1
|
López-Ramírez LA, Martínez-Álvarez JA, Martínez-Duncker I, Lozoya-Pérez NE, Mora-Montes HM. Silencing of Sporothrix schenckii GP70 Reveals Its Contribution to Fungal Adhesion, Virulence, and the Host-Fungus Interaction. J Fungi (Basel) 2024; 10:302. [PMID: 38786657 PMCID: PMC11121839 DOI: 10.3390/jof10050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Sporothrix schenckii is one of the etiological agents of sporotrichosis, a cutaneous and subcutaneous infection distributed worldwide. Like other medically relevant fungi, its cell wall is a molecular scaffold to display virulence factors, such as protective pigments, hydrolytic enzymes, and adhesins. Cell wall proteins with adhesive properties have been previously reported, but only a handful of them have been identified and characterized. One of them is Gp70, an abundant cell wall protein mainly found on the surface of yeast-like cells. Since the protein also has a role in the activity of 3-carboxy-cis,cis-muconate cyclase and its abundance is low in highly virulent strains, its role in the Sporothrix-host interaction remains unclear. Here, a set of GP70-silenced strains was generated, and the molecular and phenotypical characterization was performed. The results showed that mutants with high silencing levels showed a significant reduction in the adhesion to laminin and fibrinogen, enzyme activity, and defects in the cell wall composition, which included reduced mannose, rhamnose, and protein content, accompanied by an increment in β-1,3-glucans levels. The cell wall N-linked glycan content was significantly reduced. These strains induced poor TNFα and IL-6 levels when interacting with human peripheral blood mononuclear cells in a dectin-1-, TLR2-, and TLR4-dependent stimulation. The IL-1β and IL-10 levels were significantly higher and were stimulated via dectin-1. Phagocytosis and stimulation of neutrophil extracellular traps by human granulocytes were increased in highly GP70-silenced strains. Furthermore, these mutants showed virulence attenuation in the invertebrate model Galleria mellonella. Our results demonstrate that Gp70 is a versatile protein with adhesin properties, is responsible for the activity of 3-carboxy-cis,cis-muconate cyclase, and is relevant for the S. schenckii-host interaction.
Collapse
Affiliation(s)
- Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca Mor. 62209, Mexico;
| | - Nancy E. Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato Gto. 36050, Mexico; (L.A.L.-R.); (J.A.M.-Á.); (N.E.L.-P.)
| |
Collapse
|
2
|
Santos ALS, Silva BA, da Cunha MML, Branquinha MH, Mello TP. Fibronectin-binding molecules of Scedosporium apiospermum: focus on adhesive events. Braz J Microbiol 2023; 54:2577-2585. [PMID: 37442880 PMCID: PMC10689634 DOI: 10.1007/s42770-023-01062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Scedosporium apiospermum is a widespread, emerging, and multidrug-resistant filamentous fungus that can cause localized and disseminated infections. The initial step in the infection process involves the adhesion of the fungus to host cells and/or extracellular matrix components. However, the mechanisms of adhesion involving surface molecules in S. apiospermum are not well understood. Previous studies have suggested that the binding of fungal receptors to fibronectin enhances its ability to attach to and infect host cells. The present study investigated the effects of fibronectin on adhesion events of S. apiospermum. The results revealed that conidial cells were able to bind to both immobilized and soluble human fibronectin in a typically dose-dependent manner. Moreover, fibronectin binding was virtually abolished in trypsin-treated conidia, suggesting the proteinaceous nature of the binding site. Western blotting assay, using fibronectin and anti-fibronectin antibody, evidenced 7 polypeptides with molecular masses ranging from 55 to 17 kDa in both conidial and mycelial extracts. Fibronectin-binding molecules were localized by immunofluorescence and immunocytochemistry microscopies at the cell wall and in intracellular compartments of S. apiospermum cells. Furthermore, a possible function for the fibronectin-like molecules of S. apiospermum in the interaction with host lung cells was assessed. Conidia pre-treated with soluble fibronectin showed a significant reduction in adhesion to either epithelial or fibroblast lung cells in a classically dose-dependent manner. Similarly, the pre-treatment of the lung cells with anti-fibronectin antibodies considerably diminished the adhesion. Collectively, the results demonstrated the presence of fibronectin-binding molecules in S. apiospermum cells and their role in adhesive events.
Collapse
Affiliation(s)
- André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
- Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), UFRJ, Rio de Janeiro, Brazil.
| | - Bianca A Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense (UFF), Nova Friburgo, Rio de Janeiro, Brazil
| | - Marcel M L da Cunha
- Núcleo Multidisciplinar de Pesquisa UFRJ-Xerém em Biologia (NUMPEX-BIO), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Thaís P Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Ortiz-Ramírez JA, Cuéllar-Cruz M, Villagómez-Castro JC, López-Romero E. Fungal Glycosidases in Sporothrix Species and Candida albicans. J Fungi (Basel) 2023; 9:919. [PMID: 37755027 PMCID: PMC10532485 DOI: 10.3390/jof9090919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Glycoside hydrolases (GHs) are enzymes that participate in many biological processes of fungi and other organisms by hydrolyzing glycosidic linkages in glycosides. They play fundamental roles in the degradation of carbohydrates and the assembly of glycoproteins and are important subjects of studies in molecular biology and biochemistry. Based on amino acid sequence similarities and 3-dimensional structures in the carbohydrate-active enzyme (CAZy), they have been classified in 171 families. Members of some of these families also exhibit the activity of trans-glycosydase or glycosyl transferase (GT), i.e., they create a new glycosidic bond in a substrate instead of breaking it. Fungal glycosidases are important for virulence by aiding tissue adhesion and colonization, nutrition, immune evasion, biofilm formation, toxin release, and antibiotic resistance. Here, we review fungal glycosidases with a particular emphasis on Sporothrix species and C. albicans, two well-recognized human pathogens. Covered issues include a brief account of Sporothrix, sporotrichosis, the different types of glycosidases, their substrates, and mechanism of action, recent advances in their identification and characterization, their potential biotechnological applications, and the limitations and challenges of their study given the rather poor available information.
Collapse
Affiliation(s)
| | | | | | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| |
Collapse
|
4
|
Lin P, Zhang J, Xie G, Li J, Guo C, Lin H, Zhang Y. Innate Immune Responses to Sporothrix schenckii: Recognition and Elimination. Mycopathologia 2022; 188:71-86. [PMID: 36329281 DOI: 10.1007/s11046-022-00683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
Sporothrix schenckii (S. schenckii), a ubiquitous thermally dimorphic fungus, is the etiological agent of sporotrichosis, affecting immunocompromised and immunocompetent individuals. Despite current antifungal regimens, sporotrichosis results in prolonged treatment and significant mortality rates in the immunosuppressed population. The innate immune system forms the host's first and primary line of defense against S. schenckii, which has a bi-layered cell wall structure. Many components act as pathogen-associated molecular patterns (PAMPs) in pathogen-host interactions. PAMPs are recognized by pattern recognition receptors (PRRs) such as toll-like receptors, C-type lectin receptors, and complement receptors, triggering innate immune cells such as neutrophils, macrophages, and dendritic cells to phagocytize or produce mediators, contributing to S. schenckii elimination. The ultrastructure of S. schenckii and pathogen-host interactions, including PRRs and innate immune cells, are summarized in this review, promoting a better understanding of the innate immune response to S. schenckii and aiding in the development of protective and therapeutic strategies to combat sporotrichosis.
Collapse
Affiliation(s)
- Peng Lin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianfeng Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guinan Xie
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junchen Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenqi Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyue Lin
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Yu Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| |
Collapse
|
5
|
Vasselli JG, Shaw BD. Fungal spore attachment to substrata. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
García-Carnero LC, Martínez-Álvarez JA. Virulence Factors of Sporothrix schenckii. J Fungi (Basel) 2022; 8:jof8030318. [PMID: 35330320 PMCID: PMC8949611 DOI: 10.3390/jof8030318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
Sporothrix schenckii is one of the etiological agents of sporotrichosis. In this review, we discuss the virulence factors that have been proven to participate in the S. schenckii-host interaction. Among these known factors, we can find cell wall glycoproteins, adhesins, melanin, extracellular vesicles, and dimorphism. Furthermore, the morphological transition of S. schenckii in response to environmental conditions such as pH and temperature represents a means by which the fungus is able to establish mycosis in mammals. One of the key features in the development of sporotrichosis is the adhesion of the fungus to the host extracellular matrix. This event represents the first step to developing the mycosis, which involves adhesins such as the glycoproteins Gp70, Hsp60, and Pap1, which play a key role during the infection. The production of melanin helps the fungus to survive longer in the tissues and to neutralize or diminish many of the host’s attacks, which is why it is also considered a key factor in pathogenesis. Today, the study of human fungal pathogens’ virulence factors is a thriving area of research. Although we know some of the virulence factors in S. schenckii, much remains to be understood about the complex process of sporotrichosis development and the factors involved during the infection.
