1
|
Prysliak T, Menghwar H, Perez-Casal J. Complement-mediated killing of Mycoplasma bovis does not play a role in the protection of animals against an experimental challenge. Vaccine 2023; 41:1743-1752. [PMID: 36774333 DOI: 10.1016/j.vaccine.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Despite numerous efforts, developing recombinant vaccines for the control of M. bovis infections has not been successful. Many factors are contributing to the lack of success including the identification of protective antigens, use of effective adjuvants, and relatively limited information on the quality of immune responses needed for protection. Experimental trials using vaccination with many M. bovis proteins resulted in significant humoral immune responses before and after the challenges, however these responses were not enough to confer protection. We explored the role of complement-fixing antibodies in the killing of M. bovis in-vitro and whether animals vaccinated with proteins that elicit antibodies capable of complement-fixing would be protected against an experimental challenge. We found that antibodies against some of these proteins fixed complement and killed M. bovis in-vitro. Vaccination and challenge experiments with proteins whose cognate antibodies either fixed complement or not resulted in lack of protection against a M. bovis experimental challenge suggesting that complement fixation does not play a role in protection.
Collapse
Affiliation(s)
- Tracy Prysliak
- Vaccine and Infectious Disease Organization (VIDO), 120 Veterinary Rd, Saskatoon S7N 5E3, Canada
| | - Harish Menghwar
- Vaccine and Infectious Disease Organization (VIDO), 120 Veterinary Rd, Saskatoon S7N 5E3, Canada
| | - Jose Perez-Casal
- Vaccine and Infectious Disease Organization (VIDO), 120 Veterinary Rd, Saskatoon S7N 5E3, Canada.
| |
Collapse
|
2
|
Sesso A, Yamashiro-Kanashiro EH, Arruda LB, Kawakami J, Higuchi MDL, Orii NM, Taniwaki NN, Carvalho FMDC, Brito MP, Gottardi M, Carneiro SM, Taga R. Bacteria arise at the border of mycoplasma-infected HeLa cells, containing cytoplasm with either malformed cytosol, mitochondria and endoplasmic reticulum or tightly adjoined smooth vacuoles. Rev Inst Med Trop Sao Paulo 2017; 59:e84. [PMID: 29267592 PMCID: PMC5738769 DOI: 10.1590/s1678-9946201759084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/12/2017] [Indexed: 11/23/2022] Open
Abstract
A study with transmission electron microscopy of mycoplasma-contaminated HeLa cells using five cell donors referred to as donors A, B, C, D and E, observations are herein presented. Experiments performed with cells from donors B, C and D, revealed the presence of Mycoplasma hyorhinis after PCR and sequencing experiments. Bacteria probably originated from a cytoplasm with compacted tiny granular particles replacing the normal cytosol territories, or from the contact with the cytoplasm through a clear semi-solid material. The compact granularity (CG) of the cytoplasm was crossed by stripes of smooth and rough endoplasmic reticulum cisternae. Among apparently normal mitochondria, it was noted, in variable proportions, mitochondria with crista-delimited lucent central regions that expand to and occupied the interior of a crista-less organelle, which can undergo fission. Other components of the scenarios of mycoplasma-induced cell demolition are villus-like structures with associated 80-200 nm vesicles and a clear, flexible semi-solid, process-sensitive substance that we named jam-like material. This material coated the cytoplasmic surface, its recesses, irregular protrusions and detached cytoplasmic fragments. It also cushioned forming bacteria. Cyst-like structures were often present in the cytoplasm. Cells, mainly apoptotic, exhibiting ample cytoplasmic sectors with characteristic net-like profile due to adjoined vacuoles, as well as ovoid or elongated profiles, consistently appeared in all cells from the last four cell donors. These cells were named “modified host cells” because bacteria arose in the vacuoles. The possibility that, in some samples, there was infection and/or coinfection of the host cell by another organism(s) cannot be ruled out.
