1
|
Dams D, Pas C, Latka A, Drulis-Kawa Z, Fieseler L, Briers Y. A VersaTile Approach to Reprogram the Specificity of the R2-Type Tailocin Towards Different Serotypes of Escherichia coli and Klebsiella pneumoniae. Antibiotics (Basel) 2025; 14:104. [PMID: 39858389 PMCID: PMC11762384 DOI: 10.3390/antibiotics14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Phage tail-like bacteriocins, or tailocins, provide a competitive advantage to producer cells by killing closely related bacteria. Morphologically similar to headless phages, their narrow target specificity is determined by receptor-binding proteins (RBPs). While RBP engineering has been used to alter the target range of a selected R2 tailocin from Pseudomonas aeruginosa, the process is labor-intensive, limiting broader application. Methods: We introduce a VersaTile-driven R2 tailocin engineering and screening platform to scale up RBP grafting. Results: This platform achieved three key milestones: (I) engineering R2 tailocins specific to Escherichia coli serogroups O26, O103, O104, O111, O145, O146, and O157; (II) reprogramming R2 tailocins to target, for the first time, the capsule and a new species, specifically the capsular serotype K1 of E. coli and K11 and K63 of Klebsiella pneumoniae; (III) creating the first bivalent tailocin with a branched RBP and cross-species activity, effective against both E. coli K1 and K. pneumoniae K11. Over 90% of engineered tailocins were effective, with clear pathways for further optimization identified. Conclusions: This work lays the groundwork for a scalable platform for the development of engineered tailocins, marking an important step towards making R2 tailocins a practical therapeutic tool for targeted bacterial infections.
Collapse
Affiliation(s)
- Dorien Dams
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
| | - Célia Pas
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
| | - Agnieszka Latka
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
- Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63, 51-148 Wroclaw, Poland;
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63, 51-148 Wroclaw, Poland;
| | - Lars Fieseler
- Institute of Food and Beverage Innovation, Food Microbiology Research Group, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland;
| | - Yves Briers
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
| |
Collapse
|
2
|
Batinovic S, Stanton CR, Rice DTF, Rowe B, Beer M, Petrovski S. Tyroviruses are a new group of temperate phages that infect Bacillus species in soil environments worldwide. BMC Genomics 2022; 23:777. [PMID: 36443683 PMCID: PMC9703825 DOI: 10.1186/s12864-022-09023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Bacteriophages are widely considered to be highly abundant and genetically diverse, with their role in the evolution and virulence of many pathogens becoming increasingly clear. Less attention has been paid on phages preying on Bacillus, despite the potential for some of its members, such as Bacillus anthracis, to cause serious human disease. RESULTS We have isolated five phages infecting the causative agent of anthrax, Bacillus anthracis. Using modern phylogenetic approaches we place these five new Bacillus phages, as well as 21 similar phage genomes retrieved from publicly available databases and metagenomic datasets into the Tyrovirus group, a newly proposed group named so due to the conservation of three distinct tyrosine recombinases. Genomic analysis of these large phages (~ 160-170 kb) reveals their DNA packaging mechanism and genomic features contributing to virion morphogenesis, host cell lysis and phage DNA replication processes. Analysis of the three tyrosine recombinases suggest Tyroviruses undergo a prophage lifecycle that may involve both host integration and plasmid stages. Further we show that Tyroviruses rely on divergent invasion mechanisms, with a subset requiring host S-layer for infection. CONCLUSIONS Ultimately, we expand upon our understanding on the classification, phylogeny, and genomic organisation of a new and substantial phage group that prey on critically relevant Bacillus species. In an era characterised by a rapidly evolving landscape of phage genomics the deposition of future Tyroviruses will allow the further unravelling of the global spread and evolutionary history of these Bacillus phages.