Collapse
|
7
|
Kumari A, Tripathi AH, Gautam P, Gahtori R, Pande A, Singh Y, Madan T, Upadhyay SK. Adhesins in the virulence of opportunistic fungal pathogens of human. Mycology 2021; 12:296-324. [PMID: 34900383 PMCID: PMC8654403 DOI: 10.1080/21501203.2021.1934176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aspergillosis, candidiasis, and cryptococcosis are the most common cause of mycoses-related disease and death among immune-compromised patients. Adhesins are cell-surface exposed proteins or glycoproteins of pathogens that bind to the extracellular matrix (ECM) constituents or mucosal epithelial surfaces of the host cells. The forces of interaction between fungal adhesins and host tissues are accompanied by ligand binding, hydrophobic interactions and protein-protein aggregation. Adherence is the primary and critical step involved in the pathogenesis; however, there is limited information on fungal adhesins compared to that on the bacterial adhesins. Except a few studies based on screening of proteome for adhesin identification, majority are based on characterization of individual adhesins. Recently, based on their characteristic signatures, many putative novel fungal adhesins have been predicted using bioinformatics algorithms. Some of these novel adhesin candidates have been validated by in-vitro studies; though, most of them are yet to be characterised experimentally. Morphotype specific adhesin expression as well as tissue tropism are the crucial determinants for a successful adhesion process. This review presents a comprehensive overview of various studies on fungal adhesins and discusses the targetability of the adhesins and adherence phenomenon, for combating the fungal infection in a preventive or therapeutic mode.
Collapse
Affiliation(s)
- Amrita Kumari
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Ankita H Tripathi
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Poonam Gautam
- ICMR-National Institute of Pathology, New Delhi, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Amit Pande
- Directorate of Coldwater Fisheries Research (DCFR), Nainital, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | - Taruna Madan
- ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| |
Collapse
|
8
|
García-Carnero LC, Salinas-Marín R, Lozoya-Pérez NE, Wrobel K, Wrobel K, Martínez-Duncker I, Niño-Vega GA, Mora-Montes HM. The Heat Shock Protein 60 and Pap1 Participate in the Sporothrixschenckii-Host Interaction. J Fungi (Basel) 2021; 7:jof7110960. [PMID: 34829247 PMCID: PMC8620177 DOI: 10.3390/jof7110960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Sporothrixschenckii is one of the etiological agents of sporotrichosis, a worldwide-distributed subcutaneous mycosis. Its cell wall contains a glycoconjugate composed of rhamnose, mannose, glucuronic acid, and proteins, named peptidorhamnomannan, which harbors important Sporothrix-specific immunogenic epitopes. Although the peptidorhamnomannan carbohydrate moiety has been extensively studied, thus far, little is known about the protein core. Here, using LC-MS/MS, we analyzed the S.schenckii peptidorhamnomannan peptide fraction and generated mass signals of 325 proteins, most of them likely to be moonlighting proteins. Among the identified proteins, chaperonin GroEL/Hsp60 and the uncharacterized protein Pap1 were selected for further analysis. Both proteins were heterologously expressed in bacteria, and they showed adhesive properties to the extracellular matrix proteins laminin, elastin, fibrinogen, and fibronectin, although Pap1 also was bound to type-I and type-II collagen. The inoculation of concentrations higher than 40 μg of these proteins, separately, increased immune effectors in the hemolymph of Galleriamellonella larvae and protected animals from an S.schenckii lethal challenge. These observations were confirmed when yeast-like cells, pre-incubated with anti-rHsp60 or anti-rPap1 antibodies were used to inoculate larvae. The animals inoculated with pretreated cells showed increased survival rates when compared to the control groups. In conclusion, we report that Hsp60 and Pap1 are part of the cell wall peptidorhamnomannan, can bind extracellular matrix components, and contribute to the S.schenckii virulence. To our knowledge, this is the first report about moonlighting protein in the S.schenckii cell wall with an important role during the pathogen-host interaction.
Collapse
Affiliation(s)
- Laura C. García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (L.C.G.-C.); (N.E.L.-P.); (G.A.N.-V.)
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mor., Mexico; (R.S.-M.); (I.M.-D.)
| | - Nancy E. Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (L.C.G.-C.); (N.E.L.-P.); (G.A.N.-V.)
| | - Katarzyna Wrobel
- Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (K.W.); (K.W.)
| | - Kazimierz Wrobel
- Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (K.W.); (K.W.)
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mor., Mexico; (R.S.-M.); (I.M.-D.)
| | - Gustavo A. Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (L.C.G.-C.); (N.E.L.-P.); (G.A.N.-V.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Gto., Mexico; (L.C.G.-C.); (N.E.L.-P.); (G.A.N.-V.)
- Correspondence: ; Tel.: +52-473-7320006 (ext. 8193)
| |
Collapse
|
9
|
Mora-Montes HM, Dantas ADS, Trujillo-Esquivel E, de Souza Baptista AR, Lopes-Bezerra LM. Current progress in the biology of members of the Sporothrix schenckii complex following the genomic era. FEMS Yeast Res 2015; 15:fov065. [PMID: 26260509 DOI: 10.1093/femsyr/fov065] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2015] [Indexed: 12/13/2022] Open
Abstract
Sporotrichosis has been attributed for more than a century to one single etiological agent, Sporothrix schencki. Only eight years ago, it was described that, in fact, the disease is caused by several pathogenic cryptic species. The present review will focus on recent advances to understand the biology and virulence of epidemiologically relevant pathogenic species of the S. schenckii complex. The main subjects covered are the new clinical and epidemiological aspects including diagnostic and therapeutic challenges, the development of molecular tools, the genome database and the perspectives for study of virulence of emerging Sporothrix species.
Collapse
Affiliation(s)
- Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, CP 36050, Guanajuato, Gto., México
| | - Alessandra da Silva Dantas
- Laboratório de Micologia Celular e Proteômica, Universidade do Estado do Rio de Janeiro (UERJ), CEP 20550-013 Rio de Janeiro, RJ, Brazil
| | - Elías Trujillo-Esquivel
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, CP 36050, Guanajuato, Gto., México
| | - Andrea R de Souza Baptista
- Laboratório de Micologia Médica e Molecular, Universidade Federal Fluminense (UFF), CEP 24210-130 Niterói, RJ, Brazil
| | - Leila M Lopes-Bezerra
- Laboratório de Micologia Celular e Proteômica, Universidade do Estado do Rio de Janeiro (UERJ), CEP 20550-013 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Abstract
To infect the host and cause disease, many medically important fungi invade normally nonphagocytic host cells, such as endothelial cells and epithelial cells. Host cell invasion is a two-step process consisting of adherence followed by invasion. There are two general mechanisms of host cell invasion, induced endocytosis and active penetration. Furthermore, fungi can traverse epithelial or endothelial cell barriers either by proteolytic degradation of intercellular tight junctions or via a Trojan horse mechanism in which they are transported by leukocytes. Although these mechanisms of host cell invasion have been best studied using Candida albicans and Cryptococcus neoformans, it is probable that other invasive fungi also use one or more of these mechanisms to invade host cells. Identification of these invasion mechanisms holds promise to facilitate the development of new approaches to inhibit fungal invasion and thereby prevent disease.
