1
|
Batani G, Vezzani G, Lashchuk S, Allaoui A, Cardamone D, Raso MM, Boero E, Roscioli E, Ridelfi M, Gasperini G, Pizza M, Rossi O, Berlanda Scorza F, Micoli F, Rappuoli R, Sala C. Development of a visual Adhesion/Invasion Inhibition Assay to assess the functionality of Shigella-specific antibodies. Front Immunol 2024; 15:1374293. [PMID: 38680489 PMCID: PMC11045934 DOI: 10.3389/fimmu.2024.1374293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Shigella is the etiologic agent of a bacillary dysentery known as shigellosis, which causes millions of infections and thousands of deaths worldwide each year due to Shigella's unique lifestyle within intestinal epithelial cells. Cell adhesion/invasion assays have been extensively used not only to identify targets mediating host-pathogen interaction, but also to evaluate the ability of Shigella-specific antibodies to reduce virulence. However, these assays are time-consuming and labor-intensive and fail to assess differences at the single-cell level. Objectives and methods Here, we developed a simple, fast and high-content method named visual Adhesion/Invasion Inhibition Assay (vAIA) to measure the ability of anti-Shigellaantibodies to inhibit bacterial adhesion to and invasion of epithelial cells by using the confocal microscope Opera Phenix. Results We showed that vAIA performed well with a pooled human serum from subjects challenged with S. sonnei and that a specific anti-IpaD monoclonal antibody effectively reduced bacterial virulence in a dose-dependent manner. Discussion vAIA can therefore inform on the functionality of polyclonal and monoclonal responses thereby supporting the discovery of pathogenicity mechanisms and the development of candidate vaccines and immunotherapies. Lastly, this assay is very versatile and may be easily applied to other Shigella species or serotypes and to different pathogens.
Collapse
Affiliation(s)
- Giampiero Batani
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giacomo Vezzani
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Sabrina Lashchuk
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Abdelmounaaim Allaoui
- The Microbiology Laboratory, University Mohammed VI Polytechnic, Ben, Guerir, Morocco
| | - Dario Cardamone
- Data Science for Health Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Elena Boero
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Emanuele Roscioli
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Matteo Ridelfi
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| | - Gianmarco Gasperini
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Mariagrazia Pizza
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Omar Rossi
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | - Francesca Micoli
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, Siena, Italy
| |
Collapse
|
2
|
Chavda VP, Vuppu S, Mishra T, Kamaraj S, Sharma N, Punetha S, Sairam A, Vaghela D, Dargahi N, Apostolopoulos V. Combatting infectious diarrhea: innovations in treatment and vaccination strategies. Expert Rev Vaccines 2024; 23:246-265. [PMID: 38372023 DOI: 10.1080/14760584.2023.2295015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/11/2023] [Indexed: 02/20/2024]
Abstract
INTRODUCTION The escalating prevalence of infectious diseases is an important cause of concern in society. Particularly in several developing countries, infectious diarrhea poses a major problem, with a high fatality rate, especially among young children. The condition is divided into four classes, namely, acute diarrhea, invasive diarrhea, acute bloody diarrhea, and chronic diarrhea. Various pathogenic agents, such as bacteria, viruses, protozoans, and helminths, contribute to the onset of this condition. AREAS COVERED The review discusses the scenario of infectious diarrhea, the prevalent types, as well as approaches to management including preventive, therapeutic, and vaccination strategies. The vaccination techniques are extensively discussed including the available vaccines, their advantages as well as limitations. EXPERT OPINION There are several approaches available to develop new-improved vaccines. In addition, route of immunization is important and aerosols/nasal sprays, oral route, skin patches, powders, and liquid jets to minimize needles can be used. Plant-based vaccines, such as rice, might save packing and refrigeration costs by being long-lasting, non-refrigerable, and immunogenic. Future research should utilize predetermined PCR testing intervals and symptom monitoring to identify persistent pathogens after therapy and symptom remission.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad, Gujarat, India
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Toshika Mishra
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sathvika Kamaraj
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nikita Sharma
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Swati Punetha
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Sairam
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dixa Vaghela
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Immunology Program, Sunshine Hospital Campus, Saint Albans, Victoria, Australia
| |
Collapse
|
3
|
Wang Y, He Z, Ablimit P, Ji S, Jin D. Development of multiplex cross displacement amplification combined with lateral flow biosensor assay for detection of virulent shigella sonnei. Front Cell Infect Microbiol 2022; 12:1012105. [PMID: 36339345 PMCID: PMC9627043 DOI: 10.3389/fcimb.2022.1012105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Shigella sonnei is the most common Shigella spp. in developed areas and the second most common in undeveloped regions. In this study, a multiple cross displacement amplification (MCDA) assay was used in combination with a lateral flow biosensor (LFB) assay to detect virulent S. sonnei strains containing the ipaH and wbgX genes. The multiplex MCDA-LFB assay detected wbgX at ≥1 pg/μL and ipaH at ≥10 fg/μL within 30 min in pure cultures maintained at 63°C. This assay was sensitive for ~37 CFU of virulent S. sonnei and ~3.7 CFU of Shigella spp. and enteroinvasive E. coli in stimulated fecal samples and had 100% specificity among 59 reference strains. The MCDA-LFB assay was also able to differentiate between virulent S. sonnei and other Shigella spp. and enteroinvasive E. coli among 99 clinical isolates. In summary, a multiplex MCDA-LFB assay was developed for rapid, convenient, point-of-care, and accurate identification of virulent S. sonnei within 30 min and at a constant temperature without the need for expensive lab equipment.