Collapse
Affiliation(s)
- Steven Batinovic
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia ,grid.268446.a0000 0001 2185 8709Present address: Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa Japan
| | - Cassandra R. Stanton
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Daniel T. F. Rice
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Brittany Rowe
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Michael Beer
- grid.431245.50000 0004 0385 5290Defence Science and Technology Group, Fishermans Bend, Victoria, Australia
| | - Steve Petrovski
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
3
|
Bhattacharjee R, Nandi A, Sinha A, Kumar H, Mitra D, Mojumdar A, Patel P, Jha E, Mishra S, Rout PK, Panda PK, Suar M, Verma SK. Phage-tail-like bacteriocins as a biomedical platform to counter anti-microbial resistant pathogens. Biomed Pharmacother 2022; 155:113720. [PMID: 36162371 DOI: 10.1016/j.biopha.2022.113720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Phage Tail Like bacteriocins (PTLBs) has been an area of interest in the last couple of years owing to their varied application against multi-drug resistant (MDR), anti-microbial resistant (AMR) pathogens and their evolutionary link with the dsDNA virus and bacteriophages. PTLBs are defective phages derived from Myoviridae and Siphoviridae phages, PTLBs are distinguished into R-type (Rigid type) characterized by a non-flexible contractile nanotube resembling Myoviridae phage contractile tails, and F-type (Flexible type) with a flexible non-contractile rod-like structure similar to Siphoviridae phages. In this review, we have discussed the structural association, mechanism, and characterization of PTLBs. Moreover, we have elucidated the symbiotic biological function and application of PTLBs against MDR and XDR pathogens and highlighted the evolutionary role of PTLBs. The difficulties that must be overcome to implement PTLBs clinically are also discussed. It is imperative that these issues be addressed by academics in future studies before being implemented in clinical settings. This article is novel in its way as it will not only provide us with a gateway that acts as a novel strategy for scholars to mitigate and control the uprising issue of AMR pathogens but also promote the development of clinical studies for PTLBs.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Hrithik Kumar
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala 695551, India
| | - Disha Mitra
- University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Abhik Mojumdar
- Center for Research Equipment, Korea Basic Science Institute (KBSI), Ochang Center, Cheongju, Chungcheongbuk 28119, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suman Mishra
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Prabhat Kumar Rout
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
4
|
Lu J, Zhang S, Gao S, Wang P, Bond PL, Guo J. New insights of the bacterial response to exposure of differently sized silver nanomaterials. WATER RESEARCH 2020; 169:115205. [PMID: 31670086 DOI: 10.1016/j.watres.2019.115205] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The release of silver nanomaterials (AgNMs) from extensive use poses potential risks to human health and ecological environments. Although previous studies have reported the negative effects of AgNMs on various microorganisms, little is known about the response of bacteria under the exposure of AgNMs at the cellular level. Here, we report the multiple responses of Pseudomonas aeruginosa PAO1 (PAO1) under the exposure of two types of AgNMs, including spherical silver nanoparticles (AgNPs) and fibrous silver nanorods (AgNRs), by physiological experiments, microscopy, synchrotron-based X-ray Absorption Spectroscopy (XAS), flow cytometry and genome-wide RNA sequencing. Our results demonstrated that the exposure to both types of AgNMs could inhibit the growth of PAO1, accompanied by the overproduction of oxidative stress and inducing cell membrane damage. Transmission electron microscopy revealed the roughened cell membrane under both AgNMs treatment. In addition, both AgNMs repressed the expression of quorum sensing and metal efflux-related genes in PAO1, but stimulated denitrification, glycerol and amino acid metabolisms, SOS response and pyocin overproduction of PAO1. Compared to AgNRs, AgNPs exposure showed a much lower threshold concentration to trigger the inhibitory effect and induced greater transcriptional responses of PAO1. This study suggested that AgNMs could cause multiple effects on the proliferation, metabolism, virulence and pathogenesis of PAO1, which might further affect the corresponding environmental microbial communities. Overall, our findings offer insights into the interactions between AgNMs and bacteria at the molecular level.
Collapse
Affiliation(s)
- Ji Lu
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Shuai Zhang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Shuhong Gao
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Peng Wang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
5
|
Baltrus DA, Clark M, Smith C, Hockett KL. Localized recombination drives diversification of killing spectra for phage-derived syringacins. THE ISME JOURNAL 2019; 13:237-249. [PMID: 30171255 PMCID: PMC6331570 DOI: 10.1038/s41396-018-0261-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/16/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
To better understand the potential for antagonistic interactions between members of the same bacterial species, we have surveyed bacteriocin killing activity across a diverse suite of strains of the phytopathogen Pseudomonas syringae. Our data demonstrate that killing activity from phage-derived bacteriocins of P. syringae (R-type syringacins) is widespread. Despite a high overall diversity of bacteriocin activity, strains can broadly be classified into five main killing types and two main sensitivity types. Furthermore, we show that killing activity switches frequently between strains and that switches correlate with localized recombination of two genes that together encode the proteins that specify bacteriocin targeting. Lastly, we demonstrate that phage-derived bacteriocin killing activity can be swapped between strains simply through expression of these two genes in trans. Overall, our study characterizes extensive diversity of killing activity for phage-derived bacteriocins of P. syringae across strains and highlights the power of localized recombination to alter phenotypes that mediate strain interactions during evolution of natural populations and communities.