Collapse
Affiliation(s)
- Donald C Sheppard
- Departments of Microbiology and Immunology and Medicine, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Scott G Filler
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502 David Geffen School of Medicine at UCLA, Los Angeles, California 90025
| |
Collapse
|
11
|
Téllez MD, Batista-Duharte A, Portuondo D, Quinello C, Bonne-Hernández R, Carlos IZ. Sporothrix
schenckii complex biology: environment and fungal pathogenicity. Microbiology (Reading) 2014; 160:2352-2365. [DOI: 10.1099/mic.0.081794-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sporothrix schenckii is a complex of various species of fungus found in soils, plants, decaying vegetables and other outdoor environments. It is the aetiological agent of sporotrichosis in humans and several animals. Humans and animals can acquire the disease through traumatic inoculation of the fungus into subcutaneous tissue. Despite the importance of sporotrichosis, it being currently regarded as an emergent disease in several countries, the factors driving its increasing medical importance are still largely unknown. There have only been a few studies addressing the influence of the environment on the virulence of these pathogens. However, recent studies have demonstrated that adverse conditions in its natural habitats can trigger the expression of different virulence factors that confer survival advantages both in animal hosts and in the environment. In this review, we provide updates on the important advances in the understanding of the biology of Spor. schenckii and the modification of its virulence linked to demonstrated or putative environmental factors.
Collapse
Affiliation(s)
- M. D. Téllez
- Faculty of Pharmaceutical Sciences, Universidade Estadual Paulista Julio Mesquita Filho, UNESP Rua Expedicionarios do Brasil 1621-CEP : 14801-902, Araraquara, SP, Brazil
- Faculty of Chemical Engineering, Oriente University, Ave Las Americas, Santiago de Cuba, Cuba
| | - A. Batista-Duharte
- Immunotoxicology Laboratory, Toxicology and Biomedicine Center (TOXIMED), Medical Science University, Autopista Nacional Km. 1 1/2 CP 90400, Santiago de Cuba, Cuba
- Faculty of Pharmaceutical Sciences, Universidade Estadual Paulista Julio Mesquita Filho, UNESP Rua Expedicionarios do Brasil 1621-CEP : 14801-902, Araraquara, SP, Brazil
| | - D. Portuondo
- Faculty of Pharmaceutical Sciences, Universidade Estadual Paulista Julio Mesquita Filho, UNESP Rua Expedicionarios do Brasil 1621-CEP : 14801-902, Araraquara, SP, Brazil
| | - C. Quinello
- Faculty of Pharmaceutical Sciences, Universidade Estadual Paulista Julio Mesquita Filho, UNESP Rua Expedicionarios do Brasil 1621-CEP : 14801-902, Araraquara, SP, Brazil
| | | | - I. Z. Carlos
- Faculty of Pharmaceutical Sciences, Universidade Estadual Paulista Julio Mesquita Filho, UNESP Rua Expedicionarios do Brasil 1621-CEP : 14801-902, Araraquara, SP, Brazil
| |
Collapse
|
12
|
Castro RA, Kubitschek-Barreira PH, Teixeira PAC, Sanches GF, Teixeira MM, Quintella LP, Almeida SR, Costa RO, Camargo ZP, Felipe MSS, de Souza W, Lopes-Bezerra LM. Differences in cell morphometry, cell wall topography and gp70 expression correlate with the virulence of Sporothrix brasiliensis clinical isolates. PLoS One 2013; 8:e75656. [PMID: 24116065 PMCID: PMC3792129 DOI: 10.1371/journal.pone.0075656] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
Sporotrichosis is a chronic infectious disease affecting both humans and animals. For many years, this subcutaneous mycosis had been attributed to a single etiological agent; however, it is now known that this taxon consists of a complex of at least four pathogenic species, including Sporothrix schenckii and Sporothrix brasiliensis. Gp70 was previously shown to be an important antigen and adhesin expressed on the fungal cell surface and may have a key role in immunomodulation and host response. The aim of this work was to study the virulence, morphometry, cell surface topology and gp70 expression of clinical isolates of S. brasiliensis compared with two reference strains of S. schenckii. Several clinical isolates related to severe human cases or associated with the Brazilian zoonotic outbreak of sporotrichosis were genotyped and clustered as S. brasiliensis. Interestingly, in a murine subcutaneous model of sporotrichosis, these isolates showed a higher virulence profile compared with S. schenckii. A single S. brasiliensis isolate from an HIV-positive patient not only showed lower virulence but also presented differences in cell morphometry, cell wall topography and abundant gp70 expression compared with the virulent isolates. In contrast, the highly virulent S. brasiliensis isolates showed reduced levels of cell wall gp70. These observations were confirmed by the topographical location of the gp70 antigen using immunoelectromicroscopy in both species. In addition, the gp70 molecule was sequenced and identified using mass spectrometry, and the sequenced peptides were aligned into predicted proteins using Blastp with the S. schenckii and S. brasiliensis genomes.
Collapse
Affiliation(s)
- Rafaela A. Castro
- Laboratório de Micologia Celular e Proteômica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro, Brazil
| | - Paula H. Kubitschek-Barreira
- Laboratório de Micologia Celular e Proteômica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro, Brazil
| | - Pedro A. C. Teixeira
- Laboratório de Micologia Celular e Proteômica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro, Brazil
| | - Glenda F. Sanches
- Laboratório de Micologia Celular e Proteômica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro, Brazil
| | - Marcus M. Teixeira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Leonardo P. Quintella
- Departamento de Patologia e Laboratórios, Faculdade de Ciências Médicas, UERJ, Rio de Janeiro, Brazil
| | - Sandro R. Almeida
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Rosane O. Costa
- Laboratório de Micologia, Hospital Universitário Pedro Ernesto, UERJ, Rio de Janeiro, Brazil
| | - Zoilo P. Camargo
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria S. S. Felipe
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leila M. Lopes-Bezerra
- Laboratório de Micologia Celular e Proteômica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
13
|
Alegranci P, de Abreu Ribeiro LC, Ferreira LS, Negrini TDC, Maia DCG, Tansini A, Gonçalves AC, Placeres MCP, Carlos IZ. The predominance of alternatively activated macrophages following challenge with cell wall peptide-polysaccharide after prior infection with Sporothrix schenckii. Mycopathologia 2013; 176:57-65. [PMID: 23686275 DOI: 10.1007/s11046-013-9663-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
Sporotrichosis is a subcutaneous mycosis that is caused by the dimorphic fungus Sporothrix schenckii. This disease generally occurs within the skin and subcutaneous tissues, causing lesions that can spread through adjacent lymphatic vessels and sometimes leading to systemic diseases in immunocompromised patients. Macrophages are crucial for proper immune responses against a variety of pathogens. Furthermore, macrophages can play different roles in response to different microorganisms and forms of activation, and they can be divided into "classic" or "alternatively" activated populations, as also known as M1 and M2 macrophages. M1 cells can lead to tissue injury and contribute to pathogenesis, whereas M2 cells promote angiogenesis, tissue remodeling, and repair. The aim of this study was to investigate the roles of M1 and M2 macrophages in a sporotrichosis model. Toward this end, we performed phenotyping of peritoneal exudate cells and evaluated the concomitant production of several immunomediators, including IL-12, IL-10, TGF-β, nitric oxide, and arginase-I activity, which were stimulated ex vivo with cell wall peptide-polysaccharide. Our results showed the predominance of the M2 macrophage population, indicated by peaks of arginase-I activity as well as IL-10 and TGF-β production during the 6th and 8th weeks after infection. These results were consistent with cellular phenotyping that revealed increases in CD206-positive cells over this period. This is the first report of the participation of M2 macrophages in sporotrichosis infections.
Collapse
Affiliation(s)
- Pamela Alegranci
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rua Expedicionários do Brasil no 1621, Araraquara, SP, CEP 14801-902, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lopes-Bezerra LM. Sporothrix schenckii Cell Wall Peptidorhamnomannans. Front Microbiol 2011; 2:243. [PMID: 22203817 PMCID: PMC3243909 DOI: 10.3389/fmicb.2011.00243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/22/2011] [Indexed: 11/16/2022] Open
Abstract
This mini-review article is dedicated to clarifying certain important biochemical aspects of Sporothrixschenckii cell wall peptidorhamnomannans. Cell wall components involved in the host interaction such as antigens as well as a gp70 adhesin are important molecules present on the surface of the yeast parasitic phase. Other structural glycoconjugates present on the fungus cell surface are also described here. Knowledge of the fine structure of carbohydrate epitopes expressed on the surface in both morphological phases of S. schenckii permitted the development of non-invasive immunochemical methods to diagnose human and feline sporotrichosis.
