1
|
Loes AN, Hinman MN, Farnsworth DR, Miller AC, Guillemin K, Harms MJ. Identification and Characterization of Zebrafish Tlr4 Coreceptor Md-2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1046-1057. [PMID: 33472906 PMCID: PMC7889624 DOI: 10.4049/jimmunol.1901288] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
Abstract
The zebrafish (Danio rerio) is a powerful model organism for studies of the innate immune system. One apparent difference between human and zebrafish innate immunity is the cellular machinery for LPS sensing. In amniotes, the protein complex formed by TLR4 and myeloid differentiation factor 2 (Tlr4/Md-2) recognizes the bacterial molecule LPS and triggers an inflammatory response. It is believed that zebrafish have neither Md-2 nor Tlr4; Md-2 has not been identified outside of amniotes, whereas the zebrafish tlr4 genes appear to be paralogs, not orthologs, of amniote TLR4s We revisited these conclusions. We identified a zebrafish gene encoding Md-2, ly96 Using single-cell RNA sequencing, we found that ly96 is transcribed in cells that also transcribe genes diagnostic for innate immune cells, including the zebrafish tlr4-like genes. In larval zebrafish, ly96 is expressed in a small number of macrophage-like cells. In a functional assay, zebrafish Md-2 and Tlr4ba form a complex that activates NF-κB signaling in response to LPS. In larval zebrafish ly96 loss-of-function mutations perturbed LPS-induced cytokine production but gave little protection against LPS toxicity. Finally, by analyzing the genomic context of tlr4 genes in 11 jawed vertebrates, we found that tlr4 arose prior to the divergence of teleosts and tetrapods. Thus, an LPS-sensitive Tlr4/Md-2 complex is likely an ancestral feature shared by mammals and zebrafish, rather than a de novo invention on the tetrapod lineage. We hypothesize that zebrafish retain an ancestral, low-sensitivity Tlr4/Md-2 complex that confers LPS responsiveness to a specific subset of innate immune cells.
Collapse
Affiliation(s)
- Andrea N Loes
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
| | - Melissa N Hinman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
- Department of Biology, University of Oregon, Eugene, OR 97403
| | - Dylan R Farnsworth
- Department of Biology, University of Oregon, Eugene, OR 97403
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403; and
| | - Adam C Miller
- Department of Biology, University of Oregon, Eugene, OR 97403
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403; and
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
- Department of Biology, University of Oregon, Eugene, OR 97403
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Michael J Harms
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403;
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
| |
Collapse
|
2
|
Anderson JA, Loes AN, Waddell GL, Harms MJ. Tracing the evolution of novel features of human Toll-like receptor 4. Protein Sci 2019; 28:1350-1358. [PMID: 31075178 PMCID: PMC6566505 DOI: 10.1002/pro.3644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
Abstract
Toll-like receptor 4 (TLR4) is a critical innate immune protein that activates inflammation in response to extracellular cues. Much of the work to understand how the protein works in humans has been done using mouse models. Although human and mouse TLR4 have many shared features, they have also diverged significantly since their last common ancestor, acquiring 277 sequence differences. Functional differences include the extent of ligand-independent activation, whether lipid IVa acts as an antagonist or agonist, and the relative species cross-compatibility of their MD-2 cofactor. We set out to understand the evolutionary origins for these functional differences between human and mouse TLR4. Using a combination of phylogenetics, ancestral sequence reconstruction, and functional characterization, we found that evolutionary changes to the human TLR4, rather than changes to the mouse TLR4, were largely responsible for these functional changes. Human TLR4 repressed ancestral ligand-independent activity and gained antagonism to lipid IVa. Additionally, mutations to the human TLR4 cofactor MD-2 led to lineage-specific incompatibility between human and opossum TLR4 complex members. These results were surprising, as mouse TLR4 has acquired many more mutations than human TLR4 since their last common ancestor. Our work has polarized this set of transitions and sets up work to study the mechanistic underpinnings for the evolution of new functions in TLR4.
Collapse
Affiliation(s)
- Jeremy A. Anderson
- Institute for Molecular Biology, University of OregonEugeneOregon97403
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregon97403
| | - Andrea N. Loes
- Institute for Molecular Biology, University of OregonEugeneOregon97403
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregon97403
| | - Grace L. Waddell
- Institute for Molecular Biology, University of OregonEugeneOregon97403
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregon97403
| | - Michael J. Harms
- Institute for Molecular Biology, University of OregonEugeneOregon97403
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregon97403
| |
Collapse
|
3
|
Janusch H, Brecker L, Lindner B, Alexander C, Gronow S, Heine H, Ulmer AJ, Rietschel ET, Zähringer U. Structural and biological characterization of highly purified hepta-acyl lipid A present in the lipopolysaccharide of the Salmonella enterica sv. Minnesota Re deep rough mutant strain R595. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519020080050801] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One major component of the Salmonella enterica sv. Minnesota Re deep rough mutant (strain R595) lipopolysaccharide is hepta-acyl lipid A (LAhepta). In a recent publication [Tanamoto K-I, Azumi S. Salmonella-type heptaacylated lipid A is inactive and acts as an antagonist of lipopolysaccharide action on human line cells. J Immunol 2000; 164: 3149—3156] the corresponding synthetic hepta-acyl lipid A (compound 516) was reported to be agonistically inactive but to rather suppress pro-inflammatory activation by the endotoxichexa-acyl lipid A (LAhexa, compound 506) and S-form LPS from Escherichia coli in the human macrophage-like cell lines THP-1 and U937. These results, however, were in contrast to previous findings with human mononuclear cells (hMNC) isolated from peripheral blood, in which compound 516 was found to be an agonist, expressing low, but significant,cytokine-inducing activity as compared to LAhexa. We have investigated the structure of natural LA hepta from the S. enterica sv. Minnesota Re deep rough mutant strain (R595) by TLC immunoblot, MALDI-TOF mass spectrometry and NMR spectroscopy. Using these techniques, the structural identity between LAhepta and the synthetic compound 516 was confirmed. In corroboration of previous findings with studies employing compound 516, purified LA hepta was found to induce the production of TNF- , IL-1 and IL-6 in hMNC, thus displaying moderate agonistic activity. Furthermore, we showed that LAhepta agonistically activated nuclear translocation of NF- B in THP-1 cells, thus clearly ruling out the possibility that LAhepta is an antagonist and that its biological activity is influenced by the type of human myeloid cells used for testing endotoxicity(hMNC versus THP-1 cells).
Collapse
Affiliation(s)
- Holger Janusch
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Lothar Brecker
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Buko Lindner
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Christian Alexander
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Sabine Gronow
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Holger Heine
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Artur J. Ulmer
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Ernst Th. Rietschel
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - Ulrich Zähringer
- Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany,
| |
Collapse
|
4
|
Lohmann KL, Vandenplas ML, Barton MH, Bryant CE, Moore JN. The equine TLR4/MD-2 complex mediates recognition of lipopolysaccharide from Rhodobacter sphaeroides as an agonist. ACTA ACUST UNITED AC 2016; 13:235-42. [DOI: 10.1177/0968051907083193] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipopolysaccharide (LPS) antagonists inhibit the response of inflammatory cells to LPS, presumably by competitive inhibition, and may be of therapeutic value in the treatment of endotoxemia and sepsis. The inhibitory effects of some LPS antagonists are restricted to certain host species, however, as the same molecules can have significant endotoxic activity in other species. This species-specific recognition appears to be mediated by Toll-like receptor 4 (TLR4) and/or MD-2. We have shown previously that LPS from Rhodobacter sphaeroides ( RsLPS) is an LPS antagonist in human cells but an agonist (or LPS mimetic) in equine cells. In the present study, HEK293 cells were transfected with combinations of human and equine CD14, TLR4 and MD-2, and incubated with either RsLPS or with LPS from Escherichia coli as an endotoxin control. NF-κB activation was measured in a dual luciferase assay as an indicator of cellular activation. Our results indicate that E. colic LPS activated NF-κB in cells transfected with all combinations of the three receptor proteins, whereas RsLPS activated NF-κB only in cells expressing the single combination of equine TLR4 and equine MD-2. We conclude that the TLR4/MD-2 complex is responsible for recognition of RsLPS as an agonist in equine cells.
