1
|
Pierre F, Baillez A, Dewitte A, Rolandelli A, Sebbane F. Proteins of the SubB family provide multiple mechanisms of serum resistance in Yersinia pestis. Emerg Microbes Infect 2025:2493926. [PMID: 40237516 DOI: 10.1080/22221751.2025.2493926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
AbstractThe serum complement system is a cornerstone element of the innate immune response. Bacterial resistance to this system is a multifaceted process involving various proteins and molecular mechanisms. Here, we report several genes required for the growth of Yersinia pestis in serum. Among them, we found that ypo0337 encodes an outer-membrane-associated lectin that recruits factor H, C4BP and hemopexin, conferring resistance to the serum complement system. YPO0337 displays high sequence similarity with the SubB subunit of the AB5 toxin from Escherichia coli, as well as other SubB-like proteins, and subB from E. coli restores the ability of Y. pestis Δypo0337 mutant to resist to serum complement. Altogether, the data suggest that at least two members of the SubB protein family function as virulence factors, conferring resistance to serum complement through a unique mode of action.
Collapse
Affiliation(s)
- François Pierre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Alexandre Baillez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Amélie Dewitte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Agustin Rolandelli
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Florent Sebbane
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
2
|
Shaughnessy J, Chabeda A, Lewis LA, Ram S. Alternative pathway amplification and infections. Immunol Rev 2023; 313:162-180. [PMID: 36336911 DOI: 10.1111/imr.13160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alternative pathway (AP) is the phylogenetically oldest arm of the complement system and may have evolved to mark pathogens for elimination by phagocytes. Studies using purified AP proteins or AP-specific serum showed that C3b amplification on bacteria commenced following a lag phase of about 5 min and was highly dependent on the concentration of complement. Most pathogens have evolved several elegant mechanisms to evade complement, including expressing proteases that degrade AP proteins and secreting proteins that block function of C3 convertases. In an example of convergent evolution, many microbes recruit the AP inhibitor factor H (FH) using molecular mechanisms that mimic FH interactions with host cells. In most instances, the AP serves to amplify C3b deposited on microbes by the classical pathway (CP). The role of properdin on microbes appears to be restricted to stabilization of C3 convertases; scant evidence exists for its role as an initiator of the AP on pathogens in the context of serum. Therapeutic complement inhibition carries with it an increased risk of infection. Antibody (Ab)-dependent AP activation may be critical for complement activation by vaccine-elicited Ab when the CP is blocked, and its molecular mechanism is discussed.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Functional Activities of O-Polysaccharide and Hemolysin Coregulated Protein 1 Specific Antibodies Isolated from Melioidosis Patients. Infect Immun 2022; 90:e0021422. [PMID: 36226942 PMCID: PMC9670879 DOI: 10.1128/iai.00214-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Melioidosis is a fatal tropical disease caused by the environmental Gram-negative bacterium, Burkholderia pseudomallei. This bacterium is intrinsically resistant to several antibiotics and treatment of melioidosis requires prolonged antibiotic administration. To date, there are no vaccines available for melioidosis. Previous studies have shown that humoral immunity is critical for surviving melioidosis and that O-polysaccharide (OPS) and hemolysin coregulated protein 1 (Hcp1) are important protective antigens in animal models of melioidosis. Our previous studies revealed that melioidosis patients had high levels of OPS- and Hcp1-specific antibodies and that IgG against OPS (IgG-OPS) and Hcp1 (IgG-Hcp1) were associated with patient survival. In this study, we characterized the potential function(s) of IgG-OPS and IgG-Hcp1 from melioidosis patients. IgG-OPS and IgG-Hcp1 were purified from pooled serum obtained from melioidosis patients using immuno-affinity chromatography. Antibody-dependent cellular phagocytosis assays were performed with pooled serum from melioidosis patients and compared with serum obtained from healthy controls. Serum from melioidosis patients significantly enhanced B. pseudomallei uptake into the human monocytic cell line THP-1 compared with pooled serum from healthy donors. Enhanced opsonization was observed with IgG-OPS and IgG-Hcp1 in a dose-dependent manner. Antibody-dependent complement deposition assays were performed with IgG-OPS and IgG-Hcp1 using flow cytometry and showed that there was enhanced C3b deposition on the surface of B. pseudomallei treated with IgG-OPS but to a lesser degree with IgG-Hcp1. This study provides insight into the function of IgG-OPS and IgG-Hcp1 in human melioidosis and supports that OPS and Hcp1 are potential vaccine antigens for immunization against melioidosis.
Collapse
|
4
|
Shang Z, Chan SY, Song Q, Li P, Huang W. The Strategies of Pathogen-Oriented Therapy on Circumventing Antimicrobial Resistance. RESEARCH (WASHINGTON, D.C.) 2020; 2020:2016201. [PMID: 33083786 PMCID: PMC7539235 DOI: 10.34133/2020/2016201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/02/2020] [Indexed: 12/23/2022]
Abstract
The emerging antimicrobial resistance (AMR) poses serious threats to the global public health. Conventional antibiotics have been eclipsed in combating with drug-resistant bacteria. Moreover, the developing and deploying of novel antimicrobial drugs have trudged, as few new antibiotics are being developed over time and even fewer of them can hit the market. Alternative therapeutic strategies to resolve the AMR crisis are urgently required. Pathogen-oriented therapy (POT) springs up as a promising approach in circumventing antibiotic resistance. The tactic underling POT is applying antibacterial compounds or materials directly to infected regions to treat specific bacteria species or strains with goals of improving the drug efficacy and reducing nontargeting and the development of drug resistance. This review exemplifies recent trends in the development of POTs for circumventing AMR, including the adoption of antibiotic-antibiotic conjugates, antimicrobial peptides, therapeutic monoclonal antibodies, nanotechnologies, CRISPR-Cas systems, and microbiota modulations. Employing these alternative approaches alone or in combination shows promising advantages for addressing the growing clinical embarrassment of antibiotics in fighting drug-resistant bacteria.
