1
|
Chrissian C, Camacho E, Fu MS, Prados-Rosales R, Chatterjee S, Cordero RJB, Lodge JK, Casadevall A, Stark RE. Melanin deposition in two Cryptococcus species depends on cell-wall composition and flexibility. J Biol Chem 2020; 295:1815-1828. [PMID: 31896575 DOI: 10.1074/jbc.ra119.011949] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii are two species complexes in the large fungal genus Cryptococcus and are responsible for potentially lethal disseminated infections. These two complexes share several phenotypic traits, such as production of the protective compound melanin. In C. neoformans, the pigment associates with key cellular constituents that are essential for melanin deposition within the cell wall. Consequently, melanization is modulated by changes in cell-wall composition or ultrastructure. However, whether similar factors influence melanization in C. gattii is unknown. Herein, we used transmission EM, biochemical assays, and solid-state NMR spectroscopy of representative isolates and "leaky melanin" mutant strains from each species complex to examine the compositional and structural factors governing cell-wall pigment deposition in C. neoformans and C. gattii. The principal findings were the following. 1) C. gattii R265 had an exceptionally high chitosan content compared with C. neoformans H99; a rich chitosan composition promoted homogeneous melanin distribution throughout the cell wall but did not increase the propensity of pigment deposition. 2) Strains from both species manifesting the leaky melanin phenotype had reduced chitosan content, which was compensated for by the production of lipids and other nonpolysaccharide constituents that depended on the species or mutation. 3) Changes in the relative rigidity of cell-wall chitin were associated with aberrant pigment retention, implicating cell-wall flexibility as an independent variable in cryptococcal melanin assembly. Overall, our results indicate that cell-wall composition and molecular architecture are critical factors for the anchoring and arrangement of melanin pigments in both C. neoformans and C. gattii species complexes.
Collapse
Affiliation(s)
- Christine Chrissian
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10033; Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, 28049 Madrid, Spain
| | - Subhasish Chatterjee
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031
| | - Radames J B Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Jennifer K Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Ruth E Stark
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016.
| |
Collapse
|
2
|
Affiliation(s)
- Michael J. Butler
- Department of Plant Sciences, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Alan W. Day
- Department of Plant Sciences, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Joan M. Henson
- Department of Microbiology, Montana State University, Bozeman, Montana 59717
| | | |
Collapse
|
3
|
Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species. mSphere 2018; 3:3/3/e00208-18. [PMID: 29898980 PMCID: PMC6001613 DOI: 10.1128/mspheredirect.00208-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 01/31/2023] Open
Abstract
Cryptococcus neoformans and related species are encapsulated basidiomycetous fungi that cause meningoencephalitis in individuals with immune deficiency. This pathogen has a tractable genetic system; however, gene disruption via electroporation remains difficult, while biolistic transformation is often limited by lack of multiple genetic markers and the high initial cost of equipment. The approach using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) has become the technology of choice for gene editing in many organisms due to its simplicity, efficiency, and versatility. The technique has been successfully demonstrated in C. neoformans and Cryptococcus deneoformans in which two DNA plasmids expressing either the Streptococcus pyogenesCAS9 gene or the guide RNA (gRNA) were employed. However, potential adverse effects due to constitutive expression and the time-consuming process of constructing vectors to express each gRNA remain as a primary barrier for wide adaptation. This report describes the delivery of preassembled CRISPR-Cas9-gRNA ribonucleoproteins (RNPs) via electroporation that is able to generate edited mutant alleles. RNP-mediated CRISPR-Cas9 was used to replace the wild-type GIB2 gene encoding a Gβ-like/RACK1 Gib2 protein with a gib2::NAT allele via homologous recombination in both C. neoformans and C. deneoformans In addition, a DNA plasmid (pCnCas9:U6-gRNA) that expresses both Cas9 and gRNA, allowing for convenient yet low-cost DNA-mediated gene editing, is described. pCnCas9:U6-gRNA contains an endogenous U6 promoter for gRNA expression and restriction sites for one-step insertion of a gRNA. These approaches and resources provide new opportunities to accelerate genetic studies of Cryptococcus species.IMPORTANCE For genetic studies of the Cryptococcus genus, generation of mutant strains is often hampered by a limited number of selectable genetic markers, the tedious process of vector construction, side effects, and other limitations, such as the high cost of acquiring a particle delivery system. CRISPR-Cas9 technology has been demonstrated in Cryptococcus for genome editing. However, it remains labor-intensive and time-consuming since it requires the identification of a suitable type III RNA polymerase promoter for gRNA expression. In addition, there may be potential adverse effects caused by constitutive expressions of Cas9 and gRNA. Here, I report the use of a ribonucleoprotein-mediated CRISPR-Cas9 technique for genome editing of C. neoformans and related species. Together with the custom-constructed pCnCas9:U6-gRNA vector that allows low-cost and time-saving DNA-based CRISPR-Cas9, my approach adds to the molecular toolbox for dissecting the molecular mechanism of pathogenesis in this important group of fungal pathogens.
Collapse
|
4
|
Sharma KK, Singh D, Rawat S. Molecular dynamics simulation studies suggests unconventional roles of non-secretary laccases from enteropathogenic gut bacteria and Cryptococcus neoformans serotype D. Comput Biol Chem 2018; 73:41-48. [PMID: 29425935 DOI: 10.1016/j.compbiolchem.2018.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/28/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022]
Abstract
Laccase in Cryptococcus neoformans is covalently linked to the carbohydrate moiety of the cell wall, which allows it to get access to the different substrates for catalyzing their oxidation and therefore plays a vital role in the virulence. The laccase gene (3.0 kb) from C. neoformans serotype D was amplified, cloned and sequenced for protein modeling, docking and simulation studies. The three dimensional homology models of laccase protein from C. neoformans and other pathogenic gut bacteria were docked with selected biomolecules like prostaglandins (PG), membrane phospholipids, neurotransmitters (serotonin) using GOLD software. The GOLDscore values of laccase from C. neoformans docked with prostaglandinH2 (59.76), prostaglandinG2 (59.45), prostaglandinE2 (60.99), phosphatidylinositol (54.95), phosphatidylcholine (46.26), phosphatidylserine (55.26), arachidonic acid (53.08) and serotonin (46.22) were similar to the laccase from enteropathogenic bacteria but showed a better binding affinity as compared to that of the non-pathogenic bacteria (e.g. Bacillus safensis, Bacillus pumilus and Bacillus subtilis). The RMSD of MD simulation study done for 25 ns using laccase protein from C. neoformans complexed with phosphatidylcholine was found to be highly stable, followed by the laccase-PGE2 and laccase-serotonin complexes. Furthermore, the binding free energy results were found to support the docking and MD simulation results. The present study implies that few candidate ligands can be intermediate substrate in the catalysis of microbial laccases, which can further play some crucial role in the cell signaling and pathogenesis of enteropathogenic gut micro flora and C. neoformans.
Collapse
Affiliation(s)
- Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Deepti Singh
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Surender Rawat
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| |
Collapse
|
5
|
Miller DJ, Dreyer DR, Bielawski CW, Paul DR, Freeman BD. Surface Modification of Water Purification Membranes. Angew Chem Int Ed Engl 2017; 56:4662-4711. [DOI: 10.1002/anie.201601509] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel J. Miller
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas at Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
- Joint Center for Artificial Photosynthesis Lawrence Berkeley National Laboratory 1 Cyclotron Road, 30-210C Berkeley CA 94702 USA
| | - Daniel R. Dreyer
- Nalco Champion 3200 Southwest Freeway, Ste. 2700 Houston TX 77027 USA
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM) Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- Department of Chemistry and Department of Energy Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Donald R. Paul
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas at Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas at Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| |
Collapse
|
6
|
Miller DJ, Dreyer DR, Bielawski CW, Paul DR, Freeman BD. Oberflächenmodifizierung von Wasseraufbereitungsmembranen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201601509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel J. Miller
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas, Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
- Joint Center for Artificial Photosynthesis Lawrence Berkeley National Laboratory 1 Cyclotron Road, 30-210C Berkeley CA 94702 USA
| | - Daniel R. Dreyer
- Nalco Champion 3200 Southwest Freeway, Ste. 2700 Houston TX 77027 USA
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM) Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republik Korea
- Department of Chemistry and Department of Energy Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republik Korea
| | - Donald R. Paul
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas, Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas, Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| |
Collapse
|
7
|
Williamson PR. Role of laccase in the virulence of Talaromyces marneffei: A common link between AIDS-related fungal pathogens? Virulence 2016; 7:627-9. [PMID: 27282335 DOI: 10.1080/21505594.2016.1198867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Peter R Williamson
- a Laboratory of Clinical Infectious Diseases , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
8
|
Singh D, Rawat S, Waseem M, Gupta S, Lynn A, Nitin M, Ramchiary N, Sharma KK. Molecular modeling and simulation studies of recombinant laccase from Yersinia enterocolitica suggests significant role in the biotransformation of non-steroidal anti-inflammatory drugs. Biochem Biophys Res Commun 2016; 469:306-12. [DOI: 10.1016/j.bbrc.2015.11.096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/22/2015] [Indexed: 01/30/2023]
|
9
|
Nosanchuk JD, Stark RE, Casadevall A. Fungal Melanin: What do We Know About Structure? Front Microbiol 2015; 6:1463. [PMID: 26733993 PMCID: PMC4687393 DOI: 10.3389/fmicb.2015.01463] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/07/2015] [Indexed: 12/22/2022] Open
Abstract
The production of melanin significantly enhances the virulence of many important human pathogenic fungi. Despite fungal melanin’s importance in human disease, as well as melanin’s contribution to the ability of fungi to survive in diverse hostile environments, the structure of melanin remains unsolved. Nevertheless, ongoing research efforts have progressively revealed several notable structural characteristics of this enigmatic pigment, which will be the focus of this review. These compositional and organizational insights could further our ability to develop novel therapeutic approaches to combat fungal disease and enhance our understanding of how melanin is inserted into the cell wall.
