1
|
Borho J, Kögel M, Eckert A, Barth H. Repurposing FDA-approved disulfiram for targeted inhibition of diphtheria toxin and the binary protein toxins of Clostridium botulinum and Bacillus anthracis. Front Pharmacol 2024; 15:1455696. [PMID: 39346565 PMCID: PMC11427369 DOI: 10.3389/fphar.2024.1455696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Many bacteria act pathogenic by the release of AB-type protein toxins that efficiently enter human or animal cells and act as enzymes in their cytosol. This leads to disturbed cell functions and the clinical symptoms characteristic for the individual toxin. Therefore, molecules that directly target and neutralize these toxins provide promising novel therapeutic options. Here, we found that the FDA-approved drug disulfiram (DSF), used for decades to treat alcohol abuse, protects cells from intoxication with diphtheria toxin (DT) from Corynebacterium diphtheria, the causative agent of diphtheria, lethal toxin (LT) from Bacillus anthracis, which contributes to anthrax, and C2 enterotoxin from Clostridium botulinum when applied in concentrations lower than those found in plasma of patients receiving standard DSF treatment for alcoholism (up to 20 µM). Moreover, this inhibitory effect is increased by copper, a known enhancer of DSF activity. LT and C2 are binary toxins, consisting of two non-linked proteins, an enzyme (A) and a separate binding/transport (B) subunit. To act cytotoxic, their proteolytically activated B subunits PA63 and C2IIa, respectively, form barrel-shaped heptamers that bind to their cellular receptors and form complexes with their respective A subunits LF and C2I. The toxin complexes are internalized via receptor-mediated endocytosis and in acidified endosomes, PA63 and C2IIa form pores in endosomal membranes, which facilitate translocation of LF and C2I into the cytosol, where they act cytotoxic. In DT, A and B subunits are located within one protein, but DT also forms pores in endosomes that facilitate translocation of the A subunit. If cell binding, membrane translocation, or substrate modification is inhibited, cells are protected from intoxication. Our results implicate that DSF neither affects cellular binding nor the catalytic activity of the investigated toxins to a relevant extend, but interferes with the toxin pore-mediated translocation of the A subunits of DT, LT and C2 toxin, as demonstrated by membrane-translocation assays and toxin pore conductivity experiments in the presence or absence of DSF. Since toxin translocation across intracellular membranes represents a central step during cellular uptake of many bacterial toxins, DSF might neutralize a broad spectrum of medically relevant toxins.
Collapse
Affiliation(s)
| | | | | | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
2
|
Lietz S, Sokolowski LM, Barth H, Ernst K. Alpha-1 antitrypsin inhibits Clostridium botulinum C2 toxin, Corynebacterium diphtheriae diphtheria toxin and B. anthracis fusion toxin. Sci Rep 2024; 14:21257. [PMID: 39261531 PMCID: PMC11390955 DOI: 10.1038/s41598-024-71706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
The bacterium Clostridium botulinum, well-known for producing botulinum neurotoxins, which cause the severe paralytic illness known as botulism, produces C2 toxin, a binary AB-toxin with ADP-ribosyltranferase activity. C2 toxin possesses two separate protein components, an enzymatically active A-component C2I and the binding and translocation B-component C2II. After proteolytic activation of C2II to C2IIa, the heptameric structure binds C2I and is taken up via receptor-mediated endocytosis into the target cells. Due to acidification of endosomes, the C2IIa/C2I complex undergoes conformational changes and consequently C2IIa forms a pore into the endosomal membrane and C2I can translocate into the cytoplasm, where it ADP-ribosylates G-actin, a key component of the cytoskeleton. This modification disrupts the actin cytoskeleton, resulting in the collapse of cytoskeleton and ultimately cell death. Here, we show that the serine-protease inhibitor α1-antitrypsin (α1AT) which we identified previously from a hemofiltrate library screen for PT from Bordetella pertussis is a multitoxin inhibitor. α1AT inhibits intoxication of cells with C2 toxin via inhibition of binding to cells and inhibition of enzyme activity of C2I. Moreover, diphtheria toxin and an anthrax fusion toxin are inhibited by α1AT. Since α1AT is commercially available as a drug for treatment of the α1AT deficiency, it could be repurposed for treatment of toxin-mediated diseases.
Collapse
Affiliation(s)
- Stefanie Lietz
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081, Ulm, Germany
| | - Lena-Marie Sokolowski
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
3
|
Jia J, Braune-Yan M, Lietz S, Wahba M, Pulliainen AT, Barth H, Ernst K. Domperidone Inhibits Clostridium botulinum C2 Toxin and Bordetella pertussis Toxin. Toxins (Basel) 2023; 15:412. [PMID: 37505681 PMCID: PMC10467066 DOI: 10.3390/toxins15070412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Bordetella pertussis toxin (PT) and Clostridium botulinum C2 toxin are ADP-ribosylating toxins causing severe diseases in humans and animals. They share a common translocation mechanism requiring the cellular chaperones Hsp90 and Hsp70, cyclophilins, and FK506-binding proteins to transport the toxins' enzyme subunits into the cytosol. Inhibitors of chaperone activities have been shown to reduce the amount of transported enzyme subunits into the cytosol of cells, thus protecting cells from intoxication by these toxins. Recently, domperidone, an approved dopamine receptor antagonist drug, was found to inhibit Hsp70 activity. Since Hsp70 is required for cellular toxin uptake, we hypothesized that domperidone also protects cells from intoxication with PT and C2. The inhibition of intoxication by domperidone was demonstrated by analyzing the ADP-ribosylation status of the toxins' specific substrates. Domperidone had no inhibitory effect on the receptor-binding or enzyme activity of the toxins, but it inhibited the pH-driven membrane translocation of the enzyme subunit of the C2 toxin and reduced the amount of PTS1 in cells. Taken together, our results indicate that domperidone is a potent inhibitor of PT and C2 toxins in cells and therefore might have therapeutic potential by repurposing domperidone to treat diseases caused by bacterial toxins that require Hsp70 for their cellular uptake.
Collapse
Affiliation(s)
- Jinfang Jia
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Maria Braune-Yan
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Stefanie Lietz
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mary Wahba
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
4
|
Heber S, Borho J, Stadler N, Wondany F, König I, Michaelis J, Papatheodorou P, Barth H, Fellermann M. The Clostridium botulinum C2 Toxin Subunit C2IIa Delivers Enzymes with Positively Charged N-Termini into the Cytosol of Target Cells. Toxins (Basel) 2023; 15:390. [PMID: 37368691 DOI: 10.3390/toxins15060390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The binary Clostridium (C.) botulinum C2 toxin consists of two non-linked proteins. The proteolytically activated binding/transport subunit C2IIa forms barrel-shaped homoheptamers, which bind to cell surface receptors, mediate endocytosis, and translocate the enzyme subunit C2I into the cytosol of target cells. Here, we investigate whether C2IIa can be harnessed as a transporter for proteins/enzymes fused to polycationic tags, as earlier demonstrated for the related anthrax toxin transport subunit PA63. To test C2IIa-mediated transport in cultured cells, reporter enzymes are generated by fusing different polycationic tags to the N- or C-terminus of other bacterial toxins' catalytic A subunits. C2IIa as well as PA63 deliver N-terminally polyhistidine-tagged proteins more efficiently compared to C-terminally tagged ones. However, in contrast to PA63, C2IIa does not efficiently deliver polylysine-tagged proteins into the cytosol of target cells. Moreover, untagged enzymes with a native cationic N-terminus are efficiently transported by both C2IIa and PA63. In conclusion, the C2IIa-transporter serves as a transport system for enzymes that harbor positively charged amino acids at their N-terminus. The charge distribution at the N-terminus of cargo proteins and their ability to unfold in the endosome and subsequently refold in the cytosol determine transport feasibility and efficiency.
Collapse
Affiliation(s)
- Sebastian Heber
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Joscha Borho
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Nicole Stadler
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Fanny Wondany
- Institute of Biophysics, Ulm University, 89081 Ulm, Germany
| | - Irina König
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, 89081 Ulm, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Maximilian Fellermann
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
5
|
Eisele J, Schreiner S, Borho J, Fischer S, Heber S, Endres S, Fellermann M, Wohlgemuth L, Huber-Lang M, Fois G, Fauler M, Frick M, Barth H. The Pore-Forming Subunit C2IIa of the Binary Clostridium botulinum C2 Toxin Reduces the Chemotactic Translocation of Human Polymorphonuclear Leukocytes. Front Pharmacol 2022; 13:810611. [PMID: 35222028 PMCID: PMC8881014 DOI: 10.3389/fphar.2022.810611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
The binary C2 toxin of Clostridium (C.) botulinum consists of two non-linked proteins, the enzyme subunit C2I and the separate binding/transport subunit C2II. To exhibit toxic effects on mammalian cells, proteolytically activated C2II (C2IIa) forms barrel-shaped heptamers that bind to carbohydrate receptors which are present on all mammalian cell types. C2I binds to C2IIa and the toxin complexes are internalized via receptor-mediated endocytosis. In acidified endosomal vesicles, C2IIa heptamers change their conformation and insert as pores into endosomal membranes. These pores serve as translocation-channels for the subsequent transport of C2I from the endosomal lumen into the cytosol. There, C2I mono-ADP-ribosylates G-actin, which results in depolymerization of F-actin and cell rounding. Noteworthy, so far morphological changes in cells were only observed after incubation with the complete C2 toxin, i.e., C2IIa plus C2I, but not with the single subunits. Unexpectedly, we observed that the non-catalytic transport subunit C2IIa (but not C2II) alone induced morphological changes and actin alterations in primary human polymorphonuclear leukocytes (PMNs, alias neutrophils) from healthy donors ex vivo, but not macrophages, epithelial and endothelial cells, as detected by phase contrast microscopy and fluorescent microscopy of the actin cytoskeleton. This suggests a PMN selective mode of action for C2IIa. The cytotoxicity of C2IIa on PMNs was prevented by C2IIa pore blockers and treatment with C2IIa (but not C2II) rapidly induced Ca2+ influx in PMNs, suggesting that pore-formation by C2IIa in cell membranes of PMNs is crucial for this effect. In addition, incubation of primary human PMNs with C2IIa decreased their chemotaxis ex vivo through porous culture inserts and in co-culture with human endothelial cells which is closer to the physiological extravasation process. In conclusion, the results suggest that C2IIa is a PMN-selective inhibitor of chemotaxis. This provides new knowledge for a pathophysiological role of C2 toxin as a modulator of innate immune cells and makes C2IIa an attractive candidate for the development of novel pharmacological strategies to selectively down-modulate the excessive and detrimental PMN recruitment into organs after traumatic injuries.