Collapse
Affiliation(s)
- Zifang Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
5
|
Corr M, Waterfield T, Shields M. Fifteen-minute consultation: Symptoms and signs of meningococcal disease. Arch Dis Child Educ Pract Ed 2020; 105:200-203. [PMID: 31619453 DOI: 10.1136/archdischild-2019-317722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 11/04/2022]
Abstract
Meningococcal disease remains a leading cause of meningitis, sepsis and death in children worldwide and in the UK. Successful vaccination programmes in the UK have, however, significantly reduced the burden of disease in children. Unfortunately, despite vaccination, a significant number of children are still diagnosed with invasive meningococcal disease each year.As the prevalence of meningococcal disease falls, it is important that we maintain awareness of the symptoms and signs of meningococcal disease because the prompt recognition of this life-threatening infection improves outcomes.In this article we discuss the pathology, epidemiology and recognition of invasive meningococcal disease in children. The aim is to maintain awareness of this rare but life-threatening infection.
Collapse
Affiliation(s)
- Michael Corr
- Paediatrics, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Thomas Waterfield
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Michael Shields
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
6
|
Antibodies Specific to Membrane Proteins Are Effective in Complement-Mediated Killing of Mycoplasma bovis. Infect Immun 2019; 87:IAI.00740-19. [PMID: 31548318 PMCID: PMC6867846 DOI: 10.1128/iai.00740-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
The metabolic inhibition (MI) test is a classic test for the identification of mycoplasmas, used for measuring the growth-inhibiting antibodies directed against acid-producing mycoplasmas, although their mechanism still remains obscure. To determine the major antigens involved in the immune killing of Mycoplasma bovis, we used a pulldown assay with anti-M. bovis antibodies as bait and identified nine major antigens. The metabolic inhibition (MI) test is a classic test for the identification of mycoplasmas, used for measuring the growth-inhibiting antibodies directed against acid-producing mycoplasmas, although their mechanism still remains obscure. To determine the major antigens involved in the immune killing of Mycoplasma bovis, we used a pulldown assay with anti-M. bovis antibodies as bait and identified nine major antigens. Among these antigens, we performed the MI test and determined that the growth of M. bovis could be inhibited effectively in the presence of complement by antibodies against specifically membrane protein P81 or UgpB in the presence of complement. Using a complement killing assay, we demonstrated that M. bovis can be killed directly by complement and that antibody-dependent complement-mediated killing is more effective than that by complement alone. Complement lysis and scanning electron microscopy results revealed M. bovis rupture in the presence of complement. Together, these results suggest that the metabolic inhibition of M. bovis is antibody-dependent complement-mediated killing. This study provides new insights into mycoplasma killing by the complement system and may guide future vaccine development studies for the treatment of mycoplasma infection. Furthermore, our findings also indicate that mycoplasmas may be an appropriate new model for studying the lytic activity of membrane attack complex (MAC).
Collapse
|
7
|
Colley CS, Popovic B, Sridharan S, Debreczeni JE, Hargeaves D, Fung M, An L, Edwards B, Arnold J, England E, Eghobamien L, Sivars U, Flavell L, Renshaw J, Wickson K, Warrener P, Zha J, Bonnell J, Woods R, Wilkinson T, Dobson C, Vaughan TJ. Structure and characterization of a high affinity C5a monoclonal antibody that blocks binding to C5aR1 and C5aR2 receptors. MAbs 2018; 10:104-117. [PMID: 28952876 PMCID: PMC5800367 DOI: 10.1080/19420862.2017.1384892] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
C5a is a potent anaphylatoxin that modulates inflammation through the C5aR1 and C5aR2 receptors. The molecular interactions between C5a-C5aR1 receptor are well defined, whereas C5a-C5aR2 receptor interactions are poorly understood. Here, we describe the generation of a human antibody, MEDI7814, that neutralizes C5a and C5adesArg binding to the C5aR1 and C5aR2 receptors, without affecting complement-mediated bacterial cell killing. Unlike other anti-C5a mAbs described, this antibody has been shown to inhibit the effects of C5a by blocking C5a binding to both C5aR1 and C5aR2 receptors. The crystal structure of the antibody in complex with human C5a reveals a discontinuous epitope of 22 amino acids. This is the first time the epitope for an antibody that blocks C5aR1 and C5aR2 receptors has been described, and this work provides a basis for molecular studies aimed at further understanding the C5a-C5aR2 receptor interaction. MEDI7814 has therapeutic potential for the treatment of acute inflammatory conditions in which both C5a receptors may mediate inflammation, such as sepsis or renal ischemia-reperfusion injury.
