1
|
Zhurilov PA, Andriyanov PA, Tutrina AI, Razheva IV, Liskova EA, Gladkova NA, Kashina DD, Yashin IV, Blokhin AA. Characterization and comparative analysis of the Escherichia marmotae M-12 isolate from bank vole (Myodes glareolus). Sci Rep 2023; 13:13949. [PMID: 37626115 PMCID: PMC10457355 DOI: 10.1038/s41598-023-41223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
The Escherichia marmotae is a bacterium of the Enterobacterales order, which was first isolated from the Himalayan marmot (Marmota himalayana). Recently E. marmotae has been shown to cause severe infections in humans. Wild animals were suggested to be a natural reservoir of this bacterium. The present study describes the first case of E. marmotae isolation from an apparently healthy wild bank vole (Myodes glareolus). Phenotype, as well as genotype-based techniques, were applied to characterize E. marmotae M-12 isolate. E. marmotae M-12 had the capsule-positive phenotype, high adhesion to human erythrocytes and HEp-2 cells as well as a low invasion into HEp-2 cells. E. marmotae M-12 was avirulent in mice. The phylogenomic analyses of E. marmotae showed dispersed phylogenetic structure among isolates of different origins. Virulome analysis of M-12 isolate revealed the presence of the following factors: siderophores, heme uptake systems, capsule synthesis, curli and type I fimbriae, flagella proteins, OmpA porin, etc. Comparative virulome analysis among available E. marmotae genomes revealed the presence of capsule K1 genes mostly in pathogenic isolates and OmpA porin presence among all strains. We assume that the K1 capsule and OmpA porin play a key role in the virulence of E. marmotae. Pathogenesis of the latter might be similar to extraintestinal pathogenic E. coli.
Collapse
Affiliation(s)
- Pavel A Zhurilov
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia.
| | - Pavel A Andriyanov
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Anastasia I Tutrina
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Irina V Razheva
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Elena A Liskova
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Nadezda A Gladkova
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Daria D Kashina
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Ivan V Yashin
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Andrey A Blokhin
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Rauti R, Navok S, Biran D, Tadmor K, Leichtmann-Bardoogo Y, Ron EZ, Maoz BM. Insight on Bacterial Newborn Meningitis Using a Neurovascular-Unit-on-a-Chip. Microbiol Spectr 2023; 11:e0123323. [PMID: 37222614 PMCID: PMC10269748 DOI: 10.1128/spectrum.01233-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Understanding the pathogenesis of bacterial infections is critical for combatting them. For some infections, animal models are inadequate and functional genomic studies are not possible. One example is bacterial meningitis, a life-threatening infection with high mortality and morbidity. Here, we used the newly developed, physiologically relevant, organ-on-a-chip platform integrating the endothelium with neurons, closely mimicking in vivo conditions. Using high-magnification microscopy, permeability measurements, electrophysiological recordings, and immunofluorescence staining, we studied the dynamic by which the pathogens cross the blood-brain barrier and damage the neurons. Our work opens up possibilities for performing large-scale screens with bacterial mutant libraries for identifying the virulence genes involved in meningitis and determining the role of these genes, including various capsule types, in the infection process. These data are essential for understanding and therapy of bacterial meningitis. Moreover, our system offers possibilities for the study of additional infections-bacterial, fungal, and viral. IMPORTANCE The interactions of newborn meningitis (NBM) with the neurovascular unit are very complex and are hard to study. This work presents a new platform to study NBM in a system that enables monitoring of multicellular interactions and identifies processes that were not observed before.
Collapse
Affiliation(s)
- Rossana Rauti
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Sharon Navok
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Dvora Biran
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Keshet Tadmor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Eliora Z. Ron
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Ben M. Maoz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Pons S, Frapy E, Sereme Y, Gaultier C, Lebreton F, Kropec A, Danilchanka O, Schlemmer L, Schrimpf C, Allain M, Angoulvant F, Lecuyer H, Bonacorsi S, Aschard H, Sokol H, Cywes-Bentley C, Mekalanos JJ, Guillard T, Pier GB, Roux D, Skurnik D. A high-throughput sequencing approach identifies immunotherapeutic targets for bacterial meningitis in neonates. EBioMedicine 2023; 88:104439. [PMID: 36709579 PMCID: PMC9900374 DOI: 10.1016/j.ebiom.2023.104439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Worldwide, Escherichia coli is the leading cause of neonatal Gram-negative bacterial meningitis, but full understanding of the pathogenesis of this disease is not yet achieved. Moreover, to date, no vaccine is available against bacterial neonatal meningitis. METHODS Here, we used Transposon Sequencing of saturated banks of mutants (TnSeq) to evaluate E. coli K1 genetic fitness in murine neonatal meningitis. We identified E. coli K1 genes encoding for factors important for systemic dissemination and brain infection, and focused on products with a likely outer-membrane or extra-cellular localization, as these are potential vaccine candidates. We used in vitro and in vivo models to study the efficacy of active and passive immunization. RESULTS We selected for further study the conserved surface polysaccharide Poly-β-(1-6)-N-Acetyl Glucosamine (PNAG), as a strong candidate for vaccine development. We found that PNAG was a virulence factor in our animal model. We showed that both passive and active immunization successfully prevented and/or treated meningitis caused by E. coli K1 in neonatal mice. We found an excellent opsonophagocytic killing activity of the antibodies to PNAG and in vitro these antibodies were also able to decrease binding, invasion and crossing of E. coli K1 through two blood brain barrier cell lines. Finally, to reinforce the potential of PNAG as a vaccine candidate in bacterial neonatal meningitis, we demonstrated that Group B Streptococcus, the main cause of neonatal meningitis in developed countries, also produced PNAG and that antibodies to PNAG could protect in vitro and in vivo against this major neonatal pathogen. INTERPRETATION Altogether, these results indicate the utility of a high-throughput DNA sequencing method to identify potential immunotherapy targets for a pathogen, including in this study a potential broad-spectrum target for prevention of neonatal bacterial infections. FUNDINGS ANR Seq-N-Vaq, Charles Hood Foundation, Hearst Foundation, and Groupe Pasteur Mutualité.
Collapse
Affiliation(s)
- Stéphanie Pons
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Anesthesiology and Critical Care, Sorbonne University, GRC 29, AP-HP, DMU DREAM, Pitié-Salpêtrière, Paris, France
| | - Eric Frapy
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France
| | - Youssouf Sereme
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France
| | - Charlotte Gaultier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - François Lebreton
- Department of Ophthalmology and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02114, USA
| | - Andrea Kropec
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Olga Danilchanka
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Laura Schlemmer
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Cécile Schrimpf
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Margaux Allain
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - François Angoulvant
- Assistance Publique - Hôpitaux de Paris, Pediatric Emergency Department, Necker-Enfants Malades University Hospital, University of Paris City, Paris, France; INSERM, Centre de Recherche des Cordeliers, UMRS 1138, Sorbonne Université, Université de Paris, Paris, France
| | - Hervé Lecuyer
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France; Department of Clinical Microbiology, Fédération Hospitalo-Universitaire Prématurité (FHU PREMA), Necker-Enfants Malades University Hospital, University of Paris City, Paris, France
| | - Stéphane Bonacorsi
- E IAME, UMR 1137, INSERM, Université de Paris, AP-HP, Paris, France; Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP, Paris, France
| | - Hugues Aschard
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Harry Sokol
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, F-75012 Paris, France; INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France; Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Guillard
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Université de Reims Champagne-Ardenne, SFR CAP-Santé, Inserm UMR-S 1250 P3Cell, Reims, France; Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière-Parasitologie-Mycologie, CHU, Reims, France
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Université de Paris, INSERM, UMR 1137 IAME, F-75018 Paris, France; AP-HP, Médecine Intensive Réanimation, Hôpital Louis Mourier, F-92700 Colombes, France
| | - David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France; Department of Clinical Microbiology, Fédération Hospitalo-Universitaire Prématurité (FHU PREMA), Necker-Enfants Malades University Hospital, University of Paris City, Paris, France.
| |
Collapse
|
4
|
Zhang XW, An MX, Huang ZK, Ma L, Zhao D, Yang Z, Shi JX, Liu DX, Li Q, Wu AH, Chen YH, Zhao WD. Lpp of Escherichia coli K1 inhibits host ROS production to counteract neutrophil-mediated elimination. Redox Biol 2022; 59:102588. [PMID: 36592568 PMCID: PMC9823224 DOI: 10.1016/j.redox.2022.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Escherichia coli (E. coli) is the most common Gram-negative bacterial organism causing neonatal meningitis. The pathogenesis of E. coli meningitis, especially how E. coli escape the host immune defenses, remains to be clarified. Here we show that deletion of bacterial Lpp encoding lipoprotein significantly reduces the pathogenicity of E. coli K1 to induce high-degree of bacteremia necessary for meningitis. The Lpp-deleted E. coli K1 is found to be susceptible to the intracellular bactericidal activity of neutrophils, without affecting the release of neutrophil extracellular traps. The production of reactive oxygen species (ROS), representing the primary antimicrobial mechanism in neutrophils, is significantly increased in response to Lpp-deleted E. coli. We find this enhanced ROS response is associated with the membrane translocation of NADPH oxidase p47phox and p67phox in neutrophils. Then we constructed p47phox knockout mice and we found the incidence of bacteremia and meningitis in neonatal mice induced by Lpp-deleted E. coli is significantly recovered by p47phox knockout. Proteomic profile analysis show that Lpp deficiency induces upregulation of flagellar protein FliC in E. coli. We further demonstrate that FliC is required for the ROS induction in neutrophils by Lpp-deleted E. coli. Taken together, these data uncover the novel role of Lpp in facilitating intracellular survival of E. coli K1 within neutrophils. It can be inferred that Lpp of E. coli K1 is able to suppress FliC expression to restrain the activation of NADPH oxidase in neutrophils resulting in diminished bactericidal activity, thus protecting E. coli K1 from the elimination by neutrophils.