Collapse
Affiliation(s)
- Julia Eisele
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Simone Schreiner
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Joscha Borho
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Heber
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Sascha Endres
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Maximilian Fellermann
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Lisa Wohlgemuth
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
- *Correspondence: Holger Barth,
| |
Collapse
|
6
|
Castro Dias M, Odriozola Quesada A, Soldati S, Bösch F, Gruber I, Hildbrand T, Sönmez D, Khire T, Witz G, McGrath JL, Piontek J, Kondoh M, Deutsch U, Zuber B, Engelhardt B. Brain endothelial tricellular junctions as novel sites for T cell diapedesis across the blood-brain barrier. J Cell Sci 2021; 134:237782. [PMID: 33912914 PMCID: PMC8121105 DOI: 10.1242/jcs.253880] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
The migration of activated T cells across the blood–brain barrier (BBB) is a critical step in central nervous system (CNS) immune surveillance and inflammation. Whereas T cell diapedesis across the intact BBB seems to occur preferentially through the BBB cellular junctions, impaired BBB integrity during neuroinflammation is accompanied by increased transcellular T cell diapedesis. The underlying mechanisms directing T cells to paracellular versus transcellular sites of diapedesis across the BBB remain to be explored. By combining in vitro live-cell imaging of T cell migration across primary mouse brain microvascular endothelial cells (pMBMECs) under physiological flow with serial block-face scanning electron microscopy (SBF-SEM), we have identified BBB tricellular junctions as novel sites for T cell diapedesis across the BBB. Downregulated expression of tricellular junctional proteins or protein-based targeting of their interactions in pMBMEC monolayers correlated with enhanced transcellular T cell diapedesis, and abluminal presence of chemokines increased T cell diapedesis through tricellular junctions. Our observations assign an entirely novel role to BBB tricellular junctions in regulating T cell entry into the CNS. This article has an associated First Person interview with the first author of the paper. Highlighted Article: Ultrastructural analysis of T cell migration across the blood–brain barrier (BBB) under physiological flow identifies BBB tricellular junctions as sites of T cell diapedesis.
Collapse
Affiliation(s)
| | | | - Sasha Soldati
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Fabio Bösch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Isabelle Gruber
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | - Derya Sönmez
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Tejas Khire
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 270168, USA
| | - Guillaume Witz
- Microscopy Imaging Center (MIC), University of Bern, Bern CH-3012, Switzerland.,Science IT Support (ScITS), Mathematical Institute, University of Bern, Bern CH-3012, Switzerland
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 270168, USA
| | - Jörg Piontek
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern CH-3012, Switzerland
| | | |
Collapse
|
7
|
Ernst K, Sailer J, Braune M, Barth H. Intoxication of mammalian cells with binary clostridial enterotoxins is inhibited by the combination of pharmacological chaperone inhibitors. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:941-954. [PMID: 33284399 PMCID: PMC8102464 DOI: 10.1007/s00210-020-02029-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023]
Abstract
Binary enterotoxins Clostridioides difficile CDT toxin, Clostridium botulinum C2 toxin, and Clostridium perfringens iota toxin consist of two separate protein components. The B-components facilitate receptor-mediated uptake into mammalian cells and form pores into endosomal membranes through which the enzymatic active A-components translocate into the cytosol. Here, the A-components ADP-ribosylate G-actin which leads to F-actin depolymerization followed by rounding of cells which causes clinical symptoms. The protein folding helper enzymes Hsp90, Hsp70, and peptidyl-prolyl cis/trans isomerases of the cyclophilin (Cyp) and FK506 binding protein (FKBP) families are required for translocation of A-components of CDT, C2, and iota toxins from endosomes to the cytosol. Here, we demonstrated that simultaneous inhibition of these folding helpers by specific pharmacological inhibitors protects mammalian, including human, cells from intoxication with CDT, C2, and iota toxins, and that the inhibitor combination displayed an enhanced effect compared to application of the individual inhibitors. Moreover, combination of inhibitors allowed a concentration reduction of the individual compounds as well as decreasing of the incubation time with inhibitors to achieve a protective effect. These results potentially have implications for possible future therapeutic applications to relieve clinical symptoms caused by bacterial toxins that depend on Hsp90, Hsp70, Cyps, and FKBPs for their membrane translocation into the cytosol of target cells.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Judith Sailer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Maria Braune
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
8
|
Tachibana K, Kondoh M. A Method to Prepare a Bioprobe for Regulatory Science of the Drug Delivery System to the Brain: An Angulin Binder to Modulate Tricellular Tight Junction-Seal. Methods Mol Biol 2020; 2367:291-304. [PMID: 32789775 DOI: 10.1007/7651_2020_317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epithelium acts as a barrier separating the interior and exterior of the body, and the epithelial and endothelial cells form tight junctions (TJs) by sealing the paracellular space. The blood-brain barrier (BBB) endothelial cells have well-developed TJs and express specific polarized transport systems to tightly control paracellular movements of solutes, ions, and water. Thus, more than 98% of small-molecular-weight drugs cannot pass the BBB. The tricellular TJ (tTJ) is a structure at contacts of three cells. Angulin-1, also known as lipolysis-stimulated lipoprotein receptor (LSR), is one of angulin family and is abundantly expressed in brain endothelial cells, which plays an important role in barrier function of the BBB. The C-terminal domain of a receptor-binding component of Clostridium perfringens iota-toxin (Ib421-664), also named as angubindin-1, binds to its receptors angulin-1 and angulin-3. This angubindin-1 modulates the tTJ barrier and is able to deliver a 16-mer gapmer antisense oligonucleotide (5.3 kDa) without adverse effects. Thus, angulin binders, such as angubindin-1, are useful tools for studying the safety assessment of tTJ-targeted drug delivery and BBB permeability modulation. Here, we provide a protocol for the expression and purification of recombinant angubindin-1 protein as angulin binders, an analysis method for angubindin-1 binding affinity, and a procedure for assessing the effect of modulating tight junction integrity.
Collapse
Affiliation(s)
- Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
9
|
Prisilla A, Chellapandi P. Cloning and expression of immunogenic Clostridium botulinum C2I mutant proteins designed from their evolutionary imprints. Comp Immunol Microbiol Infect Dis 2019; 65:207-212. [DOI: 10.1016/j.cimid.2019.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/15/2018] [Accepted: 01/14/2019] [Indexed: 01/11/2023]
|
10
|
Stiles BG. Clostridial Binary Toxins: Basic Understandings that Include Cell Surface Binding and an Internal "Coup de Grâce". Curr Top Microbiol Immunol 2019; 406:135-162. [PMID: 27380267 DOI: 10.1007/82_2016_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium species can make a remarkable number of different protein toxins, causing many diverse diseases in humans and animals. The binary toxins of Clostridium botulinum, C. difficile, C. perfringens, and C. spiroforme are one group of enteric-acting toxins that attack the actin cytoskeleton of various cell types. These enterotoxins consist of A (enzymatic) and B (cell binding/membrane translocation) components that assemble on the targeted cell surface or in solution, forming a multimeric complex. Once translocated into the cytosol via endosomal trafficking and acidification, the A component dismantles the filamentous actin-based cytoskeleton via mono-ADP-ribosylation of globular actin. Knowledge of cell surface receptors and how these usurped, host-derived molecules facilitate intoxication can lead to novel ways of defending against these clostridial binary toxins. A molecular-based understanding of the various steps involved in toxin internalization can also unveil therapeutic intervention points that stop the intoxication process. Furthermore, using these bacterial proteins as medicinal shuttle systems into cells provides intriguing possibilities in the future. The pertinent past and state-of-the-art present, regarding clostridial binary toxins, will be evident in this chapter.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, Chambersburg, PA, 17201, USA.
| |
Collapse
|
11
|
Receptor-Binding and Uptake of Binary Actin-ADP-Ribosylating Toxins. Curr Top Microbiol Immunol 2019; 406:119-133. [PMID: 27817176 DOI: 10.1007/82_2016_46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Binary actin-ADP-ribosylating toxins (e.g., Clostridium botulinum C2 toxin or Clostridium perfringens iota toxin ) consist of two separate proteins: An ADP-ribosyltransferase, which modifies actin thereby inhibiting actin polymerization, and a binding component that forms heptamers after proteolytic activation. While C2 toxin interacts with carbohydrate structures on host cells, the group of iota-like toxins binds to lipolysis-stimulated lipoprotein receptor (LSR). Here, we review LSR and discuss the role and function of LSR in interaction of iota-like toxins with host cells.