Collapse
MESH Headings
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibody Affinity
- Antibody Specificity
- Binding Sites, Antibody
- Complement C5a/antagonists & inhibitors
- Complement C5a/chemistry
- Complement C5a/immunology
- Complement C5a/metabolism
- Epitope Mapping/methods
- Epitopes
- HEK293 Cells
- Humans
- Protein Binding
- Protein Conformation
- Protein Engineering
- Receptor, Anaphylatoxin C5a/antagonists & inhibitors
- Receptor, Anaphylatoxin C5a/chemistry
- Receptor, Anaphylatoxin C5a/immunology
- Receptor, Anaphylatoxin C5a/metabolism
- Receptors, Chemokine/antagonists & inhibitors
- Receptors, Chemokine/chemistry
- Receptors, Chemokine/immunology
- Receptors, Chemokine/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Caroline S. Colley
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
- CONTACT Caroline S. Colley Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge, CB21 6GH, UK
| | - Bojana Popovic
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | | | | | | | - Michael Fung
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA
| | - Ling–Ling An
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA
| | - Bryan Edwards
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | - Joanne Arnold
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | - Elizabeth England
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | - Laura Eghobamien
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd, Cambridge, UK
| | - Ulf Sivars
- Translational Biology, IMED RIA Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Liz Flavell
- Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | | | - Kate Wickson
- Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Paul Warrener
- Infectious Diseases, MedImmune LLC, Gaithersburg, MD, USA
| | - Jingying Zha
- Infectious Diseases, MedImmune LLC, Gaithersburg, MD, USA
| | | | - Rob Woods
- Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, MD, USA
| | - Trevor Wilkinson
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | - Claire Dobson
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | - Tristan J. Vaughan
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| |
Collapse
|
8
|
Im H, Son S, Mitchell RJ, Ghim CM. Serum albumin and osmolality inhibit Bdellovibrio bacteriovorus predation in human serum. Sci Rep 2017; 7:5896. [PMID: 28725056 PMCID: PMC5517470 DOI: 10.1038/s41598-017-06272-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/16/2017] [Indexed: 02/07/2023] Open
Abstract
We evaluated the bactericidal activity of Bdellovibrio bacteriovorus, strain HD100, within blood sera against bacterial strains commonly associated with bacteremic infections, including E. coli, Klebsiella pneumoniae and Salmonella enterica. Tests show that B. bacteriovorus HD100 is not susceptible to serum complement or its bactericidal activity. After a two hour exposure to human sera, the prey populations decreased 15- to 7,300-fold due to the serum complement activity while, in contrast, the B. bacteriovorus HD100 population showed a loss of only 33%. Dot blot analyses showed that this is not due to the absence of antibodies against this predator. Predation in human serum was inhibited, though, by both the osmolality and serum albumin. The activity of B. bacteriovorus HD100 showed a sharp transition between 200 and 250 mOsm/kg, and was progressively reduced as the osmolality increased. Serum albumin also acted to inhibit predation by binding to and coating the predatory cells. This was confirmed via dot blot analyses and confocal microscopy. The results from both the osmolality and serum albumin tests were incorporated into a numerical model describing bacterial predation of pathogens. In conclusion, both of these factors inhibit predation and, as such, they limit its effectiveness against pathogenic prey located within sera.
Collapse
Affiliation(s)
- Hansol Im
- School of Life Sciences, Ulsan National Institute of Science & Technology, 50 UNIST-gil Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Sangmo Son
- School of Life Sciences, Ulsan National Institute of Science & Technology, 50 UNIST-gil Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science & Technology, 50 UNIST-gil Ulju-gun, Ulsan, 44919, Republic of Korea.
| | - Cheol-Min Ghim
- School of Life Sciences, Ulsan National Institute of Science & Technology, 50 UNIST-gil Ulju-gun, Ulsan, 44919, Republic of Korea. .,Department of Physics, Ulsan National Institute of Science & Technology, 50 UNIST-gil Ulju-gun, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
9
|
Mizuno M, Suzuki Y, Ito Y. Complement regulation and kidney diseases: recent knowledge of the double-edged roles of complement activation in nephrology. Clin Exp Nephrol 2017; 22:3-14. [DOI: 10.1007/s10157-017-1405-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022]
|
10
|
Gasparini R, Panatto D, Bragazzi NL, Lai PL, Bechini A, Levi M, Durando P, Amicizia D. How the Knowledge of Interactions between Meningococcus and the Human Immune System Has Been Used to Prepare Effective Neisseria meningitidis Vaccines. J Immunol Res 2015; 2015:189153. [PMID: 26351643 PMCID: PMC4553322 DOI: 10.1155/2015/189153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/09/2015] [Indexed: 01/17/2023] Open
Abstract
In the last decades, tremendous advancement in dissecting the mechanisms of pathogenicity of Neisseria meningitidis at a molecular level has been achieved, exploiting converging approaches of different disciplines, ranging from pathology to microbiology, immunology, and omics sciences (such as genomics and proteomics). Here, we review the molecular biology of the infectious agent and, in particular, its interactions with the immune system, focusing on both the innate and the adaptive responses. Meningococci exploit different mechanisms and complex machineries in order to subvert the immune system and to avoid being killed. Capsular polysaccharide and lipooligosaccharide glycan composition, in particular, play a major role in circumventing immune response. The understanding of these mechanisms has opened new horizons in the field of vaccinology. Nowadays different licensed meningococcal vaccines are available and used: conjugate meningococcal C vaccines, tetravalent conjugate vaccines, an affordable conjugate vaccine against the N. menigitidis serogroup A, and universal vaccines based on multiple antigens each one with a different and peculiar function against meningococcal group B strains.
