/administration & dosage
- Tuberculosis Vaccines/genetics
- Tuberculosis Vaccines/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Thomas Bennekov
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
34
|
Sable SB, Plikaytis BB, Shinnick TM. Tuberculosis subunit vaccine development: Impact of physicochemical properties of mycobacterial test antigens. Vaccine 2007; 25:1553-66. [PMID: 17166640 DOI: 10.1016/j.vaccine.2006.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 09/27/2006] [Accepted: 11/07/2006] [Indexed: 11/23/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis continues to be one of the major public health problems in the world. The eventual control of this disease will require the development of a safe and effective vaccine. One of the approaches receiving a great deal of attention recently is subunit vaccination. An efficacious antituberculous subunit vaccine requires the identification and isolation of key components of the pathogen that are capable of inducing a protective immune response. Clues to identify promising subunit vaccine candidates may be found in their physicochemical and immunobiological properties. In this article, we review the evidence that the physicochemical properties of mycobacterial components can greatly impact the induction of either protective or deleterious immune response and consequently influence the potential utility as an antituberculous subunit vaccine.
Collapse
Affiliation(s)
- Suraj B Sable
- Division of TB Elimination, National Center for HIV, STD, and TB Prevention, Centers for Disease Control and Prevention, Mailstop G35, 1600 Clifton Road, Atlanta, GA 30333, USA
| | | | | |
Collapse
|
35
|
Xu Y, Wang B, Chen J, Wang Q, Zhu B, Shen H, Qie Y, Wang J, Wang H. Chimaeric Protein Improved Immunogenicity Compared with Fusion Protein of Ag85B and ESAT-6 Antigens of Mycobacterium tuberculosis. Scand J Immunol 2006; 64:476-81. [PMID: 17032239 DOI: 10.1111/j.1365-3083.2006.01812.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Antigen 85B (Ag85B) and ESAT-6 are important immunodominant antigens of Mycobacterium tuberculosis, and both are very promising vaccine candidate molecules. In this study, we relied on the T-cell epitopes of Ag85B and ESAT-6 to design a chimaeric protein by inserting ESAT-6 into Ag85B from the amino acids 167-182. We found the ratio of IgG2b/IgG1 and the secretion of interferon (IFN)-gamma in the mice vaccinated with the new protein with adjuvant MPL and TDM were higher than the mice immunized with fusion protein Ag85B-ESAT-6, which have been reported and could induce levels of protective immunity similar to BCG in the mouse model of tuberculosis (TB) infection. These results suggest that the chimaeric protein Ag85B(N)-ESAT-6-Ag85B(C) is a strong candidate for further study and the T-cell epitopes of the antigens should be considered when we design the subunit vaccine.
Collapse
Affiliation(s)
- Y Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
A novel fusion protein-based indirect enzyme-linked immunosorbent assay for the detection of bovine tuberculosis. Tuberculosis (Edinb) 2006; 87:212-7. [PMID: 17023217 DOI: 10.1016/j.tube.2006.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/10/2006] [Accepted: 07/24/2006] [Indexed: 10/24/2022]
Abstract
Enzyme-linked immunosorbent assay (ELISA) for diagnosis of bovine tuberculosis has been widely explored over the years. Three Mycobacterium bovis-specific antigen genes, namely, mpb70, mpb83, and esat-6 were recombined in tandem by spliced overlap extension technology and expressed in Escherichia coli to obtain the fusion protein (rM70-83-E6). Western blot analysis showed that rM70-83-E6 can specifically react with bovine tuberculosis-positive sera but not those from cattle infected with other bovine diseases such as bovine paratuberculosis. An indirect ELISA (iELISA) method was established with rM70-83-E6 as the diagnostic antigen. The diagnostic criteria were determined using 150 serum samples from healthy cattle. Analyses of 85 serum samples from cattle with bovine tuberculosis and 100 serum samples from healthy cattle demonstrated that the sensitivity of the iELISA was 69.4% (59/85) and the specificity was 96.0% (96/100). Moreover, 46 out of 67 purified protein derivative (PPD) skin test-positive samples were also positive by iELISA, giving a positive coincidence of 68.7%, while all 50 PPD skin test-negative samples were negative by iELISA, giving a negative coincidence of 100%. The total coincidence between iELISA and the PPD skin test was 82.1%. This study demonstrated that iELISA using rM70-83-E6 antigen is simple, sensitive and easy to perform and can be used to analysis of a large number of samples for serodiagnosis of bovine tubercuiosis.