Collapse
Affiliation(s)
- Joshua D Nosanchuk
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of MedicineBronx, NY, USA; Microbiology and Immunology, Albert Einstein College of MedicineBronx, NY, USA
| | - Ruth E Stark
- Department of Chemistry and Biochemistry, The Graduate Center, The City College of New York, The City University of New YorkNew York, NY, USA; Institute for Macromolecular Assemblies, The City University of New YorkNew York, NY, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
10
|
COLOMBO ANACAROLINE, RODRIGUES MARCIOL. Fungal colonization of the brain: anatomopathological aspects of neurological cryptococcosis. ACTA ACUST UNITED AC 2015; 87:1293-309. [DOI: 10.1590/0001-3765201520140704] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Brain infection by the fungus Cryptococcus neoformans results in an estimated 500,000 human deaths per annum. Colonization of the central nervous system (CNS) by C. neoformans causes different clinical syndromes that involve interaction of a number of fungal components with distinct brain cells. In this manuscript, our literature review confirmed the notion that the Cryptococcus field is expanding rapidly, but also suggested that studies on neuropathogenesis still represent a small fraction of basic research activity in the field. We therefore discussed anatomical and physiological aspects of the brain during infection by C. neoformans, in addition to mechanisms by which brain resident cells interact with the fungus. This review suggests that multiple efforts are necessary to improve the knowledge on how C. neoformans affects brain cells, in order to enable the generation of new therapeutic tools in a near future.
Collapse
Affiliation(s)
- ANA CAROLINE COLOMBO
- Universidade Federal do Rio de Janeiro, Brazil; Universidade Federal do Rio de Janeiro, Brazil
| | - MARCIO L. RODRIGUES
- Universidade Federal do Rio de Janeiro, Brazil; Fundação Oswaldo Cruz, Brazil
| |
Collapse
|
11
|
Panackal AA, Wuest SC, Lin YC, Wu T, Zhang N, Kosa P, Komori M, Blake A, Browne SK, Rosen LB, Hagen F, Meis J, Levitz SM, Quezado M, Hammoud D, Bennett JE, Bielekova B, Williamson PR. Paradoxical Immune Responses in Non-HIV Cryptococcal Meningitis. PLoS Pathog 2015; 11:e1004884. [PMID: 26020932 PMCID: PMC4447450 DOI: 10.1371/journal.ppat.1004884] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/14/2015] [Indexed: 11/18/2022] Open
Abstract
The fungus Cryptococcus is a major cause of meningoencephalitis in HIV-infected as well as HIV-uninfected individuals with mortalities in developed countries of 20% and 30%, respectively. In HIV-related disease, defects in T-cell immunity are paramount, whereas there is little understanding of mechanisms of susceptibility in non-HIV related disease, especially that occurring in previously healthy adults. The present description is the first detailed immunological study of non-HIV-infected patients including those with severe central nervous system (s-CNS) disease to 1) identify mechanisms of susceptibility as well as 2) understand mechanisms underlying severe disease. Despite the expectation that, as in HIV, T-cell immunity would be deficient in such patients, cerebrospinal fluid (CSF) immunophenotyping, T-cell activation studies, soluble cytokine mapping and tissue cellular phenotyping demonstrated that patients with s-CNS disease had effective microbiological control, but displayed strong intrathecal expansion and activation of cells of both the innate and adaptive immunity including HLA-DR+ CD4+ and CD8+ cells and NK cells. These expanded CSF T cells were enriched for cryptococcal-antigen specific CD4+ cells and expressed high levels of IFN-γ as well as a lack of elevated CSF levels of typical T-cell specific Th2 cytokines -- IL-4 and IL-13. This inflammatory response was accompanied by elevated levels of CSF NFL, a marker of axonal damage, consistent with ongoing neurological damage. However, while tissue macrophage recruitment to the site of infection was intact, polarization studies of brain biopsy and autopsy specimens demonstrated an M2 macrophage polarization and poor phagocytosis of fungal cells. These studies thus expand the paradigm for cryptococcal disease susceptibility to include a prominent role for macrophage activation defects and suggest a spectrum of disease whereby severe neurological disease is characterized by immune-mediated host cell damage. Cryptococcus is an important cause of fungal meningitis with significant mortality globally. Susceptibility to the fungus in humans has been related to T-lymphocyte defects in HIV-infected individuals, but little is known about possible immune defects in non HIV-infected patients including previously healthy individuals. This latter group also has some of the worst response rates to therapy with almost a third dying in the United States, despite available therapy. Here we conducted the first detailed immunological analysis of non-HIV apparently immunocompetent individuals with active cryptococcal disease. In contrast to HIV-infected individuals, these studies identified a highly activated antigen-presenting dendritic cell population within CSF, accompanied by a highly active T-lymphocyte population with potentially damaging inflammatory cytokine responses. Furthermore, elevated levels of CSF neurofilament light chains (NFL), a marker of axonal damage in severe central nervous system infections suggest a dysfunctional role to this acute inflammatory state. Paradoxically, CSF macrophage proportions were reduced in patients with severe disease and biopsy and autopsy samples identified alternatively activated tissue macrophage populations that failed to appropriately phagocytose fungal cells. Our study thus provides new insights into the susceptibility to human cryptococcal disease and identifies a paradoxically active T-lymphocyte response that may be amenable to adjunctive immunomodulation to improve treatment outcomes in this high-mortality disease.
Collapse
Affiliation(s)
- Anil A. Panackal
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
- Division of Infectious Diseases, Department of Medicine, F. Hebert School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
| | - Simone C. Wuest
- Neuroimmunological Diseases Unit, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Yen-Chih Lin
- Neuroimmunological Diseases Unit, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Tianxia Wu
- Neuroimmunological Diseases Unit, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Nannan Zhang
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Peter Kosa
- Neuroimmunological Diseases Unit, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Mika Komori
- Neuroimmunological Diseases Unit, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Andrew Blake
- Neuroimmunological Diseases Unit, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sarah K. Browne
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Lindsey B. Rosen
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Jacques Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands
| | - Stuart M. Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Martha Quezado
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dima Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, Bethesda, Maryland, United States of America
| | - John E. Bennett
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Bibi Bielekova
- Neuroimmunological Diseases Unit, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail: (BB); (PRW)
| | - Peter R. Williamson
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
- * E-mail: (BB); (PRW)
| |
Collapse
|
12
|
Park YD, Shin S, Panepinto J, Ramos J, Qiu J, Frases S, Albuquerque P, Cordero RJB, Zhang N, Himmelreich U, Beenhouwer D, Bennett JE, Casadevall A, Williamson PR. A role for LHC1 in higher order structure and complement binding of the Cryptococcus neoformans capsule. PLoS Pathog 2014; 10:e1004037. [PMID: 24789368 PMCID: PMC4006888 DOI: 10.1371/journal.ppat.1004037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 02/15/2014] [Indexed: 12/21/2022] Open
Abstract
Polysaccharide capsules are important virulence factors for many microbial pathogens including the opportunistic fungus Cryptococcus neoformans. In the present study, we demonstrate an unusual role for a secreted lactonohydrolase of C. neoformans, LHC1 in capsular higher order structure. Analysis of extracted capsular polysaccharide from wild-type and lhc1Δ strains by dynamic and static light scattering suggested a role for the LHC1 locus in altering the capsular polysaccharide, both reducing dimensions and altering its branching, density and solvation. These changes in the capsular structure resulted in LHC1-dependent alterations of antibody binding patterns, reductions in human and mouse complement binding and phagocytosis by the macrophage-like cell line J774, as well as increased virulence in mice. These findings identify a unique molecular mechanism for tertiary structural changes in a microbial capsule, facilitating immune evasion and virulence of a fungal pathogen. Polysaccharide capsules are important virulence factors in pathogenic microbes that provide a protective coat against host immunity. Cryptococcus neoformans is a pathogenic encapsulated yeast that is a major opportunistic infection, causing approximately 600,000 cases of meningitis per year in AIDS patients globally, and whose polysaccharide capsule is a major virulence factor. While extensive work has detailed the chemical components forming the cryptococcal capsule, the molecular events leading to the higher order assembly of the capsule, and its consequences on immune subterfuge remain unknown. In the present studies we used a proteomics method to identify a novel hydrolytic enzyme, lactonohydrolase (Lhc1) and used a variety of biophysical methods including dynamic and static light scattering as well as motility studies to show that extracted capsular polysaccharide undergoes remodeling in a LHC1-dependent fashion. This results in a more tightly compacted capsular structure that alters binding of anti-capsular antibodies and reduces binding by both human as well as mouse serum complement. Furthermore, LHC1-dependent capsular alterations serve to increase the virulence of the fungus in a mouse model, suggesting a novel role for this class of enzyme in capsular remodeling and immune evasion in microbial pathogenesis.
