1
|
Madhu SN, Sharma S, Gajjar DU. Identification of Proteases: Carboxypeptidase and Aminopeptidase as Putative Virulence Factors of Fusarium solani Species Complex. Open Microbiol J 2020. [DOI: 10.2174/1874434602014010266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Fusarium keratitis accounts for around 50% of mycotic keratitis cases. Major virulence factors produced by keratopathogenic fungi are proteases.
Objective:
The aim of the current study was to identify proteases contributing to corneal pathogenicity of Fusarium species.
Methods:
Culture filtrates from fourteen Fusarium solani species complex (FSSC) isolates and three F. delphinoides isolates were evaluated for protease activity and gelatine zymography. Mass spectroscopy was carried out using a partially purified enzyme and total extracellular extract. Protease gene expression in an in-vitro condition and an ex-vivo goat corneal infection model was measured using qRT-PCR. Specific activity was observed in a wide range and at a broad pH range; and isolates Cs1 (maximum) and Cc50 (minimum) were selected for the infection model.
Results:
Gene expression in in-vitro condition showed the highest fold change for proteases (C7YY94, C7Z7U2 and C7Z6W1) while in an ex-vivo infection highest fold change was seen for proteases (C7Z6W1, C7YQJ2 and C7Z7U2); in decreasing order, respectively. Expression of aminopeptidase (C7Z6W1) was 50-fold higher in the infected cornea in both isolates (Cs1 and Cc50); while expression of carboxypeptidase (C7YVF3) was 15-fold higher only in isolate Cs1. Corneal histology showed less penetration of Cc50 than Cs1 into the stroma. Mass spectrometry showed the presence of carboxypeptidase (C7YVF3) and tripeptidyl amino peptidase.
Conclusion:
It can be concluded that clinical isolates of FSSC produce varying amounts of proteases and differ in specific activity and gene expression in both conditions (in vitro and ex vivo). Carboxypeptidase and aminopeptidase contribute to the pathogenic potential of Fusarium solani species complex.
Collapse
|
2
|
Kin LX, Butler CA, Slakeski N, Hoffmann B, Dashper SG, Reynolds EC. Metabolic cooperativity between Porphyromonas gingivalis and Treponema denticola. J Oral Microbiol 2020; 12:1808750. [PMID: 32944158 PMCID: PMC7482830 DOI: 10.1080/20002297.2020.1808750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Porphyromonas gingivalis and Treponema denticola are proteolytic periodontopathogens that co-localize in polymicrobial subgingival plaque biofilms, display in vitro growth symbiosis and synergistic virulence in animal models of disease. These symbioses are underpinned by a range of metabolic interactions including cooperative hydrolysis of glycine-containing peptides to produce free glycine, which T. denticola uses as a major energy and carbon source. Objective To characterize the P. gingivalis gene products essential for these interactions. Methods: The P. gingivalis transcriptome exposed to cell-free T. denticola conditioned medium was determined using RNA-seq. P. gingivalis proteases potentially involved in hydrolysis of glycine-containing peptides were identified using a bioinformatics approach. Results One hundred and thirty-twogenes displayed differential expression, with the pattern of gene expression consistent with succinate cross-feeding from T. denticola to P. gingivalis and metabolic shifts in the P. gingivalis folate-mediated one carbon superpathway. Interestingly, no P. gingivalis proteases were significantly up-regulated. Three P. gingivalis proteases were identified as candidates and inactivated to determine their role in the release of free glycine. P. gingivalis PG0753 and PG1788 but not PG1605 are involved in the hydrolysis of glycine-containing peptides, making free glycine available for T. denticola utilization. Conclusion Collectively these metabolic interactions help to partition resources and engage synergistic interactions between these two species.