Collapse
Affiliation(s)
- David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| | - Meara Clark
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Caitlin Smith
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
6
|
Phothichaisri W, Ounjai P, Phetruen T, Janvilisri T, Khunrae P, Singhakaew S, Wangroongsarb P, Chankhamhaengdecha S. Characterization of Bacteriophages Infecting Clinical Isolates of Clostridium difficile. Front Microbiol 2018; 9:1701. [PMID: 30108562 PMCID: PMC6079236 DOI: 10.3389/fmicb.2018.01701] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022] Open
Abstract
Clostridium difficile is recognized as a problematic pathogen, causing severe enteric diseases including antibiotic-associated diarrhea and pseudomembranous colitis. The emergence of antibiotic resistant C. difficile has driven a search for alternative anti-infection modalities. A promising strategy for controlling bacterial infection includes the use of bacteriophages and their gene products. Currently, knowledge of phages active against C. difficile is still relatively limited by the fact that the isolation of phages for this organism is a technically demanding method since bacterial host themselves are difficult to culture. To isolate and characterize phages specific to C. difficile, a genotoxic agent, mitomycin C, was used to induce temperate phages from 12 clinical isolates of C. difficile. Five temperate phages consisting of ΦHR24, ΦHN10, ΦHN16-1, ΦHN16-2, and ΦHN50 were successfully induced and isolated. Spotting assays were performed against a panel of 92 C. difficile isolates to screen for susceptible bacterial hosts. The results revealed that all the C. difficile phages obtained in this work displayed a relatively narrow host range of 0-6.5% of the tested isolates. Electron microscopic characterization revealed that all isolated phages contained an icosahedral head connected to a long contractile tail, suggesting that they belonged to the Myoviridae family. Restriction enzyme analysis indicated that these phages possess unique double-stranded DNA genome. Further electron microscopic characterization revealed that the ΦHN10 absorbed to the bacterial surface via attachment to cell wall, potentially interacting with S-layer protein. Bacteriophages isolated from this study could lead to development of novel therapeutic agents and detection strategies for C. difficile.
Collapse
Affiliation(s)
- Wichuda Phothichaisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tanaporn Phetruen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Sombat Singhakaew
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Piyada Wangroongsarb
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi, Thailand
| | | |
Collapse
|
7
|
Affiliation(s)
- Dean Scholl
- AvidBiotics Corp., South San Francisco, California 94080;,
| |
Collapse
|
8
|
Naz SA, Jabeen N, Sohail M, Rasool SA. Biophysicochemical characterization of Pyocin SA189 produced by Pseudomonas aeruginosa SA189. Braz J Microbiol 2016; 46:1147-54. [PMID: 26691474 PMCID: PMC4704615 DOI: 10.1590/s1517-838246420140737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 05/02/2015] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa, in spite of being a ubiquitous organism (as it is found in soil, water, and humans), is also an opportunistic pathogen. In order to maintain its diversity in the community, it produces various toxic proteins, known as, bacteriocins. In the present study, pyocin SA189, which is a bacteriocin produced by P. aeruginosa SA189 (isolated from a clinical sample) was characterized. P. aeruginosa SA189, as identified by the conventional and 16S rRNA gene amplification, produced pyocin SA189 of molecular weight of 66 k Da. The pyocin showed antimicrobial activity against several clinically relevant Gram-positive and Gram-negative bacteria and was substantially stable for wide ranges of temperature and pH. Furthermore, the pyocin also retained its biological activity upon treatment with metal ions, organic solvents, and various proteolytic and lipolytic enzymes. The data from the growth kinetics indicated that the maximum bacteriocin production occurred in the late log phase. Overall, our results signify the potential of pyocin SA189 as a bio-control agent.