Collapse
Affiliation(s)
- Leila M Lopes-Bezerra
- Laboratório de Micologia Celular e Proteômica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Abstract
Sporotrichosis, which is caused by the dimorphic fungus Sporothrix schenckii, is currently distributed throughout the world, especially in tropical and subtropical zones. Infection generally occurs by traumatic inoculation of soil, plants, and organic matter contaminated with the fungus. Certain leisure and occupational activities, such as floriculture, agriculture, mining, and wood exploitation, are traditionally associated with the mycosis. Zoonotic transmission has been described in isolated cases or in small outbreaks. Since the end of the 1990s there has been an epidemic of sporotrichosis associated with transmission by cats in Rio de Janeiro, Brazil. More than 2,000 human cases and 3,000 animal cases have been reported. In humans, the lesions are usually restricted to the skin, subcutaneous cellular tissue, and adjacent lymphatic vessels. In cats, the disease can evolve with severe clinical manifestations and frequent systemic involvement. The gold standard for sporotrichosis diagnosis is culture. However, serological, histopathological, and molecular approaches have been recently adopted as auxiliary tools for the diagnosis of this mycotic infection. The first-choice treatment for both humans and cats is itraconazole.
Collapse
|
16
|
San-Blas G, Burger E. Experimental medical mycological research in Latin America - a 2000-2009 overview. Rev Iberoam Micol 2010; 28:1-25. [PMID: 21167301 DOI: 10.1016/j.riam.2010.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 11/26/2022] Open
Abstract
An overview of current trends in Latin American Experimental Medical Mycological research since the beginning of the 21(st) century is done (search from January 2000 to December 2009). Using the PubMed and LILACS databases, the authors have chosen publications on medically important fungi which, according to our opinion, are the most relevant because of their novelty, interest, and international impact, based on research made entirely in the Latin American region or as part of collaborative efforts with laboratories elsewhere. In this way, the following areas are discussed: 1) molecular identification of fungal pathogens; 2) molecular and clinical epidemiology on fungal pathogens of prevalence in the region; 3) cell biology; 4) transcriptome, genome, molecular taxonomy and phylogeny; 5) immunology; 6) vaccines; 7) new and experimental antifungals.
Collapse
Affiliation(s)
- Gioconda San-Blas
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| | | |
Collapse
|
17
|
Sandoval-Bernal G, Barbosa-Sabanero G, Shibayama M, Perez-Torres A, Tsutsumi V, Sabanero M. Cell wall glycoproteins participate in the adhesion of Sporothrix schenckii to epithelial cells. Mycopathologia 2010; 171:251-9. [PMID: 21082256 DOI: 10.1007/s11046-010-9372-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 10/02/2010] [Indexed: 11/29/2022]
Abstract
Sporothrix schenckii is the etiologic agent of sporotrichosis. This fungal infection is an emerging disease potentially fatal in immunocompromised patients. The adhesion to host cells is a crucial early event related with the dissemination of pathogens. In order to clarify the mechanisms of adhesion of S. schenckii yeast cell to epithelial cells, we studied the biochemical basis of this process. The electrophoretic analysis of cell wall protein from S. schenckii coupled at ConA and stained with HRP, revealed nine different proteins with MW ≥ 180, 115, 90, 80, 58, 40, 36, 22 and 18 kDa. Using ligand-like assay with biotinylated S. schenckii surface proteins, five proteins with MW ≥ 190, 180, 115, 90 and 80 kDa which have affinity to epithelial cells were identified. The adhesion of yeast to epithelial monolayer was significantly inhibited when S. schenckii was pretreated with concanavalinA (ConA) and wheat germ agglutinin (WGA) lectins, alkali, periodate, trypsin, endoglycosidase H (EndoH), salt solutions and detergents. The ability of adhesion of S. schenckii yeast was recovered by blocking the lectin with sugar complementary. These data suggest that surface glycoprotein with mannose and glucose residue could be participate in the process of fungal adhesion to epithelial cells.
Collapse
Affiliation(s)
- Gerardo Sandoval-Bernal
- División de Ciencias Naturales y Exactas Campus Guanajuato, Departamento de Biología, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, 36000, Guanajuato, Guanajuato, México
| | | | | | | | | | | |
Collapse
|
18
|
Role of Host Glycosphingolipids on Paracoccidioides brasiliensis Adhesion. Mycopathologia 2010; 171:325-32. [DOI: 10.1007/s11046-010-9376-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 10/17/2010] [Indexed: 12/25/2022]
|
19
|
Lopes LCL, Rollin-Pinheiro R, Guimarães AJ, Bittencourt VCB, Martinez LR, Koba W, Farias SE, Nosanchuk JD, Barreto-Bergter E. Monoclonal antibodies against peptidorhamnomannans of Scedosporium apiospermum enhance the pathogenicity of the fungus. PLoS Negl Trop Dis 2010; 4:e853. [PMID: 20976055 PMCID: PMC2957425 DOI: 10.1371/journal.pntd.0000853] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/22/2010] [Indexed: 11/19/2022] Open
Abstract
Scedosporium apiospermum is part of the Pseudallescheria-Scedosporium complex. Peptidorhamnomannans (PRMs) are cell wall glycopeptides present in some fungi, and their structures have been characterized in S. apiospermum, S. prolificans and Sporothrix schenckii. Prior work shows that PRMs can interact with host cells and that the glycopeptides are antigenic. In the present study, three monoclonal antibodies (mAbs, IgG1) to S. apiospermum derived PRM were generated and their effects on S. apiospermum were examined in vitro and in vivo. The mAbs recognized a carbohydrate epitope on PRM. In culture, addition of the PRM mAbs increased S. apiospermum conidia germination and reduced conidial phagocytosis by J774.16 macrophages. In a murine infection model, mice treated with antibodies to PRM died prior to control animals. Thus, PRM is involved in morphogenesis and the binding of this glycopeptide by mAbs enhanced the virulence of the fungus. Further insights into the effects of these glycopeptides on the pathobiology of S. apiospermum may lead to new avenues for preventing and treating scedosporiosis. The incidence of fungal infections has increased dramatically over the last 50 years, largely because of the increasing size of the population at risk, which especially includes immunocompromised hosts. Scedosporium apiospermum is a filamentous fungus that causes a variety of infections, ranging from localized disease to life-threatening disseminated infections. Glycoproteins are molecules present in the fungal surface and are comprised of carbohydrate and protein components. They are involved in different important functions in the fungal cell. Monoclonal antibodies can be used as therapeutic agents for infectious disease, but some factors involved in their efficacy are often not well understood. We found that monoclonal antibodies to glycoproteins present in fungal surface can be nonprotective and can even enhance the disease. The administration of these antibodies can affect functions of the fungal cell and the immune cells, resulting in a survival advantage for the fungus during interactions with the host.