Collapse
Affiliation(s)
- Lin Xin Kin
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Catherine A Butler
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Nada Slakeski
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Brigitte Hoffmann
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Stuart G Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
Miller DP, Hutcherson JA, Wang Y, Nowakowska ZM, Potempa J, Yoder-Himes DR, Scott DA, Whiteley M, Lamont RJ. Genes Contributing to Porphyromonas gingivalis Fitness in Abscess and Epithelial Cell Colonization Environments. Front Cell Infect Microbiol 2017; 7:378. [PMID: 28900609 PMCID: PMC5581868 DOI: 10.3389/fcimb.2017.00378] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Porphyromonas gingivalis is an important cause of serious periodontal diseases, and is emerging as a pathogen in several systemic conditions including some forms of cancer. Initial colonization by P. gingivalis involves interaction with gingival epithelial cells, and the organism can also access host tissues and spread haematogenously. To better understand the mechanisms underlying these properties, we utilized a highly saturated transposon insertion library of P. gingivalis, and assessed the fitness of mutants during epithelial cell colonization and survival in a murine abscess model by high-throughput sequencing (Tn-Seq). Transposon insertions in many genes previously suspected as contributing to virulence showed significant fitness defects in both screening assays. In addition, a number of genes not previously associated with P. gingivalis virulence were identified as important for fitness. We further examined fitness defects of four such genes by generating defined mutations. Genes encoding a carbamoyl phosphate synthetase, a replication-associated recombination protein, a nitrosative stress responsive HcpR transcription regulator, and RNase Z, a zinc phosphodiesterase, showed a fitness phenotype in epithelial cell colonization and in a competitive abscess infection. This study verifies the importance of several well-characterized putative virulence factors of P. gingivalis and identifies novel fitness determinants of the organism.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Justin A Hutcherson
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Yan Wang
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Zuzanna M Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian UniversityKrakow, Poland
| | | | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Marvin Whiteley
- Department of Molecular Biosciences, University of Texas at AustinAustin, TX, United States
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| |
Collapse
|
4
|
Cugini C, Klepac-Ceraj V, Rackaityte E, Riggs JE, Davey ME. Porphyromonas gingivalis: keeping the pathos out of the biont. J Oral Microbiol 2013; 5:19804. [PMID: 23565326 PMCID: PMC3617648 DOI: 10.3402/jom.v5i0.19804] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 01/21/2023] Open
Abstract
The primary goal of the human microbiome initiative has been to increase our understanding of the structure and function of our indigenous microbiota and their effects on human health and predisposition to disease. Because of its clinical importance and accessibility for in vivo study, the oral biofilm is one of the best-understood microbial communities associated with the human body. Studies have shown that there is a succession of select microbial interactions that directs the maturation of a defined community structure, generating the formation of dental plaque. Although the initiating factors that lead to disease development are not clearly defined, in many individuals there is a fundamental shift from a health-associated biofilm community to one that is pathogenic in nature and a central player in the pathogenic potential of this community is the presence of Porphyromonas gingivalis. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont) and proliferate to high cell numbers in periodontal lesions, which is attributed to its arsenal of specialized virulence factors. Hence, this organism is regarded as a primary etiologic agent of periodontal disease progression. In this review, we summarize some of the latest information regarding what is known about its role in periodontitis, including pathogenic potential as well as ecological and nutritional parameters that may shift this commensal to a virulent state. We also discuss parallels between the development of pathogenic biofilms and the human cellular communities that lead to cancer, specifically we frame our viewpoint in the context of 'wounds that fail to heal'.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA ; Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
5
|