Collapse
Affiliation(s)
- Sehar Afshan Naz
- Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Nusrat Jabeen
- Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | | | | |
Collapse
|
9
|
Choudhary GS, Yao X, Wang J, Peng B, Bader RA, Ren D. Human Granulocyte Macrophage Colony-Stimulating Factor Enhances Antibiotic Susceptibility of Pseudomonas aeruginosa Persister Cells. Sci Rep 2015; 5:17315. [PMID: 26616387 PMCID: PMC4663479 DOI: 10.1038/srep17315] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022] Open
Abstract
Bacterial persister cells are highly tolerant to antibiotics and cause chronic infections. However, little is known about the interaction between host immune systems with this subpopulation of metabolically inactive cells, and direct effects of host immune factors (in the absence of immune cells) on persister cells have not been studied. Here we report that human granulocyte macrophage-colony stimulating factor (GM-CSF) can sensitize the persister cells of Pseudomonas aeruginosa PAO1 and PDO300 to multiple antibiotics including ciprofloxacin, tobramycin, tetracycline, and gentamicin. GM-CSF also sensitized the biofilm cells of P. aeruginosa PAO1 and PDO300 to tobramycin in the presence of biofilm matrix degrading enzymes. The DNA microarray and qPCR results indicated that GM-CSF induced the genes for flagellar motility and pyocin production in the persister cells, but not the normal cells of P. aeruginosa PAO1. Consistently, the supernatants from GM-CSF treated P. aeruginosa PAO1 persister cell suspensions were found cidal to the pyocin sensitive strain P. aeruginosa PAK. Collectively, these findings suggest that host immune factors and bacterial persisters may directly interact, leading to enhanced susceptibility of persister cells to antibiotics.
Collapse
Affiliation(s)
- Geetika S Choudhary
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Xiangyu Yao
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Jing Wang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Bo Peng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Rebecca A Bader
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.,Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA.,Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA.,Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
10
|
|
11
|
Nale JY, Shan J, Hickenbotham PT, Fawley WN, Wilcox MH, Clokie MRJ. Diverse temperate bacteriophage carriage in Clostridium difficile 027 strains. PLoS One 2012; 7:e37263. [PMID: 22624004 PMCID: PMC3356267 DOI: 10.1371/journal.pone.0037263] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/19/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The hypervirulent Clostridium difficile ribotype 027 can be classified into subtypes, but it unknown if these differ in terms of severity of C. difficile infection (CDI). Genomic studies of C. difficile 027 strains have established that they are rich in mobile genetic elements including prophages. This study combined physiological studies, electron microscopy analysis and molecular biology to determine the potential role of temperate bacteriophages in disease and diversity of C. difficile 027. METHODOLOGY/PRINCIPAL FINDINGS We induced prophages from 91 clinical C. difficile 027 isolates and used transmission electron microscopy and pulsed-field gel electrophoresis to characterise the bacteriophages present. We established a correlation between phage morphology and subtype. Morphologically distinct tailed bacteriophages belonging to Myoviridae and Siphoviridae were identified in 63 and three isolates, respectively. Dual phage carriage was observed in four isolates. In addition, there were inducible phage tail-like particles (PT-LPs) in all isolates. The capacity of two antibiotics mitomycin C and norfloxacin to induce prophages was compared and it was shown that they induced specific prophages from C. difficile isolates. A PCR assay targeting the capsid gene of the myoviruses was designed to examine molecular diversity of C. difficile myoviruses. Phylogenetic analysis of the capsid gene sequences from eight ribotypes showed that all sequences found in the ribotype 027 isolates were identical and distinct from other C. difficile ribotypes and other bacteria species. CONCLUSION/SIGNIFICANCE A diverse set of temperate bacteriophages are associated with C. difficile 027. The observed correlation between phage carriage and the subtypes suggests that temperate bacteriophages contribute to the diversity of C. difficile 027 and may play a role in severity of disease associated with this ribotype. The capsid gene can be used as a tool to identify C. difficile myoviruses present within bacterial genomes.