Collapse
Affiliation(s)
- Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Soowan Shin
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - John Panepinto
- Department of Microbiology and Immunology, University at Buffalo, the State University of New York, Buffalo, New York, United States of America
| | - Jeanie Ramos
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Jin Qiu
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Susana Frases
- Department of Microbiology and Immunology and Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Laboratorio de Ultraestrutura Cellular Hertha Meyer, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Albuquerque
- Department of Microbiology and Immunology and Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Radames J. B. Cordero
- Department of Microbiology and Immunology and Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Nannan Zhang
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Uwe Himmelreich
- Biomedical NMR Unit, Department of Medical Diagnostic Sciences, Division of Radiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - David Beenhouwer
- Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - John E. Bennett
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Arturo Casadevall
- Department of Microbiology and Immunology and Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Peter R. Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
13
|
Lyte M. Microbial endocrinology and the microbiota-gut-brain axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:3-24. [PMID: 24997027 DOI: 10.1007/978-1-4939-0897-4_1] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial endocrinology is defined as the study of the ability of microorganisms to both produce and recognize neurochemicals that originate either within the microorganisms themselves or within the host they inhabit. As such, microbial endocrinology represents the intersection of the fields of microbiology and neurobiology. The acquisition of neurochemical-based cell-to-cell signaling mechanisms in eukaryotic organisms is believed to have been acquired due to late horizontal gene transfer from prokaryotic microorganisms. When considered in the context of the microbiota's ability to influence host behavior, microbial endocrinology with its theoretical basis rooted in shared neuroendocrine signaling mechanisms provides for testable experiments with which to understand the role of the microbiota in host behavior and as importantly the ability of the host to influence the microbiota through neuroendocrine-based mechanisms.
Collapse
Affiliation(s)
- Mark Lyte
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX, 79601, USA,
| |
Collapse
|
14
|
Laccases involved in 1,8-dihydroxynaphthalene melanin biosynthesis in Aspergillus fumigatus are regulated by developmental factors and copper homeostasis. EUKARYOTIC CELL 2013; 12:1641-52. [PMID: 24123270 DOI: 10.1128/ec.00217-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aspergillus fumigatus produces heavily melanized infectious conidia. The conidial melanin is associated with fungal virulence and resistance to various environmental stresses. This 1,8-dihydroxynaphthalene (DHN) melanin is synthesized by enzymes encoded in a gene cluster in A. fumigatus, including two laccases, Abr1 and Abr2. Although this gene cluster is not conserved in all aspergilli, laccases are critical for melanization in all species examined. Here we show that the expression of A. fumigatus laccases Abr1/2 is upregulated upon hyphal competency and drastically increased during conidiation. The Abr1 protein is localized at the surface of stalks and conidiophores, but not in young hyphae, consistent with the gene expression pattern and its predicted role. The induction of Abr1/2 upon hyphal competency is controlled by BrlA, the master regulator of conidiophore development, and is responsive to the copper level in the medium. We identified a developmentally regulated putative copper transporter, CtpA, and found that CtpA is critical for conidial melanization under copper-limiting conditions. Accordingly, disruption of CtpA enhanced the induction of abr1 and abr2, a response similar to that induced by copper starvation. Furthermore, nonpigmented ctpAΔ conidia elicited much stronger immune responses from the infected invertebrate host Galleria mellonella than the pigmented ctpAΔ or wild-type conidia. Such enhancement in eliciting Galleria immune responses was independent of the ctpAΔ conidial viability, as previously observed for the DHN melanin mutants. Taken together, our findings indicate that both copper homeostasis and developmental regulators control melanin biosynthesis, which affects conidial surface properties that shape the interaction between this pathogen and its host.
Collapse
|
15
|
Shamsipur M, Shanehasz M, Khajeh K, Mollania N, Kazemi SH. A novel quantum dot–laccase hybrid nanobiosensor for low level determination of dopamine. Analyst 2012; 137:5553-9. [DOI: 10.1039/c2an36035g] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Fowler ZL, Baron CM, Panepinto JC, Koffas MAG. Melanization of flavonoids by fungal and bacterial laccases. Yeast 2010; 28:181-8. [PMID: 21360730 DOI: 10.1002/yea.1829] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 10/04/2010] [Indexed: 11/10/2022] Open
Abstract
Laccase activity in plants results in the formation of a number of brown pigments, often referred to as tannins. Laccase-dependent pigment production is also catalogued in numerous fungal and bacterial species. The laccase of the haploid yeast Cryptococcus neoformans forms melanin-like pigmentation outside the cell wall in the presence of exogenous substrates. While this process is a contributing factor to its virulence in humans, the evolutionary intent for the laccase function remains a mystery. We show here that C. neoformans and Bacillus subtilis have the ability to create melanin-like pigments from a variety of flavonoid molecules across a range of conformations, preferring those with 3',4'-dihydroxylations. Since flavonoids are ubiquitous plant molecules and often-considered antimicrobial agents, we postulate that they are the intended natural targets of laccase activity and result in the formation of a defensive melanin-like coat. These results suggests a new mechanism by which flavonoid-melanin formation may occur, using not only A- and C-ring linkages, but also monomer links through the B-ring of the flavonoid structure. We also show that resveratrol and other non- and mono-hydroxylated polyphenol substrates have the ability to restrict pigment formation and may be potent inhibitors of laccase activity.
Collapse
Affiliation(s)
- Zachary L Fowler
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | | | | | |
Collapse
|
17
|
Nobre M, Madrid I, Antunes T, Martins A, Fernandes C, Mattei A, Spanamberg A, Meireles M, Ferreiro L. Virulence differences between albino and pigmented Sporothrix schenckii isolates. J Mycol Med 2008. [DOI: 10.1016/j.mycmed.2008.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Hamilton AJ, Holdom MD. Antioxidant systems in the pathogenic fungi of man and their role in virulence. Med Mycol 2008. [DOI: 10.1111/j.1365-280x.1999.00208.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Hu G, Hacham M, Waterman SR, Panepinto J, Shin S, Liu X, Gibbons J, Valyi-Nagy T, Obara K, Jaffe HA, Ohsumi Y, Williamson PR. PI3K signaling of autophagy is required for starvation tolerance and virulenceof Cryptococcus neoformans. J Clin Invest 2008; 118:1186-97. [PMID: 18259613 DOI: 10.1172/jci32053] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 12/05/2007] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a process by which cells recycle cytoplasm and defective organelles during stress situations such as nutrient starvation. It can also be used by host cells as an immune defense mechanism to eliminate infectious pathogens. Here we describe the use of autophagy as a survival mechanism and virulence-associated trait by the human fungal pathogen Cryptococcus neoformans. We report that a mutant form of C. neoformans lacking the Vps34 PI3K (vps34Delta), which is known to be involved in autophagy in ascomycete yeast, was defective in the formation of autophagy-related 8-labeled (Atg8-labeled) vesicles and showed a dramatic attenuation in virulence in mouse models of infection. In addition, autophagic vesicles were observed in WT but not vps34Delta cells after phagocytosis by a murine macrophage cell line, and Atg8 expression was exhibited in WT C. neoformans during human infection of brain. To dissect the contribution of defective autophagy in vps34Delta C. neoformans during pathogenesis, a strain of C. neoformans in which Atg8 expression was knocked down by RNA interference was constructed and these fungi also demonstrated markedly attenuated virulence in a mouse model of infection. These results demonstrated PI3K signaling and autophagy as a virulence-associated trait and survival mechanism during infection with a fungal pathogen. Moreover, the data show that molecular dissection of such pathogen stress-response pathways may identify new approaches for chemotherapeutic interventions.