Collapse
Affiliation(s)
- Xue-Wei Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Ming-Xin An
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Zeng-Kang Huang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Lan Ma
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Dan Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China,Department of Neurosurgery, the First Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhao Yang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Jun-Xiu Shi
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Dong-Xin Liu
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, 16 Puhe Road, Shenbei New District, Shenyang, 110134, China
| | - An-Hua Wu
- Department of Neurosurgery, the First Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China.
| |
Collapse
|
5
|
Ramtahal MA, Amoako DG, Ismail A, Bester L, Abia ALK, Essack SY. Salmonella Yoruba: a rare serotype revealed through genomic sequencing along the farm-to-fork continuum of an intensive poultry farm in KwaZulu-Natal, South Africa. Acta Trop 2022; 234:106620. [PMID: 35907503 DOI: 10.1016/j.actatropica.2022.106620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/01/2022]
Abstract
Salmonella enterica is a zoonotic pathogen of worldwide public health importance. We characterised Salmonella isolates from poultry along the farm-to-fork continuum using whole genome sequencing (WGS) and bioinformatics analysis. Three multilocus sequence types (MLSTs), i.e., ST15 (1.9%), ST152 (5.9%) and ST1316 (92.2%) and three serotypes, i.e., S. Heidelberg (1.9%), Kentucky (5.9%) and Yoruba (92.2%) were detected. The rare serotype, S. Yoruba, was detected among the farm and abattoir isolates and contained resistance and virulence determinants. Resistome analysis revealed the presence of the aac(6')-Iaa gene associated with aminoglycoside resistance, a single point mutation in the parC gene associated with fluoroquinolone and quinolone resistance, and a single isolate contained the fosA7 gene responsible for fosfomycin resistance. No antibiotic resistance genes (ARGs) were identified for isolates phenotypically non-susceptible to azithromycin, cephalosporins, chloramphenicol and nitrofurantoin and resistance was thought to be attributable to other resistance mechanisms. The fully susceptible profiles observed for the wastewater isolates suggest that the poultry environment may receive antibiotic-resistant strains and resistance determinants from poultry with the potential of becoming a pathway of Salmonella transmission along the continuum. Six plasmids were identified and were only carried by 92.2% of the S. Yoruba isolates in varying combinations. Four plasmids were common to all S. Yoruba isolates along the continuum; isolates from the litter and faeces on the farm contained two additional plasmids. Ten Salmonella pathogenicity islands (SPIs) and 177 virulence genes were identified; some were serotype-specific. Phylogenetic analysis of S. Heidelberg and Kentucky showed that isolates were related to animal and human isolates from other countries. Phylogenetic analysis among the S. Yoruba isolates revealed four clades based on the isolate sources along the farm-to-fork continuum. Although the transmission of Salmonella strains along the farm-to-fork continuum was not evident, pathogenic, resistant Salmonella present in the poultry production chain poses a food safety risk. WGS analysis can provide important information on the spread, resistance, pathogenicity, and epidemiology of isolates and new, rare or emerging Salmonella strains to develop intervention strategies to improve food safety.
Collapse
Affiliation(s)
- Melissa A Ramtahal
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Daniel G Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Arshad Ismail
- Core Sequencing Facility, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Linda Bester
- Biomedical Research Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Akebe L K Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; Environmental Research Foundation, Westville 3630, KwaZulu-Natal
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
6
|
Bacteria reduce flagellin synthesis to evade microglia-astrocyte-driven immunity in the brain. Cell Rep 2022; 40:111033. [PMID: 35793624 DOI: 10.1016/j.celrep.2022.111033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
The immune response of brain cells to invading bacteria in vivo and the mechanism used by pathogenic bacteria to escape brain immune surveillance remain largely unknown. It is believed that microglia eliminate bacteria by phagocytosis based on in vitro data. Here we find that a small percentage of microglia in the brain engulf neonatal meningitis-causing Escherichia coli (NMEC), but more microglia are activated to produce tumor necrosis factor alpha (TNFα), which activates astrocytes to secrete complement component 3 (C3) involved in anti-bacterial activity. To evade anti-bacterial activity of the immune system, NMEC senses low concentration of threonine in cerebrospinal fluid (CSF) to down-modulate the expression of flagellin and reduce microglial TNFα and astrocyte C3 production. Our findings may help develop strategies for bacterial meningitis treatment.
Collapse
|
7
|
YbdO Promotes the Pathogenicity of Escherichia coli K1 by Regulating Capsule Synthesis. Int J Mol Sci 2022; 23:ijms23105543. [PMID: 35628353 PMCID: PMC9141747 DOI: 10.3390/ijms23105543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli K1 is the most popular neonatal meningitis-causing Gram-negative bacterium. As a key virulence determinant, the K1 capsule enhances the survival of E. coli K1 in human brain microvascular endothelial cells (HBMECs) upon crossing the blood–brain barrier; however, the regulatory mechanisms of capsule synthesis during E. coli K1 invasion of HBMECs remain unclear. Here, we identified YbdO as a transcriptional regulator that promotes E. coli K1 invasion of HBMECs by directly activating K1 capsule gene expression to increase K1 capsule synthesis. We found that ybdO deletion significantly reduced HBMEC invasion by E. coli K1 and meningitis occurrence in mice. Additionally, electrophoretic mobility shift assay and chromatin immunoprecipitation–quantitative polymerase chain reaction analysis indicated that YbdO directly activates kpsMT and neuDBACES expression, which encode products involved in K1 capsule transport and synthesis by directly binding to the kpsM promoter. Furthermore, ybdO transcription was directly repressed by histone-like nucleoid structuring protein (H-NS), and we observed that acidic pH similar to that of early and late endosomes relieves this transcriptional repression. These findings demonstrated the regulatory mechanism of YbdO on K1 capsule synthesis, providing further insights into the evolution of E. coli K1 pathogenesis and host–pathogen interaction.
Collapse
|
8
|
Fan Y, Bai J, Xi D, Yang B. RpoE Facilitates Stress-Resistance, Invasion, and Pathogenicity of Escherichia coli K1. Microorganisms 2022; 10:microorganisms10050879. [PMID: 35630325 PMCID: PMC9147696 DOI: 10.3390/microorganisms10050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Escherichia coli K1 is the most common Gram-negative bacterium that causes neonatal meningitis; thus, a better understanding of its pathogenic molecular mechanisms is critical. However, the mechanisms by which E. coli K1 senses the signals of the host and expresses toxins for survival are poorly understood. As an extracytoplasmic function sigma factor, RpoE controls a wide range of pathogenesis-associated pathways in response to environmental stress. We found that the ΔrpoE mutant strain reduced the binding and invasion rate in human brain microvascular endothelial cells (HBMECs) in vitro, level of bacteremia, and percentage of meningitis in vivo. To confirm the direct targets of RpoE in vivo, we performed qRT-PCR and ChIP-qPCR on known toxic genes. RpoE was found to regulate pathogenic target genes, namely, ompA, cnf1, fimB, ibeA, kpsM, and kpsF directly and fimA, aslA, and traJ indirectly. The expression of these genes was upregulated when E. coli K1 was cultured with antibacterial peptides, whereas remained unchanged in the presence of the ΔrpoE mutant strain. Moreover, RpoE reduced IL-6 and IL-8 levels in E. coli K1-infected HBMECs. Altogether, these findings demonstrate that RpoE mediates the host adaptation capacity of E. coli K1 via a regulatory mechanism on virulence factors.
Collapse
Affiliation(s)
- Yu Fan
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Y.F.); (J.B.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Jing Bai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Y.F.); (J.B.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Daoyi Xi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Bin Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Y.F.); (J.B.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Correspondence:
| |
Collapse
|
9
|
The prevalence of the iutA and ibeA genes in Escherichia coli isolates from severe and non-severe patients with bacteremic acute biliary tract infection is significantly different. Gut Pathog 2021; 13:32. [PMID: 34006312 PMCID: PMC8132388 DOI: 10.1186/s13099-021-00429-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 05/12/2021] [Indexed: 12/17/2022] Open
Abstract
Background Although Escherichia coli is the most frequently isolated microorganism in acute biliary tract infections with bacteremia, data regarding its virulence are limited. Results Information on cases of bacteremia in acute biliary tract infection in a retrospective study was collected from 2013 to 2015 at a tertiary care hospital in Japan. Factors related to the severity of infection were investigated, including patient background, phylogenetic typing, and virulence factors of E. coli, such as adhesion, invasion, toxins, and iron acquisition. In total, 72 E. coli strains were identified in 71 cases, most of which primarily belonged to the B2 phylogroup (68.1%). The presence of the iutA gene (77.3% in the non-severe group, 46.4% in the severe group, P = 0.011) and the ibeA gene (9.1% in the non-severe group, and 35.7% in the severe group, P = 0.012) was significantly associated with the severity of infection. Among the patient characteristics, diabetes mellitus with organ involvement and alkaline phosphatase were different in the severe and non-severe groups. Conclusions We showed that bacteremic E. coli strains from acute biliary tract infections belonged to the virulent (B2) phylogroup. The prevalence of the iutA and ibeA genes between the two groups of bacteremia severity was significantly different.
Collapse
|
10
|
Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front Microbiol 2020; 11:2065. [PMID: 33101219 PMCID: PMC7545054 DOI: 10.3389/fmicb.2020.02065] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli is a versatile bacterial species that includes both harmless commensal strains and pathogenic strains found in the gastrointestinal tract in humans and warm-blooded animals. The growing amount of DNA sequence information generated in the era of "genomics" has helped to increase our understanding of the factors and mechanisms involved in the diversification of this bacterial species. The pathogenic side of E. coli that is afforded through horizontal transfers of genes encoding virulence factors enables this bacterium to become a highly diverse and adapted pathogen that is responsible for intestinal or extraintestinal diseases in humans and animals. Many of the accessory genes acquired by horizontal transfers form syntenic blocks and are recognized as genomic islands (GIs). These genomic regions contribute to the rapid evolution, diversification and adaptation of E. coli variants because they are frequently subject to rearrangements, excision and transfer, as well as to further acquisition of additional DNA. Here, we review a subgroup of GIs from E. coli termed pathogenicity islands (PAIs), a concept defined in the late 1980s by Jörg Hacker and colleagues in Werner Goebel's group at the University of Würzburg, Würzburg, Germany. As with other GIs, the PAIs comprise large genomic regions that differ from the rest of the genome by their G + C content, by their typical insertion within transfer RNA genes, and by their harboring of direct repeats (at their ends), integrase determinants, or other mobility loci. The hallmark of PAIs is their contribution to the emergence of virulent bacteria and to the development of intestinal and extraintestinal diseases. This review summarizes the current knowledge on the structure and functional features of PAIs, on PAI-encoded E. coli pathogenicity factors and on the role of PAIs in host-pathogen interactions.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Racha Beyrouthy
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Delmas
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Richard Bonnet
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
11
|
Zhu N, Liu W, Prakash A, Zhang C, Kim KS. Targeting E. coli invasion of the blood-brain barrier for investigating the pathogenesis and therapeutic development of E. coli meningitis. Cell Microbiol 2020; 22:e13231. [PMID: 32447809 DOI: 10.1111/cmi.13231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/15/2022]
Abstract
Escherichia coli is the most common Gram-negative bacillary organism causing neonatal meningitis. Escherichia coli meningitis remains an important cause of mortality and morbidity, but the pathogenesis of E. coli penetration of the blood-brain barrier remains incompletely understood. Escherichia coli entry into the brain occurs in the meningeal and cortex capillaries, not in the choroid plexus, and exploits epidermal growth factor receptor (EGFR) and cysteinyl leukotrienes (CysLTs) for invasion of the blood-brain barrier. The present study examined whether EGFR and CysLTs are inter-related in their contribution to E. coli invasion of the blood-brain barrier and whether counteracting EGFR and CysLTs is a beneficial adjunct to antibiotic therapy of E. coli meningitis. We showed that (a) meningitis isolates of E. coli exploit EGFR and CysLTs for invasion of the blood-brain barrier, (b) the contribution of EGFR is upstream of that of CysLTs, and (c) counteracting EGFR and CysLTs as an adjunctive therapy improved the outcome (survival, neuronal injury and memory impairment) of animals with E. coli meningitis. These findings suggest that investigation of host factors contributing to E. coli invasion of the blood-brain barrier will help in enhancing the pathogenesis and development of new therapeutic targets for E. coli meningitis in the era of increasing resistance to conventional antibiotics.