Collapse
Affiliation(s)
- Katharina L. Lohmann
- Department of Large Animal Medicine, University of Georgia, Athens, Georgia, USA,
| | - Michel L. Vandenplas
- Department of Large Animal Medicine, University of Georgia, Athens, Georgia, USA
| | - Michelle H. Barton
- Department of Large Animal Medicine, University of Georgia, Athens, Georgia, USA, Physiology and Pharmacology College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Clare E. Bryant
- Department of Clinical Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - James N. Moore
- Department of Large Animal Medicine, University of Georgia, Athens, Georgia, USA, Physiology and Pharmacology College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Abstract
The presence of palmitate in a minor fraction of lipid A has been known since the chemical structure of lipid A was first elucidated, but the functional importance in bacterial pathogenesis of regulated lipid A palmitoylation has become clear only recently. A palmitate chain from a phospholipid is incorporated into lipid A by an outer membrane enzyme PagP. The isolation of pagP mutants from pathogenic Gram-negative bacteria has revealed that palmitoylated lipid A can both protect the bacterium from certain host immune defenses and attenuate the ability of lipid A to activate those same defenses through the TLR4 signal transduction pathway. The mechanisms by which bacteria regulate the incorporation of palmitate into lipid A strikingly reflect the corresponding organism's pathogenic lifestyle. Variations on these themes can be illustrated with the known pagP homologs from Gram-negative bacteria, which include pathogens of humans and other mammals in addition to pathogens of insects and plants. The PagP enzyme is now lending itself both as a target for the development of anti-infective agents, and as a tool for the synthesis of lipid A-based vaccine adjuvants and endotoxin antagonists.
Collapse
Affiliation(s)
- Russell E. Bishop
- Departments of Laboratory Medicine and Pathobiology, and Biochemistry, University of Toronto, Toronto, Ontario, Canada,
| | - Sang-Hyun Kim
- Departments of Laboratory Medicine and Pathobiology, and Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ahmed El Zoeiby
- Departments of Laboratory Medicine and Pathobiology, and Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Lohmann KL, Vandenplas M, Barton MH, Moore JN. Lipopolysaccharide from Rhodobacter sphaeroides is an agonist in equine cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090010301] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endotoxemia is associated with the principal causes of death in adult horses and equine neonates and, therefore, veterinary researchers are expending efforts to identify new therapeutic interventions that might be beneficial in these animals. Endotoxin antagonists inhibit interaction of endotoxin with cellular receptors and may be beneficial in the treatment of endotoxemia and sepsis. Diphosphoryl lipid A from Rhodobacter sphaeroides ( RsDPLA) is a potent antagonist of enteric LPS in human cells, but is an agonist in hamster cells. In this study, the effect of lipopolysaccharide from R. sphaeroides ( RsLPS) on equine whole blood and isolated monocyte preparations was investigated by comparing tumor necrosis factor (TNF) production in response to RsLPS and Escherichia coli O55:B5 LPS. Our results indicate that RsLPS is a potent agonist in equine cells, which precludes therapeutic use of this agent in equine patients. In contrast to the results in equine cells, RsLPS did not elicit TNF production by itself, and inhibited the response to E. coli O55:B5 LPS in a human monocytic cell line.
Collapse
Affiliation(s)
- Katharina L. Lohmann
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Michel Vandenplas
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Michelle H. Barton
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - James N. Moore
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
7
|
Ortiz-Suarez M, Bond P. The Structural Basis for Lipid and Endotoxin Binding in RP105-MD-1, and Consequences for Regulation of Host Lipopolysaccharide Sensitivity. Structure 2016; 24:200-211. [DOI: 10.1016/j.str.2015.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/09/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022]
|
8
|
Teghanemt A, Weiss JP, Gioannini TL. Radioiodination of an endotoxin·MD-2 complex generates a novel sensitive, high-affinity ligand for TLR4. Innate Immun 2013; 19:545-60. [PMID: 23439691 DOI: 10.1177/1753425913475688] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A purified complex of metabolically labeled [(3)H]lipooligosaccharide (LOS) and recombinant human myeloid differentiation factor 2 (MD-2), [(3)H]LOS·MD-2, has been used to demonstrate pM affinity binding interactions with soluble TLR4 ectodomain (TLR4ecd). For measurement of the binding parameters of membrane-bound TLR4, we took advantage of the stability of endotoxin·MD-2 and tyrosine(s) present on the surface of MD-2 to radioiodinate LOS·MD-2. Radioiodinated LOS·MD-2 generated a reagent with an estimated 1:1 molar ratio of [(125)I] to sMD-2 with 20-fold higher specific radioactivity and TLR4-activating properties comparable to metabolically-labeled LOS·MD-2. LOS·MD-2[(125)I] and [(3)H]LOS·MD-2 have similar affinities for soluble (FLAG) TLR4ecd and for membrane-bound TLR4 in HEK293T/TLR4 cells. In a similar dose-dependent manner, sMD-2 and LOS·MD-2 inhibit LOS·MD-2[(125)I] binding to TLR4 indicating the pM affinity binding of LOS·MD-2[(125)I] is agonist-independent. LOS·MD-2[(125)I] allowed measurement of low levels of cell-surface human or murine TLR4 expressed by stable cell lines (2000-3000 sites/cell) and quantitatively measures low levels of 'MD-2-free' TLR4 (est. 250 molecules/cell) in cells co-expressing TLR4 and MD-2. Occupation of 50-100 TLR4/cell by LOS·MD-2 is sufficient to trigger measurable TLR4-dependent cell activation. LOS·MD-2[(125)I] provides a powerful reagent to measure quantitatively functional human and murine cell-surface TLR4, including in cells where surface TLR4 is potentially functionally significant but not detectable by other methods.
Collapse
Affiliation(s)
- Athmane Teghanemt
- 1Inflammation Program, Department of Internal Medicine, Roy A. and Lucille J. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
9
|
Bowen WS, Gandhapudi SK, Kolb JP, Mitchell TC. Immunopharmacology of Lipid A Mimetics. ADVANCES IN PHARMACOLOGY 2013; 66:81-128. [DOI: 10.1016/b978-0-12-404717-4.00003-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Metal allergens nickel and cobalt facilitate TLR4 homodimerization independently of MD2. EMBO Rep 2012; 13:1109-15. [PMID: 23059983 DOI: 10.1038/embor.2012.155] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/21/2012] [Accepted: 09/21/2012] [Indexed: 11/08/2022] Open
Abstract
Development of contact allergy requires cooperation of adaptive and innate immunity. Ni(2+) stimulates innate immunity via TLR4/MD2, the bacterial LPS receptor. This likely involves receptor dimerization, but direct proof is pending and it is unclear if related haptens share this mechanism. We reveal Co(2+) as second metal stimulating TLR4 and confirm necessity of H456/H458 therein. Experiments with a new TLR4 dimerization mutant established dimerization as a mechanism of metal- and LPS-induced TLR4 activation. Yet, in interaction studies only LPS- but not metal-induced dimerization required MD2. Consistently, soluble TLR4 expressed without MD2 inhibited metal- but not LPS-induced responses, opening new therapeutic perspectives.
Collapse
|
11
|
Dunn-Siegrist I, Tissières P, Drifte G, Bauer J, Moutel S, Pugin J. Toll-like receptor activation of human cells by synthetic triacylated lipid A-like molecules. J Biol Chem 2012; 287:16121-31. [PMID: 22433865 DOI: 10.1074/jbc.m112.348383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recognition of microbial molecules by mammalian host receptors is essential to mount an immune response. Hexaacylated LPS is the prototypic example of a bacterial molecule recognized by the receptor complex TLR4/MD-2 with its lipid A moiety, whereas bacterial lipopeptides are recognized by TLR2. Here we show that a series of synthetic triacylated lipid A-like molecules are weak Toll-like receptor (TLR) agonists (mainly TLR2 agonists) but very potent TLR4/MD-2 antagonists (submicromolar range). Not only do they block human cell responses to LPS but also to whole gram-negative bacteria, and they inhibit the phagocytosis of gram-negative bacteria. These compounds may represent promising immunomodulatory agents.
Collapse
Affiliation(s)
- Irène Dunn-Siegrist
- Intensive Care Laboratory and Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva 14, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
IRAK-1-mediated negative regulation of Toll-like receptor signaling through proteasome-dependent downregulation of TRAF6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:255-63. [PMID: 22033459 DOI: 10.1016/j.bbamcr.2011.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 09/21/2011] [Accepted: 10/05/2011] [Indexed: 11/21/2022]
Abstract
TRAF6 plays a crucial role in signal transduction of the Toll-like receptor (TLR). It has been reported that TRAF6 catalyzes the formation of unique Lys63-linked polyubiquitin chains, which do not lead to proteasome-mediated degradation. Here we found that stimulation of J774.1 cells with various TLR ligands led to decreases in TRAF6 protein levels that occurred at a slower rate than IκBα degradation. The decrease in TRAF6 was inhibited by proteasome inhibitors MG-132, lactacystin and N-acetyl-leucyl-leucyl-norleucinal. Among intracellular TLR signaling molecules MyD88, IRAK-4, IRAK-1, TRAF6, and IKKβ, only IRAK-1 expression downregulated TRAF6 in HEK293 cells. The amount of TRAF6 expressed either transiently or stably was also reduced by co-expression of IRAK-1 and no TRAF6 cleavage products were detected. The levels of either a TRAF6 N-terminal deletion mutant or a ubiquitin ligase-defective mutant were not affected by IRAK-1 expression. Downregulation of TRAF6 required the TRAF6-binding site (Glu544, Glu587, Glu706) of IRAK-1 but not its catalytic site (Asp340). Upon IRAK-1 transfection, no significant TRAF6 ubiquitination was detected. Instead, TRAF6-associated IRAK-1 was ubiquitinated with both Lys48- and Lys63-linked polyubiquitin chains. TRAF6 downregulation was inhibited by co-expression of the E3 ubiquitin ligase Pellino 3, whose Lys63-linked polyubiquitination on IRAK-1 is reported to compete with Lys48-linked IRAK-1 polyubiquitination. Expression of IRAK-1 inhibited IκBα phosphorylation in response to TLR2 stimulation. These results indicate that stimulation of TLRs induces proteasome-dependent downregulation of TRAF6. We conclude that TRAF6 associated with ubiquitinated IRAK-1 is degraded together by the proteasome and that IRAK-1 possesses a negative regulatory role on TLR signaling.