Collapse
|
12
|
Cui Y, Märtlbauer E, Dietrich R, Luo H, Ding S, Zhu K. Multifaceted toxin profile, an approach toward a better understanding of probiotic Bacillus cereus. Crit Rev Toxicol 2019; 49:342-356. [PMID: 31116061 DOI: 10.1080/10408444.2019.1609410] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Strains of the Bacillus cereus group have been widely used as probiotics for human beings, food animals, plants, and environmental remediation. Paradoxically, B. cereus is responsible for both gastrointestinal and nongastrointestinal syndromes and represents an important opportunistic food-borne pathogen. Toxicity assessment is a fundamental issue to evaluate safety of probiotics. Here, we summarize the state of our current knowledge about the toxins of B. cereus sensu lato to be considered for safety assessment of probiotic candidates. Surfactin-like emetic toxin (cereulide) and various enterotoxins including nonhemolytic enterotoxin, hemolysin BL, and cytotoxin K are responsible for food poisoning outbreaks characterized by emesis and diarrhea. In addition, other factors, such as hemolysin II, Certhrax, immune inhibitor A1, and sphingomyelinase, contribute to toxicity and overall virulence of B. cereus.
Collapse
Affiliation(s)
- Yifang Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing , China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , Beijing , China
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Ludwig-Maximilians-University Munich , Oberschleißheim , Germany
| | - Richard Dietrich
- Department of Veterinary Sciences, Ludwig-Maximilians-University Munich , Oberschleißheim , Germany
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , Beijing , China
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University , Beijing , China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing , China.,National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University , Beijing , China
| |
Collapse
|
13
|
Ernst K, Kling C, Landenberger M, Barth H. Combined Pharmacological Inhibition of Cyclophilins, FK506-Binding Proteins, Hsp90, and Hsp70 Protects Cells From Clostridium botulinum C2 Toxin. Front Pharmacol 2018; 9:1287. [PMID: 30483129 PMCID: PMC6243138 DOI: 10.3389/fphar.2018.01287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022] Open
Abstract
The Clostridium botulinum C2 toxin is an exotoxin causing severe enterotoxic symptoms. The C2 toxin consists of the binding/translocation component C2II, and the enzymatic active component C2I. After proteolytic activation, C2IIa forms heptamers that bind C2I. The C2IIa/C2I complex is taken up into mammalian target cells via receptor-mediated endocytosis. Acidification of endosomes leads to conformational changes in both components. C2IIa heptamers form a pore into the endosomal membrane, and C2I becomes unfolded and translocates through the narrow C2IIa pores into the cytosol of the cell. Here, C2I covalently transfers an ADP-ribose moiety from its co-substrate NAD+ onto G-actin, which leads to depolymerization of F-actin resulting in rounding up of adherent cells. Translocation of C2I into the cytosol depends on the activity of the chaperones Hsp90 and Hsp70 and peptidyl-prolyl cis/trans isomerases of the cyclophilin (Cyp) and FK506-binding protein (FKBP) families. Here, we demonstrated that C2I is detected in close proximity with Hsp90, Cyp40, and FKBP51 in cells, indicating their interaction. This interaction was dependent on the concentration of C2 toxin and detected in mammalian Vero and human HeLa cells. Moreover, the present study reveals that combination of radicicol, VER-155008, cyclosporine A, and FK506, which are specific pharmacological inhibitors of Hsp90, Hsp70, Cyps, and FKBPs, respectively, resulted in a stronger inhibition of intoxication of cells with C2 toxin compared to application of the single inhibitors. Thus, the combination of inhibitors showed enhanced protection of cells against the cytotoxic effects of C2 toxin. Cell viability was not significantly impaired by application of the inhibitor combination. Moreover, we confirmed that the combination of radicicol, VER-155008, CsA, and FK506 in particular inhibit the membrane translocation step of C2I into the cytosol whereas receptor binding and enzyme activity of the toxin were not affected. Our findings further characterize the mode of action of Hsp90, Hsp70, Cyps, and FKBPs during membrane translocation of bacterial toxins and furthermore supply starting points for developing of novel therapeutic strategies against diseases caused by bacterial toxins that depend on Hsp90, Hsp70, Cyps, and FKBPs.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Carolin Kling
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Marc Landenberger
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
14
|
Angubindin-1 opens the blood-brain barrier in vivo for delivery of antisense oligonucleotide to the central nervous system. J Control Release 2018; 283:126-134. [PMID: 29753959 DOI: 10.1016/j.jconrel.2018.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/22/2022]
Abstract
Within the field of RNA therapeutics, antisense oligonucleotide-based therapeutics are a potentially powerful means of treating intractable diseases. However, if these therapeutics are used for the treatment of neurological disorders, safe yet efficient methods of delivering antisense oligonucleotides across the blood-brain barrier to the central nervous system must be developed. Here, we examined the use of angubindin-1, a binder to the tricellular tight junction, to modulate paracellular transport between brain microvascular endothelial cells in the blood-brain barrier for the delivery of antisense oligonucleotides to the central nervous system. This proof-of-concept study demonstrated that intravenously injected angubindin-1 increased the permeability of the blood-brain barrier and enabled transient delivery of subsequently administered antisense oligonucleotides into the mouse brain and spinal cord, leading to silencing of a target RNA without any overt adverse effects. We also found that two bicellular tight junction modulators did not produce such a silencing effect, suggesting that the tricellular tight junction is likely a better target for the delivery of antisense oligonucleotides than the bicellular tight junction. Our delivery strategy of modulating the tricellular tight junction in the blood-brain barrier via angubindin-1 provides a novel avenue of research for the development of antisense oligonucleotide-based therapeutics for the treatment of neurological disorders.
Collapse
|
15
|
Comparative Studies of Actin- and Rho-Specific ADP-Ribosylating Toxins: Insight from Structural Biology. Curr Top Microbiol Immunol 2017; 399:69-86. [PMID: 27540723 DOI: 10.1007/82_2016_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mono-ADP-ribosylation is a major post-translational modification performed by bacterial toxins, which transfer an ADP-ribose moiety to a substrate acceptor residue. Actin- and Rho-specific ADP-ribosylating toxins (ARTs) are typical ARTs known to have very similar tertiary structures but totally different targets. Actin-specific ARTs are the A components of binary toxins, ADP-ribosylate actin at Arg177, leading to the depolymerization of the actin cytoskeleton. On the other hand, C3-like exoenzymes are Rho-specific ARTs, ADP-ribosylate Rho GTPases at Asn41, exerting an indirect effect on the actin cytoskeleton. This review focuses on the differences and similarities of actin- and Rho-specific ARTs, especially with respect to their substrate recognition and cell entry mechanisms, based on structural studies.
Collapse
|
16
|
Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells. Sci Rep 2017; 7:2724. [PMID: 28578412 PMCID: PMC5457432 DOI: 10.1038/s41598-017-02882-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022] Open
Abstract
Binary enterotoxins Clostridium (C.) botulinum C2 toxin, C. perfringens iota toxin and C. difficile toxin CDT are composed of a transport (B) and a separate non-linked enzyme (A) component. Their B-components mediate endocytic uptake into mammalian cells and subsequently transport of the A-components from acidic endosomes into the cytosol, where the latter ADP-ribosylate G-actin resulting in cell rounding and cell death causing clinical symptoms. Protein folding enzymes, including Hsp90 and peptidyl-prolyl cis/trans isomerases facilitate transport of the A-components across endosomal membranes. Here, we identified Hsp70 as a novel host cell factor specifically interacting with A-components of C2, iota and CDT toxins to facilitate their transport into the cell cytosol. Pharmacological Hsp70-inhibition specifically prevented pH-dependent trans-membrane transport of A-components into the cytosol thereby protecting living cells and stem cell-derived human miniguts from intoxication. Thus, Hsp70-inhibition might lead to development of novel therapeutic strategies to treat diseases associated with bacterial ADP-ribosylating toxins.
Collapse
|
17
|
Angubindin-1, a novel paracellular absorption enhancer acting at the tricellular tight junction. J Control Release 2017; 260:1-11. [PMID: 28528740 DOI: 10.1016/j.jconrel.2017.05.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/15/2017] [Accepted: 05/17/2017] [Indexed: 11/20/2022]
Abstract
A limiting barrier for mucosal absorption of drugs is the tight junction (TJ). TJs exist between two adjacent cells (bicellular TJ, bTJ) and at the sites where three cells meet (tricellular TJ, tTJ). We present a novel approach which employs a physiologically regulated pathway for the passage of large molecules through the tTJ. Main barrier-relevant tTJ proteins are tricellulin and angulin-1 to -3. We developed an angulin binder from Clostridium perfringens iota-toxin (Ib) whose receptor is angulin-1. An Ib fragment corresponding to amino acids 421-664 (Ib421-664) of iota-toxin proved to bind in cells expressing angulin-1 and -3, but not angulin-2. This binding led to removal of angulin-1 and tricellulin from the tTJ which enhanced the permeation of macromolecular solutes. Ib421-664 enhanced intestinal absorption in rats and mice. Our findings indicate that Ib421-664, which we designate angubindin-1, is a modulator of the tTJ barrier and that modulation of that barrier qualifies for a new strategy of developing a mucosal absorption enhancer.