Collapse
|
37
|
Al-Attiyah R, Madi N, El-Shamy AS, Wiker H, Andersen P, Mustafa A. Cytokine profiles in tuberculosis patients and healthy subjects in response to complex and single antigens of Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2006; 47:254-61. [PMID: 16831212 DOI: 10.1111/j.1574-695x.2006.00110.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Peripheral blood mononuclear cells (PBMC) were obtained from tuberculosis (TB) patients and Mycobacterium bovis bacillus Calmette-Guerin vaccinated healthy subjects. PBMC were tested for secretion of tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), interleukin-5 (IL-5) and IL-10 in response to complex (whole cells, culture filtrate and cell walls), single secreted (Ag85B, ESAT6, MPT64, PstS and MPT70) and single cytosolic (DnaK, GroES and GroEL) antigens of Mycobacterium tuberculosis. In the absence of antigens, detectable concentrations of TNF-alpha, IFN-gamma and IL-10 were secreted by PBMC of both donor groups, but the concentrations of only IL-10 were significantly higher (P=0.015) in TB patients than in healthy subjects. In the presence of complex antigens, PBMC secreted IFN-gamma and TNF-alpha in response to all three preparations, whereas IL-10 was secreted in response to whole cells and cell walls only. In the presence of single antigens, IFN-gamma was secreted in response to Ag85B, ESAT6 and MPT64 in TB patients and ESAT6 in healthy donors. Except for GroEL and DnaK, single antigens did not induce TNF-alpha and IL-10 secretion from PBMC in either donor group. The secretion of IFN-gamma, but not IL-10, in the presence of Ag85B, ESAT6 and MPT64 supports their potential as subunit vaccine candidates against TB.
Collapse
Affiliation(s)
- Raja'a Al-Attiyah
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait.
| | | | | | | | | | | |
Collapse
|
38
|
Saha S, Raghava GPS. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 2006; 65:40-8. [PMID: 16894596 DOI: 10.1002/prot.21078] [Citation(s) in RCA: 1035] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
B-cell epitopes play a vital role in the development of peptide vaccines, in diagnosis of diseases, and also for allergy research. Experimental methods used for characterizing epitopes are time consuming and demand large resources. The availability of epitope prediction method(s) can rapidly aid experimenters in simplifying this problem. The standard feed-forward (FNN) and recurrent neural network (RNN) have been used in this study for predicting B-cell epitopes in an antigenic sequence. The networks have been trained and tested on a clean data set, which consists of 700 non-redundant B-cell epitopes obtained from Bcipep database and equal number of non-epitopes obtained randomly from Swiss-Prot database. The networks have been trained and tested at different input window length and hidden units. Maximum accuracy has been obtained using recurrent neural network (Jordan network) with a single hidden layer of 35 hidden units for window length of 16. The final network yields an overall prediction accuracy of 65.93% when tested by fivefold cross-validation. The corresponding sensitivity, specificity, and positive prediction values are 67.14, 64.71, and 65.61%, respectively. It has been observed that RNN (JE) was more successful than FNN in the prediction of B-cell epitopes. The length of the peptide is also important in the prediction of B-cell epitopes from antigenic sequences. The webserver ABCpred is freely available at www.imtech.res.in/raghava/abcpred/.