Collapse
Affiliation(s)
- Yonglu Wang
- Ma’anshan Center for Disease Control and Prevention, Ma’anshan, China
- Pishan County Center for Disease Control and Prevention, Hotan Prefecture, China
| | - Ziqiang He
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Patigul Ablimit
- Pishan County Center for Disease Control and Prevention, Hotan Prefecture, China
| | - Shunshi Ji
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
4
|
Maintenance of the Shigella sonnei virulence plasmid is dependent on its repertoire and amino acid sequence of toxin:antitoxin systems. J Bacteriol 2022; 204:e0051921. [PMID: 34978459 PMCID: PMC8923223 DOI: 10.1128/jb.00519-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella sonnei is a major cause of bacillary dysentery and an increasing concern due to the spread of multidrug resistance. S. sonnei harbors pINV, an ∼210 kb plasmid that encodes a type III secretion system (T3SS), which is essential for virulence. During growth in the laboratory, avirulence arises spontaneously in S. sonnei at high frequency, hampering studies on and vaccine development against this important pathogen. Here, we investigated the molecular basis for the emergence of avirulence in S. sonnei and showed that avirulence mainly results from pINV loss, which is consistent with previous findings. Ancestral deletions have led to the loss from S. sonnei pINV of two toxin-antitoxin (TA) systems involved in plasmid maintenance, CcdAB and GmvAT, which are found on pINV in Shigella flexneri. We showed that the introduction of these TA systems into S. sonnei pINV reduced but did not eliminate pINV loss, while the single amino acid polymorphisms found in the S. sonnei VapBC TA system compared with S. flexneri VapBC also contributed to pINV loss. Avirulence also resulted from deletions of T3SS-associated genes in pINV through recombination between insertion sequences (ISs) on the plasmid. These events differed from those observed in S. flexneri due to the different distribution and repertoire of ISs. Our findings demonstrated that TA systems and ISs influenced plasmid dynamics and loss in S. sonnei and could be exploited for the design and evaluation of vaccines. IMPORTANCEShigella sonnei is the major cause of shigellosis in high-income and industrializing countries and is an emerging, multidrug-resistant pathogen. A significant challenge when studying this bacterium is that it spontaneously becomes avirulent during growth in the laboratory through loss of its virulence plasmid (pINV). Here, we deciphered the mechanisms leading to avirulence in S. sonnei and how the limited repertoire and amino acid sequences of plasmid-encoded toxin-antitoxin (TA) systems make the maintenance of pINV in this bacterium less efficient compared with Shigella flexneri. Our findings highlighted how subtle differences in plasmids in closely related species have marked effects and could be exploited to reduce plasmid loss in S. sonnei. This should facilitate research on this bacterium and vaccine development.