Collapse
Affiliation(s)
- Livia C. L. Lopes
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Rollin-Pinheiro
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan J. Guimarães
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Vera C. B. Bittencourt
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis R. Martinez
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Wade Koba
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sandra E. Farias
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Joshua D. Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Eliana Barreto-Bergter
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
20
|
Nogueira SV, Fonseca FL, Rodrigues ML, Mundodi V, Abi-Chacra EA, Winters MS, Alderete JF, Soares CMDA. Paracoccidioides brasiliensis enolase is a surface protein that binds plasminogen and mediates interaction of yeast forms with host cells. Infect Immun 2010; 78:4040-50. [PMID: 20605975 PMCID: PMC2937444 DOI: 10.1128/iai.00221-10] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/31/2010] [Accepted: 06/28/2010] [Indexed: 11/20/2022] Open
Abstract
Paracoccidioidomycosis (PCM), caused by the dimorphic fungus Paracoccidioides brasiliensis, is a disseminated, systemic disorder that involves the lungs and other organs. The ability of the pathogen to interact with host components, including extracellular matrix (ECM) proteins, is essential to further colonization, invasion, and growth. Previously, enolase (EC 4.2.1.11) was characterized as a fibronectin binding protein in P. brasiliensis. Interaction of surface-bound enolase with plasminogen has been incriminated in tissue invasion for pathogenesis in several pathogens. In this paper, enolase was expressed in Escherichia coli as a recombinant glutathione S-transferase (GST) fusion protein (recombinant P. brasiliensis enolase [rPbEno]). The P. brasiliensis native enolase (PbEno) was detected at the fungus surface and cytoplasm by immunofluorescence with an anti-rPbEno antibody. Immobilized purified rPbEno bound plasminogen in a specific, concentration-dependent fashion. Both native enolase and rPbEno activated conversion of plasminogen to plasmin through tissue plasminogen activator. The association between PbEno and plasminogen was lysine dependent. In competition experiments, purified rPbEno, in its soluble form, inhibited plasminogen binding to fixed P. brasiliensis, suggesting that this interaction required surface-localized PbEno. Plasminogen-coated P. brasiliensis yeast cells were capable of degrading purified fibronectin, providing in vitro evidence for the generation of active plasmin on the fungus surface. Exposure of epithelial cells and phagocytes to enolase was associated with an increased expression of surface sites of adhesion. In fact, the association of P. brasiliensis with epithelial cells and phagocytes was increased in the presence of rPbEno. The expression of PbEno was upregulated in yeast cells derived from mouse-infected tissues. These data indicate that surface-associated PbEno may contribute to the pathogenesis of P. brasiliensis.
Collapse
Affiliation(s)
- Sarah Veloso Nogueira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Fernanda L. Fonseca
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Marcio L. Rodrigues
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Vasanth Mundodi
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Erika A. Abi-Chacra
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Michael S. Winters
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - John F. Alderete
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil, Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil, School of Molecular Biosciences, Washington State University, Pullman, Washington 99163, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| |
Collapse
|
21
|
Teixeira PAC, de Castro RA, Nascimento RC, Tronchin G, Pérez Torres A, Lazéra M, de Almeida SR, Bouchara JP, Loureiro Y Penha CV, Lopes-Bezerra LM. Cell surface expression of adhesins for fibronectin correlates with virulence in Sporothrix schenckii. MICROBIOLOGY-SGM 2009; 155:3730-3738. [PMID: 19762444 DOI: 10.1099/mic.0.029439-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The virulence of four Sporothrix schenckii isolates was compared in a murine model of sporotrichosis, together with the protein pattern of the yeast cell surface and the capacity to bind the extracellular matrix protein fibronectin. Virulence was determined by the mortality rate, fungal burden and histopathology. Two clinical isolates were more virulent for C57BL/6 mice, but no direct correlation was seen between virulence and the clinical or environmental origin of the isolates. The lowest virulence was observed for an isolate recovered from a patient with meningeal sporotrichosis. Although all isolates could effectively disseminate, the dissemination patterns were not similar. Using flow cytometry analysis, we investigated the interaction of all the strains with fibronectin, and showed that the binding capacity correlated with virulence. Western blot analysis of S. schenckii cell wall extracts revealed positive bands for fibronectin in the range of 37-92 kDa. The 70 kDa adhesin was also recognized by a protective monoclonal antibody raised against a gp70 antigen of S. schenckii (mAb P6E7). Confocal microscopy confirmed the co-localization of fibronectin and mAb P6E7 on the yeast cell surface. To our knowledge, this is the first report identifying adhesins for fibronectin on the surface of this human pathogen.
Collapse
Affiliation(s)
- Pedro Antônio Castelo Teixeira
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Brazil
| | - Rafaela Alves de Castro
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Brazil
| | - Rosana Cícera Nascimento
- Departamento de Análises Clínicas e Toxicológicas - Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Brazil
| | - Guy Tronchin
- Groupe d'Étude des Interactions Hôte-Pathogène, UPRES-EA 3142, Université d'Angers, Angers, France
| | - Armando Pérez Torres
- Laboratorio de Inmunología Comparada de Piel y Mucosas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Márcia Lazéra
- Instituto de Pesquisa Clínica Evandro Chagas Filho - Fiocruz, Rio de Janeiro, Brazil
| | - Sandro Rogério de Almeida
- Departamento de Análises Clínicas e Toxicológicas - Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | - Jean-Philippe Bouchara
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
- Groupe d'Étude des Interactions Hôte-Pathogène, UPRES-EA 3142, Université d'Angers, Angers, France
| | - Carla Veronica Loureiro Y Penha
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Brazil
| | - Leila M Lopes-Bezerra
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Leal JA, Giménez-Abián MI, Canales Á, Jiménez-Barbero J, Bernabé M, Prieto A. Cell wall polysaccharides isolated from the fungus Neotestudina rosatii, one of the etiologic agents of mycetoma in man. Glycoconj J 2009; 26:1047-54. [DOI: 10.1007/s10719-008-9224-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 12/17/2008] [Accepted: 12/19/2008] [Indexed: 11/29/2022]
|
23
|
Nascimento RC, Espíndola NM, Castro RA, Teixeira PAC, Loureiro y Penha CV, Lopes-Bezerra LM, Almeida SR. Passive immunization with monoclonal antibody against a 70-kDa putative adhesin of Sporothrix schenckii induces protection in murine sporotrichosis. Eur J Immunol 2009; 38:3080-9. [PMID: 18991286 DOI: 10.1002/eji.200838513] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell-mediated and innate immunity are considered the most important mechanisms of host defense against fungus infections. However, recent studies demonstrated that specific antibodies show different degrees of protection against mycosis. In a previous study, antigens secreted by Sporothrix schenckii induced a specific humoral response in infected animals, mainly against the 70-kDa molecule, indicating a possible participation of antibodies to this antigen in infection control. In the present study, an IgG1 mAb was produced against a 70-kDa glycoprotein of S. schenckii in order to better understand the effect of passive immunization of mice infected with S. schenckii. Results showed a significant reduction in the number of CFU in organs of mice when the mAb was injected before and during S. schenckii infection. Similar results were observed when T-cell-deficient mice were used. Moreover, in a second schedule treatment, the mAb was injected after infection was established, and again we observed a significant reduction in CFU associated with an increase of IFN-gammaproduction. Also, the 70-kDa antigen is shown to be a putative adhesin present on the surface of this fungus. In conclusion, we report for the first time the protective effect of a specific antibody against S. schenckii.
Collapse
Affiliation(s)
- Rosana C Nascimento
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, CEP, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Ruiz-Baca E, Toriello C, Perez-Torres A, Sabanero-Lopez M, Villagomez-Castro JC, Lopez-Romero E. Isolation and some properties of a glycoprotein of 70 kDa (Gp70) from the cell wall of Sporothrix schenckii involved in fungal adherence to dermal extracellular matrix. Med Mycol 2008; 47:185-96. [PMID: 18608892 DOI: 10.1080/13693780802165789] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Sporothrix schenckii is the etiological agent of sporotrichosis, a subcutaneous mycosis and an emerging disease in immunocompromised patients. Adherence to target cells is a prerequisite for fungal dissemination and systemic complications. However, information on the cell surface components involved in this interaction is rather scarce. In this investigation, the extraction of isolated cell walls from the yeast phase of S. schenckii with SDS and separation of proteins by SDS-PAGE led to the identification of a periodic acid-Schiff (PAS)-reacting 70 kDa glycoprotein (Gp70) that was purified by elution from electrophoresis gels. The purified glycopeptide exhibited a pI of 4.1 and about 5.7% of its molecular mass was contributed by N-linked glycans with no evidence for O-linked oligosaccharides. Confocal analysis of immunofluorescence assays with polyclonal antibodies directed towards Gp70 revealed a rather uniform distribution of the antigen at the cell surface with no distinguishable differences among three different isolates. Localization of Gp70 at the cell surface was confirmed by immunogold staining. Gp70 seems specific for S. schenckii as no immunoreaction was observed in SDS-extracts from other pathogenic and non-pathogenic fungi. Yeast cells of the fungus abundantly adhered to the dermis of mouse tails and the anti-Gp70 serum reduced this process in a concentration-dependent manner. Results are discussed in terms of the potential role of Gp70 in the host-pathogen interaction.