Collapse
Affiliation(s)
- Sudipto Saha
- Institute of Microbial Technology, Chandigarh, India
| | | |
Collapse
|
39
|
Sereinig S, Stukova M, Zabolotnyh N, Ferko B, Kittel C, Romanova J, Vinogradova T, Katinger H, Kiselev O, Egorov A. Influenza virus NS vectors expressing the mycobacterium tuberculosis ESAT-6 protein induce CD4+ Th1 immune response and protect animals against tuberculosis challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:898-904. [PMID: 16893990 PMCID: PMC1539114 DOI: 10.1128/cvi.00056-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/27/2006] [Accepted: 05/10/2006] [Indexed: 11/20/2022]
Abstract
Infection with Mycobacterium tuberculosis remains a major cause of morbidity and mortality all over the world. Since the effectiveness of the only available tuberculosis vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is suboptimal, there is a strong demand to develop new tuberculosis vaccines. As tuberculosis is an airborne disease, the intranasal route of vaccination might be preferable. Live influenza virus vaccines might be considered as potential vectors for mucosal immunization against various viral or bacterial pathogens, including M. tuberculosis. We generated several subtypes of attenuated recombinant influenza A viruses expressing the 6-kDa early secretory antigenic target protein (ESAT-6) of M. tuberculosis from the NS1 reading frame. We were able to demonstrate the potency of influenza virus NS vectors to induce an M. tuberculosis-specific Th1 immune response in mice. Moreover, intranasal immunization of mice and guinea pigs with such vectors induced protection against mycobacterial challenge, similar to that induced by BCG vaccination.
Collapse
Affiliation(s)
- Sabine Sereinig
- Institute of Applied Microbiology, Muthgasse 18, 1190 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Agger EM, Rosenkrands I, Olsen AW, Hatch G, Williams A, Kritsch C, Lingnau K, von Gabain A, Andersen CS, Korsholm KS, Andersen P. Protective immunity to tuberculosis with Ag85B-ESAT-6 in a synthetic cationic adjuvant system IC31. Vaccine 2006; 24:5452-60. [PMID: 16675077 DOI: 10.1016/j.vaccine.2006.03.072] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study, we evaluated the potential of a novel synthetic adjuvant designated IC31 for the ability to augment the immune response and protective efficacy of the well-known mycobacterial vaccine antigen, Ag85B-ESAT-6. The IC31 adjuvant, consisting of a vehicle based on the cationic peptide KLKL(5)KLK and the immunostimulatory oligodeoxynucleotide ODN1a signalling through the TLR9 receptor, was found to promote highly efficient Th1 responses. The combination of Ag85B-ESAT-6 and IC31 exhibited significant levels of protection in the mouse aerosol challenge model of tuberculosis and a detailed analysis of the immune response generated revealed the induction of CD4 T cells giving rise to high levels of IFN-gamma secretion. Furthermore, the combination of Ag85B-ESAT-6/IC31 was found to confer efficient protection in the guinea pig aerosol model of tuberculosis infection and is at present moving towards clinical testing.