Collapse
Affiliation(s)
- Ningyu Zhu
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wei Liu
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Atish Prakash
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chengxian Zhang
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Virulence Potential of a Multidrug-Resistant Escherichia coli Strain Belonging to the Emerging Clonal Group ST101-B1 Isolated from Bloodstream Infection. Microorganisms 2020; 8:microorganisms8060827. [PMID: 32486334 PMCID: PMC7355805 DOI: 10.3390/microorganisms8060827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli EC121 is a multidrug-resistant (MDR) strain isolated from a bloodstream infection of an inpatient with persistent gastroenteritis and T-zone lymphoma that died due to septic shock. Despite causing an extraintestinal infection, previous studies showed that it did not have the usual characteristics of an extraintestinal pathogenic E. coli. Instead, it belonged to phylogenetic group B1 and harbored few known virulence genes. To evaluate the pathogenic potential of strain EC121, an extensive genome sequencing and in vitro characterization of various pathogenicity-associated properties were performed. The genomic analysis showed that strain EC121 harbors more than 50 complete virulence genetic clusters. It also displays the capacity to adhere to a variety of epithelial cell lineages and invade T24 bladder cells, as well as the ability to form biofilms on abiotic surfaces, and survive the bactericidal serum complement activity. Additionally, EC121 was shown to be virulent in the Galleria mellonella model. Furthermore, EC121 is an MDR strain harboring 14 antimicrobial resistance genes, including blaCTX-M-2. Completing the scenario, it belongs to serotype O154:H25 and to sequence type 101-B1, which has been epidemiologically linked to extraintestinal infections as well as to antimicrobial resistance spread. This study with E. coli strain EC121 shows that clinical isolates considered opportunistic might be true pathogens that go underestimated.
Collapse
|
13
|
Abdelhalim KA, Uzel A, Gülşen Ünal N. Virulence determinants and genetic diversity of adherent-invasive Escherichia coli (AIEC) strains isolated from patients with Crohn's disease. Microb Pathog 2020; 145:104233. [PMID: 32360521 DOI: 10.1016/j.micpath.2020.104233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Adherent invasive Escherichia coli (AIEC) are implicated in the pathogenesis of inflammatory bowel diseases (IBD) particularly Crohn's disease (CD). The aim of this study is to isolate, identify, genotype, and characterize the virulence factors and the clinical significance of AIEC strains. METHODS Ileal and colonic biopsies from 24 active CD patients and 15 healthy controls (HC) were collected. E. coli strains were identified by standard biochemical tests and confirmed by MALDI-TOF (bioMerieux, France) system. The AIEC phenotypes were determined by the adhesion, invasion, and survival within macrophages assays. The genetic virulence factors and genotyping characteristics were determined by PCR and PFGE respectively. The abundance and the antibiogram profile of E. coli strains was determined by qPCR and VITEK®2 (bioMerieux, France) automated system respectively. RESULTS E. coli strains from 17 CD patients and 14 HC were isolated, 10 (59%) and 7 (50%) of them were identified as AIEC strains, respectively. We found that chuA and ratA genes were the most significant genetic markers associated with AIEC compared to non-AIEC strains isolated from CD patients and HC p = 0.0119, 0.0094 respectively. The majority of E. coli strains obtained from CD patients showed antibiotic resistance (71%) compared to HC (29%) against at least one antibiotic. The AIEC-like strains were more resistant to antibiotics compared to non-AIEC-like strains (53%) and (21%) respectively. CONCLUSIONS We have determined significant differences between AIEC strains and non-AIEC strains in terms of the prevalence of chuA and ratA virulence genes and the antibiotic resistance profiles. In addition, AIEC strains isolated from CD patients were found to be more resistant to penicillin/beta lactam and aminoglycoside antibiotics than AIEC strains isolated from HC 80%, 14% respectively.
Collapse
Affiliation(s)
- Khalid A Abdelhalim
- Ege University, Faculty of Science, Department of Biology, Section of Basic and Industrial Microbiology, Izmir, Turkey
| | - Ataç Uzel
- Ege University, Faculty of Science, Department of Biology, Section of Basic and Industrial Microbiology, Izmir, Turkey
| | - Nalan Gülşen Ünal
- Ege University, Faculty of Medicine, Department of Internal Medicine, Division of Gastroenterology, Izmir, Turkey.
| |
Collapse
|
14
|
Kim KS. Investigating Bacterial Penetration of the Blood-Brain Barrier for the Pathogenesis, Prevention, and Therapy of Bacterial Meningitis. ACS Infect Dis 2020; 6:34-42. [PMID: 31805229 DOI: 10.1021/acsinfecdis.9b00319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The most distressing aspect of bacterial meningitis is limited improvement in the mortality and morbidity despite attributable advances in antimicrobial chemotherapy and supportive care. A major contributing factor to such mortality and morbidity is our incomplete understanding of the pathogenesis of this disease. Microbial penetration of the blood-brain barrier, a prerequisite for the development of bacterial meningitis, exploits specific host and bacterial factors as well as host cell signaling molecules. Determination and characterization of such host and bacterial factors have been instrumental for developing our current knowledge on the pathogenesis of bacterial meningitis. In addition, counteracting such host and microbial factors has been shown to be efficacious in the prevention of bacterial meningitis. Antimicrobial therapy alone has limited efficacy in improving the outcome of bacterial meningitis. Recent studies suggest that counteracting targets contributing to bacterial penetration of the blood-brain barrier are a beneficial therapeutic adjunct to antimicrobial therapy in improving the outcome of bacterial meningitis. Taken together, these findings indicate that the elucidation of host and bacterial factors contributing to microbial penetration of the blood-brain barrier provides a novel strategy for investigating the pathogenesis, prevention, and therapy of bacterial meningitis.
Collapse
Affiliation(s)
- Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Room 3157, Baltimore, Maryland 21287, United States
| |
Collapse
|
15
|
Xu X, Zhang L, Cai Y, Liu D, Shang Z, Ren Q, Li Q, Zhao W, Chen Y. Inhibitor discovery for the E. coli meningitis virulence factor IbeA from homology modeling and virtual screening. J Comput Aided Mol Des 2019; 34:11-25. [PMID: 31792885 DOI: 10.1007/s10822-019-00250-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022]
Abstract
Escherichia coli (E. coli) K1 is the most common Gram-negative bacteria cause of neonatal meningitis. The penetration of E. coli through the blood-brain barrier is a key step of the meningitis pathogenesis. A host receptor protein, Caspr1, interacts with the E. coli virulence factor IbeA and thus facilitates bacterial penetration through the blood-brain barrier. Based on this result, we have now predicted the binding pattern between Caspr1 and IbeA by an integrated computational protocol. Based on the predicted model, we have identified a putative molecular binding pocket in IbeA, that directly bind with Caspr1. This evidence indicates that the IbeA (229-343aa) region might play a key role in mediating the bacteria invasion. Virtual screening with the molecular model was conducted to search for potential inhibitors from 213,279 commercially available chemical compounds. From the top 50 identified compounds, 9 demonstrated a direct binding ability to the residues within the Caspr1 binding site on IbeA. By using human brain microvascular endothelial cells (hBMEC) with E. coli strain RS218, four molecules were characterized that significantly attenuated the bacteria invasions at concentrations devoid of cell toxicity. Our study provides useful structural information for understanding the pathogenesis of neonatal meningitis, and have identified drug-like compounds that could be used to develop effective anti-meningitis agents.
Collapse
Affiliation(s)
- Xiaoqian Xu
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.
| | - Li Zhang
- Department of Life Science, Liaoning University, Shenyang, China
| | - Ying Cai
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Dongxin Liu
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Zhengwen Shang
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Qiuhong Ren
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Qiong Li
- Department of Life Science, University of Science and Technology of China, Hefei, China
| | - Weidong Zhao
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yuhua Chen
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Mancilla-Rojano J, Castro-Jaimes S, Ochoa SA, Bobadilla Del Valle M, Luna-Pineda VM, Bustos P, Laris-González A, Arellano-Galindo J, Parra-Ortega I, Hernández-Castro R, Cevallos MA, Xicohtencatl-Cortes J, Cruz-Córdova A. Whole-Genome Sequences of Five Acinetobacter baumannii Strains From a Child With Leukemia M2. Front Microbiol 2019; 10:132. [PMID: 30787915 PMCID: PMC6372515 DOI: 10.3389/fmicb.2019.00132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/21/2019] [Indexed: 01/05/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen and is one of the primary etiological agents of healthcare-associated infections (HAIs). A. baumannii infections are difficult to treat due to the intrinsic and acquired antibiotic resistance of strains of this bacterium, which frequently limits therapeutic options. In this study, five A. baumannii strains (810CP, 433H, 434H, 483H, and A-2), all of which were isolated from a child with leukemia M2, were characterized through antibiotic susceptibility profiling, the detection of genes encoding carbapenem hydrolyzing oxacillinases, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), adherence and invasion assays toward the A549 cell line, and the whole-genome sequence (WGS). The five strains showed Multidrug resistant (MDR) profiles and amplification of the blaOXA-23 gene, belonging to ST758 and grouped into two PFGE clusters. WGS of 810CP revealed the presence of a circular chromosome and two small plasmids, pAba810CPa and pAba810CPb. Both plasmids carried genes encoding the Sp1TA system, although resistance genes were not identified. A gene-by-gene comparison analysis was performed among the A. baumannii strains isolated in this study and others A. baumannii ST758 strains (HIMFG and INCan), showing that 86% of genes were present in all analyzed strains. Interestingly, the 433H, 434H, and 483H strains varied by 8–10 single-nucleotide variants (SNVs), while the A2 and 810CP strains varied by 46 SNVs. Subsequently, an analysis using BacWGSTdb showed that all of our strains had the same resistance genes and were ST758. However, some variations were observed in relation to virulence genes, mainly in the 810CP strain. The genes involved in the synthesis of hepta-acylated lipooligosaccharides, the pgaABCD locus encoding poly-β-1-6-N-acetylglucosamine, the ompA gene, Csu pili, bap, the two-component system bfms/bfmR, a member of the phospholipase D family, and two iron-uptake systems were identified in our A. baumannii strains genome. The five A. baumannii strains isolated from the child were genetically different and showed important characteristics that promote survival in a hospital environment. The elucidation of their genomic sequences provides important information for understanding their epidemiology, antibiotic resistance, and putative virulence factors.
Collapse
Affiliation(s)
- Jetsi Mancilla-Rojano
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Semiramis Castro-Jaimes
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Miriam Bobadilla Del Valle
- Departamento de Enfermedades Infecciosas Instituto Nacional de Ciencias Médicas y de Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Victor M Luna-Pineda
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Almudena Laris-González
- Departamento de Epidemiología, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - José Arellano-Galindo
- Laboratorio de Infectología, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Israel Parra-Ortega
- Laboratorio Central, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos Hospital General "Dr. Manuel Gea González", Mexico City, Mexico
| | - Miguel A Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
17
|
Fu J, Li L, Yang X, Yang R, Amjad N, Liu L, Tan C, Chen H, Wang X. Transactivated Epidermal Growth Factor Receptor Recruitment of α-actinin-4 From F-actin Contributes to Invasion of Brain Microvascular Endothelial Cells by Meningitic Escherichia coli. Front Cell Infect Microbiol 2019; 8:448. [PMID: 30687645 PMCID: PMC6333852 DOI: 10.3389/fcimb.2018.00448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023] Open
Abstract
Bacterial penetration of the blood-brain barrier requires its successful invasion of brain microvascular endothelial cells (BMECs), and host actin cytoskeleton rearrangement in these cells is a key prerequisite for this process. We have reported previously that meningitic Escherichia coli can induce the activation of host's epidermal growth factor receptor (EGFR) to facilitate its invasion of BMECs. However, it is unknown how EGFR specifically functions during this invasion process. Here, we identified an important EGFR-interacting protein, α-actinin-4 (ACTN4), which is involved in maintaining and regulating the actin cytoskeleton. We observed that transactivated-EGFR competitively recruited ACTN4 from intracellular F-actin fibers to disrupt the cytoskeleton, thus facilitating bacterial invasion of BMECs. Strikingly, this mechanism operated not only for meningitic E. coli, but also for infections with Streptococcus suis, a Gram-positive meningitis-causing bacterial pathogen, thus revealing a common mechanism hijacked by these meningitic pathogens where EGFR competitively recruits ACTN4. Ever rising levels of antibiotic-resistant bacteria and the emergence of their extended-spectrum antimicrobial-resistant counterparts remind us that EGFR could act as an alternative non-antibiotic target to better prevent and control bacterial meningitis.