Collapse
|
13
|
Cuesta-Seijo JA, Neale C, Khan MA, Moktar J, Tran CD, Bishop RE, Pomès R, Privé GG. PagP crystallized from SDS/cosolvent reveals the route for phospholipid access to the hydrocarbon ruler. Structure 2011; 18:1210-9. [PMID: 20826347 DOI: 10.1016/j.str.2010.06.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 05/31/2010] [Accepted: 06/07/2010] [Indexed: 12/25/2022]
Abstract
Enzymatic reactions involving bilayer lipids occur in an environment with strict physical and topological constraints. The integral membrane enzyme PagP transfers a palmitoyl group from a phospholipid to lipid A in order to assist Escherichia coli in evading host immune defenses during infection. PagP measures the palmitoyl group with an internal hydrocarbon ruler that is formed in the interior of the eight-stranded antiparallel β barrel. The access and egress of the palmitoyl group is thought to take a lateral route from the bilayer phase to the barrel interior. Molecular dynamics, mutagenesis, and a 1.4 A crystal structure of PagP in an SDS / 2-methyl-2,4-pentanediol (MPD) cosolvent system reveal that phospholipid access occurs at the crenel present between strands F and G of PagP. In this way, the phospholipid head group can remain exposed to the cell exterior while the lipid acyl chain remains in a predominantly hydrophobic environment as it translocates to the protein interior.
Collapse
Affiliation(s)
- Jose Antonio Cuesta-Seijo
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute and Campbell Family Cancer Research Institute, 101 College Street, Toronto, ON M5G 1L7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Khan MA, Moktar J, Mott PJ, Vu M, McKie AH, Pinter T, Hof F, Bishop RE. Inscribing the perimeter of the PagP hydrocarbon ruler by site-specific chemical alkylation. Biochemistry 2010; 49:9046-57. [PMID: 20853818 DOI: 10.1021/bi1011496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Escherichia coli outer membrane phospholipid:lipid A palmitoyltransferase PagP selects palmitate chains using its β-barrel-interior hydrocarbon ruler and interrogates phospholipid donors by gating them laterally through an aperture known as the crenel. Lipid A palmitoylation provides antimicrobial peptide resistance and modulates inflammation signaled through the host TLR4/MD2 pathway. Gly88 substitutions can raise the PagP hydrocarbon ruler floor to correspondingly shorten the selected acyl chain. To explore the limits of hydrocarbon ruler acyl chain selectivity, we have modified the single Gly88Cys sulfhydryl group with linear alkyl units and identified C10 as the shortest acyl chain to be efficiently utilized. Gly88Cys-S-ethyl, S-n-propyl, and S-n-butyl PagP were all highly specific for C12, C11, and C10 acyl chains, respectively, and longer aliphatic or aminoalkyl substitutions could not extend acyl chain selectivity any further. The donor chain length limit of C10 coincides with the phosphatidylcholine transition from displaying bilayer to micellar properties in water, but the detergent inhibitor lauryldimethylamine N-oxide also gradually became ineffective in a micellar assay as the selected acyl chains were shortened to C10. The Gly88Cys-S-ethyl and norleucine substitutions exhibited superior C12 acyl chain specificity compared to that of Gly88Met PagP, thus revealing detection by the hydrocarbon ruler of the Met side chain tolerance for terminal methyl group gauche conformers. Although norleucine substitution was benign, selenomethionine substitution at Met72 was highly destabilizing to PagP. Within the hydrophobic and van der Waals-contacted environment of the PagP hydrocarbon ruler, side chain flexibility, combined with localized thioether-aromatic dispersion attraction, likely influences the specificity of acyl chain selection.
Collapse
Affiliation(s)
- M Adil Khan
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada L8N 3Z5
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol 2010; 11:814-9. [PMID: 20711192 DOI: 10.1038/ni.1919] [Citation(s) in RCA: 406] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/19/2010] [Indexed: 12/16/2022]
Abstract
Allergies to nickel (Ni(2+)) are the most frequent cause of contact hypersensitivity (CHS) in industrialized countries. The efficient development of CHS requires both a T lymphocyte-specific signal and a proinflammatory signal. Here we show that Ni(2+) triggered an inflammatory response by directly activating human Toll-like receptor 4 (TLR4). Ni(2+)-induced TLR4 activation was species-specific, as mouse TLR4 could not generate this response. Studies with mutant TLR4 proteins revealed that the non-conserved histidines 456 and 458 of human TLR4 are required for activation by Ni(2+) but not by the natural ligand lipopolysaccharide. Accordingly, transgenic expression of human TLR4 in TLR4-deficient mice allowed efficient sensitization to Ni(2+) and elicitation of CHS. Our data implicate site-specific human TLR4 inhibition as a potential strategy for therapeutic intervention in CHS that would not affect vital immune responses.
Collapse
|
16
|
Khan MA, Moktar J, Mott PJ, Bishop RE. A thiolate anion buried within the hydrocarbon ruler perturbs PagP lipid acyl chain selection. Biochemistry 2010; 49:2368-79. [PMID: 20175558 DOI: 10.1021/bi901669q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Escherichia coli outer membrane phospholipid:lipid A palmitoyltransferase PagP exhibits remarkable selectivity because its binding pocket for lipid acyl chains excludes those differing in length from palmitate by a solitary methylene unit. This narrow detergent-binding hydrophobic pocket buried within the eight-strand antiparallel beta-barrel is known as the hydrocarbon ruler. Gly88 lines the acyl chain binding pocket floor, and its substitution can raise the floor to correspondingly shorten the selected acyl chain. An aromatic exciton interaction between Tyr26 and Trp66 provides an intrinsic spectroscopic probe located immediately adjacent to Gly88. The Gly88Cys PagP enzyme was engineered to function as a dedicated myristoyltransferase, but the mutant enzyme instead selected both myristoyl and pentadecanoyl groups, was devoid of the exciton, and displayed a 21 degrees C reduction in thermal stability. We now demonstrate that the structural perturbation results from a buried thiolate anion attributed to suppression of the Cys sulfhydryl group pK(a) from 9.4 in aqueous solvent to 7.5 in the hydrocarbon ruler microenvironment. The Cys thiol is sandwiched at the interface between a nonpolar and a polar beta-barrel interior milieu, suggesting that local electrostatics near the otherwise hydrophobic hydrocarbon ruler pocket serve to perturb the thiol pK(a). Neutralization of the Cys thiolate anion by protonation restores wild-type exciton and thermal stability signatures to Gly88Cys PagP, which then functions as a dedicated myristoyltransferase at pH 7. Gly88Cys PagP assembled in bacterial membranes recapitulates lipid A myristoylation in vivo. Hydrocarbon ruler-exciton coupling in PagP thus reveals a thiol-thiolate ionization mechanism for modulating lipid acyl chain selection.
Collapse
Affiliation(s)
- M Adil Khan
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | |
Collapse
|
17
|
Cipolla L, Gabrielli L, Bini D, Russo L, Shaikh N. Kdo: a critical monosaccharide for bacteria viability. Nat Prod Rep 2010; 27:1618-29. [DOI: 10.1039/c004750n] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Khan MA, Bishop RE. Molecular mechanism for lateral lipid diffusion between the outer membrane external leaflet and a beta-barrel hydrocarbon ruler. Biochemistry 2009; 48:9745-56. [PMID: 19769329 DOI: 10.1021/bi9013566] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Membrane-intrinsic enzymes are embedded in lipids, yet how such enzymes interrogate lipid substrates remains a largely unexplored fundamental question. The outer membrane phospholipid:lipid A palmitoyltransferase PagP combats host immune defenses during infection and selects a palmitate chain using its beta-barrel interior hydrocarbon ruler. Both a molecular embrasure and crenel in Escherichia coli PagP display weakened transmembrane beta-strand hydrogen bonding to provide potential lateral routes for diffusion of the palmitoyl group between the hydrocarbon ruler and outer membrane external leaflet. Prolines in strands A and B lie beneath the dynamic L1 surface loop flanking the embrasure, whereas the crenel is flanked by prolines in strands F and G. Reversibly barricading the embrasure prevents lipid A palmitoylation without affecting the slower phospholipase reaction. Lys42Ala PagP is also a dedicated phospholipase, implicating this disordered L1 loop residue in lipid A recognition. The embrasure barricade additionally prevents palmitoylation of nonspecific fatty alcohols, but not miscible alcohols. Irreversibly barricading the crenel inhibits both lipid A palmitoylation and phospholipase reactions without compromising PagP structure. These findings indicate lateral palmitoyl group diffusion within the PagP hydrocarbon ruler is likely gated during phospholipid entry via the crenel and during lipid A egress via the embrasure.