Collapse
Affiliation(s)
- Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Adjuvant Research, 5 Artillerivej, DK-2300 Copenhagen S, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ascón MA, Ochoa-Repáraz J, Walters N, Pascual DW. Partially assembled K99 fimbriae are required for protection. Infect Immun 2005; 73:7274-80. [PMID: 16239523 PMCID: PMC1273889 DOI: 10.1128/iai.73.11.7274-7280.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies to K99 fimbriae afford protection to F5+ bovine enterotoxigenic Escherichia coli (ETEC). Previous studies show that murine dams immunized with Salmonella vaccine vectors stably expressing K99 fimbriae confer protection to ETEC-challenged neonatal pups. To begin to address adaptation of the K99 scaffold to display heterologous B- and T-cell epitopes, studies were conducted to determine how much of the assembled K99 fimbria is required to maintain protective immunity. Sequential deletions in the K99 gene clusters were made, resulting in diminished localization of the K99 fimbrial subunit in the outer membrane. As placement of the K99 fimbrial subunit became progressively contained within the vaccine vector, diminished immunoglobulin A (IgA) and IgG1 antibody titers, as well as diminished Th2-type cytokine responses, were observed in orally immunized mice. Deletion of fanGH, which greatly reduced the export of the fimbrial subunit to the outer membrane, showed only partial reduction in protective immunity. By contrast, deletion of fanDEFGH, which also reduced the export of the fimbrial subunit to the outer membrane but retained more subunit in the cytoplasm, resulted in protective immunity being dramatically reduced. Thus, these studies showed that retention of K99 fimbrial subunit as native fimbriae or with the deletion of fanGH is sufficient to confer protection.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Bacterial/blood
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Bacterial Toxins/chemistry
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Colostrum/immunology
- Feces
- Female
- Fimbriae Proteins/chemistry
- Fimbriae Proteins/genetics
- Fimbriae Proteins/immunology
- Fimbriae, Bacterial/chemistry
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/immunology
- Gene Expression Regulation, Bacterial
- Immunity, Mucosal/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mutation
- Protein Transport
- Salmonella Infections/immunology
- Salmonella Infections/prevention & control
- Salmonella Vaccines/chemistry
- Salmonella Vaccines/immunology
- Th2 Cells/immunology
- Vaccination
Collapse
Affiliation(s)
- Miguel A Ascón
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717-3610, USA
| | | | | | | |
Collapse
|
42
|
Khera A, Singh R, Shakila H, Rao V, Dhar N, Narayanan PR, Parmasivan CN, Ramanathan VD, Tyagi AK. Elicitation of efficient, protective immune responses by using DNA vaccines against tuberculosis. Vaccine 2005; 23:5655-65. [PMID: 16157425 DOI: 10.1016/j.vaccine.2005.03.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2004] [Accepted: 03/16/2005] [Indexed: 11/30/2022]
Abstract
DNA vaccination is an effective method for elicitation of strong humoral as well as cellular immune responses. DNA vaccines expressing mycobacterial antigens ESAT-6 (Rv3875), alpha-crystallin (Rv2031c) and superoxide dismutase A (Rv3846) were evaluated for their immune responses in Balb/c mice and protective efficacy in guinea pigs. Immunization of mice with the DNA vaccines expressing superoxide dismutase A and alpha-crystallin resulted in markedly higher levels of IFN-gamma as compared to the levels of IL-10. The DNA vaccine expressing ESAT-6 elicited a mixed Th1/Th2 response. Immunization of guinea pigs with these DNA vaccines and subsequent challenge of animals with Mycobacterium tuberculosis H(37)Rv, showed that DNA vaccine expressing superoxide dismutase imparted the maximum protection as observed by a 50 and 10 folds reduction in bacillary load in spleens and lungs, respectively, in comparison to immunization with vector control.