Collapse
|
18
|
Molecular Evolutionary Constraints that Determine the Avirulence State of Clostridium botulinum C2 Toxin. J Mol Evol 2017; 84:174-186. [DOI: 10.1007/s00239-017-9791-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
19
|
Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin. Arch Toxicol 2016; 91:1431-1445. [DOI: 10.1007/s00204-016-1716-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
|
20
|
Retargeting the Clostridium botulinum C2 toxin to the neuronal cytosol. Sci Rep 2016; 6:23707. [PMID: 27025362 PMCID: PMC4812341 DOI: 10.1038/srep23707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/10/2016] [Indexed: 12/16/2022] Open
Abstract
Many biological toxins are known to attack specific cell types, delivering their enzymatic payloads to the cytosol. This process can be manipulated by molecular engineering of chimeric toxins. Using toxins with naturally unlinked components as a starting point is advantageous because it allows for the development of payloads separately from the binding/translocation components. Here the Clostridium botulinum C2 binding/translocation domain was retargeted to neural cell populations by deleting its non-specific binding domain and replacing it with a C. botulinum neurotoxin binding domain. This fusion protein was used to deliver fluorescently labeled payloads to Neuro-2a cells. Intracellular delivery was quantified by flow cytometry and found to be dependent on artificial enrichment of cells with the polysialoganglioside receptor GT1b. Visualization by confocal microscopy showed a dissociation of payloads from the early endosome indicating translocation of the chimeric toxin. The natural Clostridium botulinum C2 toxin was then delivered to human glioblastoma A172 and synchronized HeLa cells. In the presence of the fusion protein, native cytosolic enzymatic activity of the enzyme was observed and found to be GT1b-dependent. This retargeted toxin may enable delivery of therapeutics to peripheral neurons and be of use in addressing experimental questions about neural physiology.
Collapse
|
21
|
Host Cell Chaperones Hsp70/Hsp90 and Peptidyl-Prolyl Cis/Trans Isomerases Are Required for the Membrane Translocation of Bacterial ADP-Ribosylating Toxins. Curr Top Microbiol Immunol 2016; 406:163-198. [PMID: 27197646 DOI: 10.1007/82_2016_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial ADP-ribosylating toxins are the causative agents for several severe human and animal diseases such as diphtheria, cholera, or enteric diseases. They display an AB-type structure: The enzymatically active A-domain attaches to the binding/translocation B-domain which then binds to a receptor on the cell surface. After receptor-mediated endocytosis, the B-domain facilitates the membrane translocation of the unfolded A-domain into the host cell cytosol. Here, the A-domain transfers an ADP-ribose moiety onto its specific substrate which leads to characteristic cellular effects and thus to severe clinical symptoms. Since the A-domain has to reach the cytosol to achieve a cytotoxic effect, the membrane translocation represents a crucial step during toxin uptake. Host cell chaperones including Hsp90 and protein-folding helper enzymes of the peptidyl-prolyl cis/trans isomerase (PPIase) type facilitate this membrane translocation of the unfolded A-domain for ADP-ribosylating toxins but not for toxins with a different enzyme activity. This review summarizes the uptake mechanisms of the ADP-ribosylating clostridial binary toxins, diphtheria toxin (DT) and cholera toxin (CT), with a special focus on the interaction of these toxins with the chaperones Hsp90 and Hsp70 and PPIases of the cyclophilin and FK506-binding protein families during the membrane translocation of their ADP-ribosyltransferase domains into the host cell cytosol. Moreover, the medical implications of host cell chaperones and PPIases as new drug targets for the development of novel therapeutic strategies against diseases caused by bacterial ADP-ribosylating toxins are discussed.
Collapse
|
22
|
Identification and Characterization of a New Enterotoxin Produced by Clostridium perfringens Isolated from Food Poisoning Outbreaks. PLoS One 2015; 10:e0138183. [PMID: 26584048 PMCID: PMC4652906 DOI: 10.1371/journal.pone.0138183] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/26/2015] [Indexed: 11/25/2022] Open
Abstract
There is a strain of Clostridium perfringens, W5052, which does not produce a known enterotoxin. We herein report that the strain W5052 expressed a homologue of the iota-like toxin components sa and sb of C. spiroforme, named Clostridium perfringens iota-like enterotoxin, CPILE-a and CPILE-b, respectively, based on the results of a genome sequencing analysis and a systematic protein screening. In the nicotinamide glyco-hydrolase (NADase) assay the hydrolysis activity was dose-dependently increased by the concentration of rCPILE-a, as judged by the mass spectrometry analysis. In addition, the actin monomer of the lysates of Vero and L929 cells were radiolabeled in the presence of [32P]NAD and rCPILE-a. These findings indicated that CPILE-a possesses ADP-ribosylation activity. The culture supernatant of W5052 facilitated the rounding and killing of Vero and L929 cells, but the rCPILE-a or a non-proteolyzed rCPILE-b did not. However, a trypsin-treated rCPILE-b did. Moreover, a mixture of rCPILE-a and the trypsin-treated rCPILE-b enhanced the cell rounding and killing activities, compared with that induced by the trypsin-treated rCPILE-b alone. The injection of the mixture of rCPILE-a and the trypsin-treated rCPILE-b into an ileum loop of rabbits evoked the swelling of the loop and accumulation of the fluid dose-dependently, suggesting that CPILE possesses enterotoxic activity. The evidence presented in this communication will facilitate the epidemiological, etiological, and toxicological studies of C. perfringens food poisoning, and also stimulate studies on the transfer of the toxins’ gene(s) among the Genus Clostridium.
Collapse
|
23
|
Pore-forming activity of clostridial binary toxins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:512-25. [PMID: 26278641 DOI: 10.1016/j.bbamem.2015.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/13/2015] [Accepted: 08/11/2015] [Indexed: 11/24/2022]
Abstract
Clostridial binary toxins (Clostridium perfringens Iota toxin, Clostridium difficile transferase, Clostridium spiroforme toxin, Clostridium botulinum C2 toxin) as Bacillus binary toxins, including Bacillus anthracis toxins consist of two independent proteins, one being the binding component which mediates the internalization into cell of the intracellularly active component. Clostridial binary toxins induce actin cytoskeleton disorganization through mono-ADP-ribosylation of globular actin and are responsible for enteric diseases. Clostridial and Bacillus binary toxins share structurally and functionally related binding components which recognize specific cell receptors, oligomerize, form pores in endocytic vesicle membrane, and mediate the transport of the enzymatic component into the cytosol. Binding components retain the global structure of pore-forming toxins (PFTs) from the cholesterol-dependent cytotoxin family such as perfringolysin. However, their pore-forming activity notably that of clostridial binding components is more related to that of heptameric PFT family including aerolysin and C. perfringens epsilon toxin. This review focuses upon pore-forming activity of clostridial binary toxins compared to other related PFTs. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
|
24
|
Stiles BG, Pradhan K, Fleming JM, Samy RP, Barth H, Popoff MR. Clostridium and bacillus binary enterotoxins: bad for the bowels, and eukaryotic being. Toxins (Basel) 2014; 6:2626-56. [PMID: 25198129 PMCID: PMC4179152 DOI: 10.3390/toxins6092626] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 12/18/2022] Open
Abstract
Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (ι-toxin and binary enterotoxin, or BEC), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A) and cell-binding (B) components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, 1015 Philadelphia Avenue, Chambersburg, PA 17201, USA.
| | - Kisha Pradhan
- Environmental Science Department, Wilson College, 1015 Philadelphia Avenue, Chambersburg, PA 17201, USA.
| | - Jodie M Fleming
- Department of Biology, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA.
| | - Ramar Perumal Samy
- Venom and Toxin Research Programme, Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge 117597, Singapore.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, Ulm D-89081, Germany.
| | - Michel R Popoff
- Bacteries Anaerobies et Toxines, Institut Pasteur, 28 Rue du Docteur Roux, Paris 75724, France.
| |
Collapse
|
25
|
Simon NC, Aktories K, Barbieri JT. Novel bacterial ADP-ribosylating toxins: structure and function. Nat Rev Microbiol 2014; 12:599-611. [PMID: 25023120 PMCID: PMC5846498 DOI: 10.1038/nrmicro3310] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial ADP-ribosyltransferase toxins (bARTTs) transfer ADP-ribose to eukaryotic proteins to promote bacterial pathogenesis. In this Review, we use prototype bARTTs, such as diphtheria toxin and pertussis toxin, as references for the characterization of several new bARTTs from human, insect and plant pathogens, which were recently identified by bioinformatic analyses. Several of these toxins, including cholix toxin (ChxA) from Vibrio cholerae, SpyA from Streptococcus pyogenes, HopU1 from Pseudomonas syringae and the Tcc toxins from Photorhabdus luminescens, ADP-ribosylate novel substrates and have unique organizations, which distinguish them from the reference toxins. The characterization of these toxins increases our appreciation of the range of structural and functional properties that are possessed by bARTTs and their roles in bacterial pathogenesis.