Collapse
Affiliation(s)
- Antonio Sesso
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Laboratório de Imunopatologia - LIM-06, Setor de Biologia Estrutural, São Paulo, São Paulo, Brazil
| | - Edite Hatsumi Yamashiro-Kanashiro
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Laboratório de Imunologia, LIM-48, São Paulo, São Paulo, Brazil
| | - Liã Bárbara Arruda
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Dermatologia, Laboratório de Investigação Médica em Dermatologia e Imunodeficiências - LIM- 56, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Joyce Kawakami
- Universidade de São Paulo, Instituto do Coração, Setor de Estudo da Inflamação, São Paulo, São Paulo, Brazil
| | - Maria de Lourdes Higuchi
- Universidade de São Paulo, Instituto do Coração, Setor de Estudo da Inflamação, São Paulo, São Paulo, Brazil
| | - Noemia Mie Orii
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Dermatologia, Laboratório de Investigação Médica em Dermatologia e Imunodeficiências - LIM- 56, São Paulo, São Paulo, Brazil
| | - Noemi Nosomi Taniwaki
- Instituto Adolfo Lutz, Laboratório de Microscopia Eletrônica, São Paulo, São Paulo, Brazil
| | - Flávia Mendes da Cunha Carvalho
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Laboratório de Imunopatologia - LIM-06, Setor de Biologia Estrutural, São Paulo, São Paulo, Brazil
| | - Mariane Pereira Brito
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Laboratório de Imunopatologia - LIM-06, Setor de Biologia Estrutural, São Paulo, São Paulo, Brazil
| | - Maiara Gottardi
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Laboratório de Imunopatologia - LIM-06, Setor de Biologia Estrutural, São Paulo, São Paulo, Brazil
| | | | - Rumio Taga
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Disciplinas de Histologia e Embriologia, Bauru, São Paulo, Brazil
| |
Collapse
|
4
|
Vancini RG, Benchimol M. Entry and intracellular location of Mycoplasma hominis in Trichomonas vaginalis. Arch Microbiol 2007; 189:7-18. [PMID: 17710384 DOI: 10.1007/s00203-007-0288-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 06/20/2007] [Accepted: 07/04/2007] [Indexed: 10/22/2022]
Abstract
The parasite Trichomonas vaginalis causes one of the most common non-viral sexually transmitted infections in humans. The coexistence of different sexually transmitted diseases in the same individual is very common, such as vaginal infections by T. vaginalis in association with Mycoplasma fermentans or Mycoplasma hominis. However, the consequences and behavior of mycoplasma during trichomonad infections are virtually unknown. This study was undertaken to elucidate whether mycoplasmas enter and leave trichomonad cells and if so how. M. hominis was analyzed in different trichomonad isolates and the process of internalization and the pathway within the parasite was studied. Parasites naturally and experimentally infected with mycoplasmas were used and transmission electron microscopy, cytochemistry and PCR analyses were performed. The results show that: (1) M. hominis enters T. vaginalis cells by endocytosis; (2) some mycoplasmas use a terminal polar tip as anchor to the trichomonad plasma membrane; (3) some trichomonad isolates are able to digest mycoplasmas, mainly when the trichomonads are experimentally infected; (4) some fresh virulent isolates are able to maintain mycoplasmas as cohabitants in the cell's interior; (5) some mycoplasmas are able to escape from the vacuole to the trichomonad cytosol, and trichomonad plasma membrane budding suggested that mycoplasmas could leave the parasite cell.
Collapse
|
5
|
Nijs J, De Meirleir K, Meeus M, McGregor NR, Englebienne P. Chronic fatigue syndrome: intracellular immune deregulations as a possible etiology for abnormal exercise response. Med Hypotheses 2004; 62:759-65. [PMID: 15082102 DOI: 10.1016/j.mehy.2003.11.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 11/09/2003] [Indexed: 02/06/2023]
Abstract
The exacerbation of symptoms after exercise differentiates Chronic fatigue syndrome (CFS) from several other fatigue-associated disorders. Research data point to an abnormal response to exercise in patients with CFS compared to healthy sedentary controls, and to an increasing amount of evidence pointing to severe intracellular immune deregulations in CFS patients. This manuscript explores the hypothetical interactions between these two separately reported observations. First, it is explained that the deregulation of the 2-5A synthetase/RNase L pathway may be related to a channelopathy, capable of initiating both intracellular hypomagnesaemia in skeletal muscles and transient hypoglycemia. This might explain muscle weakness and the reduction of maximal oxygen uptake, as typically seen in CFS patients. Second, the activation of the protein kinase R enzyme, a characteristic feature in atleast subsets of CFS patients, might account for the observed excessive nitric oxide (NO) production in patients with CFS. Elevated NO is known to induce vasidilation, which may limit CFS patients to increase blood flow during exercise, and may even cause and enhanced postexercise hypotension. Finally, it is explored how several types of infections, frequently identified in CFS patients, fit into these hypothetical pathophysiological interactions.