Collapse
Affiliation(s)
- M Adil Khan
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada L8N 3Z5
| | | |
Collapse
|
19
|
Zimmer SM, Liu J, Clayton JL, Stephens DS, Snyder JP. Paclitaxel binding to human and murine MD-2. J Biol Chem 2008; 283:27916-27926. [PMID: 18650420 PMCID: PMC2562052 DOI: 10.1074/jbc.m802826200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/23/2008] [Indexed: 11/06/2022] Open
Abstract
Paclitaxel (PTX) is an important cancer chemotherapeutic agent that binds to beta-tubulin and prevents mitosis through microtubule overstabilization. Recent evidence also implicates PTX in the induction of apoptosis of cancer cells via the TLR4 innate immune pathway. The TLR4 accessory protein, MD-2, is an essential component for the species-specific proinflammatory activity of PTX on murine cells. However, whether PTX binds to human MD-2 and how MD-2 and TLR4 interact with PTX are not well defined. Recombinant human MD-2 (rhMD-2) was produced in a Pichia pastoris expression system, and the interaction between rhMD-2 and PTX was assessed by an enzyme-linked immunosorbent assay to show that PTX binds rhMD-2. Formation of the latter complex was found to be dose-dependent and inhibited by anti-MD-2 antibody but not by an isotype control antibody. As measured by human tumor necrosis factor alpha production, human THP-1 monocytes expressing TLR4 and MD-2 were poorly responsive to the addition of PTX, but murine macrophages expressing TLR4 and MD-2 responded in a dose-dependent manner. Human embryonic kidney (HEK293) cells transfected with both human TLR4 and human MD-2 or human MD-2 and murine TLR4 were also poorly responsive to PTX (10 microm). However, HEK293 cells transfected with murine MD-2 and human TLR4 or murine MD-2 and murine TLR4 were highly responsive to PTX (10 microm), indicating that the murine MD-2/PTX interaction is required for TLR4 activation. To further define the structural differences for MD-2/TLR4 activation, crystal structures of both murine and human MD-2 were subjected to PTX docking by computational methods. These models indicate that PTX binds in the pocket of both human and mouse MD-2 structures. The species-specific difference between human and murine MD-2 activation of TLR4 by PTX can be explained by alterations of surface charge distribution (i.e. electrostatic potential), binding pocket size, and the locus of PTX binding within the MD-2 pocket, which results in reorganization of the 123-130 amino acid loop. In particular, Phe(126) appears to operate as a bridge for TLR4.MD-2 dimerization in the mouse but not the human protein.
Collapse
Affiliation(s)
- Shanta M Zimmer
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - Jin Liu
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jaime L Clayton
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David S Stephens
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - James P Snyder
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
20
|
Keestra AM, van Putten JPM. Unique Properties of the Chicken TLR4/MD-2 Complex: Selective Lipopolysaccharide Activation of the MyD88-Dependent Pathway. THE JOURNAL OF IMMUNOLOGY 2008; 181:4354-62. [DOI: 10.4049/jimmunol.181.6.4354] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Hatao F, Yamamoto M, Muroi M, Kaminishi M, Tanamoto KI. MyD88-induced downregulation of IRAK-4 and its structural requirements. ACTA ACUST UNITED AC 2008; 53:260-4. [PMID: 18503546 DOI: 10.1111/j.1574-695x.2008.00425.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
IRAK-4 plays an essential role in Toll-like receptor (TLR)/IL-1 receptor signaling. However, its signaling and regulation mechanisms have remained elusive. We have reported previously that stimulation of TLR2, TLR4 or TLR9, but not TLR3, leads to downregulation of IRAK-4 protein. Here, we show that expression of MyD88 leads to downregulation of endogenous as well as exogenously expressed IRAK-4 protein in HEK293 cells. Expression of TRIF did not cause IRAK-4 downregulation although it induced NF-kappaB activation. Expression of either a deletion mutant of MyD88 lacking its death domain or MyD88s, neither of which induced NF-kappaB activation, did not lead to IRAK-4 downregulation. MyD88-induced downregulation was observed in an IRAK-4 mutant lacking the kinase domain, but not in another mutant lacking the death domain. These results demonstrate that downregulation of IRAK-4 requires activation of the MyD88-dependent pathway and that the death domains of both MyD88 and IRAK-4 are important for this downregulation.
Collapse
Affiliation(s)
- Fumihiko Hatao
- Department of Metabolic Care and Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
22
|
Muroi M, Tanamoto KI. TRAF6 distinctively mediates MyD88- and IRAK-1-induced activation of NF-kappaB. J Leukoc Biol 2007; 83:702-7. [PMID: 18070982 DOI: 10.1189/jlb.0907629] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
MyD88 and IL-1R-associated kinase 1 (IRAK-1) play crucial roles as adaptor molecules in signal transduction of the TLR/IL-1R superfamily, and it is known that expression of these proteins leads to the activation of NF-kappaB in a TNFR-associated factor 6 (TRAF6)-dependent manner. We found in this study, however, that a dominant-negative mutant of TRAF6, lacking the N-terminal RING and zinc-finger domain, did not inhibit IRAK-1-induced activation of NF-kappaB in human embryonic kidney 293 cells, although the TRAF6 mutant strongly suppressed the MyD88-induced activation. The dominant-negative mutant of TRAF6 did not affect the IRAK-1-induced activation, regardless of the expression level of IRAK-1. In contrast, small interfering RNA silencing of TRAF6 expression inhibited MyD88-induced and IRAK-1-induced activation, and supplementation with the TRAF6 dominant-negative mutant did not restore the IRAK-1-induced activation. Expression of IRAK-1, but not MyD88, induced the oligomerization of TRAF6, and IRAK-1 and the TRAF6 dominant-negative mutant were associated with TRAF6. These results indicate that TRAF6 is involved but with different mechanisms in MyD88-induced and IRAK-induced activation of NF-kappaB and suggest that TRAF6 uses a distinctive mechanism to activate NF-kappaB depending on signals.
Collapse
Affiliation(s)
- Masashi Muroi
- National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan.
| | | |
Collapse
|
23
|
Ohnishi T, Muroi M, Tanamoto KI. The lipopolysaccharide-recognition mechanism in cells expressing TLR4 and CD14 but lacking MD-2. ACTA ACUST UNITED AC 2007; 51:84-91. [PMID: 17614960 DOI: 10.1111/j.1574-695x.2007.00281.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We analysed the lipopolysaccharide (LPS)-recognition mechanism in cells expressing TLR4 and CD14 but lacking MD-2. When TLR4 and CD14 were transiently expressed in HEK293 cells, cell-surface expression of TLR4 was observed, although the expression level was lower than that in cells coexpressing MD-2. We found that membrane CD14-TLR4 complexes were formed in these cells in response to LPS stimulation even in the absence of MD-2 expression, although NF-kappaB-dependent reporter activity was not induced. A strong activation of NF-kappaB was observed when these cells were stimulated with LPS followed by soluble MD-2 in this order, even when excess LPS was removed after formation of the CD14-TLR4 complex by washing cells prior to sMD-2 addition. From these results, we propose an additional LPS-recognition mechanism. In cells expressing TLR4 and CD14 but lacking MD-2, LPS is first transferred to membrane CD14 with the aid of LPS binding protein, which leads to the formation of the TLR4-CD14 complex. Then, the binding of soluble MD-2 to this complex triggers the transmembrane signal transduction. Cells expressing TLR4 and CD14 but lacking MD-2, such as airway epithelial cells, may be activated in response to LPS by this mechanism.
Collapse
Affiliation(s)
- Takahiro Ohnishi
- Division of Microbiology, National Institute of Health Sciences, Tokyo, Japan
| | | | | |
Collapse
|
24
|
Ohto U, Fukase K, Miyake K, Satow Y. Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 2007; 316:1632-4. [PMID: 17569869 DOI: 10.1126/science.1139111] [Citation(s) in RCA: 372] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Endotoxic lipopolysaccharide (LPS) with potent immunostimulatory activity is recognized by the receptor complex of MD-2 and Toll-like receptor 4. Crystal structures of human MD-2 and its complex with the antiendotoxic tetra-acylated lipid A core of LPS have been determined at 2.0 and 2.2 angstrom resolutions, respectively. MD-2 shows a deep hydrophobic cavity sandwiched by two beta sheets, in which four acyl chains of the ligand are fully confined. The phosphorylated glucosamine moieties are located at the entrance to the cavity. These structures suggest that MD-2 plays a principal role in endotoxin recognition and provide a basis for antiseptic drug development.