Collapse
Affiliation(s)
- Nathan C. Simon
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, WI, USA
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology; Albert-Ludwigs-University Freiburg; Freiburg, Germany
| | - Joseph T. Barbieri
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, WI, USA
| |
Collapse
|
26
|
Ernst K, Langer S, Kaiser E, Osseforth C, Michaelis J, Popoff MR, Schwan C, Aktories K, Kahlert V, Malesevic M, Schiene-Fischer C, Barth H. Cyclophilin-facilitated membrane translocation as pharmacological target to prevent intoxication of mammalian cells by binary clostridial actin ADP-ribosylated toxins. J Mol Biol 2014; 427:1224-38. [PMID: 25058685 DOI: 10.1016/j.jmb.2014.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/03/2014] [Accepted: 07/13/2014] [Indexed: 11/16/2022]
Abstract
Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin and Clostridium difficile CDT belong to the family of binary actin ADP-ribosylating toxins and are composed of a binding/translocation component and a separate enzyme component. The enzyme components ADP-ribosylate G-actin in the cytosol of target cells resulting in depolymerization of F-actin, cell rounding and cell death. The binding/translocation components bind to their cell receptors and form complexes with the respective enzyme components. After receptor-mediated endocytosis, the binding/translocation components form pores in membranes of acidified endosomes and the enzyme components translocate through these pores into the cytosol. This step is facilitated by the host cell chaperone heat shock protein 90 and peptidyl-prolyl cis/trans isomerases including cyclophilin A. Here, we demonstrate that a large isoform of cyclophilin A, the multi-domain enzyme cyclophilin 40 (Cyp40), binds to the enzyme components C2I, Ia and CDTa in vitro. Isothermal titration calorimetry revealed a direct binding to C2I with a calculated affinity of 101 nM and to Ia with an affinity of 1.01 μM. Closer investigation for the prototypic C2I revealed that binding to Cyp40 did not depend on its ADP-ribosyltransferase activity but was stronger for unfolded C2I. The interaction of C2I with Cyp40 was also demonstrated in lysates from C2-treated cells by pull-down. Treatment of cells with a non-immunosuppressive cyclosporine A derivative, which still binds to and inhibits the peptidyl-prolyl cis/trans isomerase activity of cyclophilins, protected cells from intoxication with C2, iota and CDT toxins, offering an attractive approach for development of novel therapeutic strategies against binary actin ADP-ribosylating toxins.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany
| | - Simon Langer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany
| | - Eva Kaiser
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany
| | | | - Jens Michaelis
- Institute of Biophysics, University of Ulm, 89081 Ulm, Germany
| | - Michel R Popoff
- Department of Anaerobic Bacteria, Pasteur Institute, 75724 Paris, France
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany
| | - Viktoria Kahlert
- Max Planck Research Unit for Enzymology of Protein Folding Halle, 06120 Halle (Saale), Germany
| | - Miroslav Malesevic
- Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Cordelia Schiene-Fischer
- Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
27
|
Srisucharitpanit K, Yao M, Promdonkoy B, Chimnaronk S, Tanaka I, Boonserm P. Crystal structure of BinB: A receptor binding component of the binary toxin from Lysinibacillus sphaericus. Proteins 2014; 82:2703-12. [DOI: 10.1002/prot.24636] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/12/2014] [Accepted: 06/18/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Kanokporn Srisucharitpanit
- Institute of Molecular Biosciences, Mahidol University; Salaya, Phuttamonthon Nakhon Pathom 73170 Thailand
- Faculty of Allied Health Science; Burapha University, Saensook; Muang District Chon Buri 20131 Thailand
| | - Min Yao
- Faculty of Advanced Life Sciences; Hokkaido University; Sapporo 060-0810 Japan
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency; 113 Pahonyothin Road, Khlong Nueng Khlong Luang Pathum Thani 12120 Thailand
| | - Sarin Chimnaronk
- Institute of Molecular Biosciences, Mahidol University; Salaya, Phuttamonthon Nakhon Pathom 73170 Thailand
| | - Isao Tanaka
- Faculty of Advanced Life Sciences; Hokkaido University; Sapporo 060-0810 Japan
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University; Salaya, Phuttamonthon Nakhon Pathom 73170 Thailand
| |
Collapse
|
28
|
Fahrer J, Rausch J, Barth H. A cell-permeable fusion protein based on Clostridium botulinum C2 toxin for delivery of p53 tumorsuppressor into cancer cells. PLoS One 2013; 8:e72455. [PMID: 24039769 PMCID: PMC3764140 DOI: 10.1371/journal.pone.0072455] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 07/18/2013] [Indexed: 01/09/2023] Open
Abstract
Genetically engineered bacterial protein toxins are attractive systems for delivery of exogenous proteins into the cytosol of mammalian cells. The binary C2 toxin from C. botulinum has emerged as powerful delivery vehicle, which rests on its binding/translocation component C2IIa and the genetically modified adaptor domain C2IN that act in concert to trigger cell uptake. The p53 tumor suppressor protein has a crucial function in suppressing carcinogenesis and is frequently inactivated by diverse mechanisms in human tumor cells. Therefore, we constructed a C2IN-p53 fusion protein, which is internalized into cancer cells by C2IIa. To this end, the C2IN-p53 fusion construct was overexpressed in E. coli with good solubility, purified by heparin affinity chromatography and protein identity was confirmed by immunoblotting. We demonstrated that the fusion protein is capable of binding to the p53 consensus-DNA with high affinity in a p53-specific manner in vitro. Next, the internalization of C2IN-p53 was monitored in HeLa cells by cell fractionation and immunoblot analysis, which revealed a C2IIa-mediated translocation of the fusion protein into the cytosol. The uptake was also shown in A549 and Saos-2 cells with similar efficiency. These findings were further corroborated by confocal immunofluorescence analyses of C2IN-p53/C2IIa-treated HeLa and A549 cells, displaying predominantly cytoplasmic localization of the fusion construct.
Collapse
Affiliation(s)
- Jörg Fahrer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany ; Institute of Toxicology, University Medical Center Mainz, Mainz, Germany
| | | | | |
Collapse
|
29
|
Fahrer J, Schweitzer B, Fiedler K, Langer T, Gierschik P, Barth H. C2-streptavidin mediates the delivery of biotin-conjugated tumor suppressor protein p53 into tumor cells. Bioconjug Chem 2013; 24:595-603. [PMID: 23506195 DOI: 10.1021/bc300563c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously generated a recombinant C2-streptavidin fusion protein for the delivery of biotin-labeled molecules of low molecular weight into the cytosol of mammalian cells. A nontoxic moiety of Clostridium botulinum C2 toxin mediates the cellular uptake, whereas the streptavidin unit serves as a binding platform for biotin-labeled cargo molecules. In the present study, we used the C2-streptavidin transporter to introduce biotin-conjugated p53 protein into various mammalian cell lines. The p53 tumor suppressor protein is inactivated in many human cancers by multiple mechanisms and therefore the restoration of its activity in tumor cells is of great therapeutic interest. Recombinant p53 was expressed in insect cells and biotin-labeled. Biotin-p53 retained its specific high-affinity DNA-binding as revealed by gel-shift analysis. Successful conjugation of biotin-p53 to the C2-streptavidin transporter was monitored by an overlay blot technique and confirmed by real-time surface plasmon resonance, providing a KD-value in the low nM range. C2-streptavidin significantly enhanced the uptake of biotin-p53 into African Green Monkey (Vero) epithelial cells as shown by flow cytometry. Using cell fractionation, the cytosolic translocation of biotin-p53 was detected in Vero cells as well as in HeLa cervix carcinoma cells. In line with this finding, confocal microscopy displayed cytoplasmic staining of biotin-p53 in HeLa and HL60 leukemia cells. Internalized biotin-p53 partially colocalized with early endosomes, as confirmed by confocal microscopy. In conclusion, our results demonstrate the successful conjugation of biotin-p53 to C2-streptavidin and its subsequent receptor-mediated endocytosis into different human tumor cell lines.
Collapse
Affiliation(s)
- Jörg Fahrer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
30
|
A recombinant fusion toxin based on enzymatic inactive C3bot1 selectively targets macrophages. PLoS One 2013; 8:e54517. [PMID: 23349915 PMCID: PMC3549961 DOI: 10.1371/journal.pone.0054517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/12/2012] [Indexed: 01/08/2023] Open
Abstract
Background The C3bot1 protein (∼23 kDa) from Clostridium botulinum ADP-ribosylates and thereby inactivates Rho. C3bot1 is selectively taken up into the cytosol of monocytes/macrophages but not of other cell types such as epithelial cells or fibroblasts. Most likely, the internalization occurs by a specific endocytotic pathway via acidified endosomes. Methodology/Principal Findings Here, we tested whether enzymatic inactive C3bot1E174Q serves as a macrophage-selective transport system for delivery of enzymatic active proteins into the cytosol of such cells. Having confirmed that C3bot1E174Q does not induce macrophage activation, we used the actin ADP-ribosylating C2I (∼50 kDa) from Clostridium botulinum as a reporter enzyme for C3bot1E174Q-mediated delivery into macrophages. The recombinant C3bot1E174Q-C2I fusion toxin was cloned and expressed as GST-protein in Escherichia coli. Purified C3bot1E174Q-C2I was recognized by antibodies against C2I and C3bot and showed C2I-specific enzyme activity in vitro. When applied to cultured cells C3bot1E174Q-C2I ADP-ribosylated actin in the cytosol of macrophages including J774A.1 and RAW264.7 cell lines as well as primary cultured human macrophages but not of epithelial cells. Together with confocal fluorescence microscopy experiments, the biochemical data indicate the selective uptake of a recombinant C3-fusion toxin into the cytosol of macrophages. Conclusions/Significance In summary, we demonstrated that C3bot1E174Q can be used as a delivery system for fast, selective and specific transport of enzymes into the cytosol of living macrophages. Therefore, C3-based fusion toxins can represent valuable molecular tools in experimental macrophage pharmacology and cell biology as well as attractive candidates to develop new therapeutic approaches against macrophage-associated diseases.
Collapse
|
31
|
Wigelsworth DJ, Ruthel G, Schnell L, Herrlich P, Blonder J, Veenstra TD, Carman RJ, Wilkins TD, Van Nhieu GT, Pauillac S, Gibert M, Sauvonnet N, Stiles BG, Popoff MR, Barth H. CD44 Promotes intoxication by the clostridial iota-family toxins. PLoS One 2012; 7:e51356. [PMID: 23236484 PMCID: PMC3517468 DOI: 10.1371/journal.pone.0051356] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/31/2012] [Indexed: 12/16/2022] Open
Abstract
Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44+ melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins.