Collapse
Affiliation(s)
- R. Gasparini
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Panatto
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - N. L. Bragazzi
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - P. L. Lai
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - A. Bechini
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - M. Levi
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - P. Durando
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Amicizia
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| |
Collapse
|
11
|
Malde A, Gangaiah D, Chandrashekhar K, Pina-Mimbela R, Torrelles JB, Rajashekara G. Functional characterization of exopolyphosphatase/guanosine pentaphosphate phosphohydrolase (PPX/GPPA) of Campylobacter jejuni. Virulence 2014; 5:521-33. [PMID: 24569519 DOI: 10.4161/viru.28311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The inorganic polyphosphate (poly-P) is a key regulator of stress responses and virulence in many bacterial pathogens including Campylobacter jejuni. The role of exopolyphosphatases/guanosine pentaphosphate (pppGpp) phosphohydrolases (PPX/GPPA) in poly-P homeostasis and C. jejuni pathobiology remains unexplored. Here, we analyzed deletion mutants (∆ppx1, ∆ppx2) and the double knockout mutant (dkppx), all ∆ppx mutants exhibited increased capacity to accumulate poly-P; however only ∆ppx1 and dkppx mutants showed decreased accumulation of ppGpp, an alarmone molecule that regulates stringent response in bacteria, suggesting potential dual role for PPX1/GPPA. Nutrient survival defect of ∆ppx mutants was rescued by the supplementation of specific amino acids implying that survival defect may be associated with decreased ppGpp and/ or increased poly-P in ∆ppx mutants. The ppk1 and spoT were upregulated in both ∆ppx1 and ∆ppx2 suggesting a compensatory role for SpoT and Ppk1 in poly-P and ppGpp homeostasis. The lack of ppx genes resulted in defects in motility, biofilm formation, nutrient stress survival, invasion and intracellular survival indicating that maintaining a certain level of poly-P is critical for ppx genes in C. jejuni pathophysiology. Both ppx1 and ppx2 mutants were resistant to human complement-mediated killing; however, the dkppx mutant was sensitive. The serum susceptibility did not occur in the presence of MgCl 2 and EGTA suggesting an involvement of the classical or lectin pathway of complement mediated killing. Interestingly, the chicken serum did not have any effect on the ∆ppx mutants' survival. The observed serum susceptibility was not related to C. jejuni surface capsule and lipooligosaccharide structures. Our study underscores the importance of PPX/GPPA proteins in poly-P and ppGpp homeostasis, two critical molecules that modulate environmental stress responses and virulence in C. jejuni.
Collapse
Affiliation(s)
- Anandkumar Malde
- Food Animal Health Research Program; Department of Veterinary Preventive Medicine; College of Veterinary Medicine; The Ohio State University; Wooster, OH USA
| | - Dharanesh Gangaiah
- Food Animal Health Research Program; Department of Veterinary Preventive Medicine; College of Veterinary Medicine; The Ohio State University; Wooster, OH USA
| | - Kshipra Chandrashekhar
- Food Animal Health Research Program; Department of Veterinary Preventive Medicine; College of Veterinary Medicine; The Ohio State University; Wooster, OH USA
| | - Ruby Pina-Mimbela
- Food Animal Health Research Program; Department of Veterinary Preventive Medicine; College of Veterinary Medicine; The Ohio State University; Wooster, OH USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity; Center for Microbial Interface Biology; The Ohio State University; Columbus, OH USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program; Department of Veterinary Preventive Medicine; College of Veterinary Medicine; The Ohio State University; Wooster, OH USA
| |
Collapse
|
12
|
Abstract
Despite considerable advances in the understanding of the pathogenesis of meningococcal disease, this infection remains a major cause of morbidity and mortality globally. The role of the complement system in innate immune defenses against invasive meningococcal disease is well established. Individuals deficient in components of the alternative and terminal complement pathways are highly predisposed to invasive, often recurrent meningococcal infections. Genome-wide analysis studies also point to a central role for complement in disease pathogenesis. Here we review the pathophysiologic events pertinent to the complement system that accompany meningococcal sepsis in humans. Meningococci use several often redundant mechanisms to evade killing by human complement. Capsular polysaccharide and lipooligosaccharide glycan composition play critical roles in complement evasion. Some of the newly described protein vaccine antigens interact with complement components and have sparked considerable research interest.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
13
|
Cisowska A, Bugla-Płoskońska G. Analysis of the SDS-PAGE patterns of outer membrane proteins from Escherichia coli strains that have lost the ability to form K1 antigen and varied in the susceptibility to normal human serum. Folia Microbiol (Praha) 2013; 59:37-43. [PMID: 23794053 PMCID: PMC3889503 DOI: 10.1007/s12223-013-0262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 05/30/2013] [Indexed: 11/28/2022]
Abstract
We used SDS-polyacrylamide gel electrophoresis to investigate the outer membrane proteins (OMPs) band composition of 19 Escherichia coli K1 strains that have spontaneously lost the ability to form K1 polysaccharide capsule (E. coli K1-) and demonstrated different degrees of susceptibility to the bactericidal action of normal human serum. Presented results showed that there were differences between E. coli K1- strains in OMPs expressing capacity. The analysis performed on OMPs has not revealed a direct association between the different OMPs band composition and the susceptibility of these strains to the serum.
Collapse
Affiliation(s)
- Agnieszka Cisowska
- Department of Biology and Medical Parasitology, Wroclaw Medical University, Mikulicza-Radeckiego 9, 50-367, Wrocław, Poland,
| | | |
Collapse
|
14
|
Hepatitis C virus suppresses C9 complement synthesis and impairs membrane attack complex function. J Virol 2013; 87:5858-67. [PMID: 23487461 DOI: 10.1128/jvi.00174-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) proteins inhibit complement component expression, which may attenuate immunity against infection. In this study, we examined whether HCV regulates the membrane attack complex (MAC) via complement component C9. MAC is composed of C5b to C9 (C5b-9) and mediates cell lysis of invaded pathogens. Liver biopsy specimens from chronically HCV-infected patients exhibited a lower level of C9 mRNA expression than liver biopsy specimens from unrelated disease or healthy control human liver RNA. Hepatocytes infected with cell culture-grown HCV or expressing HCV core protein also displayed significant repression of C9 mRNA and protein levels. Promoter analysis suggested that the T cell factor-4 (TCF-4E) transcription factor is responsible for HCV core-mediated C9 promoter regulation. Sera from chronically HCV-infected patients displayed a lower level of C5b-9 and a reduced antimicrobial effect on model organisms compared to unrelated patient sera or sera from healthy volunteers. Together, these results for C9 regulation by HCV core protein coupled with functional impairment of the membrane attack complex underscore HCV-mediated attenuation of immune mechanisms.