Collapse
Affiliation(s)
- Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
25
|
Zimmer SM, Zughaier SM, Tzeng YL, Stephens DS. Human MD-2 discrimination of meningococcal lipid A structures and activation of TLR4. Glycobiology 2007; 17:847-56. [PMID: 17545685 DOI: 10.1093/glycob/cwm057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MD-2, a eukaryotic accessory protein, is an essential component for the molecular pattern recognition of bacterial endotoxins. MD-2 interacts with lipid A of endotoxins [lipopolysaccharide (LPS) or lipooligosaccharide (LOS)] to activate human toll-like receptor (TLR) 4. The structure of lipid A influences the subsequent activation of human TLR4 and the immune response, but the basis for the discrimination of lipid A structures is unclear. A recombinant human MD-2 (rMD-2) protein was produced in the Pichia pastoris yeast expression system. Human embryonic kidney (HEK293) cells were transfected with human TLR4 and were stimulated with highly purified LOS (0.56 pmol) from Neisseria meningitidis or LPS from other structurally defined bacterial endotoxins in the presence or absence of human rMD-2. Human rMD-2 restored, in a dose-dependent manner, interleukin (IL-8) responsiveness to LOS or LPS in TLR4-transfected HEK293 cells. The interaction of endotoxin with human rMD-2 was then assessed by enzyme-linked immunosorbent assays. Wild-type meningococcal LOS (Wt m LOS) bound human rMD-2, and binding was inhibited by an anti-MD-2 antibody to MD-2 dose-dependently (P < 0.005). Wt m LOS or meningococcal KDO(2)-lipid A had the highest binding affinity for human rMD-2; unglycosylated meningococcal lipid A produced by meningococci with defects in the 3-deoxy-d-manno-2-octulosonic acid (KDO) biosynthesis pathway did not appear to bind human rMD-2 (P < 0.005). The affinity of meningococcal LOS with a penta-acylated lipid A for human rMD-2 was significantly less than that for hexa-acylated LOS (P < 0.05). The hierarchy in the binding affinity of different lipid A structures for human rMD-2 was directly correlated with differences in TLR4 pathway activation and cytokine production by human macrophages.
Collapse
Affiliation(s)
- Shanta M Zimmer
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
26
|
Muroi M, Tanamoto KI. Structural Regions of MD-2 That Determine the Agonist-Antagonist Activity of Lipid IVa. J Biol Chem 2006; 281:5484-91. [PMID: 16407172 DOI: 10.1074/jbc.m509193200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A cell surface receptor complex consisting of CD14, Toll-like receptor (TLR4), and MD-2 recognizes lipid A, the active moiety of lipopolysaccharide (LPS). Escherichia coli-type lipid A, a typical lipid A molecule, potently activates both human and mouse macrophage cells, whereas the lipid A precursor, lipid IVa, activates mouse macrophages but is inactive and acts as an LPS antagonist in human macrophages. This animal species-specific activity of lipid IVa involves the species differences in MD-2 structure. We explored the structural region of MD-2 that determines the agonistic and antagonistic activities of lipid IVa to induce nuclear factor-kappaB activation. By expressing human/mouse chimeric MD-2 together with mouse CD14 and TLR4 in human embryonic kidney 293 cells, we found that amino acid regions 57-79 and 108-135 of MD-2 determine the species-specific activity of lipid IVa. We also showed that the replacement of Thr(57), Val(61), and Glu(122) of mouse MD-2 with corresponding human MD-2 sequence or alanines impaired the agonistic activity of lipid IVa, and antagonistic activity became evident. These mutations did not affect the activation of nuclear factor-kappaB, TLR4 oligomerization, and inducible phosphorylation of IkappaBalpha in response to E. coli-type lipid A. These results indicate that amino acid residues 57, 61, and 122 of mouse MD-2 are critical to determine the agonist-antagonist activity of lipid IVa and suggest that these amino acid residues may be involved in the discrimination of lipid A structure.
Collapse
Affiliation(s)
- Masashi Muroi
- Division of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | | |
Collapse
|
27
|
Hozumi H, Adachi Y, Murakami T, Miura NN, Ohno N. Increment of Plasma Soluble CD14 Level in Carrageenan-Primed Endotoxin Shock Model Mice. Biol Pharm Bull 2006; 29:1015-21. [PMID: 16651737 DOI: 10.1248/bpb.29.1015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD14 is membrane-associating or free soluble glycoprotein which recognizes lipopolysaccharide (LPS) and is assumed to be involved in the onset of endotoxin shock. There are some reports suggesting the relationship between increased expression of CD14 in infectious or inflammatory diseases. However, little has been reported concerning the soluble CD14 (sCD14) level, especially in mice. In this study, we measured the plasma level of sCD14, TNF-alpha and IL-6 in the iota-carrageenan (CAR)-primed endotoxin shock model in addition to the D-galactosamine (D-galN)-primed endotoxin shock model mice. It was confirmed that all mice were dead within 12 h after a higher dose of LPS-treatment in both animal models. The level of TNF-alpha, IL-6 and sCD14 significantly increased in the CAR-primed endotoxin shock model mice. However, the D-galN-primed endotoxin shock model mice showed only a slight increment of TNF-alpha and IL-6 level, and sCD14 was below the detectable level. In the examination using several doses of LPS in CAR-primed model mice, IL-6 and sCD14 were increased dependent on the LPS dose, but TNF-alpha remained at an almost equal level at any dose of LPS in this study condition. In conclusion, the production of TNF-alpha, IL-6 and sCD14 was significantly enhanced in the CAR-primed model mice, compared to the D-galN-primed model mice. Therefore, these data indicate the possibility that the sCD14 level did not increase consistently, even under a fatal condition in endotoxin shock. Also, CAR-primed endotoxin shock would be an important experimental model to examine the elevation mechanisms for sCD14 and IL-6 production.
Collapse
Affiliation(s)
- Hiroyasu Hozumi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | | | | | | | | |
Collapse
|
28
|
Bainbridge BW, Coats SR, Pham TTT, Reife RA, Darveau RP. Expression of a Porphyromonas gingivalis lipid A palmitylacyltransferase in Escherichia coli yields a chimeric lipid A with altered ability to stimulate interleukin-8 secretion. Cell Microbiol 2006; 8:120-9. [PMID: 16367871 DOI: 10.1111/j.1462-5822.2005.00605.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Escherichia coli the gene htrB codes for an acyltransferase that catalyses the incorporation of laurate into lipopolysaccharide (LPS) as a lipid A substituent. We describe the cloning, expression and characterization of a Porphyromonas gingivalis htrB homologue. When the htrB homologue was expressed in wild-type E. coli or a mutant strain deficient in htrB, a chimeric LPS with altered lipid A structure was produced. Compared with wild-type E. coli lipid A, the new lipid A species contained a palmitate (C16) in the position normally occupied by laurate (C12) suggesting that the cloned gene performs the same function as E. coli htrB but preferentially transfers the longer-chain palmitic acid that is known to be present in P. gingivalis LPS. LPS was purified from wild-type E. coli, the E. coli htrB mutant strain and the htrB mutant strain expressing the P. gingivalis acyltransferase. LPS from the palmitate bearing chimeric LPS as well as the htrB mutant exhibited a reduced ability to activate human embryonic kidney 293 (HEK293) cells transfected with TLR4/MD2. LPS from the htrB mutant also had a greatly reduced ability to stimulate interleukin-8 (IL-8) secretion in both endothelial cells and monocytes. In contrast, the activity of LPS from the htrB mutant bacteria expressing the P. gingivalis gene displayed wild-type activity to stimulate IL-8 production from endothelial cells but a reduced ability to stimulate IL-8 secretion from monocytes. The intermediate activation observed in monocytes for the chimeric LPS was similar to the pattern seen in HEK293 cells expressing TLR4/MD2 and CD14. Thus, the presence of a longer-chain fatty acid on E. coli lipid A altered the activity of the LPS in monocytes but not endothelial cell assays and the difference in recognition does not appear to be related to differences in Toll-like receptor utilization.
Collapse
Affiliation(s)
- Brian W Bainbridge
- Department of Oral Biology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
29
|
Bishop RE. The lipid A palmitoyltransferase PagP: molecular mechanisms and role in bacterial pathogenesis. Mol Microbiol 2005; 57:900-12. [PMID: 16091033 DOI: 10.1111/j.1365-2958.2005.04711.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Palmitoylated lipid A can both protect pathogenic bacteria from host immune defences and attenuate the activation of those same defences through the TLR4 signal transduction pathway. A palmitate chain from a phospholipid is incorporated into lipid A by an outer membrane enzyme PagP, which is an 8-stranded antiparallel beta-barrel preceded by an amino-terminal amphipathic alpha-helix. The PagP barrel axis is tilted by 25 degrees with respect to the membrane normal. An interior hydrophobic pocket in the outer leaflet-exposed half of the molecule functions as a hydrocarbon ruler that allows the enzyme to distinguish palmitate from other acyl chains found in phospholipids. Internalization of a phospholipid palmitoyl group within the barrel appears to occur by lateral diffusion from the outer leaflet through non-hydrogen-bonded regions between beta-strands. The MsbA-dependent trafficking of lipids from the inner membrane to the outer membrane outer leaflet is necessary for lipid A palmitoylation in vivo. The mechanisms by which bacteria regulate pagP gene expression strikingly reflect the corresponding pathogenic lifestyle of the bacterium. Variations on PagP structure and function can be illustrated with the known homologues from Gram-negative bacteria, which include pathogens of humans and other mammals in addition to pathogens of insects and plants. The PagP enzyme is potentially a target for the development of anti-infective agents, a probe of outer membrane lipid asymmetry, and a tool for the synthesis of lipid A-based vaccine adjuvants and endotoxin antagonists.