Collapse
Affiliation(s)
- Darran J. Wigelsworth
- Integrated Toxicology Division, Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Gordon Ruthel
- Core Imaging Facility, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Leonie Schnell
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Peter Herrlich
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Josip Blonder
- Laboratory of Proteomics and Analytical Technologies, National Cancer Institute, Frederick, Maryland, United States of America
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, National Cancer Institute, Frederick, Maryland, United States of America
| | | | | | - Guy Tran Van Nhieu
- Department of Intracellular Communications and Infectious Microorganisms, College of France, Paris, France
| | - Serge Pauillac
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Maryse Gibert
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Nathalie Sauvonnet
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
| | - Bradley G. Stiles
- Biology Department, Wilson College, Chambersburg, Pennsylvania, United States of America
- * E-mail: (BGS); (HB); (MRP)
| | - Michel R. Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
- * E-mail: (BGS); (HB); (MRP)
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
- * E-mail: (BGS); (HB); (MRP)
| |
Collapse
|
32
|
Beitzinger C, Stefani C, Kronhardt A, Rolando M, Flatau G, Lemichez E, Benz R. Role of N-terminal His6-Tags in binding and efficient translocation of polypeptides into cells using anthrax protective antigen (PA). PLoS One 2012; 7:e46964. [PMID: 23056543 PMCID: PMC3466187 DOI: 10.1371/journal.pone.0046964] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022] Open
Abstract
It is of interest to define bacterial toxin biochemical properties to use them as molecular-syringe devices in order to deliver enzymatic activities into host cells. Binary toxins of the AB7/8-type are among the most potent and specialized bacterial protein toxins. The B subunits oligomerize to form a pore that binds with high affinity host cell receptors and the enzymatic A subunit. This allows the endocytosis of the complex and subsequent injection of the A subunit into the cytosol of the host cells. Here we report that the addition of an N-terminal His6-tag to different proteins increased their binding affinity to the protective antigen (PA) PA63-channels, irrespective if they are related (C2I) or unrelated (gpJ, EDIN) to the AB7/8-family of toxins. His6-EDIN exhibited voltage-dependent increase of the stability constant for binding by a factor of about 25 when the trans-side corresponding to the cell interior was set to −70 mV. Surprisingly, the C. botulinum toxin C2II-channel did not share this feature of PA63. Cell-based experiments demonstrated that addition of an N-terminal His6-tag promoted also intoxication of endothelial cells by C2I or EDIN via PA63. Our results revealed that addition of His6-tags to several factors increase their binding properties to PA63 and enhance the property to intoxicate cells.
Collapse
Affiliation(s)
- Christoph Beitzinger
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Caroline Stefani
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
- UFR Médecine, IFR50, Université de Nice-Sophia Antipolis, Nice, France
| | - Angelika Kronhardt
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Monica Rolando
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
- UFR Médecine, IFR50, Université de Nice-Sophia Antipolis, Nice, France
| | - Gilles Flatau
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
| | - Emmanuel Lemichez
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
- UFR Médecine, IFR50, Université de Nice-Sophia Antipolis, Nice, France
- * E-mail: (EL); (RB)
| | - Roland Benz
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- * E-mail: (EL); (RB)
| |
Collapse
|
33
|
Kaiser E, Böhm N, Ernst K, Langer S, Schwan C, Aktories K, Popoff M, Fischer G, Barth H. FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 inhibits membrane translocation of the toxin in mammalian cells. Cell Microbiol 2012; 14:1193-205. [PMID: 22420783 DOI: 10.1111/j.1462-5822.2012.01788.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The binary Clostridium botulinum C2 toxin consists of the binding/translocation component C2IIa and the separate enzyme component C2I. C2IIa delivers C2I into the cytosol of eukaryotic target cells where C2I ADP-ribosylates actin. After receptor-mediated endocytosis of the C2IIa/C2I complex, C2IIa forms pores in membranes of acidified early endosomes and unfolded C2I translocates through the pores into the cytosol. Membrane translocation of C2I is facilitated by the activities of host cell chaperone Hsp90 and the peptidyl-prolyl cis/trans isomerase (PPIase) cyclophilin A. Here, we demonstrated that Hsp90 co-precipitates with C2I from lysates of C2 toxin-treated cells and identified the FK506-binding protein (FKBP) 51 as a novel interaction partner of C2I in vitro and in intact mammalian cells. Prompted by this finding, we used the specific pharmacological inhibitor FK506 to investigate whether the PPIase activity of FKBPs plays a role during membrane translocation of C2 toxin. Treatment of cells with FK506 protected cultured cells from intoxication with C2 toxin. Moreover, FK506 inhibited the pH-dependent translocation of C2I across membranes into the cytosol but did not interfere with the enzyme activity of C2I or binding of C2 toxin to cells. Furthermore, FK506 treatment delayed intoxication with the related binary actin ADP-ribosylating toxins from Clostridium perfringens (iota toxin) and Clostridium difficile (CDT) but not with the Rho-glucosylating Clostridium difficile toxin A (TcdA). In conclusion, our results support the hypothesis that clostridial binary actin-ADP-ribosylating toxins share a specific FKBP-dependent translocation mechanism during their uptake into mammalian cells.
Collapse
Affiliation(s)
- Eva Kaiser
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Stiles BG, Wigelsworth DJ, Popoff MR, Barth H. Clostridial binary toxins: iota and C2 family portraits. Front Cell Infect Microbiol 2011; 1:11. [PMID: 22919577 PMCID: PMC3417380 DOI: 10.3389/fcimb.2011.00011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/10/2011] [Indexed: 02/04/2023] Open
Abstract
There are many pathogenic Clostridium species with diverse virulence factors that include protein toxins. Some of these bacteria, such as C. botulinum, C. difficile, C. perfringens, and C. spiroforme, cause enteric problems in animals as well as humans. These often fatal diseases can partly be attributed to binary protein toxins that follow a classic AB paradigm. Within a targeted cell, all clostridial binary toxins destroy filamentous actin via mono-ADP-ribosylation of globular actin by the A component. However, much less is known about B component binding to cell-surface receptors. These toxins share sequence homology amongst themselves and with those produced by another Gram-positive, spore-forming bacterium also commonly associated with soil and disease: Bacillus anthracis. This review focuses upon the iota and C2 families of clostridial binary toxins and includes: (1) basics of the bacterial source; (2) toxin biochemistry; (3) sophisticated cellular uptake machinery; and (4) host–cell responses following toxin-mediated disruption of the cytoskeleton. In summary, these protein toxins aid diverse enteric species within the genus Clostridium.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, Chambersburg, PA, USA; Integrated Toxicology Division, Medical Research Institute of Infectious Diseases, Frederick, MD, USA.
| | | | | | | |
Collapse
|
35
|
Tailored ß-cyclodextrin blocks the translocation pores of binary exotoxins from C. botulinum and C. perfringens and protects cells from intoxication. PLoS One 2011; 6:e23927. [PMID: 21887348 PMCID: PMC3161792 DOI: 10.1371/journal.pone.0023927] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/31/2011] [Indexed: 11/19/2022] Open
Abstract
Background Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin are binary exotoxins, which ADP-ribosylate actin in the cytosol of mammalian cells and thereby destroy the cytoskeleton. C2 and iota toxin consists of two individual proteins, an enzymatic active (A-) component and a separate receptor binding and translocation (B-) component. The latter forms a complex with the A-component on the surface of target cells and after receptor-mediated endocytosis, it mediates the translocation of the A-component from acidified endosomal vesicles into the cytosol. To this end, the B-components form heptameric pores in endosomal membranes, which serve as translocation channels for the A-components. Methodology/Principal Findings Here we demonstrate that a 7-fold symmetrical positively charged ß-cyclodextrin derivative, per-6-S-(3-aminomethyl)benzylthio-ß-cyclodextrin, protects cultured cells from intoxication with C2 and iota toxins in a concentration-dependent manner starting at low micromolar concentrations. We discovered that the compound inhibited the pH-dependent membrane translocation of the A-components of both toxins in intact cells. Consistently, the compound strongly blocked transmembrane channels formed by the B-components of C2 and iota toxin in planar lipid bilayers in vitro. With C2 toxin, we consecutively ruled out all other possible inhibitory mechanisms showing that the compound did not interfere with the binding of the toxin to the cells or with the enzyme activity of the A-component. Conclusions/Significance The described ß-cyclodextrin derivative was previously identified as one of the most potent inhibitors of the binary lethal toxin of Bacillus anthracis both in vitro and in vivo, implying that it might represent a broad-spectrum inhibitor of binary pore-forming exotoxins from pathogenic bacteria.
Collapse
|
36
|
Kronhardt A, Rolando M, Beitzinger C, Stefani C, Leuber M, Flatau G, Popoff MR, Benz R, Lemichez E. Cross-reactivity of anthrax and C2 toxin: protective antigen promotes the uptake of botulinum C2I toxin into human endothelial cells. PLoS One 2011; 6:e23133. [PMID: 21850257 PMCID: PMC3151279 DOI: 10.1371/journal.pone.0023133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 07/13/2011] [Indexed: 01/03/2023] Open
Abstract
Binary toxins are among the most potent bacterial protein toxins performing a cooperative mode of translocation and exhibit fatal enzymatic activities in eukaryotic cells. Anthrax and C2 toxin are the most prominent examples for the AB7/8 type of toxins. The B subunits bind both host cell receptors and the enzymatic A polypeptides to trigger their internalization and translocation into the host cell cytosol. C2 toxin is composed of an actin ADP-ribosyltransferase (C2I) and C2II binding subunits. Anthrax toxin is composed of adenylate cyclase (EF) and MAPKK protease (LF) enzymatic components associated to protective antigen (PA) binding subunit. The binding and translocation components anthrax protective antigen (PA63) and C2II of C2 toxin share a sequence homology of about 35%, suggesting that they might substitute for each other. Here we show by conducting in vitro measurements that PA63 binds C2I and that C2II can bind both EF and LF. Anthrax edema factor (EF) and lethal factor (LF) have higher affinities to bind to channels formed by C2II than C2 toxin's C2I binds to anthrax protective antigen (PA63). Furthermore, we could demonstrate that PA in high concentration has the ability to transport the enzymatic moiety C2I into target cells, causing actin modification and cell rounding. In contrast, C2II does not show significant capacity to promote cell intoxication by EF and LF. Together, our data unveiled the remarkable flexibility of PA in promoting C2I heterologous polypeptide translocation into cells.