Collapse
Affiliation(s)
- Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaopei Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Nouman Amjad
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
18
|
Møller-Olsen C, Ho SFS, Shukla RD, Feher T, Sagona AP. Engineered K1F bacteriophages kill intracellular Escherichia coli K1 in human epithelial cells. Sci Rep 2018; 8:17559. [PMID: 30510202 PMCID: PMC6277420 DOI: 10.1038/s41598-018-35859-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/09/2018] [Indexed: 01/13/2023] Open
Abstract
Bacterial infections can be treated with bacteriophages that show great specificity towards their bacterial host and can be genetically modified for different applications. However, whether and how bacteriophages can kill intracellular bacteria in human cells remains elusive. Here, using CRISPR/Cas selection, we have engineered a fluorescent bacteriophage specific for E. coli K1, a nosocomial pathogen responsible for urinary tract infections, neonatal meningitis and sepsis. By confocal and live microscopy, we show that engineered bacteriophages K1F-GFP and E. coli EV36-RFP bacteria displaying the K1 capsule, enter human cells via phagocytosis. Importantly, we show that bacteriophage K1F-GFP efficiently kills intracellular E. coli EV36-RFP in T24 human urinary bladder epithelial cells. Finally, we provide evidence that bacteria and bacteriophages are degraded by LC3-associated phagocytosis and xenophagy.
Collapse
Affiliation(s)
| | - Siu Fung Stanley Ho
- School of Life Sciences, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| | - Ranti Dev Shukla
- Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tamas Feher
- Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| |
Collapse
|
19
|
Zhao WD, Liu DX, Wei JY, Miao ZW, Zhang K, Su ZK, Zhang XW, Li Q, Fang WG, Qin XX, Shang DS, Li B, Li QC, Cao L, Kim KS, Chen YH. Caspr1 is a host receptor for meningitis-causing Escherichia coli. Nat Commun 2018; 9:2296. [PMID: 29895952 PMCID: PMC5997682 DOI: 10.1038/s41467-018-04637-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/03/2018] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli is the leading cause of neonatal Gram-negative bacterial meningitis, but the pathogenesis of E. coli meningitis remains elusive. E. coli penetration of the blood–brain barrier (BBB) is the critical step for development of meningitis. Here, we identify Caspr1, a single-pass transmembrane protein, as a host receptor for E. coli virulence factor IbeA to facilitate BBB penetration. Genetic ablation of endothelial Caspr1 and blocking IbeA–Caspr1 interaction effectively prevent E. coli penetration into the brain during meningitis in rodents. IbeA interacts with extracellular domain of Caspr1 to activate focal adhesion kinase signaling causing E. coli internalization into the brain endothelial cells of BBB. E. coli can invade hippocampal neurons causing apoptosis dependent on IbeA–Caspr1 interaction. Our results indicate that E. coli exploits Caspr1 as a host receptor for penetration of BBB resulting in meningitis, and that Caspr1 might be a useful target for prevention or therapy of E. coli meningitis. Penetration of the blood–brain barrier (BBB) is crucial for development of E. coli-caused meningitis. Here, the authors show that a host membrane protein, Caspr1, acts as a receptor for a bacterial virulence factor to facilitate BBB penetration and entry of E. coli into brain neurons.
Collapse
Affiliation(s)
- Wei-Dong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China.
| | - Dong-Xin Liu
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Jia-Yi Wei
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Zi-Wei Miao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Ke Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Zheng-Kang Su
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Xue-Wei Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Qiang Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Wen-Gang Fang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Xiao-Xue Qin
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - De-Shu Shang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Bo Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Qing-Chang Li
- Department of Pathology, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Liu Cao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 200 North Wolfe St, Room 3157, Baltimore, MD, 21287, USA
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122, Shenyang, China.
| |
Collapse
|
20
|
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are important pathogens in humans and certain animals. Molecular epidemiological analyses of ExPEC are based on structured observations of E. coli strains as they occur in the wild. By assessing real-world phenomena as they occur in authentic contexts and hosts, they provide an important complement to experimental assessment. Fundamental to the success of molecular epidemiological studies are the careful selection of subjects and the use of appropriate typing methods and statistical analysis. To date, molecular epidemiological studies have yielded numerous important insights into putative virulence factors, host-pathogen relationships, phylogenetic background, reservoirs, antimicrobial-resistant strains, clinical diagnostics, and transmission pathways of ExPEC, and have delineated areas in which further study is needed. The rapid pace of discovery of new putative virulence factors and the increasing awareness of the importance of virulence factor regulation, expression, and molecular variation should stimulate many future molecular epidemiological investigations. The growing sophistication and availability of molecular typing methodologies, and of the new computational and statistical approaches that are being developed to address the huge amounts of data that whole genome sequencing generates, provide improved tools for such studies and allow new questions to be addressed.
Collapse
Affiliation(s)
| | - Thomas A Russo
- VA Western New York Healthcare System, Department of Medicine, Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University of Buffalo, Buffalo, NY 14214
| |
Collapse
|
21
|
Abstract
Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, and E. coli meningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis contributes to such mortality and morbidity. Recent reports of E. coli strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. Studies using in vitro and in vivo models of the blood-brain barrier have shown that E. coli meningitis follows a high degree of bacteremia and invasion of the blood-brain barrier. E. coli invasion of the blood-brain barrier, the essential step in the development of E. coli meningitis, requires specific microbial and host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors contributing to E. coli invasion of the blood-brain barrier is shown to be efficient in preventing E. coli penetration into the brain. The basis for requiring a high degree of bacteremia for E. coli penetration of the blood-brain barrier, however, remains unclear. Continued investigation on the microbial and host factors contributing to a high degree of bacteremia and E. coli invasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of E. coli meningitis.
Collapse
|
22
|
Kim S, Kim YT, Yoon H, Lee JH, Ryu S. The complete genome sequence of Cronobacter sakazakii ATCC 29544 T, a food-borne pathogen, isolated from a child's throat. Gut Pathog 2017; 9:2. [PMID: 28053670 PMCID: PMC5209807 DOI: 10.1186/s13099-016-0150-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/07/2016] [Indexed: 11/10/2022] Open
Abstract
Background Cronobacter sakazakii is an emerging opportunistic pathogen that is associated with rare but life-threatening cases of severe diseases: meningitis, necrotizing enterocolitis, and sepsis in premature and full-term infants. However, the pathogenesis mechanism of this pathogen remains largely unknown. To determine its pathogenesis at the genomic level, the genome of C. sakazakii ATCC 29544T was completely sequenced and analyzed. Results The genomic DNA, containing a circular chromosome and three plasmids, is composed of 4,511,265 bp with a GC content of 56.71%, containing 4380 predicted open reading frames (ORFs), 22 rRNA genes, and 83 tRNA genes. The plasmids, designated pCSK29544_p1, pCSK29544_p2, and pCSK29544_p3, were 93,905-bp, 4938-bp, and 53,457-bp with GC contents of 57.02, 54.88, and 50.07%, respectively. They were also predicted to have 72, 6, and 57 ORFs without RNA genes. Conclusions The strain ATCC 29544T genome has ompA and ibeB-homologous cusC genes, probably associated with the invasion of human brain microvascular endothelial cells (BMECs). In addition, gene clusters for siderophore production (iucABCD/iutA) and the related transport system (eitCBAD) were detected in pCSK29544_p1 plasmid, indicating better iron uptake ability for survival. Furthermore, to survive under extremely dry condition like milk powder, this genome has gene clusters for biosynthesis of capsular proteins (CSK29544_00281-00284) and cellulose (CSK29544_01124-01127) for biofilm formation and a gene cluster for utilization of sialic acid in the milk (nanKTAR). The genome information of C. sakazakii ATCC 29544T would provide further understanding of its pathogenesis at the molecular level for the regulation of pathogenicity and the development of a rapid detection method using biomarkers. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0150-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seongok Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| | - You-Tae Kim
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104 Republic of Korea
| | - Hyunjin Yoon
- Department of Applied Chemistry and Biological Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104 Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| |
Collapse
|
23
|
Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier. PLoS Pathog 2016; 12:e1005926. [PMID: 27711202 PMCID: PMC5053521 DOI: 10.1371/journal.ppat.1005926] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/11/2016] [Indexed: 12/24/2022] Open
Abstract
Central nervous system (CNS) infection continues to be an important cause of mortality and morbidity, necessitating new approaches for investigating its pathogenesis, prevention and therapy. Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, which develops following penetration of the blood-brain barrier (BBB). By chemical library screening, we identified epidermal growth factor receptor (EGFR) as a contributor to E. coli invasion of the BBB in vitro. Here, we obtained the direct evidence that CNS-infecting E. coli exploited sphingosine 1-phosphate (S1P) for EGFR activation in penetration of the BBB in vitro and in vivo. We found that S1P was upstream of EGFR and participated in EGFR activation through S1P receptor as well as through S1P-mediated up-regulation of EGFR-related ligand HB-EGF, and blockade of S1P function through targeting sphingosine kinase and S1P receptor inhibited EGFR activation, and also E. coli invasion of the BBB. We further found that both S1P and EGFR activations occurred in response to the same E. coli proteins (OmpA, FimH, NlpI), and that S1P and EGFR promoted E. coli invasion of the BBB by activating the downstream c-Src. These findings indicate that S1P and EGFR represent the novel host targets for meningitic E. coli penetration of the BBB, and counteracting such targets provide a novel approach for controlling E. coli meningitis in the era of increasing resistance to conventional antibiotics.