Collapse
Affiliation(s)
- Aparna Khera
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Koo HC, Park YH, Ahn J, Waters WR, Palmer MV, Hamilton MJ, Barrington G, Mosaad AA, Park KT, Jung WK, Hwang IY, Cho SN, Shin SJ, Davis WC. Use of rMPB70 protein and ESAT-6 peptide as antigens for comparison of the enzyme-linked immunosorbent, immunochromatographic, and latex bead agglutination assays for serodiagnosis of bovine tuberculosis. J Clin Microbiol 2005; 43:4498-506. [PMID: 16145098 PMCID: PMC1234133 DOI: 10.1128/jcm.43.9.4498-4506.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current assays used to detect Mycobacterium bovis infection lack accuracy, especially for recently infected animals, or are impractical for rapid field diagnostic applications. To overcome these limitations with serological assays, a synthetic peptide derived from early secretory antigenic target 6 (ESAT6-p) and a recombinant major secreted immunogenic protein (rMPB70) of M. bovis were used in an enzyme-linked immunosorbent assay (EIA), an immunochromatographic assay (ICGA), and a latex bead agglutination assay (LBAA). Sera from noninfected, M. bovis-infected, or M. avium subsp. paratuberculosis-infected (by natural and experimental routes) animals were evaluated. Receiver operating characteristic analysis comparing optical density values from the EIA with results of bacterial culture or skin test, the reference test, established suitable cutoff values for assessing sensitivity and specificity. The EIA and LBAA, respectively, had sensitivities of 98.6 and 94.8%, specificities of 98.5 and 92.6%, and kappa values of 0.97 and 0.88 with ESAT6-p. The EIA, ICGA, and LBAA, respectively, had sensitivities of 96.8, 83.0, and 86.7%, specificities of 90.1, 99.4, and 97.8%, and kappa values of 0.87, 0.85, and 0.83 with rMPB70. Examination of serial samples of sera collected from experimentally M. bovis-infected cattle and deer revealed that ESAT6-p-specific responses developed early after infection whereas responses to rMPB70 developed later in the course of disease. The advantage of the LBAA and ICGA as initial tests for multiple species is a rapid reaction obtained in 2 to 3 h by LBAA or 20 min by ICGA without species-specific secondary antibodies under field conditions, thus allowing immediate segregation of suspect animals for further testing before culling.
Collapse
Affiliation(s)
- Hye Cheong Koo
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, 99164-7040, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Buddle BM, Aldwell FE, Skinner MA, de Lisle GW, Denis M, Vordermeier HM, Hewinson RG, Wedlock DN. Effect of oral vaccination of cattle with lipid-formulated BCG on immune responses and protection against bovine tuberculosis. Vaccine 2005; 23:3581-9. [PMID: 15855017 DOI: 10.1016/j.vaccine.2005.01.150] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2004] [Revised: 12/16/2004] [Accepted: 01/21/2005] [Indexed: 11/16/2022]
Abstract
Cattle were given Mycobacterium bovis bacillus Calmette-Guerin (BCG) in a lipid-based formulation via the oral route and tested for immune responses and protection against a challenge with virulent M. bovis. Calves were vaccinated by orally administering a pellet containing 10(8) colony forming units (CFU) of BCG, or 10 pellets containing a total of 10(9) CFU of BCG, whereas positive controls were injected subcutaneously with 10(6) CFU of BCG. All of the subcutaneously vaccinated calves produced positive responses in the caudal fold tuberculin skin test at 8 weeks after vaccination, whereas only 3/9 of the low dose and 6/10 of the high dose orally-vaccinated animals produced positive reactions. None of the animals produced positive reactions to the mycobacterial antigens, ESAT-6 and CFP10 in the interferon-gamma (IFN-gamma) test and only a total of four of the BCG-vaccinated animals produced positive responses in either the standard IFN-gamma or comparative cervical skin test. Oral administration of 10 pellets of lipid-formulated BCG to cattle induced a significant level of protection against bovine tuberculosis compared to that observed in non-vaccinated animals and this level was similar to that seen in the BCG subcutaneously vaccinated animals. Oral vaccination of BCG in a lipid-formulation to calves was shown to induce some positive tuberculin skin test reactions, but could also induce protection against bovine tuberculosis.