Collapse
Affiliation(s)
- Janet Y. Nale
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, England, United Kingdom
| | - Jinyu Shan
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, England, United Kingdom
| | - Peter T. Hickenbotham
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, England, United Kingdom
| | - Warren N. Fawley
- Department of Microbiology, Old Medical School, Leeds General Infirmary, Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| | - Mark H. Wilcox
- Department of Microbiology, Old Medical School, Leeds General Infirmary, Leeds Teaching Hospitals Trust, Leeds, United Kingdom
- University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Martha R. J. Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, England, United Kingdom
| |
Collapse
|
12
|
Petrova OE, Schurr JR, Schurr MJ, Sauer K. The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA. Mol Microbiol 2011; 81:767-83. [PMID: 21696457 PMCID: PMC3214647 DOI: 10.1111/j.1365-2958.2011.07733.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of polysaccharides, proteins, and extracellular (e)DNA, with eDNA required for biofilm formation and integrity. Here we demonstrate that eDNA release is controlled by BfmR, a regulator essential for Pseudomonas aeruginosa biofilm development. Expression of bfmR coincided with localized cell death and DNA release, and could be stimulated by conditions resulting in membrane perturbation and cell lysis. ΔbfmR mutant biofilms demonstrated increased cell lysis and eDNA release suggesting BfmR to suppress, but not eliminate, these processes. Genome-wide transcriptional profiling indicated that BfmR was required for repression of genes associated with bacteriophage assembly and bacteriophage-mediated lysis. Chromatin immunoprecipitation analysis of direct BfmR targets identified the promoter of PA0691, termed here phdA, encoding a previously undescribed homologue of the prevent-host-death (Phd) family of proteins. Lack of phdA expression coincided with impaired biofilm development and increased cell death, a phenotype comparable to ΔbfmR. Expression of phdA in ΔbfmR restored eDNA release, cell lysis and biofilm formation to wild-type levels, with phdA overexpression promoting resistance to the superinfective bacteriophage Pf4, detected only in biofilms. Therefore, we propose that BfmR regulates biofilm development by limiting bacteriophage-mediated lysis and thus, eDNA release, via PhdA.
Collapse
Affiliation(s)
- Olga E. Petrova
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
| | | | - Michael J. Schurr
- Department of Microbiology, University of Colorado, School of Medicine, Aurora, CO 80045
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
| |
Collapse
|
13
|
Cady KC, White AS, Hammond JH, Abendroth MD, Karthikeyan RSG, Lalitha P, Zegans ME, O'Toole GA. Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates. MICROBIOLOGY (READING, ENGLAND) 2011; 157:430-7. [PMID: 21081758 PMCID: PMC3090132 DOI: 10.1099/mic.0.045732-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/28/2022]
Abstract
Here, we report the characterization of 122 Pseudomonas aeruginosa clinical isolates from three distinct geographical locations: Dartmouth Hitchcock Medical Center in New Hampshire, USA, the Charles T. Campbell Eye Microbiology Lab at the University of Pittsburgh Medical Center, USA, and the Aravind Eye Hospital in Madurai, India. We identified and located clustered regularly interspaced short palindromic repeats (CRISPR) in 45/122 clinical isolates and sequenced these CRISPR, finding that Yersinia subtype CRISPR regions (33 %) were more prevalent than the Escherichia CRISPR region subtype (6 %) in these P. aeruginosa clinical isolates. Further, we observed 132 unique spacers from these 45 CRISPR that are 100 % identical to prophages or sequenced temperate bacteriophage capable of becoming prophages. Most intriguingly, all of these 132 viral spacers matched to temperate bacteriophage/prophages capable of inserting into the host chromosome, but not to extrachromosomally replicating lytic P. aeruginosa bacteriophage. We next assessed the ability of the more prevalent Yersinia subtype CRISPR regions to mediate resistance to bacteriophage infection or lysogeny by deleting the entire CRISPR region from sequenced strain UCBPP-PA14 and six clinical isolates. We found no change in CRISPR-mediated resistance to bacteriophage infection or lysogeny rate even for CRISPR with spacers 100 % identical to a region of the infecting bacteriophage. Lastly, to show these CRISPR and cas genes were expressed and functional, we demonstrated production of small CRISPR RNAs. This work provides both the first examination to our knowledge of CRISPR regions within clinical P. aeruginosa isolates and a collection of defined CRISPR-positive and -negative strains for further CRISPR and cas gene studies.