Collapse
Affiliation(s)
- Jo Nijs
- Department of Human Physiology, Faculty of Physical Education and Physical Therapy Science, Vrije Universiteit Brussel, Brussel 1090, Belgium.
| | | | | | | | | |
Collapse
|
6
|
Endresen GKM. Mycoplasma blood infection in chronic fatigue and fibromyalgia syndromes. Rheumatol Int 2003; 23:211-5. [PMID: 12879275 DOI: 10.1007/s00296-003-0355-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2003] [Accepted: 05/13/2003] [Indexed: 11/25/2022]
Abstract
Chronic fatigue syndrome (CFS) and fibromyalgia syndrome (FMS) are characterised by a lack of consistent laboratory and clinical abnormalities. Although they are distinguishable as separate syndromes based on established criteria, a great number of patients are diagnosed with both. In studies using polymerase chain reaction methods, mycoplasma blood infection has been detected in about 50% of patients with CFS and/or FMS, including patients with Gulf War illnesses and symptoms that overlap with one or both syndromes. Such infection is detected in only about 10% of healthy individuals, significantly less than in patients. Most patients with CFS/FMS who have mycoplasma infection appear to recover and reach their pre-illness state after long-term antibiotic therapy with doxycycline, and the infection can not be detected after recovery. By means of causation and therapy, mycoplasma blood infection may permit a further subclassification of CFS and FMS. It is not clear whether mycoplasmas are associated with CFS/FMS as causal agents, cofactors, or opportunistic infections in patients with immune disturbances. Whether mycoplasma infection can be detected in about 50% of all patient populations with CFS and/or FMS is yet to be determined.
Collapse
Affiliation(s)
- Gerhard K M Endresen
- Department of Rheumatology, The National Hospital, University of Oslo, Forskningsvn. 2-Block B, 0027, Oslo, Norway.
| |
Collapse
|
7
|
Seya T, Matsumoto M. A lipoprotein family from Mycoplasma fermentans confers host immune activation through Toll-like receptor 2. Int J Biochem Cell Biol 2002; 34:901-6. [PMID: 12007626 DOI: 10.1016/s1357-2725(01)00164-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mycoplasma have been reported to be associated with human diseases. Three forms of a mycoplasma lipopeptide/protein with the ability to modulate the host immune system were independently identified and named macrophage-activating lipopeptide 2 (MALP-2), P48 and M161Ag (identical to MALP-404). Although these molecules had polypeptides of different sizes, they exerted similar immunomodulatory effects on macrophages/dendritic cells, such as cytokine induction, NO production and maturation of antigen-presenting cells (APCs). M161Ag exhibited complement-activating ability and bound macrophages via complement C3b/C3bi and their receptors. The diacylated N-terminal palmitates were involved in these activities. Toll-like receptor 2 (TLR2) was found to be responsible for these functional features of these mycoplasma products, except for complement activation. Here, we summarize the functional properties of this family of proteins, namely pathogen-associated molecular pattern (PAMP) and discuss its relationship to the reported pathogenesis of latent mycoplasma infection.
Collapse
Affiliation(s)
- Tsukasa Seya
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka, Japan.
| | | |
Collapse
|
9
|
Nishiguchi M, Matsumoto M, Takao T, Hoshino M, Shimonishi Y, Tsuji S, Begum NA, Takeuchi O, Akira S, Toyoshima K, Seya T. Mycoplasma fermentans lipoprotein M161Ag-induced cell activation is mediated by Toll-like receptor 2: role of N-terminal hydrophobic portion in its multiple functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2610-6. [PMID: 11160323 DOI: 10.4049/jimmunol.166.4.2610] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
M161Ag is a 43-kDa surface lipoprotein of Mycoplasma fermentans, serving as a potent cytokine inducer for monocytes/macrophages, maturing dendritic cells (DCs), and activating host complement on affected cells. It possesses a unique N-terminal lipo-amino acid, S:-diacylglyceryl cysteine. The 2-kDa macrophage-activating lipopeptide-2 (MALP-2), recently identified as a ligand for Toll-like receptor 2 (TLR2), is derived from M161Ag. In this study, we identified structural motifs sustaining the functions of M161Ag using wild-type and unlipidated rM161Ag with (SP(+)) or without signal peptides (SP(-)). Because the SP(+) rM161Ag formed dimers via 25Cys, we obtained a monomeric form by mutagenesis (SP(+)C25S). Only wild type accelerated maturation of human DCs as determined by the CD83/86 criteria, suggesting the importance of the N-terminal fatty acids for this function. Wild-type and the SP(+) form of monomer induced secretion of TNF-alpha and IL-12 p40 by human monocytes and DCs. Either lipid or signal peptide at the N-terminal portion of monomer was required for expression of this function. In contrast, murine macrophages produced TNF-alpha in response to wild type, but not to any recombinant form of M161Ag, suggesting the species-dependent response to rM161Ag. Wild-type and both monomeric and dimeric SP(+) forms possessed the ability to activate complement via the alternative pathway. Again, the hydrophobic portion was associated with this function. These results, together with the finding that macrophages from TLR2-deficient mice did not produce TNF-alpha in response to M161Ag, infer that the N-terminal hydrophobic structure of M161Ag is important for TLR2-mediated cell activation and complement activation.
Collapse
Affiliation(s)
- M Nishiguchi
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|