Collapse
Affiliation(s)
- Russell E Bishop
- Departments of Laboratory Medicine and Pathobiology, and Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
30
|
Teghanemt A, Zhang D, Levis EN, Weiss JP, Gioannini TL. Molecular basis of reduced potency of underacylated endotoxins. THE JOURNAL OF IMMUNOLOGY 2005; 175:4669-76. [PMID: 16177114 DOI: 10.4049/jimmunol.175.7.4669] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Potent TLR4-dependent cell activation by gram-negative bacterial endotoxins depends on sequential endotoxin-protein and protein-protein interactions with LPS-binding protein, CD14, myeloid differentiation protein 2 (MD-2), and TLR4. Previous studies have suggested that reduced agonist potency of underacylated endotoxins (i.e., tetra- or penta- vs hexa-acylated) is determined by post-CD14 interactions. To better define the molecular basis of the differences in agonist potency of endotoxins differing in fatty acid acylation, we compared endotoxins (lipooligosaccharides (LOS)) from hexa-acylated wild-type (wt), penta-acylated mutant msbB meningococcal strains as well as tetra-acylated LOS generated by treatment of wt LOS with the deacylating enzyme, acyloxyacylhydrolase. To facilitate assay of endotoxin:protein and endotoxin:cell interactions, the endotoxins were purified after metabolic labeling with [3H]- or [14C]acetate. All LOS species tested formed monomeric complexes with MD-2 in an LPS-binding protein- and CD14-dependent manner with similar efficiency. However, msbB LOS:MD-2 and acyloxyacylhydrolase-treated LOS:MD-2 were at least 10-fold less potent in inducing TLR4-dependent cell activation than wt LOS:MD-2 and partially antagonized the action of wt LOS:MD-2. These findings suggest that underacylated endotoxins produce decreased TLR4-dependent cell activation by altering the interaction of the endotoxin:MD-2 complex with TLR4 in a way that reduces receptor activation. Differences in potency among these endotoxin species is determined not by different aggregate properties, but by different properties of monomeric endotoxin:MD-2 complexes.
Collapse
Affiliation(s)
- Athmane Teghanemt
- Inflammation Program, Department of Internal Medicine, Coralville, IA 52241, USA
| | | | | | | | | |
Collapse
|
31
|
Fujimoto T, Yamazaki S, Eto-Kimura A, Takeshige K, Muta T. The Amino-terminal Region of Toll-like Receptor 4 Is Essential for Binding to MD-2 and Receptor Translocation to the Cell Surface. J Biol Chem 2004; 279:47431-7. [PMID: 15337750 DOI: 10.1074/jbc.m408724200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Toll-like receptor 4 (TLR4) and MD-2 are pivotal components that elicit inflammatory responses to lipopolysaccharide (LPS). They have been shown to form a physical complex on the cell surface that responds directly to LPS. However, the functional region of TLR4 required for association with MD-2 and LPS responsiveness is poorly understood. To identify the region of TLR4, we created a series of mutants with deletions in the extracellular domain and examined their activities in human embryonic kidney 293 cells. A mutant with a 317-amino acid deletion from the membrane proximal region of TLR4 was capable of associating with MD-2, while only a 9-amino acid truncation of the N terminus severely impaired the interaction. The association between the two molecules was well correlated with TLR4 maturation into an endoglycosidase H-resistant form and the cell surface expression. Mouse MD-2 bound to human TLR4, but its activity to facilitate the cell surface expression of TLR4 and confer LPS responsiveness was much weaker than that of human MD-2, indicating species specificity. A chimeric receptor composed of the N-terminal region of human TLR4 and the adjacent region of mouse TLR4 showed preference for human MD-2 in its transport to the cell surface and responsiveness to LPS. Taken together, the N-terminal region of TLR4 is essential for association with MD-2, which is required for the cell surface expression and hence the responsiveness to LPS.
Collapse
Affiliation(s)
- Takeshi Fujimoto
- Department of Molecular and Cellular Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
32
|
Jia W, El Zoeiby A, Petruzziello TN, Jayabalasingham B, Seyedirashti S, Bishop RE. Lipid trafficking controls endotoxin acylation in outer membranes of Escherichia coli. J Biol Chem 2004; 279:44966-75. [PMID: 15319435 DOI: 10.1074/jbc.m404963200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biogenesis of biological membranes hinges on the coordinated trafficking of membrane lipids between distinct cellular compartments. The bacterial outer membrane enzyme PagP confers resistance to host immune defenses by transferring a palmitate chain from a phospholipid to the lipid A (endotoxin) component of lipopolysaccharide. PagP is an eight-stranded antiparallel beta-barrel, preceded by an N-terminal amphipathic alpha-helix. The active site is localized inside the beta-barrel and is aligned with the lipopolysaccharide-containing outer leaflet, but the phospholipid substrates are normally restricted to the inner leaflet of the asymmetric outer membrane. We examined the possibility that PagP activity in vivo depends on the aberrant migration of phospholipids into the outer leaflet. We find that brief addition to Escherichia coli cultures of millimolar EDTA, which is reported to replace a fraction of lipopolysaccharide with phospholipids, rapidly induces palmitoylation of lipid A. Although expression of the E. coli pagP gene is induced during Mg2+ limitation by the phoPQ two-component signal transduction pathway, EDTA-induced lipid A palmitoylation occurs more rapidly than pagP induction and is independent of de novo protein synthesis. EDTA-induced lipid A palmitoylation requires functional MsbA, an essential ATP-binding cassette transporter needed for lipid transport to the outer membrane. A potential role for the PagP alpha-helix in phospholipid translocation to the outer leaflet was excluded by showing that alpha-helix deletions are active in vivo. Neither EDTA nor Mg(2+)-EDTA stimulate PagP activity in vitro. These findings suggest that PagP remains dormant in outer membranes until Mg2+ limitation promotes the migration of phospholipids into the outer leaflet.
Collapse
Affiliation(s)
- Wenyi Jia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Toll-like receptors (TLRs) are pathogen recognition molecules that activate the immune system as part of the innate immune response. Microbial recognition by TLRs plays a crucial role in the host immune system's decision to respond or not to a particular microbial infection. Lipopolysaccharide (LPS), a membrane glycolipid of Gram-negative bacteria, exhibits strong immunostimulating activity among TLR ligands and has been studied in great detail. Recent studies have shown that cell surface TLR4-MD-2 physically interacts with LPS and triggers the release of an LPS signal, revealing a host-pathogen interaction mediated by TLR.
Collapse
Affiliation(s)
- Kensuke Miyake
- Division of Infectious Genetics, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Tokyo 108-8639, Japan.
| |
Collapse
|
34
|
Ahn VE, Lo EI, Engel CK, Chen L, Hwang PM, Kay LE, Bishop RE, Privé GG. A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin. EMBO J 2004; 23:2931-41. [PMID: 15272304 PMCID: PMC514935 DOI: 10.1038/sj.emboj.7600320] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 06/18/2004] [Indexed: 11/08/2022] Open
Abstract
The ability of enzymes to distinguish between fatty acyl groups can involve molecular measuring devices termed hydrocarbon rulers, but the molecular basis for acyl-chain recognition in any membrane-bound enzyme remains to be defined. PagP is an outer membrane acyltransferase that helps pathogenic bacteria to evade the host immune response by transferring a palmitate chain from a phospholipid to lipid A (endotoxin). PagP can distinguish lipid acyl chains that differ by a single methylene unit, indicating that the enzyme possesses a remarkably precise hydrocarbon ruler. We present the 1.9 A crystal structure of PagP, an eight-stranded beta-barrel with an unexpected interior hydrophobic pocket that is occupied by a single detergent molecule. The buried detergent is oriented normal to the presumed plane of the membrane, whereas the PagP beta-barrel axis is tilted by approximately 25 degrees. Acyl group specificity is modulated by mutation of Gly88 lining the bottom of the hydrophobic pocket, thus confirming the hydrocarbon ruler mechanism for palmitate recognition. A striking structural similarity between PagP and the lipocalins suggests an evolutionary link between these proteins.