Collapse
|
5
|
Shigella-Specific Immune Profiles Induced after Parenteral Immunization or Oral Challenge with Either Shigella flexneri 2a or Shigella sonnei. mSphere 2021; 6:e0012221. [PMID: 34259559 PMCID: PMC8386581 DOI: 10.1128/msphere.00122-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella spp. are a leading cause of diarrhea-associated global morbidity and mortality. Development and widespread implementation of an efficacious vaccine remain the best option to reduce Shigella-specific morbidity. Unfortunately, the lack of a well-defined correlate of protection for shigellosis continues to hinder vaccine development efforts. Shigella controlled human infection models (CHIM) are often used in the early stages of vaccine development to provide preliminary estimates of vaccine efficacy; however, CHIMs also provide the opportunity to conduct in-depth immune response characterizations pre- and postvaccination or pre- and postinfection. In the current study, principal-component analyses were used to examine immune response data from two recent Shigella CHIMs in order to characterize immune response profiles associated with parenteral immunization, oral challenge with Shigella flexneri 2a, or oral challenge with Shigella sonnei. Although parenteral immunization induced an immune profile characterized by robust systemic antibody responses, it also included mucosal responses. Interestingly, oral challenge with S. flexneri 2a induced a distinctively different profile compared to S. sonnei, characterized by a relatively balanced systemic and mucosal response. In contrast, S. sonnei induced robust increases in mucosal antibodies with no differences in systemic responses across shigellosis outcomes postchallenge. Furthermore, S. flexneri 2a challenge induced significantly higher levels of intestinal inflammation compared to S. sonnei, suggesting that both serotypes may also differ in how they trigger induction and activation of innate immunity. These findings could have important implications for Shigella vaccine development as protective immune mechanisms may differ across Shigella serotypes. IMPORTANCE Although immune correlates of protection have yet to be defined for shigellosis, prior studies have demonstrated that Shigella infection provides protection against reinfection in a serotype-specific manner. Therefore, it is likely that subjects with moderate to severe disease post-oral challenge would be protected from a homologous rechallenge, and investigating immune responses in these subjects may help identify immune markers associated with the development of protective immunity. This is the first study to describe distinct innate and adaptive immune profiles post-oral challenge with two different Shigella serotypes. Analyses conducted here provide essential insights into the potential of different immune mechanisms required to elicit protective immunity, depending on the Shigella serotype. Such differences could have significant impacts on vaccine design and development within the Shigella field and should be further investigated across multiple Shigella serotypes.
Collapse
|
6
|
Additional Og-Typing PCR Techniques Targeting Escherichia coli-Novel and Shigella-Unique O-Antigen Biosynthesis Gene Clusters. J Clin Microbiol 2020; 58:JCM.01493-20. [PMID: 32817086 DOI: 10.1128/jcm.01493-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022] Open
Abstract
The O-serogrouping of pathogenic Escherichia coli is a standard method for subtyping strains for epidemiological studies and controls. O-serogroup diversification shows a strong association with the genetic diversity in some O-antigen biosynthesis gene clusters. Through genomic studies, in addition to the types of O-antigen biosynthesis gene clusters (Og-types) from conventional O-serogroup strains, a number of novel Og-types have been found in E. coli isolates. To assist outbreak investigations and surveillance of pathogenic E. coli at inspection institutes, in previous studies, we developed PCR methods that could determine almost all conventional O-serogroups and some novel Og-types. However, there are still many Og-types that may not be determined by simple genetic methods such as PCR. Thus, in the present study, we aimed to develop an additional Og-typing PCR system. Based on the novel Og-types, including OgN32, OgN33, and OgN34, presented in this study, we designed an additional 24 PCR primer pairs targeting 14 novel and 2 diversified E. coli Og-types and 8 Shigella-unique Og-types. Subsequently, we developed 5 new multiplex PCR sets consisting of 33 primers, including the aforementioned 24 primers and 9 primers reported in previous studies. The accuracy and specificity of the PCR system was validated using approximately 260 E. coli and Shigella O-serogroup and Og-type reference strains. The Og-typing PCR system reported here can determine a wide range of Og-types of E. coli and may help epidemiological studies, in addition to the surveillance of pathogenic E. coli.