Cugini C, Stephens DN, Nguyen D, Kantarci A, Davey ME. Arginine deiminase inhibits Porphyromonas gingivalis surface attachment. MICROBIOLOGY-SGM 2012; 159:275-285. [PMID: 23242802 DOI: 10.1099/mic.0.062695-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The oral cavity is host to a complex microbial community whose maintenance depends on an array of cell-to-cell interactions and communication networks, with little known regarding the nature of the signals or mechanisms by which they are sensed and transmitted. Determining the signals that control attachment, biofilm development and outgrowth of oral pathogens is fundamental to understanding pathogenic biofilm development. We have previously identified a secreted arginine deiminase (ADI) produced by Streptococcus intermedius that inhibited biofilm development of the commensal pathogen Porphyromonas gingivalis through downregulation of genes encoding the major (fimA) and minor (mfa1) fimbriae, both of which are required for proper biofilm development. Here we report that this inhibitory effect is dependent on enzymic activity. We have successfully cloned, expressed and defined the conditions to ensure that ADI from S. intermedius is enzymically active. Along with the cloning of the wild-type allele, we have created a catalytic mutant (ADIC399S), in which the resulting protein is not able to catalyse the hydrolysis of l-arginine to l-citrulline. P. gingivalis is insensitive to the ADIC399S catalytic mutant, demonstrating that enzymic activity is required for the effects of ADI on biofilm formation. Biofilm formation is absent under l-arginine-deplete conditions, and can be recovered by the addition of the amino acid. Taken together, the results indicate that arginine is an important signal that directs biofilm formation by this anaerobe. Based on our findings, we postulate that ADI functions to reduce arginine levels and, by a yet to be identified mechanism, signals P. gingivalis to alter biofilm development. ADI release from the streptococcal cell and its cross-genera effects are important findings in understanding the nature of inter-bacterial signalling and biofilm-mediated diseases of the oral cavity.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.,Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| | | | - Daniel Nguyen
- Department of Periodontology, The Forsyth Institute, Cambridge, MA, USA
| | - Alpdogan Kantarci
- Department of Periodontology, The Forsyth Institute, Cambridge, MA, USA
| | - Mary E Davey
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.,Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
6
|
Wegner N, Wait R, Sroka A, Eick S, Nguyen KA, Lundberg K, Kinloch A, Culshaw S, Potempa J, Venables PJ. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. ACTA ACUST UNITED AC 2010; 62:2662-72. [PMID: 20506214 DOI: 10.1002/art.27552] [Citation(s) in RCA: 458] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To investigate protein citrullination by the periodontal pathogen Porphyromonas gingivalis as a potential mechanism for breaking tolerance to citrullinated proteins in rheumatoid arthritis (RA). METHODS The expression of endogenous citrullinated proteins was analyzed by immunoblotting of cell extracts from P gingivalis and 10 other oral bacteria. P gingivalis-knockout strains lacking the bacterial peptidylarginine deiminases (PADs) or gingipains were created to assess the role of these enzymes in citrullination. Citrullination of human fibrinogen and α-enolase by P gingivalis was studied by incubating live wild-type and knockout strains with the proteins and analyzing the products by immunoblotting and mass spectrometry. RESULTS Endogenous protein citrullination was abundant in P gingivalis but lacking in the other oral bacteria. Deletion of the bacterial PAD gene resulted in complete abrogation of protein citrullination. Inactivation of arginine gingipains, but not lysine gingipains, led to decreased citrullination. Incubation of wild-type P gingivalis with fibrinogen or α-enolase caused degradation of the proteins and citrullination of the resulting peptides at carboxy-terminal arginine residues, which were identified by mass spectrometry. CONCLUSION Our findings demonstrate that among the oral bacterial pathogens tested, P gingivalis is unique in its ability to citrullinate proteins. We further show that P gingivalis rapidly generates citrullinated host peptides by proteolytic cleavage at Arg-X peptide bonds by arginine gingipains, followed by citrullination of carboxy-terminal arginines by bacterial PAD. Our results suggest a novel model where P gingivalis-mediated citrullination of bacterial and host proteins provides a molecular mechanism for generating antigens that drive the autoimmune response in RA.