Collapse
|
15
|
Griffiths NJ, Hill DJ, Borodina E, Sessions RB, Devos NI, Feron CM, Poolman JT, Virji M. Meningococcal surface fibril (Msf) binds to activated vitronectin and inhibits the terminal complement pathway to increase serum resistance. Mol Microbiol 2011; 82:1129-49. [PMID: 22050461 DOI: 10.1111/j.1365-2958.2011.07876.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Complement evasion is an important survival strategy of Neisseria meningitidis (Nm) during colonization and infection. Previously, we have shown that Nm Opc binds to serum vitronectin to inhibit complement-mediated killing. In this study, we demonstrate meningococcal interactions with vitronectin via a novel adhesin, Msf (meningococcal surface fibril, previously NhhA or Hsf). As with Opc, Msf binds preferentially to activated vitronectin (aVn), engaging at its N-terminal region but the C-terminal heparin binding domain may also participate. However, unlike Opc, the latter binding is not heparin-mediated. By binding to aVn, Msf or Opc can impart serum resistance, which is further increased in coexpressers, a phenomenon dependent on serum aVn concentrations. The survival fitness of aVn-binding derivatives was evident from mixed population studies, in which msf/opc mutants were preferentially depleted. In addition, using vitronectin peptides to block Msf-aVn interactions, aVn-induced inhibition of lytic C5b-9 formation and of serum killing could be reversed. As Msf-encoding gene is ubiquitous in the meningococcal strains examined and is expressed in vivo, serum resistance via Msf may be of significance to meningococcal pathogenesis. The data imply that vitronectin binding may be an important strategy for the in vivo survival of Nm for which the bacterium has evolved redundant mechanisms.
Collapse
Affiliation(s)
- Natalie J Griffiths
- Schools of Cellular & Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Marzoa J, Sánchez S, Costoya L, Diéguez-Casal E, Freixeiro P, Brookes C, Allen L, Taylor S, Gorringe AR, Ferreirós CM, Criado MT. Induction of immune responses by purified outer membrane protein complexes from Neisseria meningitidis. Vaccine 2011; 30:2387-95. [PMID: 21911024 DOI: 10.1016/j.vaccine.2011.08.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/26/2011] [Accepted: 08/31/2011] [Indexed: 12/29/2022]
Abstract
A broad-spectrum vaccine against disease caused by serogroup B of Neisseria meningitidis is still a challenge due to antigenic variability. In the present study outer membrane protein complexes and their components were analysed using non-denaturing 2D electrophoresis and identified using LC/MS-MS and MALDI-TOF. Outer membrane protein complexes were purified from both the wild-type strain H44/76 and their knock-out mutants lacking PorA, PorB, RmpM or FetA. The immune responses elicited by the whole outer membrane vesicles (OMV) and the purified complexes were analysed for bactericidal activity, antibody surface binding, antibody-mediated C3b/iC3b deposition, membrane attack complex (MAC) deposition and induction of opsonophagocytosis, both on the homologous and several heterologous strains. The main antigenic complexes found were homomeric, formed by the 60 kDa chaperonin (MSP63) or PorB, or heteromeric, formed by different combinations of PorA, PorB and/or RmpM. The lack of some of these proteins in the OMVs from the knock-out mutants did not affect significantly the immune responses analysed except MAC, which was significantly reduced in the anti-PorA- and anti-PorB- sera, and bactericidal activity, which was absent in the anti-PorA- serum. The sera against purified native complexes showed variable activities against the homologous strain, with greatest responses observed for anti-chaperonin and anti-PorA/PorB/RmpM sera. When tested against heterologous strains, the only anti-complex serum showing consistent responses was that against the 60 kDa chaperonin. The comparison of the responses elicited by the different sera suggests an important role of conformational epitopes, present only in native complexes, in the induction of more effective responses against N. meningitidis.