Collapse
Affiliation(s)
- K. C. Cady
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - A. S. White
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - J. H. Hammond
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - M. D. Abendroth
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | - P. Lalitha
- Department of Ocular Microbiology, Aravind Eye Hospital, Madurai, India
| | - M. E. Zegans
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
- Department of Surgery, Dartmouth Medical School, Lebanon, NH 03766, USA
| | - G. A. O'Toole
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
14
|
Fortier LC, Moineau S. Morphological and genetic diversity of temperate phages in Clostridium difficile. Appl Environ Microbiol 2007; 73:7358-66. [PMID: 17890338 PMCID: PMC2168219 DOI: 10.1128/aem.00582-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Eight temperate phages were characterized after mitomycin C induction of six Clostridium difficile isolates corresponding to six distinct PCR ribotypes. The hypervirulent C. difficile strain responsible for a multi-institutional outbreak (NAP1/027 or QCD-32g58) was among these prophage-containing strains. Observation of the crude lysates by transmission electron microscopy (TEM) revealed the presence of three phages with isometric capsids and long contractile tails (Myoviridae family), as well as five phages with long noncontractile tails (Siphoviridae family). TEM analyses also revealed the presence of a significant number of phage tail-like particles in all the lysates. Southern hybridization experiments with restricted prophage DNA showed that C. difficile phages belonging to the family Myoviridae are highly similar and most likely related to previously described prophages phiC2, phiC5, and phiCD119. On the other hand, members of the Siphoviridae phage family are more genetically divergent, suggesting that they originated from distantly related ancestors. Our data thus suggest that there are at least three genetically distinct groups of temperate phages in C. difficile; one group is composed of highly related myophages, and the other two groups are composed of more genetically heterogeneous siphophages. Finally, no gene homologous to genes encoding C. difficile toxins or toxin regulators could be identified in the genomes of these phages using DNA hybridization. Interestingly, each unique phage restriction profile correlated with a specific C. difficile PCR ribotype.
Collapse
Affiliation(s)
- Louis-Charles Fortier
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4.
| | | |
Collapse
|
15
|
Wu W, Jin S. PtrB of Pseudomonas aeruginosa suppresses the type III secretion system under the stress of DNA damage. J Bacteriol 2005; 187:6058-68. [PMID: 16109947 PMCID: PMC1196158 DOI: 10.1128/jb.187.17.6058-6068.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a search for regulatory genes of the type III secretion system (TTSS) in Pseudomonas aeruginosa, transposon (Tn5) insertional mutants of the prtR gene were found defective in the TTSS. PrtR is an inhibitor of prtN, which encodes a transcriptional activator for pyocin synthesis genes. In P. aeruginosa, pyocin synthesis is activated when PrtR is degraded during the SOS response. Treatment of a wild-type P. aeruginosa strain with mitomycin C, a DNA-damaging agent, resulted in the inhibition of TTSS activation. A prtR/prtN double mutant had the same TTSS defect as the prtR mutant, and complementation by a prtR gene but not by a prtN gene restored the TTSS function. Also, overexpression of the prtN gene in wild-type PAK had no effect on the TTSS; thus, PrtN is not involved in the repression of the TTSS. To identify the PrtR-regulated TTSS repressor, another round of Tn mutagenesis was carried out in the background of a prtR/prtN double mutant. Insertion in a small gene, designated ptrB, restored the normal TTSS activity. Expression of ptrB is specifically repressed by PrtR, and mitomycin C-mediated suppression of the TTSS is also abolished in a ptrB mutant strain. Therefore, PtrB is a new TTSS repressor that coordinates TTSS repression and pyocin synthesis under the stress of DNA damage.