Collapse
Affiliation(s)
- Guowu Hu
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Panepinto J, Komperda K, Frases S, Park YD, Djordjevic JT, Casadevall A, Williamson PR. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol Microbiol 2008; 71:1165-76. [PMID: 19210702 DOI: 10.1111/j.1365-2958.2008.06588.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell wall of pathogenic fungi such as Cryptococcus neoformans, provides a formidable barrier to secrete virulence factors that produce host cell damage. To study secretion of virulence factors to the cell periphery, sec6 RNAi mutant strains of C. neoformans were tested for virulence factor expression. The studies reported here show that SEC6 RNAi mutant strains were defective in a number of virulence factors including laccase, urease as well as soluble polysaccharide and demonstrated attenuated virulence in mice. Further analysis by transmission electron microscopy detected the production of abundant extracellular exosomes in wild-type strains containing empty plasmid, but a complete absence in the iSEC6 strain. In addition, a green fluorescent protein-laccase fusion protein demonstrated aberrant localization within cytoplasmic vesicles in iSEC6 strains. In contrast, iSEC6 strains retained normal growth at 37 degrees C, as well as substantially normal capsule formation, phospholipase activity and total secreted protein. These results provide the first molecular evidence for the existence of fungal exosomes and associate these vesicles with the virulence of C. neoformans.
Collapse
Affiliation(s)
- John Panepinto
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Varma A, Wu S, Guo N, Liao W, Lu G, Li A, Hu Y, Bulmer G, Kwon-Chung KJ. Identification of a novel gene, URE2, that functionally complements a urease-negative clinical strain of Cryptococcus neoformans. MICROBIOLOGY-SGM 2007; 152:3723-3731. [PMID: 17159224 DOI: 10.1099/mic.0.2006/000133-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A urease-negative serotype A strain of Cryptococcus neoformans (B-4587) was isolated from the cerebrospinal fluid of an immunocompetent patient with a central nervous system infection. The URE1 gene encoding urease failed to complement the mutant phenotype. Urease-positive clones of B-4587 obtained by complementing with a genomic library of strain H99 harboured an episomal plasmid containing DNA inserts with homology to the sudA gene of Aspergillus nidulans. The gene harboured by these plasmids was named URE2 since it enabled the transformants to grow on media containing urea as the sole nitrogen source while the transformants with an empty vector failed to grow. Transformation of strain B-4587 with a plasmid construct containing a truncated version of the URE2 gene failed to complement the urease-negative phenotype. Disruption of the native URE2 gene in a wild-type serotype A strain H99 and a serotype D strain LP1 of C. neoformans resulted in the inability of the strains to grow on media containing urea as the sole nitrogen source, suggesting that the URE2 gene product is involved in the utilization of urea by the organism. Virulence in mice of the urease-negative isolate B-4587, the urease-positive transformants containing the wild-type copy of the URE2 gene, and the urease-negative vector-only transformants was comparable to that of the H99 strain of C. neoformans regardless of the infection route. Virulence of the URE2 disruption stain of H99 was slightly reduced compared to the wild-type strain in the intravenous model but was significantly attenuated in the inhalation model. These results indicate that the importance of urease activity in pathogenicity varies depending on the strains of C. neoformans used and/or the route of infection. Furthermore, this study shows that complementation cloning can serve as a useful tool to functionally identify genes such as URE2 that have otherwise been annotated as hypothetical proteins in genomic databases.
Collapse
Affiliation(s)
- Ashok Varma
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Building 10, Room 11C304, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaoxi Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ningru Guo
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wanqing Liao
- Zhangzhen Hospital, Second Military Medical University 200003 Shanghai, China
| | - Guxia Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Anshen Li
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Glenn Bulmer
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Building 10, Room 11C304, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Waterman SR, Hacham M, Hu G, Zhu X, Park YD, Shin S, Panepinto J, Valyi-Nagy T, Beam C, Husain S, Singh N, Williamson PR. Role of a CUF1/CTR4 copper regulatory axis in the virulence of Cryptococcus neoformans. J Clin Invest 2007; 117:794-802. [PMID: 17290306 PMCID: PMC1784002 DOI: 10.1172/jci30006] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 12/12/2006] [Indexed: 01/18/2023] Open
Abstract
The study of regulatory networks in human pathogens such as Cryptococcus neoformans provides insights into host-pathogen interactions that may allow for correlation of gene expression patterns with clinical outcomes. In the present study, deletion of the cryptococcal copper-dependent transcription factor 1 (Cuf1) led to defects in growth and virulence factor expression in low copper conditions. In mouse models, cuf1Delta strains exhibited reduced dissemination to the brain, but no change in lung growth, suggesting copper is limiting in neurologic infections. To examine this further, a biologic probe of available copper was constructed using the cryptococcal CUF1-dependent copper transporter, CTR4. Fungal cells demonstrated high CTR4 expression levels after phagocytosis by macrophage-like J774.16 cells and during infection of mouse brains, but not lungs, consistent with limited copper availability during neurologic infection. This was extended to human brain infections by demonstrating CTR4 expression during C. neoformans infection of an AIDS patient. Moreover, high CTR4 expression by cryptococcal strains from 24 solid organ transplant patients was associated with dissemination to the CNS. Our results suggest that copper acquisition plays a central role in fungal pathogenesis during neurologic infection and that measurement of stable traits such as CTR4 expression may be useful for risk stratification of individuals with cryptococcosis.
Collapse
Affiliation(s)
- Scott R. Waterman
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Moshe Hacham
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Guowu Hu
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Xudong Zhu
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Yoon-Dong Park
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Soowan Shin
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - John Panepinto
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Tibor Valyi-Nagy
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Craig Beam
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Shahid Husain
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Nina Singh
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Peter R. Williamson
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
23
|
Liu X, Hu G, Panepinto J, Williamson PR. Role of a VPS41 homologue in starvation response, intracellular survival and virulence of Cryptococcus neoformans. Mol Microbiol 2006; 61:1132-46. [PMID: 16879414 DOI: 10.1111/j.1365-2958.2006.05299.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previous studies have demonstrated an important role for the vacuole in the virulence of the fungus Cryptococcus and studies in yeast have implicated the vacuolar protein Vps41 in copper loading of proteins such as iron transporters. However, our studies found that a cryptococcal vps41Delta strain displayed wild-type growth on media containing iron and copper chelators and normal activity of the copper-containing virulence factor laccase as well as almost normal growth at 37 degrees C and wild-type production of the virulence factor capsule. Despite these attributes, the vps41Delta mutant strain showed a dramatic attenuation of virulence in mice and co-incubation of mutant cells with the macrophage cell line, J774.16, resulted in a dramatic loss in viability of the vps41Delta mutant strain at 10 h compared with wild-type and complemented strains. Closer examination revealed that the vps41Delta mutant displayed a dramatic loss in viability after nutrient starvation which was traced to a failure to undergo G2 arrest, but there was no defect in the formation of autophagic or proteolytic vesicles. Our results indicate that VPS41 plays a key role in regulating starvation response in this pathogenic organism and that defects in cell cycle arrest are associated with attenuated pathogenic fitness in mammalian hosts.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|
24
|
Waterman SR, Hacham M, Panepinto J, Hu G, Shin S, Williamson PR. Cell wall targeting of laccase of Cryptococcus neoformans during infection of mice. Infect Immun 2006; 75:714-22. [PMID: 17101662 PMCID: PMC1828480 DOI: 10.1128/iai.01351-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laccase is a major virulence factor of the pathogenic fungus Cryptococcus neoformans, which afflicts both immunocompetent and immunocompromised individuals. In the present study, laccase was expressed in C. neoformans lac1Delta cells as a fusion protein with an N-terminal green fluorescent protein (GFP) using C. neoformans codon usage. The fusion protein was robustly localized to the cell wall at physiological pH, but it was mislocalized at low pH. Structural analysis of the laccase identified a C-terminal region unique to C. neoformans, and expression studies showed that the region was required for efficient transport to the cell wall both in vitro and during infection of mouse lungs. During infection of mice, adherence to alveolar macrophages was also associated with a partial mislocalization of GFP-laccase within cytosolic vesicles. In addition, recovery of cryptococcal cells from lungs of two strains of mice (CBA/J and Swiss Albino) later in infection was also associated with cytosolic mislocalization, but cells from the brain showed almost exclusive localization to cell walls, suggesting that there was more efficient cell wall targeting during infection of the brain. These data suggest that host cell antifungal defenses may reduce effective cell wall targeting of laccase during infection of the lung but not during infection of the brain, which may contribute to a more predominant role for the enzyme during infection of the brain.
Collapse
Affiliation(s)
- Scott R Waterman
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The use of insertional mutagenesis to discover genes that impact laccase activity has resulted in the identification of multiple cellular processes that affect the fitness of Cryptococcus neoformans. Fitness has been defined as the ability of an organism to propagate and evolve within a given environment. Because the human host is an evolutionary dead-end for an opportunistic pathogen, we have defined pathogenic fitness here as the capability to successfully propagate within the stressful environment of the host, causing disease by expression of virulence traits that damage the host. In this review, laccase-deficient insertional mutants will be highlighted in terms of the basic biological processes in which they are involved. The impact of laccase-associated cellular functions on fitness and virulence will be discussed, as will the mutants' potential as therapeutic targets. Vacuolar function, copper homeostasis, mitochondrial function and carbon repression are covered.