Collapse
|
7
|
Nakajima E, David LL, Riviere MA, Azuma M, Shearer TR. Human and monkey lenses cultured with calcium ionophore form alphaB-crystallin lacking the C-terminal lysine, a prominent feature of some human cataracts. Invest Ophthalmol Vis Sci 2009; 50:5828-36. [PMID: 19608539 DOI: 10.1167/iovs.09-4015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Elevation of lens calcium occurs in both human and experimental animal cataracts, and opacification may result from calcium-activated proteolysis. The purpose of the present study was to determine whether calcium accumulation in cultured human and Macaca mulatta lenses results in proteolysis of crystallins, the major lens proteins. METHODS Two-dimensional electrophoresis and mass spectrometry were used to construct detailed maps of human and monkey lens crystallins so that proteolysis after calcium accumulation could be monitored and the altered crystallins identified. Human and macaque lenses cultured in A23187 showed elevated lenticular calcium and superficial cortical opacities. The carboxypeptidase E (CPE) gene is expressed in human lens, and its presence in lens fibers was demonstrated by Western blot. To investigate whether CPE could cause similar truncation, purified alphaB-crystallin and CPE were incubated in vitro. RESULTS The major change observed in the crystallins of these cultured lenses was the accumulation of alphaB(1-174)-crystallin resulting from the loss of a C-terminal lysine. This result was significant, because similar appearance of alphaB(1-174) is a prominent change in some human cataracts. alphaB-crystallin and CPE incubation result in the formation of alphaB(1-174)-crystallin. This truncation was specific to alphaB(1-174)-crystallin, since other crystallins were not proteolyzed. Although a weaker activator than zinc, calcium activated CPE in vitro. CONCLUSIONS Since zinc concentrations did not increase during culture in A23187, calcium uptake in the lens may be responsible for CPE activation and alphaB(1-174) formation during cataract.
Collapse
Affiliation(s)
- Emi Nakajima
- Laboratory of Ocular Sciences, Senju Pharmaceutical Corporation Limited, Beaverton, Oregon 97006, USA.
| | | | | | | | | |
Collapse
|
8
|
Jeitner TM, Muma NA, Battaile KP, Cooper AJ. Transglutaminase activation in neurodegenerative diseases. FUTURE NEUROLOGY 2009; 4:449-467. [PMID: 20161049 DOI: 10.2217/fnl.09.17] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The following review examines the role of calcium in promoting the in vitro and in vivo activation of transglutaminases in neurodegenerative disorders. Diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease exhibit increased transglutaminase activity and rises in intracellular calcium concentrations, which may be related. The aberrant activation of transglutaminase by calcium is thought to give rise to a variety of pathological moieties in these diseases, and the inhibition has been shown to have therapeutic benefit in animal and cellular models of neurodegeneration. Given the potential clinical relevance of transglutaminase inhibitors, we have also reviewed the recent development of such compounds.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Applied Bench Core, Winthrop University Hospital, 222 Station Plaza North, Suite 502, Mineola, NY 11501, USA Tel.: +1 516 663 3455
| | | | | | | |
Collapse
|
9
|
Fukui A, Horiguchi Y. DERMONECROTIC TOXIN: THE OLD BUT NEW VIRULENCE FACTOR PRODUCED BY BORDETELLA SPP. TOXIN REV 2008. [DOI: 10.1080/15569540500321019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Thrombin activatable fibrinolysis inhibitor in preeclmapsia and gestational hypertension throughout the gestation. ACTA ACUST UNITED AC 2008; 28:140-3. [DOI: 10.1007/s11596-008-0206-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Indexed: 10/19/2022]
|
11
|