Collapse
Affiliation(s)
- J Marzoa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang Q, Li Y, Tang CM. The role of the exopolyphosphatase PPX in avoidance by Neisseria meningitidis of complement-mediated killing. J Biol Chem 2010; 285:34259-68. [PMID: 20736171 DOI: 10.1074/jbc.m110.154393] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complement system is critical for immunity against the important human pathogen Neisseria meningitidis. We describe the isolation of a meningococcal mutant lacking PPX, an exopolyphosphatase responsible for cleaving cellular polyphosphate, a polymer of tens to hundreds of orthophosphate residues found in virtually all living cells. Bacteria lacking PPX exhibit increased resistance to complement-mediated killing. By site directed mutagenesis, we define amino acids necessary for the biochemical activity of meningococcal PPX, including a conserved glutamate (Glu(117)) and residues in the Walker B box predicted to be involved in binding to phosphate. We show that the biochemical activity of PPX is necessary for interactions with the complement. The relative resistance of the ppx mutant does not result from changes in structures (such as capsule, lipopolysaccharide, and factor H-binding protein), which are known to be required for evasion of this key aspect of host immunity. Instead, expression of PPX modifies the interaction of N. meningitidis with the alternative pathway of complement activation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Microbiology, Centre for Molecular Microbiology and Infection, Flowers Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
18
|
Desar IME, van Deuren M, Sprong T, Jansen JBMJ, Namavar F, Vandenbroucke-Grauls CM, van der Meer JWM. Serum bactericidal activity against Helicobacter pylori in patients with hypogammaglobulinaemia. Clin Exp Immunol 2009; 156:434-9. [PMID: 19438595 DOI: 10.1111/j.1365-2249.2009.03909.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The two major primary antibody deficiency disorders are X-linked hypogammaglobulinaemia (XLA) and common variable immunodeficiency (CVID). CVID patients have an elevated risk for gastric cancer and extra-nodal marginal zone lymphoma. Both diseases are associated with Helicobacter pylori infection. We investigated whether antibody deficiency leads to defective serum bactericidal activity against H. pylori. We also investigated the correlation with immunoglobulin (Ig)M levels and observed the terminal complement complex (TCC) activity. Sera of 13 CVID patients (four H. pylori positive), one patient with hyper-IgM syndrome, one patient with Good syndrome (both H. pylori positive), five XLA patients, four H. pylori seropositive controls, four H. pylori seronegative controls and a sample of pooled human serum (PHS) were incubated in vitro with bacterial suspensions of H. pylori for 30 min. After 72 h of culture, colony-forming units were counted. TCC formation was measured by enzyme-linked immunosorbent assay. We found that normal human serum is bactericidal for H. pylori, whereas heat-inactivated serum shows hardly any killing of H. pylori. Serum (1%) of hypogammaglobulinaemia patients has a decreased bactericidal activity against H. pylori. Helicobacter pylori-positive (HP(+)) normal individuals show more than 90% killing of H. pylori, whereas CVID patients show 35% killing (P = 0.007) and XLA patients only 19% (P = 0.003). Serum (1%) of HP(+) volunteers showed significantly better killing compared with serum of H. pylori-negative (HP(-)) volunteers (P = 0.034). No correlation between (substituted) IgG levels and serum bactericidal activity was found, but a weak correlation between total serum IgM and serum bactericidal activity was found. In conclusion, serum bactericidal activity against H. pylori is decreased in patients with hypogammaglobulinaemia. Heat treatment of the serum abolished the bactericidal capacity, indicating that complement activity is essential for the bactericidal effect.
Collapse
Affiliation(s)
- I M E Desar
- Department of General Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Ward PA. Sepsis, apoptosis and complement. Biochem Pharmacol 2008; 76:1383-8. [PMID: 18848819 DOI: 10.1016/j.bcp.2008.09.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 02/06/2023]
Abstract
Programmed cell death (apoptosis) is a prominent feature in human and experimental sepsis, especially as it involves the lymphoid system with resulting immunoparalysis. In addition, sepsis is associated with strong activation of the complement system, resulting in generation of the powerful anaphylatoxin, C5a, as well as the upregulation of the C5a receptor (C5aR) in a variety of different organs. The consequences of C5a interactions with C5aR can be directly linked to apoptosis of thymocytes and adrenal medullary cells after cecal ligation and puncture (CLP)-induced sepsis in rodents, as well as with other accompanying complications of CLP: cardiac dysfunction, consumptive coagulopathy, organ dysfunction, and lethality. This communication reviews the evidence for the adverse roles of C5a and C5aR in the setting of experimental sepsis and linkages to the various complications of sepsis, especially apoptosis as well as the roles of the two C5a receptors (C5aR and C5L2) in experimental sepsis.
Collapse
Affiliation(s)
- P A Ward
- The University of Michigan Medical School, Department of Pathology, 1301 Catherine Rd, Ann Arbor, MI 48109-5602, USA.
| |
Collapse
|
20
|
Cisowska A, Jankowski S. The sensitivity ofEscherichia coli strains with K1 surface antigen and rods without this antigen to the bactericidal effect of serum. Folia Microbiol (Praha) 2008; 49:471-8. [PMID: 15530015 DOI: 10.1007/bf02931611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The susceptibility of Escherichia coli strains with K1 surface antigen (K1+) and rods without this antigen (K1-) to the bactericidal action of normal bovine serum and human normal cord serum was determined. Seventy E. coli strains (35 K1+ and 35 K1-) were isolated from urine obtained from children with urinary tract infections. The strains investigated showed variable sensitivity to the bactericidal action of the sera. E. coli K1+ strains were characterized by lower sensitivity to bactericidal effect of the sera in comparison with K1- rods. The role of the particular mechanisms of complement activation in the process of killing of the E. coli strains was also determined.
Collapse
Affiliation(s)
- A Cisowska
- Department of Biology and Medical Parasitology, Medical University, 50-367 Wrocław, Poland.
| | | |
Collapse
|
21
|
Uria MJ, Zhang Q, Li Y, Chan A, Exley RM, Gollan B, Chan H, Feavers I, Yarwood A, Abad R, Borrow R, Fleck RA, Mulloy B, Vazquez JA, Tang CM. A generic mechanism in Neisseria meningitidis for enhanced resistance against bactericidal antibodies. J Exp Med 2008; 205:1423-34. [PMID: 18504306 PMCID: PMC2413038 DOI: 10.1084/jem.20072577] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The presence of serum bactericidal antibodies is a proven correlate of protection against systemic infection with the important human pathogen Neisseria meningitidis. We have identified three serogroup C N. meningitidis (MenC) isolates recovered from patients with invasive meningococcal disease that resist killing by bactericidal antibodies induced by the MenC conjugate vaccine. None of the patients had received the vaccine, which has been successfully introduced in countries in North America and Europe. The increased resistance was not caused by changes either in lipopolysaccharide sialylation or acetylation of the α2-9–linked polysialic acid capsule. Instead, the resistance of the isolates resulted from the presence of an insertion sequence, IS1301, in the intergenic region (IGR) between the sia and ctr operons, which are necessary for capsule biosynthesis and export, respectively. The insertion sequence led to an increase in the transcript levels of surrounding genes and the amount of capsule expressed by the strains. The increased amount of capsule was associated with down-regulation of the alternative pathway of complement activation, providing a generic mechanism by which the bacterium protects itself against bactericidal antibodies. The strains with IS1301 in the IGR avoided complement-mediated lysis in the presence of bactericidal antibodies directed at the outer membrane protein, PorA, or raised against whole cells.