Collapse
|
24
|
Huang SH, Chi F, Peng L, Bo T, Zhang B, Liu LQ, Wu X, Mor-Vaknin N, Markovitz DM, Cao H, Zhou YH. Vimentin, a Novel NF-κB Regulator, Is Required for Meningitic Escherichia coli K1-Induced Pathogen Invasion and PMN Transmigration across the Blood-Brain Barrier. PLoS One 2016; 11:e0162641. [PMID: 27657497 PMCID: PMC5033352 DOI: 10.1371/journal.pone.0162641] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND NF-κB activation, pathogen invasion, polymorphonuclear leukocytes (PMN) transmigration (PMNT) across the blood-brain barrier (BBB) are the pathogenic triad hallmark features of bacterial meningitis, but the mechanisms underlying these events remain largely unknown. Vimentin, which is a novel NF-κB regulator, is the primary receptor for the major Escherichia coli K1 virulence factor IbeA that contributes to the pathogenesis of neonatal bacterial sepsis and meningitis (NSM). We have previously shown that IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PTB-associated splicing factor (PSF) is required for pathogen penetration and leukocyte transmigration across the BBB. This is the first in vivo study to demonstrate how vimentin and related factors contributed to the pathogenic triad of bacterial meningitis. METHODOLOGY/PRINCIPAL FINDINGS The role of vimentin in IbeA+ E. coli K1-induced NF-κB activation, pathogen invasion, leukocyte transmigration across the BBB has now been demonstrated by using vimentin knockout (KO) mice. In the in vivo studies presented here, IbeA-induced NF-κB activation, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the BBB were significantly reduced in Vim-/- mice. Decreased neuronal injury in the hippocampal dentate gyrus was observed in Vim-/- mice with meningitis. The major inflammatory regulator α7 nAChR and several signaling molecules contributing to NF-κB activation (p65 and p-CamKII) were significantly reduced in the brain tissues of the Vim-/- mice with E. coli meningitis. Furthermore, Vim KO resulted in significant reduction in neuronal injury and in α7 nAChR-mediated calcium signaling. CONCLUSION/SIGNIFICANCE Vimentin, a novel NF-κB regulator, plays a detrimental role in the host defense against meningitic infection by modulating the NF-κB signaling pathway to increase pathogen invasion, PMN recruitment, BBB permeability and neuronal inflammation. Our findings provide the first evidence for Vim-dependent mechanisms underlying the pathogenic triad of bacterial meningitis.
Collapse
Affiliation(s)
- Sheng-He Huang
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, California, United States of America
- Department of Microbiology, School of Public Health and Tropocal Medicine, Southern Medical University, Guangzhou 510515, China
- * E-mail: (YHZ); (SHH)
| | - Feng Chi
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, California, United States of America
- Department of Pathology, Southern California Research Center for ALPD and Cirrhosis, the Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Liang Peng
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, California, United States of America
- Department of Clinic Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Tao Bo
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, California, United States of America
- Department of Pediatrics, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Bao Zhang
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, California, United States of America
- Department of Microbiology, School of Public Health and Tropocal Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li-Qun Liu
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, California, United States of America
- Department of Pediatrics, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Nirit Mor-Vaknin
- Department of Internal Medicine, Division of Infectious Diseases, 5220 MSRB III, 1150 West Medical Center Drive, University of Michigan, Ann Arbor, MI, United States of America
| | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Diseases, 5220 MSRB III, 1150 West Medical Center Drive, University of Michigan, Ann Arbor, MI, United States of America
| | - Hong Cao
- Department of Microbiology, School of Public Health and Tropocal Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yan-Hong Zhou
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (YHZ); (SHH)
| |
Collapse
|
25
|
He X, Shi X, Puthiyakunnon S, Zhang L, Zeng Q, Li Y, Boddu S, Qiu J, Lai Z, Ma C, Xie Y, Long M, Du L, Huang SH, Cao H. CD44-mediated monocyte transmigration across Cryptococcus neoformans-infected brain microvascular endothelial cells is enhanced by HIV-1 gp41-I90 ectodomain. J Biomed Sci 2016; 23:28. [PMID: 26897523 PMCID: PMC4761181 DOI: 10.1186/s12929-016-0247-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
Background Cryptococcus neoformans (Cn) is an important opportunistic pathogen in the immunocompromised people, including AIDS patients, which leads to fatal cryptococcal meningitis with high mortality rate. Previous researches have shown that HIV-1 gp41-I90 ectodomain can enhance Cn adhesion to and invasion of brain microvascular endothelial cell (BMEC), which constitutes the blood brain barrier (BBB). However, little is known about the role of HIV-1 gp41-I90 in the monocyte transmigration across Cn-infected BBB. In the present study, we provide evidence that HIV-1 gp41-I90 and Cn synergistically enhance monocytes transmigration across the BBB in vitro and in vivo. The underlying mechanisms for this phenomenon require further study. Methods In this study, the enhancing role of HIV-1 gp41-I90 in monocyte transmigration across Cn-infected BBB was demonstrated by performed transmigration assays in vitro and in vivo. Results Our results showed that the transmigration rate of monocytes are positively associated with Cn and/or HIV-1 gp41-I90, the co-exposure (HIV-1 gp41-I90 + Cn) group showed a higher THP-1 transmigration rate (P < 0.01). Using CD44 knock-down HBMEC or CD44 inhibitor Bikunin in the assay, the facilitation of transmigration rates of monocyte enhanced by HIV-1 gp41-I90 was significantly suppressed. Western blotting analysis and biotin/avidin enzyme-linked immunosorbent assays (BA-ELISAs) showed that Cn and HIV-1 gp41-I90 could increase the expression of CD44 and ICAM-1 on the HBMEC. Moreover, Cn and/or HIV-1 gp41-I90 could also induce CD44 redistribution to the membrane lipid rafts. By establishing the mouse cryptococcal meningitis model, we found that HIV-1 gp41-I90 and Cn could synergistically enhance the monocytes transmigration, increase the BBB permeability and injury in vivo. Conclusions Collectively, our findings suggested that HIV-1 gp41-I90 ectodomain can enhance the transmigration of THP-1 through Cn-infected BBB, which may be mediated by CD44. This novel study enlightens the future prospects to elaborate the inflammatory responses induced by HIV-1 gp41-I90 ectodomain and to effectively eliminate the opportunistic infections in AIDS patients.
Collapse
Affiliation(s)
- Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaolu Shi
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Santhosh Puthiyakunnon
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Like Zhang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Qing Zeng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Yan Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Swapna Boddu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jiawen Qiu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Zhihao Lai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Chao Ma
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Yulong Xie
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Min Long
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Lei Du
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Sheng-He Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China. .,Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, 90027, USA.
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
26
|
Staehlin BM, Gibbons JG, Rokas A, O'Halloran TV, Slot JC. Evolution of a Heavy Metal Homeostasis/Resistance Island Reflects Increasing Copper Stress in Enterobacteria. Genome Biol Evol 2016; 8:811-26. [PMID: 26893455 PMCID: PMC4824010 DOI: 10.1093/gbe/evw031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2016] [Indexed: 12/24/2022] Open
Abstract
Copper homeostasis in bacteria is challenged by periodic elevation of copper levels in the environment, arising from both natural sources and human inputs. Several mechanisms have evolved to efflux copper from bacterial cells, including thecus(copper sensing copper efflux system), andpco(plasmid-borne copper resistance system) systems. The genes belonging to these two systems can be physically clustered in a Copper Homeostasis and Silver Resistance Island (CHASRI) on both plasmids and chromosomes in Enterobacteria. Increasing use of copper in agricultural and industrial applications raises questions about the role of human activity in the evolution of novel copper resistance mechanisms. Here we present evidence that CHASRI emerged and diversified in response to copper deposition across aerobic and anaerobic environments. An analysis of diversification rates and a molecular clock model suggest that CHASRI experienced repeated episodes of elevated diversification that could correspond to peaks in human copper production. Phylogenetic analyses suggest that CHASRI originated in a relative ofEnterobacter cloacaeas the ultimate product of sequential assembly of several pre-existing two-gene modules. Once assembled, CHASRI dispersed via horizontal gene transfer within Enterobacteriaceae and also to certain members of Shewanellaceae, where the originalpcomodule was replaced by a divergentpcohomolog. Analyses of copper stress mitigation suggest that CHASRI confers increased resistance aerobically, anaerobically, and during shifts between aerobic and anaerobic environments, which could explain its persistence in facultative anaerobes and emergent enteric pathogens.
Collapse
Affiliation(s)
- Benjamin M Staehlin
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University
| | - John G Gibbons
- Department of Biological Sciences, Vanderbilt University Present address: Biology Department, Clark University, Worcester, MA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University
| | - Thomas V O'Halloran
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus
| |
Collapse
|
27
|
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC), the specialized E. coli strains that possess the ability to overcome or subvert host defenses and cause extraintestinal disease, are important pathogens in humans and certain animals. Molecular epidemiological analysis has led to an appreciation of ExPEC as being distinct from other E. coli (including intestinal pathogenic and commensal variants) and has offered insights into the ecology, evolution, reservoirs, transmission pathways, host-pathogen interactions, and pathogenetic mechanisms of ExPEC. Molecular epidemiological analysis also provides an essential complement to experimental assessment of virulence mechanisms. This chapter first reviews the basic conceptual and methodological underpinnings of the molecular epidemiological approach and then summarizes the main aspects of ExPEC that have been investigated using this approach.
Collapse
|
28
|
German N, Doyscher D, Rensing C. Bacterial killing in macrophages and amoeba: do they all use a brass dagger? Future Microbiol 2014; 8:1257-64. [PMID: 24059917 DOI: 10.2217/fmb.13.100] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Macrophages are immune cells that are known to engulf pathogens and destroy them by employing several mechanisms, including oxidative burst, induction of Fe(II) and Mn(II) efflux, and through elevation of Cu(I) and Zn(II) concentrations in the phagosome ('brass dagger'). The importance of the latter mechanism is supported by the presence of multiple counteracting efflux systems in bacteria, responsible for the efflux of toxic metals. We hypothesize that similar bacteria-killing mechanisms are found in predatory protozoa/amoeba species. Here, we present a brief summary of soft metal-related mechanisms used by macrophages, and perhaps amoeba, to inactivate and destroy bacteria. Based on this, we think it is likely that copper resistance is also selected for by protozoan grazing in the environment.
Collapse
Affiliation(s)
- Nadezhda German
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
29
|
Microglial TNF-α-Dependent Elevation of MHC Class I Expression on Brain Endothelium Induced by Amyloid-Beta Promotes T Cell Transendothelial Migration. Neurochem Res 2013; 38:2295-304. [DOI: 10.1007/s11064-013-1138-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/17/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
30
|
Wang S, Shi Z, Xia Y, Li H, Kou Y, Bao Y, Dai J, Lu C. IbeB is involved in the invasion and pathogenicity of avian pathogenic Escherichia coli. Vet Microbiol 2012; 159:411-9. [DOI: 10.1016/j.vetmic.2012.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
|
31
|
Subtractive hybridization yields a silver resistance determinant unique to nosocomial pathogens in the Enterobacter cloacae complex. J Clin Microbiol 2012; 50:3249-57. [PMID: 22837330 DOI: 10.1128/jcm.00885-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heterogeneity and the increasing clinical importance of the Enterobacter cloacae complex have often been discussed. However, little is known about molecular factors causing pathogenicity within this nomenspecies. Here, we analyzed the genetic differences between an avirulent plant isolate and a pathogenic strain causing an outbreak with septicemia in three patients. We identified an IncHI-2 plasmid as a major difference between these two strains. Besides resistance to several antibiotics, this plasmid encoded a silver resistance determinant. We further showed that this sil determinant was present not only in the analyzed outbreak strain but also in the vast majority of clinical isolates of the E. cloacae complex, predominantly in (sub)species that frequently cause nosocomial infections. The identified sil determinant was highly conserved within the E. cloacae complex and mediated resistance to up to 600 μM silver nitrate. As silver is often used as a disinfectant and treatment for burn wounds, we present here an important fitness factor within the clinically most prevalent subspecies of the E. cloacae complex. This provides a possible explanation for their unequal involvement in nosocomial and especially burn wound infections.