Collapse
Affiliation(s)
- Weihui Wu
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, P.O. Box 100266, 1600 SW Archer Rd., Gainesville, FL 32610-0266, USA
| | | |
Collapse
|
16
|
McGillivary G, Tomaras AP, Rhodes ER, Actis LA. Cloning and sequencing of a genomic island found in the Brazilian purpuric fever clone of Haemophilus influenzae biogroup aegyptius. Infect Immun 2005; 73:1927-38. [PMID: 15784532 PMCID: PMC1087403 DOI: 10.1128/iai.73.4.1927-1938.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A genomic island was identified in the Haemophilus influenzae biogroup aegyptius Brazilian purpuric fever (BPF) strain F3031. This island, which was also found in other BPF isolates, could not be detected in non-BPF biogroup aegyptius strains or in nontypeable or typeable H. influenzae strains, with the exception of a region present in the type b Eagan strain. This 34,378-bp island is inserted, in reference to H. influenzae Rd KW20, within a choline transport gene and contains a mosaic structure of Mu-like prophage genes, several hypothetical genes, and genes potentially encoding an Erwinia carotovora carotovoricin Er-like bacteriocin. The product of the tail fiber ORF in the bacteriocin-like region shows a hybrid structure where the C terminus is similar to an H. influenzae phage HP1 tail protein implicating this open reading frame in altering host specificity for a putative bacteriocin. Significant synteny is seen in the entire genomic island with genomic regions from Salmonella enterica subsp. enterica serovar Typhi CT18, Photorhabdus luminescens subsp. laumondii TT01, Chromobacterium violaceum, and to a lesser extent Haemophilus ducreyi 35000HP. In a previous work, we isolated several BPF-specific DNA fragments through a genome subtraction procedure, and we have found that a majority of these fragments map to this locus. In addition, several subtracted fragments generated from an independent laboratory by using different but related strains also map to this island. These findings underscore the importance of this BPF-specific chromosomal region in explaining some of the genomic differences between highly invasive BPF strains and non-BPF isolates of biogroup aegyptius.
Collapse
Affiliation(s)
- Glen McGillivary
- Department of Microbiology, Miami University, 40 Pearson Hall, Oxford, OH 45056, USA
| | | | | | | |
Collapse
|
17
|
Hernández-Romero D, Lucas-Elío P, López-Serrano D, Solano F, Sanchez-Amat A. Marinomonas mediterranea is a lysogenic bacterium that synthesizes R-bodies. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2679-2686. [PMID: 12949192 DOI: 10.1099/mic.0.26524-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The melanogenic marine bacterium Marinomonas mediterranea synthesizes R-bodies as revealed by transmission electron microscopy. These structures were previously described in some obligate symbionts of paramecia and some free-living bacteria, none of which was isolated from sea water. In other micro-organisms, the synthesis of R-bodies has been related to extrachromosomal elements. Accordingly, M. mediterranea induction by mitomycin C or UV radiation resulted in the production of defective phages resembling bacteriocins, indicating that it is a lysogenic bacterium. Two mitomycin-C-resistant strains defective in prophage replication have been isolated. These mutants, and the previously obtained strains ngC1, T102 and T103, the latter mutated in the ppoS gene encoding a sensor histidine kinase, are affected not only in phage replication but also in polyphenol oxidase activities and melanin synthesis, suggesting a relationship between the control of all these processes.
Collapse
Affiliation(s)
| | - Patricia Lucas-Elío
- Department of Genetics and Microbiology, University of Murcia, 30100 Murcia, Spain
| | - Daniel López-Serrano
- Department of Biochemistry and Molecular Biology B, University of Murcia, 30100 Murcia, Spain
| | - Francisco Solano
- Department of Biochemistry and Molecular Biology B, University of Murcia, 30100 Murcia, Spain
| | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
18
|
Strauch E, Kaspar H, Schaudinn C, Dersch P, Madela K, Gewinner C, Hertwig S, Wecke J, Appel B. Characterization of enterocoliticin, a phage tail-like bacteriocin, and its effect on pathogenic Yersinia enterocolitica strains. Appl Environ Microbiol 2001; 67:5634-42. [PMID: 11722917 PMCID: PMC93354 DOI: 10.1128/aem.67.12.5634-5642.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2001] [Accepted: 09/19/2001] [Indexed: 01/16/2023] Open
Abstract
Yersinia enterocolitica 29930 (biogroup 1A; serogroup O:7,8) produces a bacteriocin, designated enterocoliticin, that shows inhibitory activity against enteropathogenic strains of Y. enterocolitica belonging to serogroups O:3, O:5,27 and O:9. Enterocoliticin was purified, and electron micrographs of enterocoliticin preparations revealed the presence of phage tail-like particles. The particles did not contain nucleic acids and showed contraction upon contact with susceptible bacteria. Enterocoliticin addition to logarithmic-phase cultures of susceptible bacterial strains led to a rapid dose-dependent reduction in CFU. Calorimetric measurements of the heat output of cultures of sensitive bacteria showed a complete loss of cellular metabolic activity immediately upon addition of enterocoliticin. Furthermore, a dose-dependent efflux of K(+) ions into the medium was determined, indicating that enterocoliticin has channel-forming activity.