Collapse
Affiliation(s)
- Estela Ruiz-Baca
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Guanajuato, México
| | | | | | | | | | | |
Collapse
|
25
|
González A, Caro E, Muñoz C, Restrepo A, Hamilton AJ, Cano LE. Paracoccidioides brasiliensis conidia recognize fibronectin and fibrinogen which subsequently participate in adherence to human type II alveolar cells: Involvement of a specific adhesin. Microb Pathog 2008; 44:389-401. [DOI: 10.1016/j.micpath.2007.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/07/2007] [Accepted: 11/09/2007] [Indexed: 11/24/2022]
|
26
|
González A, Gómez BL, Muñoz C, Aristizabal BH, Restrepo A, Hamilton AJ, Cano LE. Involvement of extracellular matrix proteins in the course of experimental paracoccidioidomycosis. ACTA ACUST UNITED AC 2008; 53:114-25. [PMID: 18400008 DOI: 10.1111/j.1574-695x.2008.00411.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We aimed at determining involvement of extracellular matrix proteins (ECMp) and an ECM-binding adhesin (32-kDa protein) from Paracoccidioides brasiliensis, in the course of experimental paracoccidioidomycosis. BALB/c mice were infected with P. brasiliensis conidia previously incubated with soluble laminin, fibronectin and fibrinogen or a mAb against the fungal adhesin. Inflammatory response, chitin levels and cytokine production at different postinfection periods were determined. Chitin was significantly decreased in lungs of mice infected with ECMp-treated conidia when compared with controls at week 8, especially with laminin and fibrinogen. Contrariwise, when animals were infected with mAb-treated conidia no differences in chitin content were found. The observed inflammatory reaction in lungs was equivalent in all cases. IFN-gamma increased significantly in lungs from mice infected with soluble ECMp - (at day 4 and week 12) or mAb-treated conidia (at week 12) when compared with animals infected with untreated conidia. Significant increased levels of tumour necrosis factor-alpha were observed at 8 weeks in animals infected with ECMp-treated conidia while no differences were observed during the remaining periods. These findings point toward an inhibitory effect of ECMp on P. brasiliensis conidia infectivity and suggest that these proteins may interfere with conidia initial adhesion to host tissues probably modulating the immune response in paracoccidioidomycosis.
Collapse
Affiliation(s)
- Angel González
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Medellín, Colombia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Brito MMS, Conceição-Silva F, Morgado FN, Raibolt PS, Schubach A, Schubach TP, Schäffer GMV, Borba CM. Comparison of virulence of different Sporothrix schenckii clinical isolates using experimental murine model. Med Mycol 2008; 45:721-9. [PMID: 17885952 DOI: 10.1080/13693780701625131] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The virulence of two strains of Sporothrix schenckii isolated from patients with lymphocutaneous or disseminated sporotrichosis were examined in BALB/c mice (Group 1 and 2, respectively). The mice were inoculated subcutaneously into the left hind footpad with 4 x 10(6) S. schenckii yeast cells in order to evaluate (i) the development of cutaneous lesions, (ii) signs of inactivity, (iii) weight loss, (iv) survival rates, (v) number of viable yeast cells in the lungs and spleen, (vi) splenic index, (vii) extent of organ lesions, and (viii) immunological responses. Comparison of the two groups showed more severe disease in Group 2 mice that developed significant weight and hair loss associated with inactivity and left hind footpad lesions that extended close to the testicular area. The histopathology and large number of viable microorganisms isolated from the spleen confirmed the higher invasive ability of this strain. Moreover, a decrease of an in vitro specific lymphoproliferative response and IFN-gamma production were observed over time in Group 2 mice. As a result, at the end of the experiment, the S. schenckii-antigen (Ss-Ag) response was considered negative with a stimulation index (SI) = 2. In contrast, Group 1 mice presented a positive response to Ss-Ag (SI = 14.1). These results confirm the existence of different virulence profiles in S. schenckii strains. In addition, the use of subcutaneous inoculation as a suitable route for verification of the pathogenicity of this fungus in the murine model was confirmed.
Collapse
Affiliation(s)
- Marcelly M S Brito
- Department of Mycology, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Tronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP. Adherence mechanisms in human pathogenic fungi. Med Mycol 2008; 46:749-72. [DOI: 10.1080/13693780802206435] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
29
|
Kottom TJ, Kennedy CC, Limper AH. Pneumocystis PCINT1, a molecule with integrin-like features that mediates organism adhesion to fibronectin. Mol Microbiol 2007; 67:747-61. [PMID: 18179594 DOI: 10.1111/j.1365-2958.2007.06093.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pneumocystis species cause severe pneumonia during chronic immunosuppression, especially in patients with AIDS or malignancy. Adhesion of Pneumocystis to extracellular matrix proteins, particularly fibronectin, associated with alveolar epithelial cell surfaces, triggers organism proliferative pathways. Herein, we report the characterization of a novel Pneumocystis molecule with considerable structural features of an integrin-like extracellular matrix adhesion receptor. A PCINT1115 bp probe was initially identified from partial sequence present within the Pneumocystis genome project database. A full-length 3018 bp cDNA was subsequently obtained with extensive homology to the C-terminal region of Candida albicans INT1 (31% blastx), a gene originally described as encoding an integrin-like molecule implicated in adhesion, growth, and virulence. Sequence analysis of PCINT1 indicated that the Pneumocystis molecule contained both a putative internal RGD motif and four Metal Ion-Dependent Attachment Sites (MIDAS) motifs required for coordination of divalent cations, as well as a specific tyrosine residue found in the cytoplasmic tails of some integrin receptors and C. albicans INT1. Northern, Western and immunofluorescence studies demonstrated that the trophic forms of Pneumocystis, known to be the life cycle forms that tightly adhere to lung epithelium, expressed the molecule to a substantially greater degree than cystic forms. Heterologous expression of PCINT1 in yeast followed by application to human fibronectin-coated surfaces demonstrated these yeast display PCINT1 on their surfaces and subsequently gain the ability to bind fibronectin in a cation dependent fashion. Taken together, these results indicate that Pneumocystis expresses a novel integrin-like PCINT1 molecule sufficient to mediate interactions with extracellular matrix fibronectin, an integral component of host-cell organism interactions during this infection.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Division of Pulmonary, Critical Care and Internal Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
30
|
Figueiredo CC, Deccache PMS, Lopes-Bezerra LM, Morandi V. TGF-beta1 induces transendothelial migration of the pathogenic fungus Sporothrix schenckii by a paracellular route involving extracellular matrix proteins. MICROBIOLOGY-SGM 2007; 153:2910-2921. [PMID: 17768235 DOI: 10.1099/mic.0.2006/005421-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sporotrichosis, a mycosis caused by Sporothrix schenckii, is characterized by lymphocutaneous lesions. In immunocompromised hosts, this fungus may invade the bloodstream and disseminate to other tissues, such as lung and bone. Our group previously showed that S. schenckii yeasts adhere to endothelial monolayers and that this interaction is modulated by cytokines. Using 3.0 mum-pore culture inserts, the present work shows that transforming growth factor (TGF)-beta1 led to a 80+/-26 % increase in fungal migration across endothelial monolayers and inhibited fungus internalization by 55+/-23.5 %, when compared to untreated cells. The major surface endothelial molecules recognized by S. schenckii were not modulated by TGF-beta1. These data suggested that a paracellular route is preferentially used by S. schenckii during the transmigration of cultured endothelial cells. It was further observed that TGF-beta1 increased the subendothelial matrix exposure and that anti-fibronectin (anti-FN) and anti-laminin (anti-LM) antibodies abolished the increase in S. schenckii association with endothelial monolayers induced by TGF-beta1. These antibodies also inhibited (38.2+/-4.29 % and 50.8+/-17.3 %, respectively) the adhesion of S. schenckii to freshly prepared native endothelial matrices. Furthermore, transendothelial migration of S. schenckii was blocked by anti-FN and anti-LM antibodies. These data indicate that TGF-beta1-induced S. schenckii adhesion to endothelial monolayers results from the increased exposure of the subendothelial extracellular matrix and that this event may contribute to the enhancement of transendothelial migration.