Collapse
|
32
|
Khan NA, Iqbal J, Siddiqui R. Escherichia coli K1-induced cytopathogenicity of human brain microvascular endothelial cells. Microb Pathog 2012; 53:269-75. [PMID: 22819797 DOI: 10.1016/j.micpath.2012.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/16/2022]
Abstract
Pathophysiology of Escherichia coli sepsis is complex involving circulating bacterial products, cytokine release, and sustained bacteremia resulting in the damage of vascular endothelium. Here, it is shown that E. coli K1 produced cytopathogenicity of human brain microvascular endothelial cells (HBMEC), that constitute the blood-brain barrier. Whole bacteria or their conditioned medium produced severe HBMEC damage suggesting E. coli K1-cytopathogenicity is a contact-independent process. Using lipopolysaccharide (LPS) inhibitor, polymyxin B, purified LPS extracted from E. coli K1 as well as LPS mutant derived from E. coli K1, we showed that LPS is not the sole determinant of E. coli K1-mediated HBMEC death. Bacterial product(s) for HBMEC cytopathogenicity was heat-labile suggesting LPS-associated proteins. Several isogenic gene-deletion mutants (ΔompA, ΔibeA, ΔibeB, Δcnf1) exhibited HBMEC cytopathogenicity similar to that produced by wild type E. coli K1. E. coli K1-mediated HBMEC death was independent of phosphatidylinositol 3-kinase (PI3K) but dependent partially on focal adhesion kinase (FAK) using HBMEC expressing dominant negative FAK and PI3K.
Collapse
Affiliation(s)
- Naveed Ahmed Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, Karachi, Pakistan.
| | | | | |
Collapse
|
33
|
Yan QQ, Condell O, Power K, Butler F, Tall BD, Fanning S. Cronobacter species (formerly known as Enterobacter sakazakii) in powdered infant formula: a review of our current understanding of the biology of this bacterium. J Appl Microbiol 2012; 113:1-15. [PMID: 22420458 DOI: 10.1111/j.1365-2672.2012.05281.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cronobacter species (formerly known as Enterobacter sakazakii) are opportunistic pathogens that can cause necrotizing enterocolitis, bacteraemia and meningitis, predominantly in neonates. Infection in these vulnerable infants has been linked to the consumption of contaminated powdered infant formula (PIF). Considerable research has been undertaken on this organism in the past number of years which has enhanced our understanding of this neonatal pathogen leading to improvements in its control within the PIF production environment. The taxonomy of the organism resulted in the recognition of a new genus, Cronobacter, which consists of seven species. This paper presents an up-to-date review of our current knowledge of Cronobacter species. Taxonomy, genome sequencing, current detection protocols and epidemiology are all discussed. In addition, consideration is given to the control of this organism in the manufacturing environment, as a first step towards reducing the occurrence of this pathogen in PIF.
Collapse
Affiliation(s)
- Q Q Yan
- UCD Centre for Food Safety, WHO Collaborating Centre for Research, Reference & Training on Cronobacter, School of Public Health, Physiotherapy & Population Science, University College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
34
|
Chi F, Wang L, Zheng X, Wu CH, Jong A, Sheard MA, Shi W, Huang SH. Meningitic Escherichia coli K1 penetration and neutrophil transmigration across the blood-brain barrier are modulated by alpha7 nicotinic receptor. PLoS One 2011; 6:e25016. [PMID: 21966399 PMCID: PMC3178609 DOI: 10.1371/journal.pone.0025016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022] Open
Abstract
Alpha7 nicotinic acetylcholine receptor (nAChR), an essential regulator of inflammation, is abundantly expressed in hippocampal neurons, which are vulnerable to bacterial meningitis. However, it is unknown whether α7 nAChR contributes to the regulation of these events. In this report, an aggravating role of α7 nAChR in host defense against meningitic E. coli infection was demonstrated by using α7-deficient (α7(-/-)) mouse brain microvascular endothelial cells (BMEC) and animal model systems. As shown in our in vitro and in vivo studies, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the blood-brain barrier (BBB) were significantly reduced in α7(-/-) BMEC and α7(-/-) mice. Stimulation by nicotine was abolished in the α7(-/-) cells and animals. The same blocking effect was achieved by methyllycaconitine (α7 antagonist). The tight junction molecules occludin and ZO-1 were significantly reduced in the brain cortex of wildtype mice infected with E. coli and treated with nicotine, compared to α7(-/-) cells and animals. Decreased neuronal injury in the hippocampal dentate gyrus was observed in α7(-/-) mice with meningitis. Proinflammatory cytokines (IL-1β, IL-6, TNFα, MCP-1, MIP-1alpha, and RANTES) and adhesion molecules (CD44 and ICAM-1) were significantly reduced in the cerebrospinal fluids of the α7(-/-) mice with E. coli meningitis. Furthermore, α7 nAChR is the major calcium channel for nicotine- and E. coli K1-increased intracellular calcium concentrations of mouse BMEC. Taken together, our data suggest that α7 nAChR plays a detrimental role in the host defense against meningitic infection by modulation of pathogen invasion, PMN recruitment, calcium signaling and neuronal inflammation.
Collapse
Affiliation(s)
- Feng Chi
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Lin Wang
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
- Department of Histology and Embryology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xueye Zheng
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Chun-Hua Wu
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Ambrose Jong
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Michael A. Sheard
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Wei Shi
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Sheng-He Huang
- Department of Pediatrics, Saban Research Institute, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
35
|
Jakobsen L, Garneau P, Kurbasic A, Bruant G, Stegger M, Harel J, Jensen KS, Brousseau R, Hammerum AM, Frimodt-Møller N. Microarray-based detection of extended virulence and antimicrobial resistance gene profiles in phylogroup B2 Escherichia coli of human, meat and animal origin. J Med Microbiol 2011; 60:1502-1511. [PMID: 21617024 DOI: 10.1099/jmm.0.033993-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) causing urinary tract infections (UTIs) most often belong to phylogenetic group B2 and stem from the patient's own faecal flora. It has been hypothesized that the external reservoir for these uropathogenic E. coli in the human intestine may be meat and food-production animals. To investigate such a connection, this study analysed an E. coli phylogroup B2 strain collection (n = 161) of geographical and temporally matched isolates, published previously, from UTI patients (n = 52), community-dwelling humans (n = 36), imported (n = 5) and Danish (n = 13) broiler chicken meat, Danish broiler chickens (n = 17), imported (n = 3) and Danish (n = 27) pork, and healthy Danish pigs (n = 8). The isolates were subjected to microarray analysis for 315 virulence genes and variants and 82 antimicrobial resistance genes and variants. In total, 133 different virulence and antimicrobial resistance genes were detected in at least one UTI isolate. Between 66 and 87 of these genes were also detected in meat and animal isolates. Cluster analyses of virulence and resistance gene profiles, respectively, showed that UTI and community-dwelling human isolates most often grouped with meat and animal isolates, indicating genotypic similarity among such isolates. Furthermore, B2 isolates were detected from UTI patients and meat, with indistinguishable gene profiles. A considerable proportion of the animal and meat isolates belonged to the ExPEC pathotype. In conclusion, these findings suggest that B2 E. coli from meat and animal origin can be the source of most of the virulence and antimicrobial resistance genes detected in uropathogenic E. coli isolates and that there is a general resemblance of animal, meat and UTI E. coli based on extended gene profiling. These findings support the hypothesis of a zoonotic link between E. coli causing UTIs and E. coli from meat and animals.
Collapse
Affiliation(s)
- Lotte Jakobsen
- Department for Microbiological Surveillance and Research, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Philippe Garneau
- Groupe de Recherche sur les Maladies Infectieuses du Porcine, Faculté de Médecine Vétérinaire and Centre de Recherche en Infectiologie Porcine, Université du Montreal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 7C6, Canada
| | - Azra Kurbasic
- Biostatistical Department, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Guillaume Bruant
- Groupe de Recherche sur les Maladies Infectieuses du Porcine, Faculté de Médecine Vétérinaire and Centre de Recherche en Infectiologie Porcine, Université du Montreal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 7C6, Canada
| | - Marc Stegger
- Department for Microbiological Surveillance and Research, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Josée Harel
- Groupe de Recherche sur les Maladies Infectieuses du Porcine, Faculté de Médecine Vétérinaire and Centre de Recherche en Infectiologie Porcine, Université du Montreal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 7C6, Canada
| | - Klaus S Jensen
- Department for Microbiological Surveillance and Research, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Roland Brousseau
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Anette M Hammerum
- Department for Microbiological Surveillance and Research, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Niels Frimodt-Møller
- Department for Microbiological Surveillance and Research, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| |
Collapse
|
36
|
Maruvada R, Kim KS. Extracellular loops of the Eschericia coli outer membrane protein A contribute to the pathogenesis of meningitis. J Infect Dis 2011; 203:131-40. [PMID: 21148506 DOI: 10.1093/infdis/jiq009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neonatal meningitis by Eschericia coli RS218 occurs due to bacteremia and its transmigration across the blood-brain barrier. Although the outer membrane protein A (OmpA), a molecule with extracellular loops has been shown to contribute to the above phenomenon, we do not know the exact the role of these individual loops. Using bacterial strains whose individual loops have been removed, we demonstrated that whereas Loops1 and 2 contribute to 70%-80% bacterial survival in serum, bacterial entry into human brain microvascular endothelial cells (HBMEC) is governed by Loops1, 2, and 3. Cellular invasion was shown to require activation of host cytosolic phospholipase A2 (cPLA2α) by Loops1 and 2 but not 3. This suggests 2 distinct pathways for bacterial entry into host cells. Loop 4 played no role in either serum survival, cellular entry, or cPLA2α signaling. These findings demonstrate for the first time the different contributions of extracellular loops of OmpA to the pathogenesis of E. coli meningitis.
Collapse
Affiliation(s)
- Ravi Maruvada
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|
37
|
Che X, Chi F, Wang L, Jong TD, Wu CH, Wang X, Huang SH. Involvement of IbeA in meningitic Escherichia coli K1-induced polymorphonuclear leukocyte transmigration across brain endothelial cells. Brain Pathol 2010; 21:389-404. [PMID: 21083634 DOI: 10.1111/j.1750-3639.2010.00463.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Transmigration of neutrophil [polymorphonuclear neutrophil (PMN)] across the blood-brain barrier (BBB) is a critical event in the pathogenesis of bacterial meningitis. We have shown that IbeA is able to induce meningitic Escherichia coli invasion of brain microvascular endothelial cells (BMECs), which constitutes the BBB. In this report, we provide evidence that IbeA and its receptor, vimentin, play a key role in E. coli-induced PMN transmigration across BMEC. In vitro and in vivo studies indicated that the ibeA-deletion mutant ZD1 was significantly less active in stimulating PMN transmigration than the parent strain E44. ZD1 was fully complemented by the ibeA gene and its product. E. coli-induced PMN transmigration was markedly inhibited by withaferin A, a dual inhibitor of vimentin and proteasome. These cellular effects were significantly stimulated and blocked by overexpression of vimentin and its head domain deletion mutant in human BMEC, respectively. Our studies further demonstrated that IbeA-induced PMN migration was blocked by bortezomib, a proteasomal inhibitor and correlated with upregulation of endothelial ICAM-1 and CD44 expression through proteasomal regulation of NFκB activity. Taken together, our data suggested that IbeA and vimentin contribute to E. coli K1-stimulated PMN transendothelial migration that is correlated with upregulation of adhesion molecule expression at the BBB.