Collapse
Affiliation(s)
- Bryce M Buddle
- AgResearch, Wallaceville Animal Research Centre, P.O. Box 40063, Upper Hutt, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Koo HC, Park YH, Ahn J, Waters WR, Hamilton MJ, Barrington G, Mosaad AA, Palmer MV, Shin S, Davis WC. New latex bead agglutination assay for differential diagnosis of cattle infected with Mycobacterium bovis and Mycobacterium avium subsp. paratuberculosis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:1070-4. [PMID: 15539508 PMCID: PMC524750 DOI: 10.1128/cdli.11.6.1070-1074.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extensive studies have shown that the current assays used to identify cattle infected with Mycobacterium bovis or Mycobacterium avium subsp. paratuberculosis are not sufficiently sensitive and specific to detect all infected animals, especially animals recently infected with the pathogens. In the present report we show that these limitations might be overcome with a latex bead agglutination assay (LBAA). With the specific immunodominant epitope (ESAT6-p) of M. bovis, we developed an LBAA and enzyme immunoassay (EIA) for that purpose and compared them with the "gold standard" culture method and skin test for their efficacy in detecting bovine tuberculosis. When sera from control healthy cows (n = 10), M. avium subsp. paratuberculosis-positive cattle (naturally infected, n = 16; experimentally infected, n = 8), and M. bovis-positive cattle (naturally infected, n = 49;experimentally infected, n = 20) were applied to an EIA and an LBAA developed with ESAT6-p, the two tests showed similar sensitivity (97.1% by EIA, 95.7% by LBAA), high specificity (94.2% by EIA, 100% by LBAA), and a positive correlation (kappa value, 0.85; correlation rate, 93.2%; correlation coefficient, 0.64). Receiver operating characteristic analysis of EIA results and comparison with the culture method determined a suitable cutoff value at 0.469, with an area under the curve of 0.991 (95% confidence interval, 0.977 to 1.0). As LBAA didn't show any positive reactions with sera from uninfected control cows or M. avium subsp. paratuberculosis-infected cattle, which were confirmed to be free of M. bovis by culture or PCR, LBAA using the ESAT6-p can be a rapid and useful M. bovis diagnostic assay. The data suggest that rapid, sensitive, and specific assays can be developed with peptides containing immunodominant epitopes present in proteins uniquely expressed in M. bovis or M. avium subsp. paratuberculosis for differential diagnosis of cattle infected with M. bovis or M. avium subsp. paratuberculosis.
Collapse
Affiliation(s)
- Hye Cheong Koo
- Department of Microbiology, College of Veterinary Medicine, and School of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dietrich J, Aagaard C, Leah R, Olsen AW, Stryhn A, Doherty TM, Andersen P. Exchanging ESAT6 with TB10.4 in an Ag85B Fusion Molecule-Based Tuberculosis Subunit Vaccine: Efficient Protection and ESAT6-Based Sensitive Monitoring of Vaccine Efficacy. THE JOURNAL OF IMMUNOLOGY 2005; 174:6332-9. [PMID: 15879133 DOI: 10.4049/jimmunol.174.10.6332] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously we have shown that Ag85B-ESAT-6 is a highly efficient vaccine against tuberculosis. However, because the ESAT-6 Ag is also an extremely valuable diagnostic reagent, finding a vaccine as effective as Ag85B-ESAT-6 that does not contain ESAT-6 is a high priority. Recently, we identified a novel protein expressed by Mycobacterium tuberculosis designated TB10.4. In most infected humans, TB10.4 is strongly recognized, raising interest in TB10.4 as a potential vaccine candidate and substitute for ESAT-6. We have now examined the vaccine potential of this protein and found that vaccination with TB10.4 induced a significant protection against tuberculosis. Fusing Ag85B to TB10.4 produced an even more effective vaccine, which induced protection against tuberculosis comparable to bacillus Calmette-Guerin vaccination and superior to the individual Ag components. Thus, Ag85B-TB10 represents a new promising vaccine candidate against tuberculosis. Furthermore, having now exchanged ESAT-6 for TB10.4, we show that ESAT-6, apart from being an excellent diagnostic reagent, can also be used as a reagent for monitoring vaccine efficacy. This may open a new way for monitoring vaccine efficacy in clinical trials.