Collapse
Affiliation(s)
- John C Panepinto
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|
26
|
da Silva EG, Baroni FDA, Viani FC, Ruiz LDS, Gandra RF, Auler ME, Dias ALT, Gambale W, Paula CR. Virulence profile of strains of Cryptococcus neoformans var. grubii evaluated by experimental infection in BALB/c mice and correlation with exoenzyme activity. J Med Microbiol 2006; 55:139-142. [PMID: 16434704 DOI: 10.1099/jmm.0.46206-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To evaluate the virulence profile of strains of Cryptococcus neoformans var. grubii, 62 strains of this yeast were inoculated into BALB/c mice. It was found that 69 % of the strains were significantly more lethal to the mice and were recovered from a higher percentage (60 %) of the organs compared with the other 31 % of the strains, which were recovered from 35 % of organs tested. Those strains that provoked higher death rates were also recovered from the central nervous system at a higher rate (84 %) than the less lethal strains (32 %). This finding led to an investigation of the factors that enhanced the capacity for neurological infection and death of the animals. The results of this study suggested that environmental strains present different degrees of virulence. The correlation of exoenzyme production before and after inoculation and between the groups of mice indicated that exoenzyme production had no influence on differences in virulence among the strains studied.
Collapse
Affiliation(s)
- Eriques Gonçalves da Silva
- Instituto Ciências Biomédicas, Departamento de Microbiologia, Seção de Micologia, Laboratório de Leveduras Patogênicas, Universidade de São Paulo, Av. Professor Lineu Prestes, 1374, Cidade Universitária, CEP 05508-900, São Paulo, Brazil
| | | | - Flavio César Viani
- Instituto Ciências Biomédicas, Departamento de Microbiologia, Seção de Micologia, Laboratório de Leveduras Patogênicas, Universidade de São Paulo, Av. Professor Lineu Prestes, 1374, Cidade Universitária, CEP 05508-900, São Paulo, Brazil
| | - Luciana da Silva Ruiz
- Instituto Ciências Biomédicas, Departamento de Microbiologia, Seção de Micologia, Laboratório de Leveduras Patogênicas, Universidade de São Paulo, Av. Professor Lineu Prestes, 1374, Cidade Universitária, CEP 05508-900, São Paulo, Brazil
| | | | - Marcos Ereno Auler
- Instituto Ciências Biomédicas, Departamento de Microbiologia, Seção de Micologia, Laboratório de Leveduras Patogênicas, Universidade de São Paulo, Av. Professor Lineu Prestes, 1374, Cidade Universitária, CEP 05508-900, São Paulo, Brazil
| | - Amanda Latércia Tranches Dias
- Instituto Ciências Biomédicas, Departamento de Microbiologia, Seção de Micologia, Laboratório de Leveduras Patogênicas, Universidade de São Paulo, Av. Professor Lineu Prestes, 1374, Cidade Universitária, CEP 05508-900, São Paulo, Brazil
| | - Walderez Gambale
- Instituto Ciências Biomédicas, Departamento de Microbiologia, Seção de Micologia, Laboratório de Leveduras Patogênicas, Universidade de São Paulo, Av. Professor Lineu Prestes, 1374, Cidade Universitária, CEP 05508-900, São Paulo, Brazil
| | - Claudete Rodrigues Paula
- Instituto Ciências Biomédicas, Departamento de Microbiologia, Seção de Micologia, Laboratório de Leveduras Patogênicas, Universidade de São Paulo, Av. Professor Lineu Prestes, 1374, Cidade Universitária, CEP 05508-900, São Paulo, Brazil
| |
Collapse
|
27
|
Garcia-Rivera J, Eisenman HC, Nosanchuk JD, Aisen P, Zaragoza O, Moadel T, Dadachova E, Casadevall A. Comparative analysis of Cryptococcus neoformans acid-resistant particles generated from pigmented cells grown in different laccase substrates. Fungal Genet Biol 2005; 42:989-98. [PMID: 16289955 DOI: 10.1016/j.fgb.2005.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 09/13/2005] [Accepted: 09/14/2005] [Indexed: 10/25/2022]
Abstract
Cryptococcus neoformans produces pigments in vitro in the presence of exogenous substrate. We characterized acid-resistant particles isolated from pigmented cells grown in L-dopa, methyl-dopa, (-)-epinephrine or (-)-norepinephrine. The goals of this study were to determine whether pigments made from each of these substrates were melanins and the consequences of pigmentation on related cell characteristics. The greatest yield of acid-resistant particles occurred with methyl-dopa followed by L-dopa. Electron microscopy indicated that L-dopa and methyl-dopa produced particles with thicker shells. The mAb 6D2 reacted with all particles, but a lower reactivity was observed with epinephrine-derived particles. ESR analysis revealed that epinephrine-derived particles failed to produce a stable free radical signal typical of melanins. Growth of C. neoformans in different substrates affected cell and capsule size but not capsule induction. Hence, the type of pigment produced by C. neoformans is dependent on the substrate and not all pigments meet the criteria for melanins.
Collapse
Affiliation(s)
- Javier Garcia-Rivera
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhu X, Williamson PR. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res 2005; 5:1-10. [PMID: 15381117 DOI: 10.1016/j.femsyr.2004.04.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 04/15/2004] [Accepted: 04/20/2004] [Indexed: 10/26/2022] Open
Abstract
Laccase is an important virulence factor for the human pathogen, Cryptococcus neoformans. In this review, we examine the structural, biological and genetic features of the enzyme and its role in the pathogenesis of cryptococcosis. Laccase is expressed in C. neoformans as a cell wall enzyme that possesses a broad spectrum of activity oxidizing both polyphenolic compounds and iron. Two paralogs, CNLAC1 and CNLAC2, are present in the fungus, of which the first one expresses the dominant enzyme activity under glucose starvation conditions. Regulation of the enzyme is in response to various environmental signals including nutrient starvation, the presence of multivalent cations and temperature stress, and is mediated through multiple signal transduction pathways. Study of the function and regulation of this important virulence factor has led to further understanding of mechanisms of fungal pathogenesis and the regulation of stress response in the host cell environment.
Collapse
Affiliation(s)
- Xudong Zhu
- Section of Infectious Diseases, Chicago Medical Center, University of Illinois, 808 S. Wood St., Chicago, IL 60612, USA
| | | |
Collapse
|
29
|
Panepinto J, Liu L, Ramos J, Zhu X, Valyi-Nagy T, Eksi S, Fu J, Jaffe HA, Wickes B, Williamson PR. The DEAD-box RNA helicase Vad1 regulates multiple virulence-associated genes in Cryptococcus neoformans. J Clin Invest 2005; 115:632-41. [PMID: 15765146 PMCID: PMC1051994 DOI: 10.1172/jci23048] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 12/14/2004] [Indexed: 11/17/2022] Open
Abstract
The study of fungal regulatory networks is essential to the understanding of how these pathogens respond to host environmental signals with effective virulence-associated traits. In this study, a virulence-associated DEAD-box RNA helicase-encoding gene (VAD1) was isolated from a mutant defective in the virulence factor laccase. A Deltavad1 mutant exhibited a profound reduction in virulence in a mouse model that was restored after reconstitution with WT VAD1. Loss of VAD1 resulted in upregulation of NOT1, a gene encoding a global repressor of transcription. NOT1 was found to act as an intermediary transcriptional repressor of laccase. Vad1 was located within macromolecular complexes that formed cytoplasmic granular bodies in mature cells and during infection of mouse brain. In addition, VAD1 was shown by in situ hybridization to be expressed in the brain of an AIDS patient coinfected with C. neoformans. To understand the role of VAD1 in virulence, a functional genomics approach was used to identify 3 additional virulence determinants dependent on VAD1: PCK1, TUF1, and MPF3, involved in gluconeogenesis, mitochondrial protein synthesis, and cell wall integrity, respectively. These data show that fungal virulence-associated genes are coordinately regulated and that an analysis of such transcriptomes allows for the identification of important new genes involved in the normal growth and virulence of fungal pathogens.
Collapse
Affiliation(s)
- John Panepinto
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Panepinto J, Liu L, Ramos J, Zhu X, Valyi-Nagy T, Eksi S, Fu J, Jaffe HA, Wickes B, Williamson PR. The DEAD-box RNA helicase Vad1 regulates multiple virulence-associated genes in Cryptococcus neoformans. J Clin Invest 2005. [PMID: 15765146 DOI: 10.1172/jci200523048] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The study of fungal regulatory networks is essential to the understanding of how these pathogens respond to host environmental signals with effective virulence-associated traits. In this study, a virulence-associated DEAD-box RNA helicase-encoding gene (VAD1) was isolated from a mutant defective in the virulence factor laccase. A Deltavad1 mutant exhibited a profound reduction in virulence in a mouse model that was restored after reconstitution with WT VAD1. Loss of VAD1 resulted in upregulation of NOT1, a gene encoding a global repressor of transcription. NOT1 was found to act as an intermediary transcriptional repressor of laccase. Vad1 was located within macromolecular complexes that formed cytoplasmic granular bodies in mature cells and during infection of mouse brain. In addition, VAD1 was shown by in situ hybridization to be expressed in the brain of an AIDS patient coinfected with C. neoformans. To understand the role of VAD1 in virulence, a functional genomics approach was used to identify 3 additional virulence determinants dependent on VAD1: PCK1, TUF1, and MPF3, involved in gluconeogenesis, mitochondrial protein synthesis, and cell wall integrity, respectively. These data show that fungal virulence-associated genes are coordinately regulated and that an analysis of such transcriptomes allows for the identification of important new genes involved in the normal growth and virulence of fungal pathogens.