Kim MH, Park JS, Chang HJ, Baek MK, Kim HR, Shin BA, Ahn BW, Jung YD. Lysophosphatidic acid promotes cell invasion by up-regulating the urokinase-type plasminogen activator receptor in human gastric cancer cells. J Cell Biochem 2008; 104:1102-12. [DOI: 10.1002/jcb.21696] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Willemse JL, Polla M, Olsson T, Hendriks DF. Comparative substrate specificity study of carboxypeptidase U (TAFIa) and carboxypeptidase N: development of highly selective CPU substrates as useful tools for assay development. Clin Chim Acta 2007; 387:158-60. [PMID: 17949701 DOI: 10.1016/j.cca.2007.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 09/18/2007] [Accepted: 09/18/2007] [Indexed: 11/30/2022]
Abstract
BACKGROUND Measurement of procarboxypeptidase U (TAFI) in plasma by activity-based assays is complicated by the presence of plasma carboxypeptidase N (CPN). Accurate blank measurements, correcting for this interfering CPN activity, should therefore be performed. A selective CPU substrate will make proCPU determination much less time-consuming. METHODS We searched for selective and sensitive CPU substrates by kinetic screening of different Bz-Xaa-Arg (Xaa=a naturally occurring amino acid) substrates using a novel kinetic assay. RESULTS The presence of an aromatic amino acid (Phe, Tyr, Trp) resulted in a fairly high selectivity for CPU which was most pronounced with Bz-Trp-Arg showing a 56-fold higher k(cat)/K(m) value for CPU compared to CPN. Next we performed chemical modifications on the structure of those aromatic amino acids. This approach resulted in a fully selective CPU substrate with a 2.5-fold increase in k(cat) value compared to the commonly used Hip-Arg (Bz-Gly-Arg). DISCUSSION We demonstrated significant differences in substrate specificity between CPU and CPN that were previously not fully appreciated. The selective CPU substrate presented in this paper will allow straightforward determination of proCPU in plasma in the future.
Collapse
Affiliation(s)
- Johan L Willemse
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|
13
|
Higuchi S, Murayama N, Saguchi KI, Ohi H, Fujita Y, da Silva NJ, de Siqueira RJB, Lahlou S, Aird SD. A novel peptide from the ACEI/BPP-CNP precursor in the venom of Crotalus durissus collilineatus. Comp Biochem Physiol C Toxicol Pharmacol 2006; 144:107-21. [PMID: 16979945 DOI: 10.1016/j.cbpc.2006.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2006] [Revised: 04/17/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
In crotaline venoms, angiotensin-converting enzyme inhibitors [ACEIs, also known as bradykinin potentiating peptides (BPPs)], are products of a gene coding for an ACEI/BPP-C-type natriuretic peptide (CNP) precursor. In the genes from Bothrops jararaca and Gloydius blomhoffii, ACEI/BPP sequences are repeated. Sequencing of a cDNA clone from venom glands of Crotalus durissus collilineatus showed that two ACEIs/BPPs are located together at the N-terminus, but without repeats. An additional sequence for CNP was unexpectedly found at the C-terminus. Homologous genes for the ACEI/BPP-CNP precursor suggest that most crotaline venoms contain both ACEIs/BPPs and CNP. The sequence of ACEIs/BPPs is separated from the CNP sequence by a long spacer sequence. Previously, there was no evidence that this spacer actually coded any expressed peptides. Aird and Kaiser (1986, unpublished) previously isolated and sequenced a peptide of 11 residues (TPPAGPDVGPR) from Crotalus viridis viridis venom. In the present study, analysis of the cDNA clone from C. d. collilineatus revealed a nearly identical sequence in the ACEI/BPP-CNP spacer. Fractionation of the crude venom by reverse phase HPLC (C(18)), and analysis of the fractions by mass spectrometry (MS) indicated a component of 1020.5 Da. Amino acid sequencing by MS/MS confirmed that C. d. collilineatus venom contains the peptide TPPAGPDGGPR. Its high proline content and paired proline residues are typical of venom hypotensive peptides, although it lacks the usual N-terminal pyroglutamate. It has no demonstrable hypotensive activity when injected intravenously in rats; however, its occurrence in the venoms of dissimilar species suggests that its presence is not accidental. Evidence suggests that these novel toxins probably activate anaphylatoxin C3a receptors.