Collapse
Affiliation(s)
- Maria Jose Uria
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
- Reference Laboratory for Neisseria, National Center of Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Qian Zhang
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| | - Yanwen Li
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| | - Angel Chan
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| | - Rachel M. Exley
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| | - Bridget Gollan
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| | - Hannah Chan
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, England, UK
| | - Ian Feavers
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, England, UK
| | - Andy Yarwood
- JEOL (UK) Ltd., JEOL House, Silvercourt, Watchmead, Welwyn Garden City, Hertfordshire AL7 1LT, England, UK
| | - Raquel Abad
- Reference Laboratory for Neisseria, National Center of Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Ray Borrow
- Vaccine Evaluation Unit, North West Regional HPA Laboratory, Manchester Royal Infirmary, Manchester M13 9WZ, England, UK
| | - Roland A. Fleck
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, England, UK
| | - Barbara Mulloy
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, England, UK
| | - Julio A. Vazquez
- Reference Laboratory for Neisseria, National Center of Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Christoph M. Tang
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| |
Collapse
|
22
|
Abstract
Complement is a major component of innate immune system involved in defending against all the foreign pathogens through complement fragments that participate in opsonization, chemotaxis, and activation of leukocytes and through cytolysis by C5b-9 membrane attack complex. Bacterias and viruses have adapted in various ways to escape the complement activation, and they take advantage of the complement system by using the host complement receptors to infect various cells. Complement activation also participates in clearance of apoptotic cells and immune complexes. Moreover, at sublytic dose, C5b-9 was shown to promote cell survival. Recently it was also recognized that complement plays a key role in adaptive immunity by modulating and modifying the T cell responses. All these data suggest that complement activation constitutes a critical link between the innate and acquired immune responses.
Collapse
Affiliation(s)
- Horea Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
23
|
Kraiczy P, Würzner R. Complement escape of human pathogenic bacteria by acquisition of complement regulators. Mol Immunol 2006; 43:31-44. [PMID: 16011850 DOI: 10.1016/j.molimm.2005.06.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pathogenic micro-organisms employ a broad range of strategies to survive in and to persistently infect the human host. Far from being completely understood by which highly sophisticated means invading pathogens overcome the host's destructive immune defence, there is a growing body of evidence on particular mechanisms which play a pivotal role for immune evasion. This review focuses on evasion of medically and scientifically important bacteria by acquisition of host derived fluid-phase complement regulatory proteins, in particular factor H, FHL-1, and C4b binding protein. Expression of microbial surface molecules binding to human complement regulators and thus fixing them in a functionally active state allows pathogens to inhibit and finely regulate complement activation directly on their surface. Further studies on the utilization of host complement regulatory proteins will likely have a marked impact on a more efficient and specific clinical treatment.
Collapse
Affiliation(s)
- Peter Kraiczy
- Institute of Medical Microbiology, University Hospital of Frankfurt, Paul-Ehrlich-Str. 40, D-60596 Frankfurt, Germany.
| | | |
Collapse
|
24
|
Jarva H, Ram S, Vogel U, Blom AM, Meri S. Binding of the complement inhibitor C4bp to serogroup B Neisseria meningitidis. THE JOURNAL OF IMMUNOLOGY 2005; 174:6299-307. [PMID: 15879129 DOI: 10.4049/jimmunol.174.10.6299] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neisseria meningitidis (meningococcus) is an important cause of meningitis and sepsis. Currently, there is no effective vaccine against serogroup B meningococcal infection. Host defense against neisseriae requires the complement system (C) as indicated by the fact that individuals deficient in properdin or late C components (C6-9) have an increased susceptibility to recurrent neisserial infections. Because the classical pathway (CP) is required to initiate efficient complement activation on neisseriae, meningococci should be able to evade it to cause disease. To test this hypothesis, we studied the interactions of meningococci with the major CP inhibitor C4b-binding protein (C4bp). We tested C4bp binding to wild-type group B meningococcus strain (H44/76) and to 11 isogenic mutants thereof that differed in capsule expression, lipo-oligosaccharide sialylation, and/or expression of either porin (Por) A or PorB3. All strains expressing PorA bound radiolabeled C4bp, whereas the strains lacking PorA bound significantly less C4bp. Increased binding was observed under hypotonic conditions. Deleting PorB3 did not influence C4bp binding, but the presence of polysialic acid capsule reduced C4bp binding by 50%. Bound C4bp remained functionally active in that it promoted the inactivation of C4b by factor I. PorA-expressing strains were also more resistant to C lysis than PorA-negative strains in a serum bactericidal assay. Binding of C4bp thus helps Neisseria meningitidis to escape CP complement activation.