Collapse
Affiliation(s)
- Xiaojuan Che
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Effects of ibeA deletion on virulence and biofilm formation of avian pathogenic Escherichia coli. Infect Immun 2010; 79:279-87. [PMID: 20974831 DOI: 10.1128/iai.00821-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ibeA gene is located on a genomic island, GimA, which is involved in the pathogenesis of neonatal meningitis Escherichia coli (NMEC) and avian pathogenic E. coli (APEC). The prevalence of ibeA in the APEC collection in China was investigated, and 20 of 467 strains (4.3%) were positive. In addition, analysis of the association of the E. coli reference (ECOR) groups with positive strains revealed that ibeA was linked to group B2. The ibeA gene in DE205B was analyzed and compared to those of APEC and NMEC, which indicated that the specificity of ibeA was not consistent along pathotypes. The invasion of chicken embryo fibroblast DF-1 cells by APEC DE205B and RS218 was observed, which suggested that DF-1 cells could be a model to study the mechanism of APEC invasion. The inactivation of ibeA in APEC DE205B led to the reduced capacity to invade DF-1 cells, defective virulence in vivo, and decreased biofilm formation compared to the wild-type strain. In addition, strain AAEC189 expressing ibeA exhibited enhanced invasion capacity and biofilm formation. The results of the quantitative real-time reverse transcription-PCR (qRT-PCR) analysis and animal system infection experiments indicated that the loss of ibeA decreased the colonization and proliferation capacities of APEC in the brain during system infection.
Collapse
|
39
|
Zhu L, Maruvada R, Sapirstein A, Malik KU, Peters-Golden M, Kim KS. Arachidonic acid metabolism regulates Escherichia coli penetration of the blood-brain barrier. Infect Immun 2010; 78:4302-10. [PMID: 20696828 PMCID: PMC2950368 DOI: 10.1128/iai.00624-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/09/2010] [Accepted: 07/30/2010] [Indexed: 01/29/2023] Open
Abstract
Escherichia coli K1 meningitis occurs following penetration of the blood-brain barrier, but the underlying mechanisms involved in E. coli penetration of the blood-brain barrier remain incompletely understood. We have previously shown that host cytosolic phospholipase A(2)α (cPLA(2)α) contributes to E. coli invasion of human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier, but the underlying mechanisms remain unclear. cPLA(2)α selectively liberates arachidonic acid from membrane phospholipids. Here, we provide the first direct evidence that host 5-lipoxygenase and lipoxygenase products of arachidonic acid, cysteinyl leukotrienes (LTs), contribute to E. coli K1 invasion of HBMEC and penetration into the brain, and their contributions involve protein kinase C alpha (PKCα). These findings demonstrate that arachidonic acid metabolism regulates E. coli penetration of the blood-brain barrier, and studies are needed to further elucidate the mechanisms involved with metabolic products of arachidonic acid for their contribution to E. coli invasion of the blood-brain barrier.
Collapse
Affiliation(s)
- Longkun Zhu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, 200 North Wolfe St., Room 3157, Baltimore, Maryland 21287, Department of Anesthesiology and Critical Care Medicine, 600 North Wolfe Street, Meyer 297-A, Baltimore, Maryland 21287, Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109
| | - Ravi Maruvada
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, 200 North Wolfe St., Room 3157, Baltimore, Maryland 21287, Department of Anesthesiology and Critical Care Medicine, 600 North Wolfe Street, Meyer 297-A, Baltimore, Maryland 21287, Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109
| | - Adam Sapirstein
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, 200 North Wolfe St., Room 3157, Baltimore, Maryland 21287, Department of Anesthesiology and Critical Care Medicine, 600 North Wolfe Street, Meyer 297-A, Baltimore, Maryland 21287, Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109
| | - Kafait U. Malik
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, 200 North Wolfe St., Room 3157, Baltimore, Maryland 21287, Department of Anesthesiology and Critical Care Medicine, 600 North Wolfe Street, Meyer 297-A, Baltimore, Maryland 21287, Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109
| | - Marc Peters-Golden
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, 200 North Wolfe St., Room 3157, Baltimore, Maryland 21287, Department of Anesthesiology and Critical Care Medicine, 600 North Wolfe Street, Meyer 297-A, Baltimore, Maryland 21287, Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, 200 North Wolfe St., Room 3157, Baltimore, Maryland 21287, Department of Anesthesiology and Critical Care Medicine, 600 North Wolfe Street, Meyer 297-A, Baltimore, Maryland 21287, Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109
| |
Collapse
|
40
|
Miquel S, Peyretaillade E, Claret L, de Vallée A, Dossat C, Vacherie B, Zineb EH, Segurens B, Barbe V, Sauvanet P, Neut C, Colombel JF, Medigue C, Mojica FJM, Peyret P, Bonnet R, Darfeuille-Michaud A. Complete genome sequence of Crohn's disease-associated adherent-invasive E. coli strain LF82. PLoS One 2010; 5:e12714. [PMID: 20862302 PMCID: PMC2941450 DOI: 10.1371/journal.pone.0012714] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 08/20/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ileal lesions of Crohn's disease (CD) patients are abnormally colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to invade and to replicate within intestinal epithelial cells and macrophages. PRINCIPAL FINDINGS We report here the complete genome sequence of E. coli LF82, the reference strain of adherent-invasive E. coli associated with ileal Crohn's disease. The LF82 genome of 4,881,487 bp total size contains a circular chromosome with a size of 4,773,108 bp and a plasmid of 108,379 bp. The analysis of predicted coding sequences (CDSs) within the LF82 flexible genome indicated that this genome is close to the avian pathogenic strain APEC_01, meningitis-associated strain S88 and urinary-isolated strain UTI89 with regards to flexible genome and single nucleotide polymorphisms in various virulence factors. Interestingly, we observed that strains LF82 and UTI89 adhered at a similar level to Intestine-407 cells and that like LF82, APEC_01 and UTI89 were highly invasive. However, A1EC strain LF82 had an intermediate killer phenotype compared to APEC-01 and UTI89 and the LF82 genome does not harbour most of specific virulence genes from ExPEC. LF82 genome has evolved from those of ExPEC B2 strains by the acquisition of Salmonella and Yersinia isolated or clustered genes or CDSs located on pLF82 plasmid and at various loci on the chromosome. CONCLUSION LF82 genome analysis indicated that a number of genes, gene clusters and pathoadaptative mutations which have been acquired may play a role in virulence of AIEC strain LF82.
Collapse
Affiliation(s)
- Sylvie Miquel
- Clermont Université, Université d'Auvergne, JE2526, INRA, USC-2018, Clermont-Ferrand, France
- Institut Universitaire de Technologie, Université d'Auvergne, Aubière, France
| | - Eric Peyretaillade
- Institut Universitaire de Technologie, Université d'Auvergne, Aubière, France
- Laboratoire: Microorganismes Génome et Environnement, Université Clermont 2, CNRS, UMR 6023, Aubière, France
| | - Laurent Claret
- Clermont Université, Université d'Auvergne, JE2526, INRA, USC-2018, Clermont-Ferrand, France
- Institut Universitaire de Technologie, Université d'Auvergne, Aubière, France
| | - Amélie de Vallée
- Clermont Université, Université d'Auvergne, JE2526, INRA, USC-2018, Clermont-Ferrand, France
- Institut Universitaire de Technologie, Université d'Auvergne, Aubière, France
| | - Carole Dossat
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, Evry, France
| | - Benoit Vacherie
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, Evry, France
| | - El Hajji Zineb
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, Evry, France
| | - Beatrice Segurens
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, Evry, France
| | - Valerie Barbe
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, Evry, France
| | - Pierre Sauvanet
- Clermont Université, Université d'Auvergne, JE2526, INRA, USC-2018, Clermont-Ferrand, France
- Centre Hospitalier Universitaire, Pôle digestif, Clermont-Ferrand, France
| | | | | | - Claudine Medigue
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, Evry, France
- CNRS-UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Evry, France
| | - Francisco J. M. Mojica
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Pierre Peyret
- Institut Universitaire de Technologie, Université d'Auvergne, Aubière, France
- Laboratoire: Microorganismes Génome et Environnement, Université Clermont 2, CNRS, UMR 6023, Aubière, France
| | - Richard Bonnet
- Clermont Université, Université d'Auvergne, JE2526, INRA, USC-2018, Clermont-Ferrand, France
- Centre Hospitalier Universitaire, Bactériologie, Clermont-Ferrand, France
| | - Arlette Darfeuille-Michaud
- Clermont Université, Université d'Auvergne, JE2526, INRA, USC-2018, Clermont-Ferrand, France
- Institut Universitaire de Technologie, Université d'Auvergne, Aubière, France
| |
Collapse
|
41
|
Vascular endothelial growth factor receptor 1 contributes to Escherichia coli K1 invasion of human brain microvascular endothelial cells through the phosphatidylinositol 3-kinase/Akt signaling pathway. Infect Immun 2010; 78:4809-16. [PMID: 20805333 DOI: 10.1128/iai.00377-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Escherichia coli is the most common Gram-negative organism causing neonatal meningitis. Previous studies demonstrated that E. coli K1 invasion of brain microvascular endothelial cells (BMEC) is required for penetration into the central nervous system, but the microbe-host interactions that are involved in this process remain incompletely understood. Here we report the involvement of vascular endothelial growth factor receptor 1 (VEGFR1) expressed on human brain microvascular endothelial cells (HBMEC) in E. coli K1 invasion of HBMEC. Our results showed that treatment of confluent HBMEC with pan-VEGFR inhibitors significantly inhibited E. coli K1 invasion of HBMEC. Immunofluorescence results indicated the colocalization of VEGFR1 with E. coli K1 during bacterial invasion of HBMEC. The E. coli-induced actin cytoskeleton rearrangements in HBMEC were blocked by VEGFR inhibitors but not by VEGFR2-specific inhibitors. The small interfering RNA (siRNA) knockdown of VEGFR1 in HBMEC significantly attenuated E. coli invasion and the concomitant actin filament rearrangement. Furthermore, we found an increased association of VEGFR1 with the p85 subunit of phosphatidylinositol 3-kinase (PI3K) in HBMEC infected with E. coli K1 and that E. coli K1-triggered Akt activation in HBMEC was blocked by VEGFR1 siRNA and VEGFR inhibitors. Taken together, our results demonstrate that VEGFR1 contributes to E. coli K1 invasion of HBMEC via recruitment of the PI3K/Akt signaling pathway.
Collapse
|
42
|
The GimA locus of extraintestinal pathogenic E. coli: does reductive evolution correlate with habitat and pathotype? PLoS One 2010; 5:e10877. [PMID: 20526361 PMCID: PMC2878320 DOI: 10.1371/journal.pone.0010877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 05/06/2010] [Indexed: 11/19/2022] Open
Abstract
IbeA (invasion of brain endothelium), which is located on a genomic island termed GimA, is involved in the pathogenesis of several extraintestinal pathogenic E. coli (ExPEC) pathotypes, including newborn meningitic E. coli (NMEC) and avian pathogenic E. coli (APEC). To unravel the phylogeny of GimA and to investigate its island character, the putative insertion locus of GimA was determined via Long Range PCR and DNA-DNA hybridization in 410 E. coli isolates, including APEC, NMEC, uropathogenic (UPEC), septicemia-associated E. coli (SEPEC), and human and animal fecal isolates as well as in 72 strains of the E. coli reference (ECOR) collection. In addition to a complete GimA (∼20.3 kb) and a locus lacking GimA we found a third pattern containing a 342 bp remnant of GimA in this strain collection. The presence of GimA was almost exclusively detected in strains belonging to phylogenetic group B2. In addition, the complete GimA was significantly more frequent in APEC and NMEC strains while the GimA remnant showed a higher association with UPEC strains. A detailed analysis of the ibeA sequences revealed the phylogeny of this gene to be consistent with that obtained by Multi Locus Sequence Typing of the strains. Although common criteria for genomic islands are partially fulfilled, GimA rather seems to be an ancestral part of phylogenetic group B2, and it would therefore be more appropriate to term this genomic region GimA locus instead of genomic island. The existence of two other patterns reflects a genomic rearrangement in a reductive evolution-like manner.