Collapse
Affiliation(s)
- John Panepinto
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mednick AJ, Nosanchuk JD, Casadevall A. Melanization of Cryptococcus neoformans affects lung inflammatory responses during cryptococcal infection. Infect Immun 2005; 73:2012-9. [PMID: 15784542 PMCID: PMC1087470 DOI: 10.1128/iai.73.4.2012-2019.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of melanin pigments is associated with virulence for many microbes. Melanin is believed to contribute to microbial virulence by protecting microbial cells from oxidative attack during infection. However, there is also evidence from various systems that melanins have immunomodulatory properties, which conceivably could contribute to virulence by altering immune responses. To investigate the effect of melanin on the immune response, we compared the murine pulmonary responses to infection with melanized and nonmelanized Cryptococcus neoformans cells. Infection with melanized cells resulted in a greater fungal burden during the early stages of infection and was associated with higher levels of interleukin-4 and MCP-1 and greater numbers of infiltrating leukocytes. Infection with laccase-positive (melanotic) C. neoformans cells also elicited higher MCP-1 levels and more infiltrating leukocytes than did infection with laccase-negative cells. Melanization interfered with phagocytosis in vivo for encapsulated C. neoformans but not for nonencapsulated cells. The results provide strong evidence that cryptococcal melanization can influence the immune response to infection and suggest that immunomodulation is an additional mechanism by which the pigment contributes to virulence.
Collapse
Affiliation(s)
- Aron J Mednick
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | |
Collapse
|
32
|
Wills EA, Redinbo MR, Perfect JR, Poeta MD. New potential targets for antifungal development. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.3.265] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Olszewski MA, Noverr MC, Chen GH, Toews GB, Cox GM, Perfect JR, Huffnagle GB. Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1761-71. [PMID: 15111322 PMCID: PMC1615675 DOI: 10.1016/s0002-9440(10)63734-0] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our objective was to determine the role of the cryptococcal virulence factor urease in pulmonary-to-central nervous system, dissemination, invasion, and growth. C. neoformans H99, the urease knockout strain (ure1) derived from H99, and the urease restored strain ure1+URE1-1 were used for the studies. The absence of cryptococcal urease (ure1infection) resulted in significant protection from the high mortality observed in H99-infected mice. All H99-infected mice had extremely high cryptococcal loads in their brains at the time of death, whereas only two of six animals that died of ure1 infection had detectable C. neoformans in the brain. Histological analysis of the blood-to-brain invasion by C. neoformans H99 demonstrated wedging of the yeasts in small capillaries, altered structure of microvessel walls, formation of mucoid cysts initiated in the proximity of damaged microcapillaries, and the absence of an inflammatory response. Direct inoculation of H99, ure1, and ure1+URE1-1 into the brain demonstrated that urease was not required to grow in the brain. However, the dissemination patterns in the brain, spleen, and other organs after intravenous inoculation indicated that cryptococcal urease contributes to the central nervous system invasion by enhancing yeast sequestration within microcapillary beds (such as within the brain) during hematogenous spread, thereby facilitating blood-to-brain invasion by C. neoformans.
Collapse
Affiliation(s)
- Michal A Olszewski
- Veteran's Administration Medical Center Ann Arbor, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Noverr MC, Williamson PR, Fajardo RS, Huffnagle GB. CNLAC1 is required for extrapulmonary dissemination of Cryptococcus neoformans but not pulmonary persistence. Infect Immun 2004; 72:1693-9. [PMID: 14977977 PMCID: PMC356011 DOI: 10.1128/iai.72.3.1693-1699.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenic yeast Cryptococcus neoformans produces a laccase enzyme (CNLAC1), which catalyzes the synthesis of melanin in the presence of phenolic compounds. A number of genes have been implicated in the regulation of laccase and melanization, including IPC1, GPA1, MET3, and STE12. Albino mutants derived from random mutagenesis techniques may contain mutations in genes that regulate multiple virulence factors, including CNLAC1. The goal of our study is to investigate the role of CNLAC1 in virulence and evasion of pulmonary host defenses after infection via the respiratory tract. Using a set of congenic laccase-positive (2E-TUC-4) and laccase-deficient (2E-TU-4) strains, we found that both strains are avirulent at a lower dose (10(4) CFU/mouse) in mice. After the infectious dose was increased to 10(6) CFU/mouse, 70% mortality was observed in mice infected with 2E-TUC-4 compared to no mortality in mice infected with 2E-TU-4 at day 30 postinfection. This observation confirms the requirement for CNLAC1 in virulence. Interestingly, we observed no differences between the two strains in pulmonary growth or in elicitation of cellular immune responses in the lung. The only measurable defect of 2E-TU-4 was in dissemination to extrapulmonary sites. To examine the role of CNLAC1 in dissemination, mice were infected intravenously. By week 3 postinfection, equal numbers of strains 2E-TUC-4 and 2E-TU-4 were recovered from the brain and spleen. This observation indicates that CNLAC1 facilitates escape from the lung, but not growth in the lungs or brain, and suggests a novel role for CNLAC1 in virulence during an infection aquired via the respiratory tract.
Collapse
Affiliation(s)
- Mairi C Noverr
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Melanins are enigmatic pigments that are produced by a wide variety of microorganisms including several species of pathogenic bacteria, fungi and helminths. The study of melanin is difficult because these pigments defy complete biochemical and structural analysis. Nevertheless, the availability of new reagents in the form of monoclonal antibodies and melanin-binding peptides, combined with the application of various physical techniques, has provided insights into the process of melanization. Melanization is important in microbial pathogenesis because it has been associated with virulence in many microorganisms. Melanin appears to contribute to virulence by reducing the susceptibility of melanized microbes to host defence mechanisms. However, the interaction of melanized microbes and the host is complex and includes immune responses to melanin-related antigens. Production of melanin has also been linked to protection against environmental insults. Interference with melanization is a potential strategy for antimicrobial drug and pesticide development. The process of melanization poses fascinating problems in cell biology and provides a type of pathogenic strategy that is common to highly diverse pathogens.
Collapse
Affiliation(s)
- Joshua D Nosanchuk
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | |
Collapse
|
36
|
Himmelreich U, Allen C, Dowd S, Malik R, Shehan BP, Mountford C, Sorrell TC. Identification of metabolites of importance in the pathogenesis of pulmonary cryptococcoma using nuclear magnetic resonance spectroscopy. Microbes Infect 2003; 5:285-90. [PMID: 12706441 DOI: 10.1016/s1286-4579(03)00028-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary lung infection with Cryptococcus neoformans is characterised by circumscribed lesions (cryptococcomas). To identify cryptococcal and/or host products of importance in pathogenesis, we applied proton nuclear magnetic resonance (NMR) spectroscopy, which identifies mobile compounds present in complex mixtures, to experimental pulmonary cryptococcomas from rats. Magnetic resonance experiments were performed on cryptococcomas (n = 10) and healthy lungs (n = 8). Signal assignment to key metabolites was confirmed by homo-nuclear and hetero-nuclear NMR correlation spectroscopy. Cryptococcal metabolites, dominating spectra from cryptococcomas included the stress protectants, trehalose and mannitol, acetate, and in some animals, ethanol. Glycerophosphorylcholine was also abundant in cryptococcomas, consistent with hydrolysis of phospholipids in vivo by the cryptococcal enzyme, phospholipase B (PLB). PLB has been identified by molecular studies as a cryptococcal virulence determinant. We propose that PLB secreted by cryptococci promotes tissue invasion by hydrolysing host phospholipids, such as dipalmitoyl phosphatidyl choline, which is abundant in pulmonary surfactant, and lung cell membrane phospholipids. Our results confirm the utility of NMR spectroscopy in studies of microbial pathogenesis.