Collapse
Affiliation(s)
- Camila C Figueiredo
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Paula M S Deccache
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Leila M Lopes-Bezerra
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Verônica Morandi
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
31
|
Kiffer-Moreira T, Pinheiro AAS, Pinto MR, Esteves FF, Souto-Padrón T, Barreto-Bergter E, Meyer-Fernandes JR. Mycelial forms of Pseudallescheria boydii present ectophosphatase activities. Arch Microbiol 2007; 188:159-66. [PMID: 17429613 DOI: 10.1007/s00203-007-0232-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 02/28/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Phosphatase activities were characterized in intact mycelial forms of Pseudallescheria boydii, which are able to hydrolyze the artificial substrate p-nitrophenylphosphate (p-NPP) to p-nitrophenol (p-NP) at a rate of 41.41+/-2.33 nmol p-NP per h per mg dry weight, linearly with increasing time and with increasing cell density. MgCl2, MnCl2 and ZnCl2 were able to increase the (p-NPP) hydrolysis while CdCl2 and CuCl2 inhibited it. The (p-NPP) hydrolysis was enhanced by increasing pH values (2.5-8.5) over an approximately 5-fold range. High sensitivity to specific inhibitors of alkaline and acid phosphatases suggests the presence of both acid and alkaline phosphatase activities on P. boydii mycelia surface. Cytochemical localization of the acid and alkaline phosphatase showed electron-dense cerium phosphate deposits on the cell wall, as visualized by electron microscopy. The product of p-NPP hydrolysis, inorganic phosphate (Pi), and different inhibitors for phosphatase activities inhibited p-NPP hydrolysis in a dose-dependent manner, but only the inhibition promoted by sodium orthovanadate and ammonium molybdate is irreversible. Intact mycelial forms of P. boydii are also able to hydrolyze phosphoaminoacids with different specificity.
Collapse
Affiliation(s)
- Tina Kiffer-Moreira
- Instututo de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, bloco H, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Southern TR, Jolly CE, Russell Hayman J. Augmentation of microsporidia adherence and host cell infection by divalent cations. FEMS Microbiol Lett 2006; 260:143-9. [PMID: 16842337 DOI: 10.1111/j.1574-6968.2006.00288.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The infection process of intracellular opportunistic microsporidia involves the forcible eversion of a coiled hollow polar filament that pierces the host cell membrane, allowing the passage of infectious sporoplasm into the host cell cytoplasm. Although the exact mechanism of spore activation leading to polar filament discharge is unknown, we have shown that spore adherence to host cells, which is mediated by sulfated glycosaminoglycans, may play a vital role. When adherence is inhibited, host cell infection decreases, indicating a direct link between adherence and infection. The goal of this study was to evaluate the effects of exogenous divalent cations on microsporidia spore adherence and infection. Data generated using an in vitro spore adherence assay show that spore adherence is augmented by manganese (Mn2+) and magnesium (Mg2+), but not by calcium (Ca2+). However, each of the three divalent cations contributed to increased host cell infection when included in the assay. Finally, we show that Mn2+ and Mg2+ may activate a constituent on the microsporidia spore, not on the host cell, leading to higher infection efficiency. This report further supports recent evidence that spore adherence to the host cell surface is an important aspect of the microsporidial infection process.
Collapse
Affiliation(s)
- Timothy R Southern
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | |
Collapse
|
33
|
Abstract
For a long time sporotrichosis has been regarded to have a low incidence in Brazil; however, recent studies demonstrate that not only the number of reported cases but also the incidence of more severe or atypical clinical forms of the disease are increasing. Recent data indicate that these more severe forms occur in about 10% of patients with confirmed diagnosis. The less frequent forms, mainly osteoarticular sporotrichosis, might be associated both with patient immunodepression and zoonotic transmission of the disease. The extracutaneous form and the atypical forms are a challenge to a newly developed serological test, introduced as an auxiliary tool for the diagnosis of unusual clinical forms of sporotrichosis.
Collapse
Affiliation(s)
- Leila M Lopes-Bezerra
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
34
|
Nugaeva N, Gfeller KY, Backmann N, Lang HP, Düggelin M, Hegner M. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens Bioelectron 2005; 21:849-56. [PMID: 16257652 DOI: 10.1016/j.bios.2005.02.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 02/04/2005] [Accepted: 02/04/2005] [Indexed: 11/22/2022]
Abstract
We demonstrate the use of micromechanical cantilever arrays for selective immobilization and fast quantitative detection of vital fungal spores. Micro-fabricated uncoated as well as gold-coated silicon cantilevers were functionalized with concanavalin A, fibronectin or immunoglobulin G. In our experiments two major morphological fungal forms were used--the mycelial form Aspergillus niger and the unicellular yeast form Saccharomyces cerevisiae, as models to explore a new method for growth detection of eukaryotic organisms using cantilever arrays. We exploited the specific biomolecular interactions of surface grafted proteins with the molecular structures on the fungal cell surface. It was found that these proteins have different affinities and efficiencies to bind the spores. Maximum spore immobilization, germination and mycelium growth was observed on the immunoglobulin G functionalized cantilever surfaces. We show that spore immobilization and germination of the mycelial fungus A. niger and yeast S. cerevisiae led to shifts in resonance frequency within a few hours as measured by dynamically operated cantilever arrays, whereas conventional techniques would require several days. The biosensor could detect the target fungi in a range of 10(3) - 10(6) CFUml(-1). The measured shift is proportional to the mass of single fungal spores and can be used to evaluate spore contamination levels. Applications lie in the field of medical and agricultural diagnostics, food- and water-quality monitoring.
Collapse
Affiliation(s)
- Natalia Nugaeva
- Institute of Physics, University of Basel, Klingelbergstrasse 82, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Mendes-Giannini MJS, Soares CP, da Silva JLM, Andreotti PF. Interaction of pathogenic fungi with host cells: Molecular and cellular approaches. ACTA ACUST UNITED AC 2005; 45:383-94. [PMID: 16087326 DOI: 10.1016/j.femsim.2005.05.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 05/27/2005] [Indexed: 11/26/2022]
Abstract
This review provides an overview of several molecular and cellular approaches that are likely to supply insights into the host-fungus interaction. Fungi present intra- and/or extracellular host-parasite interfaces, the parasitism phenomenon being dependent on complementary surface molecules. The entry of the pathogen into the host cell is initiated by the fungus adhering to the cell surface, which generates an uptake signal that may induce its cytoplasmatic internalization. Furthermore, microbial pathogens use a variety of their surface molecules to bind to host extracellular matrix (ECM) components to establish an effective infection. On the other hand, integrins mediate the tight adhesion of cells to the ECM at sites referred to as focal adhesions and also play a role in cell signaling. The phosphorylation process is an important mechanism of cell signaling and regulation; it has been implicated recently in defense strategies against a variety of pathogens that alter host-signaling pathways in order to facilitate their invasion and survival within host cells. The study of signal transduction pathways in virulent fungi is especially important in view of their putative role in the regulation of pathogenicity. This review discusses fungal adherence, changes in cytoskeletal organization and signal transduction in relation to host-fungus interaction.