Collapse
|
7
|
Watson JL, Sanchez-Garrido J, Goddard PJ, Torraca V, Mostowy S, Shenoy AR, Clements A. Shigella sonnei O-Antigen Inhibits Internalization, Vacuole Escape, and Inflammasome Activation. mBio 2019; 10:e02654-19. [PMID: 31848280 PMCID: PMC6918081 DOI: 10.1128/mbio.02654-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 12/04/2022] Open
Abstract
Two Shigella species, Shigella flexneri and Shigella sonnei, cause approximately 90% of bacterial dysentery worldwide. While S. flexneri is the dominant species in low-income countries, S. sonnei causes the majority of infections in middle- and high-income countries. S. flexneri is a prototypic cytosolic bacterium; once intracellular, it rapidly escapes the phagocytic vacuole and causes pyroptosis of macrophages, which is important for pathogenesis and bacterial spread. In contrast, little is known about the invasion, vacuole escape, and induction of pyroptosis during S. sonnei infection of macrophages. We demonstrate here that S. sonnei causes substantially less pyroptosis in human primary monocyte-derived macrophages and THP1 cells. This is due to reduced bacterial uptake and lower relative vacuole escape, which results in fewer cytosolic S. sonnei and hence reduced activation of caspase-1 inflammasomes. Mechanistically, the O-antigen (O-Ag), which in S. sonnei is contained in both the lipopolysaccharide and the capsule, was responsible for reduced uptake and the type 3 secretion system (T3SS) was required for vacuole escape. Our findings suggest that S. sonnei has adapted to an extracellular lifestyle by incorporating multiple layers of O-Ag onto its surface compared to other Shigella species.IMPORTANCE Diarrheal disease remains the second leading cause of death in children under five. Shigella remains a significant cause of diarrheal disease with two species, S. flexneri and S. sonnei, causing the majority of infections. S. flexneri are well known to cause cell death in macrophages, which contributes to the inflammatory nature of Shigella diarrhea. Here, we demonstrate that S. sonnei causes less cell death than S. flexneri due to a reduced number of bacteria present in the cell cytosol. We identify the O-Ag polysaccharide which, uniquely among Shigella spp., is present in two forms on the bacterial cell surface as the bacterial factor responsible. Our data indicate that S. sonnei differs from S. flexneri in key aspects of infection and that more attention should be given to characterization of S. sonnei infection.
Collapse
Affiliation(s)
- Jayne L Watson
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Julia Sanchez-Garrido
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Philippa J Goddard
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Vincenzo Torraca
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Avinash R Shenoy
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Abigail Clements
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Goyette-Desjardins G, Vinogradov E, Okura M, Takamatsu D, Gottschalk M, Segura M. Structure determination of Streptococcus suis serotypes 7 and 8 capsular polysaccharides and assignment of functions of the cps locus genes involved in their biosynthesis. Carbohydr Res 2018; 473:36-45. [PMID: 30605786 DOI: 10.1016/j.carres.2018.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Streptococcus suis serotypes 7 and 8 are counted among the top six S. suis serotypes causing clinical disease in pigs. Yet, limited information is available on these serotypes. Since S. suis serotyping system is based upon capsular polysaccharide (CPS) antigenicity and the CPS is considered a major virulence factor for encapsulated pathogens, here we determined for the first time the chemical compositions and structures of serotypes 7 and 8 CPSs. Chemical and spectroscopic data gave the following repeating unit sequences: [3)L-Rha(α1-P-2)D-Gal(α1-4)D-GlcA(β1-3)D-FucNAc4N(α1-]n for serotype 7 and [2)L-Rha(α1-P-4)D-ManNAc(β1-4)D-Glc(α1-]n for serotype 8. As serotype 8 CPS is identical to Streptococcus pneumoniae type 19F CPS, dot-blot analyses showed a strong reaction of the 19F polysaccharide with reference anti-S. suis serotype 8 rabbit serum. A correlation between S. suis serotypes 7 and 8 sequences and genes of those serotypes' loci encoding putative glycosyltransferases and polymerases responsible for the biosynthesis of the repeating units was tentatively established. Knowledge of CPS structure and composition will contribute to better dissect the role of this bacterial component in the pathogenesis of the disease caused by S. suis serotypes 7 and 8.