Collapse
Affiliation(s)
- Victoria E Ahn
- Department of Medical Biophysics, University of Toronto, Canada
| | - Eileen I Lo
- Department of Biochemistry, University of Toronto, Canada
| | - Christian K Engel
- Division of Molecular and Structural Biology, Ontario Cancer Institute, Canada
| | - Lu Chen
- Division of Molecular and Structural Biology, Ontario Cancer Institute, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Toronto, Canada
| | - Lewis E Kay
- Department of Biochemistry, University of Toronto, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, Canada
- Department of Chemistry, University of Toronto, Canada
| | - Russell E Bishop
- Department of Biochemistry, University of Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
- 6213 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8. E-mail:
| | - Gilbert G Privé
- Department of Medical Biophysics, University of Toronto, Canada
- Department of Biochemistry, University of Toronto, Canada
- Division of Molecular and Structural Biology, Ontario Cancer Institute, Canada
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9. Tel.: +1 416 946 2971; Fax: +1 416 946 6529; E-mail:
| |
Collapse
|
35
|
Kennedy MN, Mullen GED, Leifer CA, Lee C, Mazzoni A, Dileepan KN, Segal DM. A complex of soluble MD-2 and lipopolysaccharide serves as an activating ligand for Toll-like receptor 4. J Biol Chem 2004; 279:34698-704. [PMID: 15175334 DOI: 10.1074/jbc.m405444200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MD-2, a glycoprotein that is essential for the innate response to lipopolysaccharide (LPS), binds to both LPS and the extracellular domain of Toll-like receptor 4 (TLR4). Following synthesis, MD-2 is either secreted directly into the medium as a soluble, active protein, or binds directly to TLR4 in the endoplasmic reticulum before migrating to the cell surface. Here we investigate the function of the secreted form of MD-2. We show that secreted MD-2 irreversibly loses activity over a 24-h period at physiological temperature. LPS, but not lipid A, prevents this loss in activity by forming a stable complex with MD-2, in a CD14-dependent process. Once formed, the stable MD-2.LPS complex activates TLR4 in the absence of CD14 or free LPS indicating that the activating ligand of TLR4 is the MD-2.LPS complex. Finally we show that the MD-2.LPS complex, but not LPS alone, induces epithelial cells, which express TLR4 but not MD-2, to secrete interleukin-6 and interleukin-8. We propose that the soluble MD-2.LPS complex plays a crucial role in the LPS response by activating epithelial and other TLR4(+)/MD-2(-) cells in the inflammatory microenvironment.
Collapse
Affiliation(s)
- Margaret N Kennedy
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Fujihara M, Muroi M, Tanamoto KI, Suzuki T, Azuma H, Ikeda H. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther 2004; 100:171-94. [PMID: 14609719 DOI: 10.1016/j.pharmthera.2003.08.003] [Citation(s) in RCA: 422] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Bacterial lipopolysaccharide (LPS), the major structural component of the outer wall of Gram-negative bacteria, is a potent activator of macrophages. Activated macrophages produce a variety of inflammatory cytokines. Excessive production of cytokines in response to LPS is regarded as the cause of septic shock. On the other hand, macrophages exposed to suboptimal doses of LPS are rendered tolerant to subsequent exposure to LPS and manifest a profoundly altered response to LPS. Increasing evidence suggests that monocytic cells from patients with sepsis and septic shock survivors have characteristics of LPS tolerance. Thus, an understanding of the molecular mechanisms underlying activation and deactivation of macrophages in response to LPS is important for the development of therapeutics for septic shock and the treatment of septic shock survivors. Over the past several years, significant progress has been made in identifying and characterizing several key molecules and signal pathways involved in the regulation of macrophage functions by LPS. In this paper, we summarize the current findings of the functions of the LPS receptor complex, which is composed of CD14, Toll-like receptor 4 (TLR4), and myeloid differentiation protein-2 (MD-2), and the signal pathways of this LPS receptor complex with regard to both activation and deactivation of macrophages by LPS. In addition, recent therapeutic approaches for septic shock targeting the LPS receptor complex are described.
Collapse
Affiliation(s)
- Mitsuhiro Fujihara
- Japanese Red Cross, Hokkaido Red Cross Blood Center, Yamanote 2-2, Nishi-ku, Sapporo 063-0002, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Eicher SD, McMunn KA, Hammon HM, Donkin SS. Toll-like receptors 2 and 4, and acute phase cytokine gene expression in dexamethasone and growth hormone treated dairy calves. Vet Immunol Immunopathol 2004; 98:115-25. [PMID: 15010221 DOI: 10.1016/j.vetimm.2003.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2003] [Revised: 09/15/2003] [Accepted: 10/20/2003] [Indexed: 11/19/2022]
Abstract
Cattle are exposed to growth hormone stimulants and to stressors that cause cortisol release. Both of these hormones affect immune responses which may reduce disease resistance. Toll-like receptors are the pattern recognition molecules of pathogens that are on immune cells. They then orchestrate the induction of the appropriate acute phase cytokines of the early innate response. The objective of this study was to determine changes in toll-like receptors and acute phase cytokines following treatment with a synthetic glucocorticoid (dexamethasone) and growth hormone (GH). Twenty-eight calves were given the control (Cnt), dexamethasone (DEX), GH, or dexamethasone and GH (Both) treatments from 3 until 56 days of age. Blood was collected by jugular venipuncture on days 14, 28, 42, and 56. On day 56, a lung lavage was performed and spleen and thymus tissues collected. Total RNA was extracted from blood leukocytes, lung lavage cells, spleen and thymus cells. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was used to quantify interleukin-1 (IL-1), IL-1 receptor antagonist (IL-1Ra), tumor necrosis factor (TNF)-alpha, toll-like receptor 2 (TLR2), and toll-like receptor 4 (TLR4). Blood leukocytes had a time effect for IL-1Ra (P < 0.01), with a trend for a treatment effect (P = 0.07) and had a treatment by time interaction (P < 0.05). IL-1, TNF, and TLR2 and TLR4 were greatest (P < 0.05) for Cnt only at day 14. IL-1 expression of lung lavage cells was greatest (P < 0.05) for calves on the Both treatment compared to the other three treatments. However, IL-1Ra was not different among the treatments. Toll-like receptor 2 expression was enhanced with Both compared to either DEX (P < 0.05) or GH (P < 0.05) and tended to be greater than Cnt expression (P = 0.07). Expression of TLR4 tended to be reduced by Both compared to Cnt (P = 0.06). Tumor necrosis factor-alpha was greatly enhanced by Both compared to the other three treatments (P < 0.05). Spleen cell tended to have different IL-1 expression between GH and Both (P < 0.10). Interleukin-1 receptor antagonist and TLR2 and TLR4 were not different among treatments. However, TNF-alpha expression was enhanced by the DEX treatment alone compared to the GH treatment (P < 0.05), and tended (P < 0.10) to be greater than Cnt expression. None of the gene expressions were different among treatments for thymus cells. Lung lavage cell expression appears to be most susceptible to these hormones while blood leukocyte expression was only slightly affected, and thymus cells were not affected at all. These data demonstrate that TLR2 and TLR4 and acute phase cytokine expression can be altered by stress and growth hormones, which may decrease resistance of those animals to disease.
Collapse
Affiliation(s)
- S D Eicher
- USDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
38
|
Gioannini TL, Teghanemt A, Zhang D, Coussens NP, Dockstader W, Ramaswamy S, Weiss JP. Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci U S A 2004; 101:4186-91. [PMID: 15010525 PMCID: PMC384716 DOI: 10.1073/pnas.0306906101] [Citation(s) in RCA: 280] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 01/20/2004] [Indexed: 12/13/2022] Open
Abstract
Host proinflammatory responses to minute amounts of endotoxins derived from many Gram-negative bacteria require the interaction of lipopolysaccharide-binding protein (LBP), CD14, Toll-like receptor 4 (TLR4) and MD-2. Optimal sensitivity to endotoxin requires an ordered series of endotoxin-protein and protein-protein interactions. At substoichiometric concentrations, LBP facilitates delivery of endotoxin aggregates to soluble CD14 (sCD14) to form monomeric endotoxin-sCD14 complexes. Subsequent interactions of endotoxin-sCD14 with TLR4 and/or MD-2 have not been specifically defined. This study reports the purification of a stable, monomeric, bioactive endotoxin-MD-2 complex generated by treatment of endotoxin-sCD14 with recombinant MD-2. Efficient generation of this complex occurred at picomolar concentrations of endotoxin and nanogram per milliliter doses of MD-2 and required presentation of endotoxin to MD-2 as a monomeric endotoxin-CD14 complex. TLR4-dependent delivery of endotoxin to human embryonic kidney (HEK) cells and cell activation at picomolar concentrations of endotoxin occurred with the purified endotoxin-MD-2 complex, but not with purified endotoxin aggregates with or without LBP and/or sCD14. The presence of excess MD-2 inhibited delivery of endotoxin-MD-2 to HEK/TLR4 cells and cell activation. These findings demonstrate that TLR4-dependent activation of host cells by picomolar concentrations of endotoxin occurs by sequential interaction and transfer of endotoxin to LBP, CD14, and MD-2 and simultaneous engagement of endotoxin and TLR4 by MD-2.