Collapse
Affiliation(s)
- Hanna Jarva
- Haartman Institute, Department of Bacteriology and Immunology, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | |
Collapse
|
25
|
Sprong T, Brandtzaeg P, Fung M, Pharo AM, Høiby EA, Michaelsen TE, Aase A, van der Meer JWM, van Deuren M, Mollnes TE. Inhibition of C5a-induced inflammation with preserved C5b-9-mediated bactericidal activity in a human whole blood model of meningococcal sepsis. Blood 2003; 102:3702-10. [PMID: 12881318 DOI: 10.1182/blood-2003-03-0703] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complement system plays an important role in the initial defense against Neisseria meningitidis. In contrast, uncontrolled activation in meningococcal sepsis contributes to the development of tissue damage and shock. In a novel human whole blood model of meningococcal sepsis, we studied the effect of complement inhibition on inflammation and bacterial killing. Monoclonal antibodies (mAbs) blocking lectin and alternative pathways inhibited complement activation by N meningitidis and oxidative burst induced in granulocytes and monocytes. Oxidative burst was critically dependent on CD11b/CD18 (CR3) expression but not on Fc gamma-receptors. Specific inhibition of C5a using mAb 137-26 binding the C5a moiety of C5 before cleavage prohibited CR3 up-regulation, phagocytosis, and oxidative burst but had no effect on C5b-9 (TCC) formation, lysis, and bacterial killing. An mAb-blocking cleavage of C5, preventing C5a and TCC formation, showed the same effect on CR3, phagocytosis, and oxidative burst as the anti-C5a mAb but additionally inhibited TCC formation, lysis, and bacterial killing, consistent with a C5b-9-dependent killing mechanism. In conclusion, the anti-C5a mAb 137-26 inhibits the potentially harmful effects of N meningitidis-induced C5a formation while preserving complement-mediated bacterial killing. We suggest that this may be an attractive approach for the treatment of meningococcal sepsis.
Collapse
Affiliation(s)
- Tom Sprong
- Department of General Internal Medicine, University Medical Centre St Radboud Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ram S, Cox AD, Wright JC, Vogel U, Getzlaff S, Boden R, Li J, Plested JS, Meri S, Gulati S, Stein DC, Richards JC, Moxon ER, Rice PA. Neisserial lipooligosaccharide is a target for complement component C4b. Inner core phosphoethanolamine residues define C4b linkage specificity. J Biol Chem 2003; 278:50853-62. [PMID: 14525973 DOI: 10.1074/jbc.m308364200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We identified Neisseria meningitidis lipooligosaccharide (LOS) as an acceptor for complement component C4b (C4b). Phosphoethanolamine (PEA) residues on the second heptose (HepII) residue in the LOS core structure formed amide linkages with C4b. PEA at the 6-position of HepII (6-PEA) was more efficient than 3-PEA in binding C4b. Strains bearing 6-PEA bound more C4b than strains with 3-PEA and were more susceptible to complement-mediated killing in serum bactericidal assays. Deleting 3-PEA from a strain that expressed both 3- and 6-PEA simultaneously on HepII did not decrease C4b binding. Glycose chain extension of the first heptose residue (HepI) influenced the nature of the C4b-LOS linkage. Predominantly ester C4b-LOS bonds were seen when lacto-N-neotetraose formed the terminus of the glycose chain extension of HepI with 3-PEA on HepII in the LOS core. Related LOS species with more truncated chain extensions from HepI bound C4b via amide linkages to 3-PEA on HepII. However, 6-PEA in the LOS core bound C4b even when the glycose chain from HepI bore lacto-N-neotetraose at the terminus. The C4A isoform exclusively formed amide linkages, whereas C4B bound meningococci preferentially via ester linkages. These data may serve to explain the preponderance of 3-PEA-bearing meningococci among clinical isolates, because 6-PEA enhances C4b binding that may facilitate clearance of 6-PEA-bearing strains resulting from enhanced serum killing by the classical pathway of complement.
Collapse
Affiliation(s)
- Sanjay Ram
- Section of Infectious Diseases, Evans Biomedical Research Center, Boston University Medical Center, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fung M, Lu M, Fure H, Sun W, Sun C, Shi NY, Dou Y, Su J, Swanson X, Mollnes TE. Pre-neutralization of C5a-mediated effects by the monoclonal antibody 137-26 reacting with the C5a moiety of native C5 without preventing C5 cleavage. Clin Exp Immunol 2003; 133:160-9. [PMID: 12869020 PMCID: PMC1808762 DOI: 10.1046/j.1365-2249.2003.02213.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complement C5a is aetiologically linked to inflammatory tissue damage in conditions like septicaemia, immune complex diseases and ischaemia-reperfusion injury. We here describe a monoclonal antibody (mAb), 137-26, that binds to the C5a moiety of human C5 and neutralizes the effects of C5a without interfering with C5 cleavage and the subsequent formation of lytic C5b-9 complex. Mouse anti-human C5 mAbs were generated and the reactivity with C5 and C5a was detected by ELISA and surface plasmon resonance. The inhibition of C5a binding to C5a receptor was studied using a radioligand binding assay. The effects of the antibody on C5a functions were examined using isolated neutrophils and a novel human whole blood model of inflammation. Haemolytic assays were used to study the effect on complement-mediated lysis. mAb 137-26 reacted with both solid- and solution-phase C5 and C5a in a dose-dependent manner with high affinity. The antibody competed C5a binding to C5a receptor and inhibited C5a-mediated chemotaxis of neutrophils. Furthermore, the antibody effectively abrogated complement-dependent E. coli-induced CD11b up-regulation and oxidative burst in neutrophils of human whole blood. mAb 137-26 was more potent than a C5a receptor antagonist and a previously described anti-C5a antibody. mAb 137-26 did not inhibit complement-mediated lysis, nor did it activate complement itself. Together, mAb 137-26 binds both the C5a moiety of native C5 and free C5a, thereby effectively neutralizing the biological effects of C5a. The antibody may have therapeutic potential in inflammatory diseases where C5a inhibition combined with an operative lytic pathway of C5b-9 is particularly desired.
Collapse
Affiliation(s)
- M Fung
- Tanox Inc., Houston, Texas 77025, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|