Collapse
Affiliation(s)
- Shigesada Higuchi
- Showa University School of Pharmaceutical Sciences, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Willemse J, Leurs J, Verkerk R, Hendriks D. Development of a fast kinetic method for the determination of carboxypeptidase U (TAFIa) using C-terminal arginine containing peptides as substrate. Anal Biochem 2005; 340:106-12. [PMID: 15802136 DOI: 10.1016/j.ab.2005.01.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Indexed: 11/30/2022]
Abstract
Carboxypeptidase U (CPU, TAFIa) is a novel determinant of the fibrinolytic rate. It circulates in blood as an inactive zymogen, procarboxypeptidase U, which is activated during the process of coagulation and fibrinolysis. CPU has a very short half-life at 37 degrees C. Its intrinsic instability complicates the determination of kinetic parameters of different substrates using an endpoint method. We developed a fast kinetic assay for measuring continuously the release of the C-terminal arginine by CPU independent of the nature of the substrate peptide used, allowing us to perform substrate specificity studies of CPU. This method uses arginine kinase, pyruvate kinase, and lactate dehydrogenase as auxiliary enzymes. The CPU activities measured using this kinetic assay were in the range of 97-103% of those determined with our HPLC-assisted reference assay, and the obtained K(m) and k(cat) values for hippuryl-l-arginine and bradykinin were in good accordance with those described in the literature. As expected, no arginine cleaving was seen using dipeptides and peptide substrates with a proline in the penultimate position. The presented kinetic assay enables the fast screening of substrates with a C-terminal arginine and is a valuable new tool for the kinetic evaluation of both synthetic and physiological substrates of CPU.
Collapse
Affiliation(s)
- Johan Willemse
- Laboratory of Medical Biochemistry, University of Antwerp, B-2610 Antwerp, Belgium
| | | | | | | |
Collapse
|
15
|
Rich RL, Myszka DG. A survey of the year 2002 commercial optical biosensor literature. J Mol Recognit 2004; 16:351-82. [PMID: 14732928 DOI: 10.1002/jmr.649] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have compiled 819 articles published in the year 2002 that involved commercial optical biosensor technology. The literature demonstrates that the technology's application continues to increase as biosensors are contributing to diverse scientific fields and are used to examine interactions ranging in size from small molecules to whole cells. Also, the variety of available commercial biosensor platforms is increasing and the expertise of users is improving. In this review, we use the literature to focus on the basic types of biosensor experiments, including kinetics, equilibrium analysis, solution competition, active concentration determination and screening. In addition, using examples of particularly well-performed analyses, we illustrate the high information content available in the primary response data and emphasize the impact of including figures in publications to support the results of biosensor analyses.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
16
|
Fujimura S, Ueda O, Shibata Y, Hirai K. Isolation and properties of a tripeptidyl peptidase from a periodontal pathogen Prevotella nigrescens. FEMS Microbiol Lett 2003; 219:305-9. [PMID: 12620636 DOI: 10.1016/s0378-1097(03)00048-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prolyltripeptidyl amino peptidase activity was found in a crude extract of Prevotella nigrescens and this enzyme was purified by procedures including concentration with ammonium sulfate, ion exchange chromatography, gel filtration, and isoelectric focusing. This peptidase hydrolyzed Ala-Ala-Pro-p-nitroanilide as well as Ala-Phe-Pro-p-nitroanilide. Furthermore, several p-nitroanilide derivatives of dipeptides with a proline residue in the second position from the amino-terminal end (Xaa-Pro) were also cleaved detectably. The molecular mass of this tripeptidase was calculated as 56 kDa and its isoelectric point was 5.8. The enzyme was inactivated completely by heating at 60 degrees C for 5 min and inhibited significantly by specific serine enzyme inhibitors.
Collapse
Affiliation(s)
- Setsuo Fujimura
- Department of Oral Microbiology, Matsumoto Dental University, Shiojiri-Shi, 399-0781, Nagano-Ken, Japan.
| | | | | | | |
Collapse
|