Collapse
Affiliation(s)
- Uwe Himmelreich
- Centre for Infectious Diseases and Microbiology, University of Sydney at Westmead Hospital, Room 3114, Level 3, ICPMR, Darcy Road, Westmead, NSW 2145, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhu X, Gibbons J, Zhang S, Williamson PR. Copper-mediated reversal of defective laccase in a Deltavph1 avirulent mutant of Cryptococcus neoformans. Mol Microbiol 2003; 47:1007-14. [PMID: 12581355 DOI: 10.1046/j.1365-2958.2003.03340.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have shown that a Deltavph1 Cryptococcus neoformans mutant defective in vesicular acidification lacked several important virulence factors including a copper-containing laccase and was avirulent in a mouse model. In the present studies, we characterized laccase transcription and protein production to obtain insights into the mechanism of the vph1 mutation in this pathogen. Although transcription and protein expression were somewhat reduced, laccase protein was found to be successfully translated and correctly targeted to the cell wall in the Deltavph1 mutant as shown by Western blot and immuno-electron microscopy, despite a complete lack of laccase activity. Laccase activity was substantially restored in metabolically active Deltavph1 cells at 30 degrees C by addition of 100 micro M copper sulphate. This restoration by copper was found to occur through both transcriptional and post-translational mechanisms. Laccase transcriptional induction by copper was found to be dependent on enhancer region II within the 5'-untranslated region of CNLAC1. Copper was also found to restore partial activity to Deltavph1 cells at 0 degrees C, suggesting that cell wall laccase was expressed in the mutant as an apo-enzyme. Apo-laccase restoration by copper was found to be facilitated by an acidic environment, consistent with a role for the vacuolar (H+)-ATPase proton pump in copper assembly of laccase in C. neoformans.
Collapse
Affiliation(s)
- Xudong Zhu
- Division of Infectious Diseases, and University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Among the biopolymers, melanins are unique in many respects. The other essential biopolymers - proteins, nucleic acids, and carbohydrates - are chemically well characterized; their precursors (monomer units) and modes of connection between the monomer units are known, and sequences of their connection can be determined with well-established methodologies. In contrast, we still do not have a method to determine accurately the ratio of various units present in melanins. This is largely because of the chemical properties of melanins, such as their insolubility over a broad range of pH, the heterogeneity in their structural features, and also because of the lack of methods that can split melanin polymers into their monomer units (all other biopolymers can be hydrolysed to the corresponding monomer units). To overcome this difficulty, we developed a rapid and sensitive method for quantitatively analysing eumelanin and pheomelanin in biological samples by chemical degradation methods followed by HPLC determination. This HPLC microanalytical method for characterizing eumelanin and pheomelanin has become a useful tool for the study of melanogenesis. This review will summarize the usefulness and limitations of the various chemical and spectrophotometric methods used to analyse melanins at the biochemical, cellular, and tissue levels. Emphasis is given on the usefulness of 4-amino-3-hydroxyphenylalanine as a specific marker of pheomelanin.
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan.
| | | |
Collapse
|
39
|
Erickson T, Liu L, Gueyikian A, Zhu X, Gibbons J, Williamson PR. Multiple virulence factors of Cryptococcus neoformans are dependent on VPH1. Mol Microbiol 2001; 42:1121-31. [PMID: 11737651 DOI: 10.1046/j.1365-2958.2001.02712.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acidification of vesicular compartments plays an important role in a number of cellular transport processes, including protein secretion, metal cofactor insertion, glycosylation and pH stability. In the present study, we identify and characterize a component of the vesicular proton pump, Vph1p, to determine its role in the virulence of the AIDS-related fungal pathogen Cryptococcus neoformans. Insertional mutagenesis and plasmid rescue were used to identify the VPH1 gene by screening for mutants defective in laccase activity. Disruption of VPH1 resulted in defects in three virulence factors (capsule production, laccase and urease expression), as well as a growth defect at 37 degrees C, but only a small growth reduction at 30 degrees C. These effects were duplicated by the vacuolar (H+)-ATPase inhibitor bafilomycin A1. Furthermore, the vph1 insertional mutant was also avirulent in a mouse meningo-encephalitis model. Complementation of the insertional mutant with wild-type VPH1 resulted in a recovery of virulence factor expression, normal growth at 37 degrees C and restoration of full virulence. These studies establish the importance of the VPH1 gene and vesicular acidification in the virulence of C. neoformans.
Collapse
Affiliation(s)
- T Erickson
- Division of Infectious Diseases, University of Illinois at Chicago College of Medicine, Rm 888, m/c 735, 808 S. Wood St., Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
40
|
Zhu X, Gibbons J, Garcia-Rivera J, Casadevall A, Williamson PR. Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor. Infect Immun 2001; 69:5589-96. [PMID: 11500433 PMCID: PMC98673 DOI: 10.1128/iai.69.9.5589-5596.2001] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Virulence is the outcome of an interaction between the host and a microbe and is characterized by a large array of opposing reactions operating at the host-pathogen interface. Cryptococcus neoformans is an important opportunistic pathogen in immunocompromised patients, including those with human immunodeficiency virus, and expresses a virulence-associated laccase which is believed to oxidize brain catecholamines and iron as a defense against host immune cells. In the present report, we investigated the cellular location of laccase to understand more fully how it contributes to cryptococcal virulence. A monoclonal antibody to the C. neoformans laccase was generated and used to show localization in the cell walls of representative serotype A (H99) and serotype D (B-3501) strains by immunoelectron microscopy. In addition, confocal microscopy was used to show a peripheral location of green fluorescent protein-tagged laccase expressed in live H99 cells. Biochemical studies showed that laccase could be released from intact cells or cell wall fractions with glucanase enzymes but was retained in the cell wall after sequential extraction with 1 M NaCl, 6 M urea, and 1% sodium dodecyl sulfate. The presence of a hydrolyzable bond linking laccase to the cell wall was suggested by removal of laccase from cell wall preparations after they were boiled in 1% sodium dodecyl sulfate, as was the presence of a disulfide or thioester bond by removal with dithiothreitol or beta-mercaptoethanol. These data show that laccase is present as a tightly associated cell wall enzyme that is readily accessible for interactions with host immune cells.
Collapse
Affiliation(s)
- X Zhu
- Division of Infectious Diseases, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
41
|
Feldmesser M, Kress Y, Casadevall A. Dynamic changes in the morphology of Cryptococcus neoformans during murine pulmonary infection. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2355-2365. [PMID: 11496012 DOI: 10.1099/00221287-147-8-2355] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pathogenesis of Cryptococcus neoformans infection has been studied extensively with respect to inflammatory and pathological changes, but very little information is available regarding the morphology of yeast cells during the course of infection. Electron microscopy of Cryptococcus neoformans in murine pulmonary infection revealed increased cell wall thickness with time, but this difference was only partially accounted for by increases in cell diameter. Cell walls of melanized cells were thicker than those of nonmelanized cells 2 h after infection, and the cell wall of yeast became blacker with time, suggesting that melanization contributes to the increased cell wall thickness. Heterogeneous cell populations emerged, with the appearance of giant forms. While for C. neoformans ATCC strain 24067 (serotype D) the full spectrum of cell sizes were observed, for strains H99 (serotype A) and 3501 (serotype D) cells were divisible into two populations, giant and micro forms. In contrast to cellular heterogeneity, the epitope recognized by a protective mAb on the capsular glucuronoxylomannan (GXM) was found at all times of infection. Immunoelectron microscopy using mAbs to GXM demonstrated reactivity with intracellular structures, suggesting that synthesis of capsular polysaccharide occurs, at least in part, in the cytoplasm. In summary, the results indicate that: (i) the infection is dynamic with respect to yeast cell morphology; (ii) giant cell forms arise in tissue during the course of infection; (iii) cell walls blacken and thicken during the course of infection, consistent with melanin synthesis during infection; and (iv) GXM epitopes are found in the capsule, cell wall and cytoplasm, consistent with intracellular polysaccharide synthesis. The results indicate that the population of C. neoformans cells in tissue is in a highly dynamic state, implying that the immune system must confront cells with varying characteristics during the course of infection.
Collapse
Affiliation(s)
- Marta Feldmesser
- Departments of Medicine, Division of Infectious Diseases1, Pathology2 and Microbiology and Immunology3, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yvonne Kress
- Departments of Medicine, Division of Infectious Diseases1, Pathology2 and Microbiology and Immunology3, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arturo Casadevall
- Departments of Medicine, Division of Infectious Diseases1, Pathology2 and Microbiology and Immunology3, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
42
|
D'Souza CA, Alspaugh JA, Yue C, Harashima T, Cox GM, Perfect JR, Heitman J. Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol 2001; 21:3179-91. [PMID: 11287622 PMCID: PMC86952 DOI: 10.1128/mcb.21.9.3179-3191.2001] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that infects the human central nervous system. This pathogen elaborates two specialized virulence factors: the antioxidant melanin and an antiphagocytic immunosuppressive polysaccharide capsule. A signaling cascade controlling mating and virulence was identified. The PKA1 gene encoding the major cyclic AMP (cAMP)-dependent protein kinase catalytic subunit was identified and disrupted. pka1 mutant strains were sterile, failed to produce melanin or capsule, and were avirulent. The PKR1 gene encoding the protein kinase A (PKA) regulatory subunit was also identified and disrupted. pkr1 mutant strains overproduced capsule and were hypervirulent in animal models of cryptococcosis. pkr1 pka1 double mutant strains exhibited phenotypes similar to that of pka1 mutants, providing epistasis evidence that the Pka1 catalytic subunit functions downstream of the Pkr1 regulatory subunit. The PKA pathway was also shown to function downstream of the Galpha protein Gpa1 and to regulate cAMP production by feedback inhibition. These findings define a Galpha protein-cAMP-PKA signaling pathway regulating differentiation and virulence of a human fungal pathogen.