Collapse
Affiliation(s)
- E Strauch
- Robert Koch Institut, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Filiatrault MJ, Gibson BW, Schilling B, Sun S, Munson RS, Campagnari AA. Construction and characterization of Haemophilus ducreyi lipooligosaccharide (LOS) mutants defective in expression of heptosyltransferase III and beta1,4-glucosyltransferase: identification of LOS glycoforms containing lactosamine repeats. Infect Immun 2000; 68:3352-61. [PMID: 10816485 PMCID: PMC97600 DOI: 10.1128/iai.68.6.3352-3361.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To begin to understand the role of the lipooligosaccharide (LOS) molecule in chancroid infections, we constructed mutants defective in expression of glycosyltransferase genes. Pyocin lysis and immunoscreening was used to identify a LOS mutant of Haemophilus ducreyi 35000. This mutant, HD35000R, produced a LOS molecule that lacked the monoclonal antibody 3F11 epitope and migrated with an increased mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Structural studies indicated that the principal LOS glycoform contains lipid A, Kdo, and two of the three core heptose residues. HD35000R was transformed with a plasmid library of H. ducreyi 35000 DNA, and a clone producing the wild-type LOS was identified. Sequence analysis of the plasmid insert revealed one open reading frame (ORF) that encodes a protein with homology to the WaaQ (heptosyltransferase III) of Escherichia coli. A second ORF had homology to the LgtF (glucosyltransferase) of Neisseria meningitidis. Individual isogenic mutants lacking expression of the putative H. ducreyi heptosyltransferase III, the putative glucosyltransferase, and both glycosyltransferases were constructed and characterized. Each mutant was complemented with the representative wild-type genes in trans to restore expression of parental LOS and confirm the function of each enzyme. Matrix-assisted laser desorption ionization mass spectrometry and SDS-PAGE analysis identified several unique LOS glycoforms containing di-, tri-, and poly-N-acetyllactosamine repeats added to the terminal region of the main LOS branch synthesized by the heptosyltransferase III mutant. These novel H. ducreyi mutants provide important tools for studying the regulation of LOS assembly and biosynthesis.
Collapse
Affiliation(s)
- M J Filiatrault
- Department of Microbiology, University at Buffalo, Buffalo, New York 14214, USA
| | | | | | | | | | | |
Collapse
|
20
|
Boyd EF, Waldor MK. Alternative mechanism of cholera toxin acquisition by Vibrio cholerae: generalized transduction of CTXPhi by bacteriophage CP-T1. Infect Immun 1999; 67:5898-905. [PMID: 10531246 PMCID: PMC96972 DOI: 10.1128/iai.67.11.5898-5905.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Horizontal transfer of genes encoding virulence factors has played a central role in the evolution of many pathogenic bacteria. The unexpected discovery that the genes encoding cholera toxin (ctxAB), the main cause of the profuse secretory diarrhea characteristic of cholera, are encoded on a novel filamentous phage named CTXPhi, has resulted in a renewed interest in the potential mechanisms of transfer of virulence genes among Vibrio cholerae. We describe here an alternative mechanism of cholera toxin gene transfer into nontoxigenic V. cholerae isolates, including strains that lack both the CTXPhi receptor, the toxin coregulated pilus (TCP), and attRS, the chromosomal attachment site for CTXPhi integration. A temperature-sensitive mutant of the V. cholerae generalized transducing bacteriophage CP-T1 (CP-T1ts) was used to transfer a genetically marked derivative of the CTX prophage into four nontoxigenic V. cholerae strains, including two V. cholerae vaccine strains. We demonstrate that CTXPhi transduced by CP-T1ts can replicate and integrate into these nontoxigenic V. cholerae strains with high efficiency. In fact, CP-T1ts transduces the CTX prophage preferentially when compared with other chromosomal markers. These results reveal a potential mechanism by which CTXPhi(+) V. cholerae strains that lack the TCP receptor may have arisen. Finally, these findings indicate an additional pathway for reversion of live-attenuated V. cholerae vaccine strains.
Collapse
Affiliation(s)
- E F Boyd
- Division of Geographic Medicine, Tufts-New England Medical Center and Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|