Collapse
Affiliation(s)
- Theresa L Gioannini
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Thompson PA, Tobias PS, Viriyakosol S, Kirkland TN, Kitchens RL. Lipopolysaccharide (LPS)-binding protein inhibits responses to cell-bound LPS. J Biol Chem 2003; 278:28367-71. [PMID: 12754215 DOI: 10.1074/jbc.m302921200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharide (LPS)-binding protein (LBP) is an acute phase reactant that may play a dual role in vivo, both potentiating and decreasing cell responses to bacterial LPS. Whereas low concentrations of LBP potentiate cell stimulation by transferring LPS to CD14, high LBP concentrations inhibit cell responses to LPS. One inhibitory mechanism involves the ability of LBP to neutralize LPS by transferring it to plasma lipoproteins, whereas other inhibitory mechanisms, such as the one described here, do not require exogenous lipoproteins. Here we show that LBP can inhibit monocyte responses to LPS that has already bound to membrane-bound CD14 (mCD14) on the cell surface. LBP caused rapid dissociation of LPS from mCD14 as measured by the ability of LBP to inhibit cross-linking of a radioiodinated, photoactivatable LPS derivative to mCD14. Whereas LBP removed up to 75% of the mCD14-bound LPS in 10 min, this was not accompanied by extensive release of the LPS from the cells. The cross-linking data suggest that much of the LPS that remained bound to the cells was associated with LBP. The ability of LBP to inhibit cell responses could not be explained by its effect on LPS internalization, because LBP did not significantly increase the internalization of the cell-bound LPS. In cell-free LPS cross-linking experiments, LBP inhibited the transfer of LPS from soluble CD14 to soluble MD-2. Our data support the hypothesis that LBP can inhibit cell responses to LPS by inhibiting LPS transfer from mCD14 to the Toll-like receptor 4-MD-2 signaling receptor.
Collapse
Affiliation(s)
- Patricia A Thompson
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9113, USA
| | | | | | | | | |
Collapse
|
40
|
Muroi M, Ohnishi T, Azumi-Mayuzumi S, Tanamoto KI. Lipopolysaccharide-mimetic activities of a Toll-like receptor 2-stimulatory substance(s) in enterobacterial lipopolysaccharide preparations. Infect Immun 2003; 71:3221-6. [PMID: 12761102 PMCID: PMC155748 DOI: 10.1128/iai.71.6.3221-3226.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharide (LPS) preparations are known to often contain substances which activate cells through Toll-like receptor 2 (TLR2), and it is suspected that bacterial lipoproteins are responsible for this activation. We compared the mode of action of the TLR2-stimulatory substances with that of a synthetic bacterial lipopeptide (tripalmitoyl-Cys-Ser-Ser-Asn-Ala [Pam(3)CSSNA]), as well as with that of peptidoglycan. Six out of eight LPS preparations tested induced NF-kappaB-dependent reporter activity in 293 cells expressing CD14 and TLR2. Phenol extract (PEX) prepared from Escherichia coli LPS by modified phenol extraction induced reporter activity in 293 cells expressing TLR2, and this activity was enhanced by coexpression of CD14, whereas the activity of Pam(3)CSSNA was not dependent on CD14. The activity of PEX, but not that of Pam(3)CSSNA or peptidoglycan, was also enhanced by LPS binding protein or serum and blocked by polymyxin B. In addition, the activity of PEX was inhibited by a lipid A precursor (compound 406) in 293 cells expressing CD14 and TLR2. These results indicate that E. coli LPS preparations contain LPS-mimetic TLR2-stimulatory substances which differ from bacterial lipopeptides or peptidoglycan.
Collapse
Affiliation(s)
- Masashi Muroi
- Division of Microbiology, National Institute of Health Sciences, Setagaya, Tokyo 158-8501, Japan
| | | | | | | |
Collapse
|
41
|
Ohnishi T, Muroi M, Tanamoto KI. MD-2 is necessary for the toll-like receptor 4 protein to undergo glycosylation essential for its translocation to the cell surface. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:405-10. [PMID: 12738639 PMCID: PMC154975 DOI: 10.1128/cdli.10.3.405-410.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
MD-2 has been reported to be required for the translocation of the Toll-like receptor 4 (TLR4) to the cell surface. However, the mechanism by which MD-2 promotes TLR4 translocation is unknown. We identified the presence of two forms of TLR4 with different molecular masses (approximately 110 and 130 kDa) when TLR4 was expressed together with MD-2. Expressing TLR4 alone produced only the 110-kDa form. Using a membrane-impermeable biotinylation reagent, we found that only the 130-kDa form of TLR4 was expressed on the cell surface. When a cellular extract prepared from cells expressing TLR4 and MD-2 was treated with N-glycosidase, the two forms of TLR4 converged into a single band whose size was smaller than the 110-kDa form of TLR4. Mutation of TLR4 at Asn(526) or Asn(575) resulted in the disappearance of the 130-kDa form and prevented TLR4 from being expressed on the cell surface without affecting the ability of TLR4 to associate with MD-2. These results indicate that TLR4 is able to undergo multiple glycosylations without MD-2 but that the specific glycosylation essential for cell surface expression requires the presence of MD-2.
Collapse
Affiliation(s)
- Takahiro Ohnishi
- Division of Microbiology, National Institute of Health Sciences, Setagaya, Tokyo 158-8501, Japan
| | | | | |
Collapse
|
42
|
Mullen GED, Kennedy MN, Visintin A, Mazzoni A, Leifer CA, Davies DR, Segal DM. The role of disulfide bonds in the assembly and function of MD-2. Proc Natl Acad Sci U S A 2003; 100:3919-24. [PMID: 12642668 PMCID: PMC153023 DOI: 10.1073/pnas.0630495100] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
MD-2 is a secreted glycoprotein that binds to the extracellular domain of Toll-like receptor 4 (TLR4) and is required for the activation of TLR4 by lipopolysaccharide (LPS). The protein contains seven Cys residues and consists of a heterogeneous collection of disulfide-linked oligomers. To investigate the role of sulfhydryls in MD-2 structure and function, we created 17 single and multiple Cys substitution mutants. All of the MD-2 mutant proteins, including one totally lacking Cys residues, were secreted and stable. SDSPAGE analyses indicated that most Cys residues could participate in oligomer formation and that no single Cys residue was required for oligomerization. Of the single Cys substitutions, only C95S and C105S failed to confer LPS responsiveness on TLR4 when mutant and TLR4 were cotransfected into cells expressing an NF-kappaB reporter plasmid. Surprisingly, substitution of both C95 and C105 partially restored activity. Structural analyses revealed that C95 and C105 formed an intrachain disulfide bond, whereas C95 by itself produced an inactive dimer. In contrast to the cotransfection experiments, only WT MD-2 conferred responsiveness to LPS when secreted proteins were added directly to TLR4 reporter cells. Our data are consistent with a model in which most, possibly all sulfhydryls lie on the surface of a stable MD-2 core structure where they form both intra- and interchain disulfide bridges. These disulfide bonds produce a heterogeneous array of oligomers, including some species that can form an active complex with TLR4.
Collapse
Affiliation(s)
- Gregory E D Mullen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1360, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Muroi M, Tanamoto KI. The polysaccharide portion plays an indispensable role in Salmonella lipopolysaccharide-induced activation of NF-kappaB through human toll-like receptor 4. Infect Immun 2002; 70:6043-7. [PMID: 12379680 PMCID: PMC130318 DOI: 10.1128/iai.70.11.6043-6047.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipid A portion has been identified as the active center responsible for lipopolysaccharide (LPS)-induced macrophage activation. However, we found that Salmonella (Salmonella enterica serovars Abortusequi, Minnesota, and Typhimurium) lipid A is inactive in human macrophages, despite its LPS being highly active. Thus we investigated the critical role of polysaccharide in Salmonella LPS-induced activation of NF-kappaB. In human monocytic cell line THP-1, Salmonella lipid A and synthetic Salmonella-type lipid A (516) did not induce NF-kappaB-dependent reporter activity up to 1 micro g/ml, whereas strong activation was observed in response to Salmonella LPS. The difference in activity between this lipid A and LPS was further examined by using 293 cells expressing human CD14/Toll-like receptor 4 (TLR4)/MD-2, and similar results were obtained in these cells as well. A polysaccharide preparation obtained from Salmonella LPS was inactive in 293 cells expressing human CD14/TLR4/MD-2 even in combination with 516. Salmonella enterica serovar Minnesota Re LPS, whose structure consists of lipid A and two molecules of 2-keto-3-deoxyoctonic acid, but not its lipid A exhibited strong activity in THP-1 cells and 293 cells expressing human CD14/TLR4/MD-2. These results indicate that the polysaccharide portion covalently bound to lipid A plays the principal role in Salmonella LPS-induced activation of NF-kappaB through human CD14/TLR4/MD-2.
Collapse
Affiliation(s)
- Masashi Muroi
- Division of Microbiology, National Institute of Health Sciences, Setagaya, Tokyo 158-8501, Japan
| | | |
Collapse
|