Collapse
|
36
|
González A, Gómez BL, Diez S, Hernández O, Restrepo A, Hamilton AJ, Cano LE. Purification and partial characterization of a Paracoccidioides brasiliensis protein with capacity to bind to extracellular matrix proteins. Infect Immun 2005; 73:2486-95. [PMID: 15784595 PMCID: PMC1087412 DOI: 10.1128/iai.73.4.2486-2495.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms adhere to extracellular matrix proteins by means of their own surface molecules. Paracoccidioides brasiliensis conidia have been shown to be capable of interacting with extracellular matrix proteins. We aimed at determining the presence of fungal proteins that could interact with extracellular matrix protein and, if found, attempt their purification and characterization. Various extracts were prepared from P. brasiliensis mycelial and yeast cultures (total homogenates, beta-mercaptoethanol, and sodium dodecyl sulfate [SDS] extracts) and analyzed by ligand affinity assays with fibronectin, fibrinogen and laminin. Two polypeptides were detected in both fungal forms. SDS extracts that interacted with all the extracellular matrix protein were tested; their molecular masses were 19 and 32 kDa. Analysis of the N-terminal amino acid sequence of the purified 32-kDa mycelial protein showed substantial homology with P. brasiliensis, Histoplasma capsulatum, and Neurospora crassa hypothetical proteins. Additionally, a monoclonal antibody (MAb) produced against this protein recognized the 32-kDa protein in the SDS extracts of both fungal forms for immunoblot. Immunofluorescence analysis revealed that this MAb reacted not only with mycelia and yeast cells, but also with conidia, indicating that this protein was shared by the three fungal propagules. By immunoelectron microscopy, this protein was detected in the cell walls and in the cytoplasm. Both the 32-kDa purified protein and MAb inhibited the adherence of conidia to the three extracellular matrix proteins in a dose-dependent manner. These findings demonstrate the presence of two polypeptides capable of interacting with extracellular matrix proteins on the surface of P. brasiliensis propagules, indicating that there may be common receptors for laminin, fibronectin, and fibrinogen. These proteins would be crucial for initial conidial adherence and perhaps also in dissemination of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Angel González
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Carrera 72 A, No. 78B 141, A. A. 73 78 Medellín, Colombia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Gonzalez A, Gomez BL, Restrepo A, Hamilton AJ, Cano LE. Recognition of extracellular matrix proteins byParacoccidioides brasiliensisyeast cells. Med Mycol 2005; 43:637-45. [PMID: 16396249 DOI: 10.1080/13693780500064599] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The adhesion of microorganism to host cells or extracellular matrix (ECM) proteins is the first step in the establishment of an infectious process. Interaction between Paracoccidioides brasiliensis yeast cells and ECM proteins has been previously noted. In vivo, in the chronic phase of experimental paracoccidioidomycosis (PCM), laminin and fibronectin have been detected on the surface of yeast cells located inside granulomatous lesions. The aim of the present study was to examine the ability of P. brasiliensis yeast cells to interact with extracellular matrix proteins (laminin, fibrinogen and fibronectin) and to establish which molecules were involved in this interaction. Immunofluorescence microscopy and flow cytometry demonstrated that all three ECM proteins tested were able to bind to the surface of P. brasiliensis yeast cells. Treatment with trypsin, chymotrypsin, chitinase, proteinase K or different sugars resulted in no change in laminin binding. In addition, ligand affinity assays were performed using different yeast extracts (total homogenates, beta-mercaptoethanol, SDS extracts). These assays demonstrated the presence of 19 and 32-kDa proteins in the cell wall with the ability to bind to laminin, fibrinogen and fibronectin. This interaction could be important in mediating attachment of the fungus to host tissues and may consequently play a role in the pathogenesis of PCM.
Collapse
Affiliation(s)
- Angel Gonzalez
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas Medellin, Colombia.
| | | | | | | | | |
Collapse
|
38
|
Lima OC, Bouchara JP, Renier G, Marot-Leblond A, Chabasse D, Lopes-Bezerra LM. Immunofluorescence and flow cytometry analysis of fibronectin and laminin binding to Sporothrix schenckii yeast cells and conidia. Microb Pathog 2004; 37:131-40. [PMID: 15351036 DOI: 10.1016/j.micpath.2004.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 06/23/2004] [Accepted: 06/23/2004] [Indexed: 11/21/2022]
Abstract
The adherence of Sporothrix schenckii yeast cells to several extracellular matrix (ECM) components has already been demonstrated, but the mechanisms of these interactions remained to be defined. In indirect immunofluorescence assays with polyclonal antibodies directed towards the ECM proteins, both hyphae and yeast cells of S. schenckii exhibited the ability to bind laminin and fibronectin. Flow cytometry confirmed the binding of these proteins, and revealed a significant greater binding capability for the yeast cells than for the conidia. Fibronectin and laminin binding was dose-dependent and specific. In addition, competition experiments with synthetic peptides mimicking the adhesive sequences of these proteins, or with cell wall fractions and carbohydrates constitutive of their sugar chains, were performed in order to specify the peptide or carbohydrate motifs involved in the recognition process. A 50% reduction was noticed in fibronectin binding in the presence of the synthetic peptide RGD, and a 38% reduction in laminin binding with the peptide YIGSR. Some carbohydrate-containing fractions of the yeast cell wall also inhibited the binding of fibronectin, but had no significant effect on laminin binding. Together, these results suggest the presence at the yeast surface of distinct receptors for laminin and fibronectin.
Collapse
Affiliation(s)
- Osana C Lima
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, UERJ, Rua São Francisco Xavier, 524-PHLC s/205, 20550-013, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Pinto MR, de Sá ACM, Limongi CL, Rozental S, Santos ALS, Barreto-Bergter E. Involvement of peptidorhamnomannan in the interaction of Pseudallescheria boydii and HEp2 cells. Microbes Infect 2004; 6:1259-67. [PMID: 15555531 DOI: 10.1016/j.micinf.2004.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 07/12/2004] [Indexed: 11/28/2022]
Abstract
Pseudallescheria boydii is an emerging fungal pathogen that has a worldwide distribution. Virulence mechanisms of P. boydii are largely unknown. We studied the interaction between P. boydii and HEp2 cells and demonstrated that conidia of P. boydii attached to, and were ingested by, HEp2 cells in a time-dependent process. After 2 h of interaction, the conidia produced a germ-tube like projection, which was able to penetrate the epithelial cell membrane. Recently, our group characterized a peptidorhamnomannan (PRM) antigen on the cell surface of P. boydii. In order to better understand the role played by this surface glycoconjugate during cell adhesion and endocytosis, inhibition assays were performed using intact PRM and anti-PRM polyclonal antibody. When HEp2 cells were pre-treated with whole PRM molecule, the adhesion and endocytic indices were, respectively, 50% and 60% lower than in non-treated epithelial cells. Moreover, when the conidial cells were pre-incubated with anti-PRM antibodies, the adherence and endocytosis processes were inhibited in a dose-dependent manner. As PRM influenced the conidia P. boydii-HEp2 cell interaction, we also performed inhibition assays in order to observe which PRM moieties could be involved in this process. Treatment of PRM with proteinase K promoted a slight inhibition of adhesion. However, the de-O-glycosylated PRM molecule as well as the monosaccharide mannose was able to efficiently inhibit the adhesion and endocytic processes. In addition, our results indicate for the first time that P. boydii PRM binds to a polypeptide of 25 kDa on the HEp2 cell surface.
Collapse
Affiliation(s)
- Marcia R Pinto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco I, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Figueiredo CC, De Lima OC, De Carvalho L, Lopes-Bezerra LM, Morandi V. The in vitro interaction of Sporothrix schenckii with human endothelial cells is modulated by cytokines and involves endothelial surface molecules. Microb Pathog 2004; 36:177-88. [PMID: 15001223 DOI: 10.1016/j.micpath.2003.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 11/02/2003] [Accepted: 11/06/2003] [Indexed: 11/16/2022]
Abstract
Sporothrix schenckii is the etiological agent of sporotrichosis, a subcutaneous mycosis that can evolve to systemic complications in immunocompromised patients. Interactions with endothelium are thought to be essential for systemic infections. In the present work, we studied the interaction between S. schenckii and human umbilical vein endothelial cells (HUVECs). S. schenckii interacts with HUVECs in a time-dependent manner. Morphological analysis showed that yeasts locate to interendothelial junctions. Ultrastructural studies showed that internalized yeasts were found inside endocytic vacuoles as early as 2 h, without causing any detectable damage to HUVECs after 24 h of infection. The viability of infected HUVECs was confirmed by the MTT assay. When HUVECs were treated with different concentrations of Interleukin-1beta or transforming growth factor-beta, a significant dose-dependent increase in cell-associated yeasts was observed. The preliminary analysis of the endothelial surface ligands for S. schenckii cells revealed two major molecules, with Mr of approximately 90 and 135 kDa. The interaction of endothelial cell surface molecules with S. schenckii yeast cells was modulated by divalent cations. This is the first demonstration that S. schenckii is able to adhere and invade endothelial cells without significantly affect cellular integrity. Our results suggest the contribution of cytokine-modulated calcium-dependent molecules to this process.
Collapse
Affiliation(s)
- Camila Castro Figueiredo
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rua Sao Francisco Xavier, 524, PHLC sala 205, Maracana, Rio De Janeiro, RJ, 20550-013, Brazil.
| | | | | | | | | |
Collapse
|