Collapse
|
43
|
NlpI contributes to Escherichia coli K1 strain RS218 interaction with human brain microvascular endothelial cells. Infect Immun 2010; 78:3090-6. [PMID: 20421385 DOI: 10.1128/iai.00034-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli K1 is the most common Gram-negative bacillary organism causing neonatal meningitis. E. coli K1 binding to and invasion of human brain microvascular endothelial cells (HBMECs) is a prerequisite for its traversal of the blood-brain barrier (BBB) and penetration into the brain. In the present study, we identified NlpI as a novel bacterial determinant contributing to E. coli K1 interaction with HBMECs. The deletion of nlpI did not affect the expression of the known bacterial determinants involved in E. coli K1-HBMEC interaction, such as type 1 fimbriae, flagella, and OmpA, and the contribution of NlpI to HBMECs binding and invasion was independent of those bacterial determinants. Previous reports have shown that the nlpI mutant of E. coli K-12 exhibits growth defect at 42 degrees C at low osmolarity, and its thermosensitive phenotype can be suppressed by a mutation on the spr gene. The nlpI mutant of strain RS218 exhibited similar thermosensitive phenotype, but additional spr mutation did not restore the ability of the nlpI mutant to interact with HBMECs. These findings suggest the decreased ability of the nlpI mutant to interact with HBMECs is not associated with the thermosensitive phenotype. NlpI was determined as an outer membrane-anchored protein in E. coli, and the nlpI mutant was defective in cytosolic phospholipase A(2)alpha (cPLA(2)alpha) phosphorylation compared to the parent strain. These findings illustrate the first demonstration of NlpI's contribution to E. coli K1 binding to and invasion of HBMECs, and its contribution is likely to involve cPLA(2)alpha.
Collapse
|
44
|
Peripheral T cells derived from Alzheimer's disease patients overexpress CXCR2 contributing to its transendothelial migration, which is microglial TNF-alpha-dependent. Neurobiol Aging 2010; 31:175-88. [PMID: 18462836 DOI: 10.1016/j.neurobiolaging.2008.03.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/10/2008] [Accepted: 03/26/2008] [Indexed: 11/24/2022]
Abstract
The mechanism of circulating T cells entry into the brain in Alzheimer's diseases (AD) remains unclear. Here, we showed that peripheral T cells derived from AD patients overexpress CXCR2 to enhance its transendothelial migration. T cells migration through in vitro blood-brain barrier model was effectively blocked by anti-CXCR2 antibody or IL-8 (a CXCR2 ligand) RNAi in human brain microvascular endothelial cells (HBMECs). Amyloid beta (Abeta) injection in rat hippocampus upregulated CXCR2 expression accompanied with increased T cells occurrence in the brain, and this enhanced T cells entry was effectively blocked by CXCR2 antagonist. Furthermore, anti-TNF-alpha antibody blocked IL-8 production in HBMECs and T cells transendothelial migration caused by the culture supernatant of microglia treated with Abeta. Blockage of intracerebral TNF-alpha abolished the upregulation of CXCR2 in peripheral T cells and the increased T cells occurrence in the brain induced by Abeta injection in rat hippocampus. These data suggest that CXCR2 overexpression in peripheral T cells is intracerebral microglial TNF-alpha-dependent and TNF-alpha primes T cells transendothelial migration in Alzheimer's diseases.
Collapse
|
45
|
Kucerova E, Clifton SW, Xia XQ, Long F, Porwollik S, Fulton L, Fronick C, Minx P, Kyung K, Warren W, Fulton R, Feng D, Wollam A, Shah N, Bhonagiri V, Nash WE, Hallsworth-Pepin K, Wilson RK, McClelland M, Forsythe SJ. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One 2010; 5:e9556. [PMID: 20221447 PMCID: PMC2833190 DOI: 10.1371/journal.pone.0009556] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 02/14/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The genus Cronobacter (formerly called Enterobacter sakazakii) is composed of five species; C. sakazakii, C. malonaticus, C. turicensis, C. muytjensii, and C. dublinensis. The genus includes opportunistic human pathogens, and the first three species have been associated with neonatal infections. The most severe diseases are caused in neonates and include fatal necrotizing enterocolitis and meningitis. The genetic basis of the diversity within the genus is unknown, and few virulence traits have been identified. METHODOLOGY/PRINCIPAL FINDINGS We report here the first sequence of a member of this genus, C. sakazakii strain BAA-894. The genome of Cronobacter sakazakii strain BAA-894 comprises a 4.4 Mb chromosome (57% GC content) and two plasmids; 31 kb (51% GC) and 131 kb (56% GC). The genome was used to construct a 387,000 probe oligonucleotide tiling DNA microarray covering the whole genome. Comparative genomic hybridization (CGH) was undertaken on five other C. sakazakii strains, and representatives of the four other Cronobacter species. Among 4,382 annotated genes inspected in this study, about 55% of genes were common to all C. sakazakii strains and 43% were common to all Cronobacter strains, with 10-17% absence of genes. CONCLUSIONS/SIGNIFICANCE CGH highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis) were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii strains from outbreaks in neonatal intensive care units.
Collapse
Affiliation(s)
- Eva Kucerova
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Bacterial meningitis continues to be an important cause of mortality and morbidity in neonates and children throughout the world. The introduction of the protein conjugate vaccines against Haemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis has changed the epidemiology of bacterial meningitis. Suspected bacterial meningitis is a medical emergency and needs empirical antimicrobial treatment without delay, but recognition of pathogens with increasing resistance to antimicrobial drugs is an important factor in the selection of empirical antimicrobial regimens. At present, strategies to prevent and treat bacterial meningitis are compromised by incomplete understanding of the pathogenesis. Further research on meningitis pathogenesis is thus needed. This Review summarises information on the epidemiology, pathogenesis, new diagnostic methods, empirical antimicrobial regimens, and adjunctive treatment of acute bacterial meningitis in infants and children.
Collapse
Affiliation(s)
- Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
47
|
Liu W, Zhao WD, Yan JC, Ren ZY, Fang WG, Zhu L, Shang DS, Chen YH. Involvement of Src tyrosine kinase in Escherichia coli invasion of human brain microvascular endothelial cells. FEBS Lett 2010; 584:27-32. [PMID: 19903481 DOI: 10.1016/j.febslet.2009.10.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 10/24/2009] [Accepted: 10/30/2009] [Indexed: 12/31/2022]
Abstract
Invasion of brain microvascular endothelial cells is a prerequisite for successful crossing of the blood-brain barrier by Escherichia coli (E. coli), but the underlying mechanism remains unclear. Here we showed activation of Src tyrosine kinase in E. coli K1 invasion of human brain microvascular endothelial cells (HBMEC). E. coli invasion of HBMEC and the E. coli-induced rearrangement of actin filaments were blocked by Src inhibitors. Overexpression of dominant-negative Src in HBMEC significantly attenuated E. coli invasion and the concomitant actin filaments rearrangement. Furthermore, E. coli K1-triggered phosphatidylinositol 3-kinase (PI3K) activation in HBMEC was effectively blocked by Src inhibitors and dominant-negative Src. These results demonstrated the involvement of Src and its interaction with PI3K in E. coli K1 invasion of HBMEC.
Collapse
Affiliation(s)
- Wei Liu
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Heping Distric, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Daneman R, Rescigno M. The gut immune barrier and the blood-brain barrier: are they so different? Immunity 2009; 31:722-35. [PMID: 19836264 DOI: 10.1016/j.immuni.2009.09.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 09/29/2009] [Indexed: 12/18/2022]
Abstract
In order to protect itself from a diverse set of environmental pathogens and toxins, the body has developed a number of barrier mechanisms to limit the entry of potential hazards. Here, we compare two such barriers: the gut immune barrier, which is the primary barrier against pathogens and toxins ingested in food, and the blood-brain barrier, which protects the central nervous system from pathogens and toxins in the blood. Although each barrier provides defense in very different environments, there are many similarities in their mechanisms of action. In both cases, there is a physical barrier formed by a cellular layer that tightly regulates the movement of ions, molecules, and cells between two tissue spaces. These barrier cells interact with different cell types, which dynamically regulate their function, and with a different array of immune cells that survey the physical barrier and provide innate and adaptive immunity.
Collapse
Affiliation(s)
- Richard Daneman
- University of California, San Francisco, Department of Anatomy, San Francisco, CA 94143-0452, USA.
| | | |
Collapse
|
49
|
Zhang K, Zhao WD, Li Q, Fang WG, Zhu L, Shang DS, Chen YH. Tentative identification of glycerol dehydrogenase as Escherichia coli K1 virulence factor cglD and its involvement in the pathogenesis of experimental neonatal meningitis. Med Microbiol Immunol 2009; 198:195-204. [PMID: 19597841 DOI: 10.1007/s00430-009-0119-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Indexed: 12/17/2022]
Abstract
Escherichia coli (E. coli) is the most common gram-negative organism causing meningitis during the neonatal period. The mechanism involved in the pathogenesis of E. coli meningitis remains unclear. We previously identified a pathogenicity island GimA (genetic island of meningitic E. coli containing ibeA) from the genomic DNA library of E. coli K1, which may contribute to the E. coli invasion of the blood-brain barrier (BBB). CglD is one of the genes in GimA, and its function remains unknown. In order to characterize the role of cglD in the E. coli meningitis, an isogenic in-frame cglD deletion mutant of E. coli K1 was generated. The results showed that the median lethal dose of the cglD deletion mutant strain was significant higher than that of parent E. coli K1 strain, and the cglD deletion in E. coli K1 prolonged survival of the neonatal rats in experimental meningitis. However, deletion of cglD has no effect on the penetration of E. coli K1 through BBB in vitro and in vivo. Furthermore, our results showed that deletion of cglD in E. coli K1 attenuated cerebrospinal fluid changes, meningeal thickening, and neutrophil infiltration in the cerebral cortex in the neonatal rats with experimental meningitis. Additional results showed that the role of CglD in neonatal meningitis may be associated with its activity of glycerol dehydrogenase. Taken together, our study suggested that CglD is a virulence factor of E. coli K1 contributed to the development of neonatal meningitis.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Li M, Shang DS, Zhao WD, Tian L, Li B, Fang WG, Zhu L, Man SM, Chen YH. Amyloid β Interaction with Receptor for Advanced Glycation End Products Up-Regulates Brain Endothelial CCR5 Expression and Promotes T Cells Crossing the Blood-Brain Barrier. THE JOURNAL OF IMMUNOLOGY 2009; 182:5778-88. [DOI: 10.4049/jimmunol.0803013] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|