Collapse
Affiliation(s)
| | - Monica Rolando
- Inserm, U895, Toxines Microbiennes dans la Relation Hôte-Pathogènes, Batiment Archimed, Nice, France
- Faculté de Médecine, Institut Fédératif de Recherche 50, Université de Nice-Sophia Antipolis, Nice, France
| | | | - Caroline Stefani
- Inserm, U895, Toxines Microbiennes dans la Relation Hôte-Pathogènes, Batiment Archimed, Nice, France
| | - Michael Leuber
- Rudolf-Virchow-Center, University of Würzburg, Würzburg, Germany
| | - Gilles Flatau
- Inserm, U895, Toxines Microbiennes dans la Relation Hôte-Pathogènes, Batiment Archimed, Nice, France
| | - Michel R. Popoff
- Unité des Bactéries Anaerobies et Toxines, Institut Pasteur, Paris, France
| | - Roland Benz
- Rudolf-Virchow-Center, University of Würzburg, Würzburg, Germany
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- * E-mail: (EL); (RB)
| | - Emmanuel Lemichez
- Inserm, U895, Toxines Microbiennes dans la Relation Hôte-Pathogènes, Batiment Archimed, Nice, France
- Faculté de Médecine, Institut Fédératif de Recherche 50, Université de Nice-Sophia Antipolis, Nice, France
- Laboratoire central de bactériologie, Centre Hospitalier Universitaire de Nice, Nice, France
- * E-mail: (EL); (RB)
| |
Collapse
|
37
|
Barth H. Exploring the role of host cell chaperones/PPIases during cellular up-take of bacterial ADP-ribosylating toxins as basis for novel pharmacological strategies to protect mammalian cells against these virulence factors. Naunyn Schmiedebergs Arch Pharmacol 2010; 383:237-45. [PMID: 21120455 DOI: 10.1007/s00210-010-0581-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/10/2010] [Indexed: 01/31/2023]
Abstract
Bacterial exotoxins exploit protein transport pathways of their mammalian target cells to deliver their enzymatic active moieties into the cytosol. There, they modify their specific substrate molecules resulting in cell damage and the clinical symptoms characteristic for each individual toxin. We have investigated the cellular uptake of the binary actin ADP-ribosylating C2 toxin from Clostridium botulinum and the binary lethal toxin from Bacillus anthracis, a metalloprotease. Both toxins are composed of a binding/translocation component and a separate enzyme component. During cellular uptake, the binding/translocation components form pores in membranes of acidified endosomes, and the enzyme components translocate as unfolded proteins through the pores into the cytosol. We found by using specific pharmacological inhibitors that the host cell chaperone Hsp90 and the peptidyl-prolyl cis/trans isomerase cyclophilin A are crucial for membrane translocation of the enzyme component of the C2 toxin but not of the lethal toxin, although the structures of the binding/translocation components and the overall uptake mechanisms of both toxins are widely comparable. In conclusion, the new findings imply that Hsp90 and cyclophilin function selectively in promoting translocation of certain bacterial toxins depending on the enzyme domains of the individual toxins. The targeted pharmacological inhibition of individual host cell chaperones/PPIases prevents uptake of certain bacterial exotoxins into the cytosol of mammalian cells and thus protects cells from intoxication. Such substances could represent attractive lead substances for development of novel therapeutics to prevent toxic effects during infection with toxin-producing bacteria.
Collapse
Affiliation(s)
- Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
38
|
Gibert M, Monier MN, Ruez R, Hale ML, Stiles BG, Benmerah A, Johannes L, Lamaze C, Popoff MR. Endocytosis and toxicity of clostridial binary toxins depend on a clathrin-independent pathway regulated by Rho-GDI. Cell Microbiol 2010; 13:154-70. [DOI: 10.1111/j.1462-5822.2010.01527.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Abstract
Clostridia produce the highest number of toxins of any type of bacteria and are involved in severe diseases in humans and other animals. Most of the clostridial toxins are pore-forming toxins responsible for gangrenes and gastrointestinal diseases. Among them, perfringolysin has been extensively studied and it is the paradigm of the cholesterol-dependent cytolysins, whereas Clostridium perfringens epsilon-toxin and Clostridium septicum alpha-toxin, which are related to aerolysin, are the prototypes of clostridial toxins that form small pores. Other toxins active on the cell surface possess an enzymatic activity, such as phospholipase C and collagenase, and are involved in the degradation of specific cell-membrane or extracellular-matrix components. Three groups of clostridial toxins have the ability to enter cells: large clostridial glucosylating toxins, binary toxins and neurotoxins. The binary and large clostridial glucosylating toxins alter the actin cytoskeleton by enzymatically modifying the actin monomers and the regulatory proteins from the Rho family, respectively. Clostridial neurotoxins proteolyse key components of neuroexocytosis. Botulinum neurotoxins inhibit neurotransmission at neuromuscular junctions, whereas tetanus toxin targets the inhibitory interneurons of the CNS. The high potency of clostridial toxins results from their specific targets, which have an essential cellular function, and from the type of modification that they induce. In addition, clostridial toxins are useful pharmacological and biological tools.
Collapse
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Bactéries Anaérobies et Toxines, 75724 Paris cedex 15, France.
| | | |
Collapse
|
40
|
Kaiser E, Pust S, Kroll C, Barth H. Cyclophilin A facilitates translocation of theClostridium botulinumC2 toxin across membranes of acidified endosomes into the cytosol of mammalian cells. Cell Microbiol 2009; 11:780-95. [DOI: 10.1111/j.1462-5822.2009.01291.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Zarebski LM, Vaughan K, Sidney J, Peters B, Grey H, Janda KD, Casadevall A, Sette A. Analysis of epitope information related to Bacillus anthracis and Clostridium botulinum. Expert Rev Vaccines 2008; 7:55-74. [PMID: 18251694 DOI: 10.1586/14760584.7.1.55] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have reviewed the information about epitopes of immunological interest from Clostridium botulinum and Bacillus anthracis, by mining the Immune Epitope Database and Analysis Resource. For both pathogens, the vast majority of epitopes reported to date are derived from a single protein: the protective antigen of B. anthracis and the neurotoxin type A of C. botulinum. A detailed analysis of the data was performed to characterize the function, localization and conservancy of epitopes identified as neutralizing and/or protective. In order to broaden the scope of this analysis, we have also included data describing immune responses against defined fragments (over 50 amino acids long) of the relevant antigens. The scarce information on T-cell determinants and on epitopes from other antigens besides the toxins, highlights a gap in our knowledge and identifies areas for future research. Despite this, several distinct structures at the epitope and fragment level are described herein, which could be potential additions to future vaccines or targets of novel immunotherapeutics and diagnostic reagents.
Collapse
Affiliation(s)
- Laura M Zarebski
- Immune Epitope Database and Analysis Resource, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 9203,7 USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lang AE, Neumeyer T, Sun J, Collier RJ, Benz R, Aktories K. Amino acid residues involved in membrane insertion and pore formation of Clostridium botulinum C2 toxin. Biochemistry 2008; 47:8406-13. [PMID: 18636745 DOI: 10.1021/bi800615g] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The actin-ADP-ribosylating Clostridium botulinum C2 toxin consists of the enzymatic component C2I and the binding component C2II. C2II forms heptameric channels involved in translocation of the enzymatic component into the target cell. On the basis of the heptameric toxin channel, we studied functional consequences of mutagenesis of amino acid residues probably lining the lumen of the toxin channel. Substitution of glutamate-399 of C2II with alanine blocked channel formation and cytotoxicity of the holotoxin. Although cytotoxicity and rounding up of cells by C2I were completely blocked by exchange of phenylalanine-428 with alanine, the mutation increased potassium conductance caused by C2II in artificial membranes by about 2-3-fold over that of wild-type toxin. In contrast to its effects on single-channel potassium conductance in artificial membranes, the F428A mutation delayed the kinetics of pore formation in lipid vesicles and inhibited the activity of C2II in promoting (86)Rb (+) release from preloaded intact cells after pH shift of the medium. Moreover, F428A C2II exhibited delayed and diminished formation of C2II aggregates at low pH, indicating major changes of the biophysical properties of the toxin. The data indicate that phenylalanine-428 of C2II plays a major role in conformational changes occurring during pore formation of the binding component of C2II.