Collapse
MESH Headings
- Acyltransferases/administration & dosage
- Acyltransferases/genetics
- Acyltransferases/immunology
- Amino Acid Sequence
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/administration & dosage
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Base Sequence
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/microbiology
- Colony Count, Microbial
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Interferon-gamma/biosynthesis
- Lung/immunology
- Lung/microbiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Sequence Data
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Tuberculosis Vaccines/administration & dosage
- Tuberculosis Vaccines/genetics
- Tuberculosis Vaccines/immunology
- Tuberculosis, Pulmonary/diagnosis
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/prevention & control
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Jes Dietrich
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
47
|
Langermans JAM, Doherty TM, Vervenne RAW, van der Laan T, Lyashchenko K, Greenwald R, Agger EM, Aagaard C, Weiler H, van Soolingen D, Dalemans W, Thomas AW, Andersen P. Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine 2005; 23:2740-50. [PMID: 15780721 DOI: 10.1016/j.vaccine.2004.11.051] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 10/15/2004] [Accepted: 11/09/2004] [Indexed: 10/26/2022]
Abstract
Various new tuberculosis (TB) vaccine candidates in combination with new delivery systems, including subunit vaccines, are currently being evaluated by a number of laboratories. One vaccine candidate that has shown promising protective capacity in mice and guinea pigs is a fusion of Ag85B and ESAT-6. In this study, we have investigated the efficacy of this Ag85B-ESAT-6 fusion protein vaccine in a non-human primate model for TB. Vaccination of cynomolgus monkeys with the Ag85B-ESAT-6 fusion protein in two different adjuvant (DDA/MPL, AS02A) resulted in a reduction in bacterial number and/or lung pathology in animals challenged with Mycobacterium tuberculosis. Vaccination prevented an increase in C-reactive protein serum levels, general activation of CD4 and CD8 subsets and boosted development of humoral and cellular immune responses to a spectrum of mycobacterial antigens on exposure to M. tuberculosis infection. We show, in two independent experiments, that vaccination of primates with Ag85B-ESAT-6 induces protective immune responses, suggesting that Ag85B-ESAT-6 is a strong candidate for further clinical evaluation. As far as we are aware this is the first report of protection in primates with a subunit vaccine.
Collapse
Affiliation(s)
- Jan A M Langermans
- Department of Parasitology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Weldingh K, Rosenkrands I, Okkels LM, Doherty TM, Andersen P. Assessing the serodiagnostic potential of 35 Mycobacterium tuberculosis proteins and identification of four novel serological antigens. J Clin Microbiol 2005; 43:57-65. [PMID: 15634951 PMCID: PMC540170 DOI: 10.1128/jcm.43.1.57-65.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Improved diagnostic reagents are needed for the detection of Mycobacterium tuberculosis infections, and the development of a serodiagnostic test would complement presently available diagnostic methods. The aim of the present study was to identify novel serological targets for use for the future serodiagnosis of tuberculosis (TB). We cloned and expressed 35 M. tuberculosis proteins as recombinant proteins in Escherichia coli and analyzed their serodiagnostic potentials. By a two-step selection process, four superior seroantigens, TB9.7, TB15.3, TB16.3, and TB51, were identified, none of which has been described before. The four novel antigens were tested with panels of sera from smear-positive and smear-negative TB patients from areas both where TB is endemic and where TB is not endemic, with recognition frequencies ranging from 31 to 93% and with a specificity of at least 97%. The single most potent antigen was TB16.3, which had a sensitivity of 48 to 55% with samples from Danish resident TB patients and a sensitivity of 88 to 98% with samples from African TB patients. Importantly, the TB16.3 and the TB9.7 antigens were recognized by more than 85% of the samples from TB patients coinfected with human immunodeficiency virus, a patient group for which it is in general difficult to detect M. tuberculosis-specific antibodies.