Collapse
Affiliation(s)
- C A D'Souza
- Departments of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Abstract
Melanins represent virulence factors for several pathogenic fungi; the number of examples is growing. Thus, albino mutants of several genera (in one case, mutated precisely in the melanizing enzyme) exhibit decreased virulence in mice. We consider the phenomenon in relation to known chemical properties of melanin, beginning with biosynthesis from ortho-hydroquinone precursors which, when oxidized enzymatically to quinones, polymerize spontaneously to melanin. It follows that melanizing intermediates are cross-linking reagents; melanization stabilizes the external cell wall against hydrolysis and is thought to determine semipermeability in the osmotic ram (the appressorium) of certain plant pathogens. Polymeric melanins undergo reversible oxidation-reduction reactions between cell wall-penetrating quinone and hydroquinone oxidation states and thus represent polymeric redox buffers; using strong oxidants, it is possible to titrate the melanin on living cells and thereby demonstrate protection conferred by melanin in several species. The amount of buffering per cell approximately neutralizes the amount of oxidant generated by a single macrophage. Moreover, the intermediate oxidation state, the semiquinone, is a very stable free radical and is thought to trap unpaired electrons. We have suggested that the oxidation state of external melanin may be regulated by external Fe(II). An independent hypothesis holds that in Cryptococcus neoformans, an important function of the melanizing enzyme (apart from melanization) is the oxidation of Fe(II) to Fe(III), thereby forestalling generation of the harmful hydroxyl radical from H(2)O(2). Thus, problems in fungal pathogenesis have led to evolving hypotheses regarding melanin functioning.
Collapse
|
45
|
Abstract
Melanins represent virulence factors for several pathogenic fungi; the number of examples is growing. Thus, albino mutants of several genera (in one case, mutated precisely in the melanizing enzyme) exhibit decreased virulence in mice. We consider the phenomenon in relation to known chemical properties of melanin, beginning with biosynthesis from ortho-hydroquinone precursors which, when oxidized enzymatically to quinones, polymerize spontaneously to melanin. It follows that melanizing intermediates are cross-linking reagents; melanization stabilizes the external cell wall against hydrolysis and is thought to determine semipermeability in the osmotic ram (the appressorium) of certain plant pathogens. Polymeric melanins undergo reversible oxidation-reduction reactions between cell wall-penetrating quinone and hydroquinone oxidation states and thus represent polymeric redox buffers; using strong oxidants, it is possible to titrate the melanin on living cells and thereby demonstrate protection conferred by melanin in several species. The amount of buffering per cell approximately neutralizes the amount of oxidant generated by a single macrophage. Moreover, the intermediate oxidation state, the semiquinone, is a very stable free radical and is thought to trap unpaired electrons. We have suggested that the oxidation state of external melanin may be regulated by external Fe(II). An independent hypothesis holds that in Cryptococcus neoformans, an important function of the melanizing enzyme (apart from melanization) is the oxidation of Fe(II) to Fe(III), thereby forestalling generation of the harmful hydroxyl radical from H(2)O(2). Thus, problems in fungal pathogenesis have led to evolving hypotheses regarding melanin functioning.
Collapse
Affiliation(s)
- E S Jacobson
- McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249, USA.
| |
Collapse
|
46
|
Chen S, Sorrell T, Nimmo G, Speed B, Currie B, Ellis D, Marriott D, Pfeiffer T, Parr D, Byth K. Epidemiology and host- and variety-dependent characteristics of infection due to Cryptococcus neoformans in Australia and New Zealand. Australasian Cryptococcal Study Group. Clin Infect Dis 2000; 31:499-508. [PMID: 10987712 DOI: 10.1086/313992] [Citation(s) in RCA: 324] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/1999] [Revised: 01/31/2000] [Indexed: 11/03/2022] Open
Abstract
A prospective population-based study was conducted in Australia and New Zealand during 1994-1997 to elucidate the epidemiology of cryptococcosis due to Cryptococcus neoformans var. neoformans (CNVN) and C. neoformans var. gattii (CNVG) and to relate clinical manifestations to host immune status and cryptococcal variety. The mean annual incidence per 10(6) population was 6.6 in Australia and 2.2 in New Zealand. Of 312 episodes, CNVN caused 265 (85%; 98% of the episodes in immunocompromised hosts) and CNVG caused 47 (15%; 44% of the episodes in immunocompetent hosts). The incidence of AIDS-associated cases in Australia declined annually (P<.001). Aborigines in rural or semirural locations (P<.001) and immunocompetent males (P<.001) were at increased risk of CNVG infection. Cryptococcomas in lung or brain were more common in immunocompetent hosts (P< or =.03) in whom there was an association only between lung cryptococcomas and CNVG. An AIDS-associated genetic profile of CNVN serotype A was confirmed by random amplification of polymorphic DNA analysis. Resistance to antifungal drugs was uncommon. The epidemiology of CNVN infection has changed substantially. Clinical manifestations of disease are influenced more strongly by host immune status than by cryptococcal variety.
Collapse
Affiliation(s)
- S Chen
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Westmead, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Melanin synthesis has been associated with virulence for the human pathogenic fungus Cryptococcus neoformans. Recent evidence indicates that C. neoformans cells synthesize melanin during infection and that this pigment protects the fungus against immune defense mechanisms.
Collapse
Affiliation(s)
- A Casadevall
- Department of Microbiology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
48
|
Affiliation(s)
- T S Harrison
- Department of Infectious Diseases, St. George's Hospital Medical School, London, U.K
| |
Collapse
|
49
|
Rosas AL, Nosanchuk JD, Feldmesser M, Cox GM, McDade HC, Casadevall A. Synthesis of polymerized melanin by Cryptococcus neoformans in infected rodents. Infect Immun 2000; 68:2845-53. [PMID: 10768981 PMCID: PMC97496 DOI: 10.1128/iai.68.5.2845-2853.2000] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of Cryptococcus neoformans to synthesize polymerized melanin in vitro has been associated with virulence, but it is unclear whether this fungus synthesizes polymerized melanin during infection. To study this question, we used two approaches: one involved the generation of monoclonal antibodies (MAbs) to melanin for use in immunohistochemical studies of C. neoformans-infected rodents, and the other sought to isolate fungal melanin from infected tissues. Digestion of in vitro-melanized C. neoformans cells with proteases, denaturant, and hot concentrated acid yields melanin particles that retain the shape of fungal cells and are therefore called melanin ghosts. BALB/c mice were immunized with melanin ghosts, and two immunoglobulin M MAbs to melanin were generated from the spleen of one mouse. Immunofluorescence analyses of lung and brain tissues of rodents infected with wild-type melanin-producing (Mel(+)) C. neoformans strains demonstrated binding of the MAbs to the fungal cell wall. No binding was observed when infections were performed with mutant albino (Mel(-)) C. neoformans strains. Particles with striking similarity to melanin ghosts were recovered after digestion of lung and brain tissues from Mel(+) C. neoformans-infected rodents and were reactive with the MAbs to melanin. No particles were recovered from tissues infected with Mel(-) C. neoformans. A Mel(+) C. neoformans strain grown on lung or brain homogenate agar became lightly pigmented and also yielded particles similar to melanin ghosts upon digestion, providing additional evidence that lung and brain tissues contain substrate for C. neoformans melanization. These results demonstrate that C. neoformans synthesizes polymerized melanin during infection, which has important implications for pathogenesis and antifungal drug development.
Collapse
Affiliation(s)
- A L Rosas
- Department of Microbiology and Immunology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
50
|
Hamilton AJ, Holdom MD. Antioxidant systems in the pathogenic fungi of man and their role in virulence. Med Mycol 1999; 37:375-89. [PMID: 10647118 DOI: 10.1046/j.1365-280x.1999.00208.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the last two decades, a variety of fungal antioxidants have attracted considerable interest, largely arising from their hypothetical role as virulence determinants. Melanin is a potent free radical scavenger and in Cryptococcus neoformans, there is now good evidence that the production of melanin is a significant virulence determinant. There is also recent evidence linking melanin biosynthesis to the virulence of Aspergillus fumigatus conidia. Superoxide dismutases are important housekeeping antioxidants and have an additional hypothetical role in virulence; however, although these enzymes have been biochemically characterized from Aspergillus and Cryptococcus, there is as yet no firm evidence that these enzymes are involved in pathogenicity. Catalase production may play some role in the virulence of Candida albicans but this enzyme has not been shown, as yet, to influence the virulence of A. fumigatus. There are some data supporting an antioxidant function for the acyclic hexitol mannitol in C. neoformans, but further investigations are required in this area. Research into the putative antioxidant activities of a range of other fungal enzymes, such as acid phosphatases, remains limited at this time.
Collapse
Affiliation(s)
- A J Hamilton
- Dermatology Department, St Johns Institute of Dermatology, Guys Hospital, Kings College, London, UK.
| | | |
Collapse
|