Collapse
Affiliation(s)
- Alexander E Lang
- Institut für Experimentelle and Klinische Pharmakologie and Toxikologie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Neumeyer T, Schiffler B, Maier E, Lang AE, Aktories K, Benz R. Clostridium botulinum C2 Toxin. J Biol Chem 2008; 283:3904-14. [DOI: 10.1074/jbc.m709807200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
44
|
Barth H, Aktories K, Popoff MR, Stiles BG. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 2004; 68:373-402, table of contents. [PMID: 15353562 PMCID: PMC515256 DOI: 10.1128/mmbr.68.3.373-402.2004] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Certain pathogenic species of Bacillus and Clostridium have developed unique methods for intoxicating cells that employ the classic enzymatic "A-B" paradigm for protein toxins. The binary toxins produced by B. anthracis, B. cereus, C. botulinum, C. difficile, C. perfringens, and C. spiroforme consist of components not physically associated in solution that are linked to various diseases in humans, animals, or insects. The "B" components are synthesized as precursors that are subsequently activated by serine-type proteases on the targeted cell surface and/or in solution. Following release of a 20-kDa N-terminal peptide, the activated "B" components form homoheptameric rings that subsequently dock with an "A" component(s) on the cell surface. By following an acidified endosomal route and translocation into the cytosol, "A" molecules disable a cell (and host organism) via disruption of the actin cytoskeleton, increasing intracellular levels of cyclic AMP, or inactivation of signaling pathways linked to mitogen-activated protein kinase kinases. Recently, B. anthracis has gleaned much notoriety as a biowarfare/bioterrorism agent, and of primary interest has been the edema and lethal toxins, their role in anthrax, as well as the development of efficacious vaccines and therapeutics targeting these virulence factors and ultimately B. anthracis. This review comprehensively surveys the literature and discusses the similarities, as well as distinct differences, between each Clostridium and Bacillus binary toxin in terms of their biochemistry, biology, genetics, structure, and applications in science and medicine. The information may foster future studies that aid novel vaccine and drug development, as well as a better understanding of a conserved intoxication process utilized by various gram-positive, spore-forming bacteria.
Collapse
Affiliation(s)
- Holger Barth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Otto-Krayer-Haus, Albertstrasse 25, D-79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
45
|
Abstract
The focus of this article is on the cellular uptake mechanism of the family of binary actin ADP-ribosylating toxins from clostridia. These toxins are special-type AB toxins, because they are composed of two nonlinked proteins, which have to assemble on the surface of eukaryotic cells to act cytotoxically. The enzymatically active component (A), ADP-ribosylates G-actin in the cytosol of target cells. This leads to a complete depolymerization of the actin filaments and, thereby, to rounding up of cultured cells. The second component of these toxins, the binding/translocation component (B), mediates the transport of the enzyme component into the cytosol.
Collapse
Affiliation(s)
- H Barth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Otto-Krayer-Haus, Albertstrasse 25, 79104, Freiburg, Germany.
| |
Collapse
|
46
|
Aktories K, Barth H. Clostridium botulinum C2 toxin--new insights into the cellular up-take of the actin-ADP-ribosylating toxin. Int J Med Microbiol 2004; 293:557-64. [PMID: 15149031 DOI: 10.1078/1438-4221-00305] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clostridium botulinum C2 toxin is a member of the family of binary actin-ADP-ribosylating toxins. It consists of the enzyme component C2I, and the separated binding/translocation component C2II. Proteolytically activated C2II forms heptamers and binds to a carbohydrate cell surface receptor. After attachment of C2I, the toxin complex is endocytosed to reach early endosomes. At low pH of endosomes, C2II-heptamers insert into the membrane, form pores and deliver C2I into the cytosol. Here, C2I ADP-ribosylates actin at Arg177 to block actin polymerization and to induce depolymerization of actin filaments. The mini-review describes main properties of C2 toxin and discusses new findings on the involvement of chaperones in the up-take process of the toxin.
Collapse
Affiliation(s)
- Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| | | |
Collapse
|
47
|
Aktories K, Barth H. The actin-ADP-ribosylating Clostridium botulinum C2 toxin. Anaerobe 2004; 10:101-5. [PMID: 16701506 DOI: 10.1016/j.anaerobe.2003.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Accepted: 10/23/2003] [Indexed: 11/23/2022]
Abstract
Clostridium botulinum C2 toxin is the prototype of actin-ADP-ribosylating toxins. The toxin consists of the enzyme component C2I and the separated binding/translocation component C2II. C2II is proteolytically activated to form heptamers, which bind the enzyme component. After endocytosis of the receptor-toxin complex, the enzyme component enters the cytosol from an acidic endosomal compartment to modify G-actin at arginine177. Recent data indicate that chaperons are involved in the translocation process of the toxin.
Collapse
Affiliation(s)
- Klaus Aktories
- Institut für Experimentelle und Klinische, Pharmakologie und Toxikologie, Albert-Ludwigs, Universität Freiburg, Albertstrasse 25, D-79104 Freiburg, Germany.
| | | |
Collapse
|
48
|
Bachmeyer C, Orlik F, Barth H, Aktories K, Benz R. Mechanism of C2-toxin Inhibition by Fluphenazine and Related Compounds: Investigation of their Binding Kinetics to the C2II-channel using the Current Noise Analysis. J Mol Biol 2003; 333:527-40. [PMID: 14556742 DOI: 10.1016/j.jmb.2003.08.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The binding component C2II of the binary actin ADP-ribosylating C2-toxin from Clostridium botulinum is essential for intoxication of target cells. Activation by a protease leads to channel formation and this is presumably required for the transport of the toxic C2I component into cells. The C2II-channel is cation selective and contains a binding site for fluphenazine and structurally related compounds. Ion transport through C2II and in vivo intoxication is blocked when the sites are occupied by the ligands. C2II was reconstituted into artificial lipid bilayer membranes and formed ion permeable channels. The binding constant of chloroquine, primaquine, quinacrine, chloropromazine and fluphenazine to the C2II-channel was determined using titration experiments, which resulted in its block. The ligand-induced current noise of the C2II-channels was investigated using fast Fourier transformation. The noise of the open channels had a rather small spectral density, which was a function of the inverse frequency up to about 100 Hz. Upon addition of ligands to the aqueous phase the current through C2II decreased in a dose-dependent manner. Simultaneously, the spectral density of the current noise increased drastically and its frequency dependence was of Lorentzian type, which was caused by the on and off-reactions of the ligand-mediated channel block. The ligand-induced current noise of C2II was used for the evaluation of the binding kinetics for different ligands to the channel. The on-rate constant of ligand binding was between 10(7) and 10(9) M(-1) s(-1) and was dependent on the ionic strength of the aqueous phase. The off-rate varied between about 10 s(-1) and 3900 s(-1) and depended on the structure of the ligand. The role of structural requirements for the effective block of C2II by the different ligands is discussed.
Collapse
Affiliation(s)
- Christoph Bachmeyer
- CNR-ITC Istituto di Biofisica-Sezione di Trento, Via Sommarive 18, I-38050, Povo, Italy
| | | | | | | | | |
Collapse
|
49
|
Haug G, Leemhuis J, Tiemann D, Meyer DK, Aktories K, Barth H. The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. J Biol Chem 2003; 278:32266-74. [PMID: 12805360 DOI: 10.1074/jbc.m303980200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clostridium botulinum C2 toxin is the prototype of the binary actin-ADP-ribosylating toxins and consists of the binding component C2II and the enzyme component C2I. The activated binding component C2IIa forms heptamers, which bind to carbohydrates on the cell surface and interact with the enzyme component C2I. This toxin complex is taken up by receptor-mediated endocytosis. In acidic endosomes, heptameric C2IIa forms pores and mediates the translocation of C2I into the cytosol. We report that the heat shock protein (Hsp) 90-specific inhibitors, geldanamycin or radicicol, block intoxication of Vero cells, rat astrocytes, and HeLa cells by C2 toxin. ADP-ribosylation of actin in the cytosol of toxin-treated cells revealed that less active C2I was translocated into the cytosol after treatment with Hsp90 inhibitors. Under control conditions, C2I was localized in the cytosol of toxin-treated rat astrocytes, whereas geldanamycin blocked the cytosolic distribution of C2I. At low extracellular pH (pH 4.5), which allows the direct translocation of C2I via C2IIa heptamers across the cell membrane into the cytosol, Hsp90 inhibitors retarded intoxication by C2I. Geldanamycin did not affect toxin binding, endocytosis, and pore formation by C2IIa. The ADP-ribosyltransferase activity of C2I was not affected by Hsp90 inhibitors in vitro. The cytotoxic actions of the actin-ADP-ribosylating Clostridium perfringens iota toxin and the Rho-ADP-ribosylating C2-C3 fusion toxin was similarly blocked by Hsp90 inhibitors. In contrast, radicicol and geldanamycin had no effect on anthrax lethal toxin-induced cytotoxicity of J774-A1 macrophage-like cells or on cytotoxic effects of the glucosylating Clostridium difficile toxin B in Vero cells. The data indicate that Hsp90 is essential for the membrane translocation of ADP-ribosylating toxins delivered by C2II.
Collapse
Affiliation(s)
- Gerd Haug
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Albertstrasse 25 (Otto-Krayer-Haus), D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Marvaud JC, Stiles BG, Chenal A, Gillet D, Gibert M, Smith LA, Popoff MR. Clostridium perfringens iota toxin. Mapping of the Ia domain involved in docking with Ib and cellular internalization. J Biol Chem 2002; 277:43659-66. [PMID: 12221101 DOI: 10.1074/jbc.m207828200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clostridium perfringens iota toxin consists of two unlinked proteins. The binding component (Ib) is required to internalize into cells an enzymatic component (Ia) that ADP-ribosylates G-actin. To characterize the Ia domain that interacts with Ib, fusion proteins were constructed between the C. botulinum C3 enzyme, which ADP-ribosylates Rho, and various truncated versions of Ia. These chimeric molecules retained the wild type ADP-ribosyltransferase activity specific for Rho and were recognized by antibodies against C3 enzyme and Ia. Internalization of each chimera into Vero cells was assessed by measuring the disorganization of the actin cytoskeleton and intracellular ADP-ribosylation of Rho. Fusion proteins containing C3 linked to the C terminus of Ia were transported most efficiently into cells like wild type Ia in an Ib-dependent manner that was blocked by bafilomycin A1. The minimal Ia fragment that promoted translocation of Ia-C3 chimeras into cells consisted of 128 central residues (129-257). These findings revealed that iota toxin is a suitable system for mediating the entry of heterologous proteins such as C3 into cells.
Collapse
|