Collapse
Affiliation(s)
- Karin Weldingh
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark.
| | | | | | | | | |
Collapse
|
49
|
López-Vidal Y, de León-Rosales SP, Castañón-Arreola M, Rangel-Frausto MS, Meléndez-Herrada E, Sada-Díaz E. Response of IFN-gamma and IgG to ESAT-6 and 38 kDa recombinant proteins and their peptides from Mycobacterium tuberculosis in tuberculosis patients and asymptomatic household contacts may indicate possible early-stage infection in the latter. Arch Med Res 2004; 35:308-17. [PMID: 15325505 DOI: 10.1016/j.arcmed.2004.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 04/30/2004] [Indexed: 11/20/2022]
Abstract
BACKGROUND The ESAT-6 antigen from Mycobacterium tuberculosis evokes a protective immune response in murine models and is widely recognized by tuberculosis patients (TB) and healthy household contacts (HHC). However, little is known about human immune response to this antigen in populations from areas of high endemicity. This study aimed to determine the capacity of T-cells from a group of TB patients and HHC for cell proliferation and production of cytokines type Th1 or Th2 (IL-4, IL-10, and IFN-gamma) and to identify total IgG reactivity to the recombinant protein rESAT-6 and five overlapping synthetic peptides as well as to r38 kDa and two peptides. METHODS T-cells from nine TB patients and nine HHC were stimulated with rESAT-6 and five overlapping synthetic peptides, previously selected from a set of 21 peptides and each of 16 amino acids in length (P1, P4, P6, P8, and P20). Similar experiments were carried out with r38 kDa and two peptides of 20 amino acids in length (38G and 38K). Cytokines in supernatants and total IgG from serum were determined by ELISA. RESULTS Stimulation index (SI) was highest in HHC to rESAT-6 and peptides P1, P8, and P20. Differences in response to 38 kDa and 38G peptide between TB patients and HHC were not demonstrated. Cytokines from T-cell cultures were tested with a resulting SI=3.0. IFN-gamma was produced predominantly in HHC to rESAT-6, P8, and P20, while in TB patients production of IL-10 was detected in relation to r38 kDa. IL-4 was detected in minimal amounts in both groups. IgG from TB patients was predominantly recognized in connection with rESAT-6 and the P4 peptide, with an important response against r38 kDa detected in HHC. CONCLUSIONS ESAT-6 recognition by HHC could indicate that these responses represent possible early-stage infections.
Collapse
Affiliation(s)
- Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
50
|
Vervenne RAW, Jones SL, van Soolingen D, van der Laan T, Andersen P, Heidt PJ, Thomas AW, Langermans JAM. TB diagnosis in non-human primates: comparison of two interferon-γ assays and the skin test for identification of Mycobacterium tuberculosis infection. Vet Immunol Immunopathol 2004; 100:61-71. [PMID: 15182996 DOI: 10.1016/j.vetimm.2004.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 02/03/2004] [Accepted: 03/05/2004] [Indexed: 11/24/2022]
Abstract
In general non-human primates are highly susceptible to infections with Mycobacterium tuberculosis which therefore presents an explosive health threat to colonies. To screen for M. tuberculosis infections in non-human primates, the skin test is routinely used. However, the reliability of this test in primates is debatable. The aim of this study was to compare relatively easy in vitro diagnostic tests for TB with the skin test for detection of a tuberculosis (TB) infection. Two in vitro assays, a whole blood interferon-gamma (WB IFN-gamma) assay and in vitro stimulation of isolated lymphocytes (PBMC IFN-gamma) were evaluated during both experimental TB infections in macaques as well as during an outbreak of TB in a macaque quarantine facility. The WB IFN-gamma assay was also evaluated on healthy old and new world monkeys. Our results show that both in vitro assays detected TB infection in macaques. All experimentally infected animals showed TB-specific responses in both assays. In contrast, several TB animals were not diagnosed TB positive using the skin test. In addition, during the outbreak in the quarantine facility one animal was not detected using the routinely used skin test, but it showed strong positive responses in the WB assay. In conclusion, the in vitro assays are a valuable tool for screening non-human primates for TB infection, especially because the assays cause relatively less stress for the animals compared to the skin test and give reproducible and reliable results.
Collapse
Affiliation(s)
- Richard A W Vervenne
- Department of Parasitology, Biomedical Primate Research Centre, P.O. Box 3306, 2280GH Rijswijk, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|