Collapse
Affiliation(s)
- Guillaume Goyette-Desjardins
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., St-Hyacinthe, Quebec, J2S 2M2, Canada; Canadian Glycomics Network (GlycoNet), University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Evgeny Vinogradov
- Canadian Glycomics Network (GlycoNet), University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada; National Research Council, 100 Sussex Dr., Ottawa, Ontario, K1A 0R6, Canada
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Daisuke Takamatsu
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., St-Hyacinthe, Quebec, J2S 2M2, Canada; Canadian Glycomics Network (GlycoNet), University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., St-Hyacinthe, Quebec, J2S 2M2, Canada; Canadian Glycomics Network (GlycoNet), University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
9
|
Development of a molecular serotyping scheme and a multiplexed luminex-based array for Providencia. J Microbiol Methods 2018; 153:14-23. [DOI: 10.1016/j.mimet.2018.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022]
|
10
|
Han Y, Liu Q, Yi J, Liang K, Wei Y, Kong Q. A biologically conjugated polysaccharide vaccine delivered by attenuated Salmonella Typhimurium provides protection against challenge of avian pathogenic Escherichia coli O1 infection. Pathog Dis 2018; 75:4085839. [PMID: 28911037 DOI: 10.1093/femspd/ftx102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/17/2017] [Indexed: 01/12/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes avian airsacculitis and colibacillosis, resulting in significant economic loss to the poultry industry. O1, O2 and O78 are the three predominant serotypes. O-antigen of lipopolysaccharide is serotype determinant and highly immunogenic, and O-antigen polysaccharide-based vaccines have great potential for preventing bacterial infections. In this study, we utilized a novel yeast/bacterial shuttle vector pSS26 to clone the 10.8 kb operon synthesizing APEC O1 O-antigen polysaccharide. The resulting plasmid was introduced into attenuated Salmonella vaccines to deliver this O-antigen polysaccharide. O1 O-antigen was stably synthesized in attenuated Salmonella Typhimurium, demonstrated by slide agglutination, silver staining and western blot. Our results also showed that APEC O1 O-antigen produced in the Salmonella vaccines was attached to bacterial cell surfaces, and the presence of heterologous O-antigen did not alter the resistance to surface-acting agents. Furthermore, birds immunized orally or intramuscularly provided protection against the virulent O1 APEC challenge. Salmonella vaccines carrying APEC O1 O-antigen gene cluster also induced high IgG and IgA immune responses against lipopolysaccharide from the APEC O1 strain. The use of our novel shuttle vector facilitates cloning of large DNA fragments, and this strategy could pave the way for production of Salmonella-vectored vaccines against prevalent APEC serotypes.
Collapse
Affiliation(s)
- Yue Han
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Yi
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Kang Liang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunan Wei
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.,Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA.,Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
11
|
Han Y, Liu Q, Willias S, Liang K, Li P, Cheng A, Kong Q. A bivalent vaccine derived from attenuated Salmonella expressing O-antigen polysaccharide provides protection against avian pathogenic Escherichia coli O1 and O2 infection. Vaccine 2018; 36:1038-1046. [PMID: 29358057 DOI: 10.1016/j.vaccine.2018.01.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/02/2018] [Accepted: 01/11/2018] [Indexed: 02/08/2023]
Abstract
Avian pathogenic Escherichia coli (APEC), a leading cause of avian airsacculitis and colibacillosis, is responsible for significant economic loss in the poultry industry. APEC serogroups O1, O2, and O78 are predominantly associated with disease. Lipopolysaccharide (LPS) O-antigen has been shown to be a potent antigen for inducing specific protective immune responses. Therefore, we sought to develop a multivalent polysaccharide vaccine to prevent most APEC infections. We previously reported the stable expression of plasmid pSS27 encoding the APEC O1 O-antigen gene cluster (10.8 kb) in attenuated Salmonella enterica serovar Typhimurium S740 provided excellent protection against APEC O1 challenge. In this study, the plasmid pSS28 harboring the APEC O2 O-antigen polysaccharide gene cluster (15.5 kb) was constructed. Biosynthesis of pSS28-encoded APEC O2 O-antigen in Salmonella vaccine strain S740 was validated by Western blot. The recombinant Salmonella vaccine strain S740 (pSS28) elicited homologous protection against virulent wild-type APEC O2 challenge in a chicken model. Furthermore, through equal-volume mixing the two monovalent vaccine strains S740 (pSS27) and S740 (pSS28), a bivalent vaccine candidate against both APEC O1 and O2 was developed. Immunization of chickens with the bivalent vaccine elicited production of serum IgG and mucosal sIgA antibodies against the LPS of both APEC O1 and O2. Moreover, antibodies induced by the bivalent vaccine promoted opsonization, provoked complement-mediated bactericidal activity, and elicited protection against lethal challenge with both virulent APEC O1 and O2 strains. These results demonstrate that the bivalent vaccine comprised of S740 (pSS27) and S740 (pSS28) is a promising vaccine candidate against APEC O1 and O2 infection.
Collapse
Affiliation(s)
- Yue Han
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32608, USA
| | - Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Stephan Willias
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32608, USA
| | - Kang Liang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Li
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
12
|
Stable Chromosomal Expression of Shigella flexneri 2a and 3a O-Antigens in the Live Salmonella Oral Vaccine Vector Ty21a. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00181-17. [PMID: 29046309 DOI: 10.1128/cvi.00181-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/28/2017] [Indexed: 11/20/2022]
Abstract
We have been exploring the use of the live attenuated Salmonella enterica serovar Typhi Ty21a vaccine strain as a versatile oral vaccine vector for the expression and delivery of multiple foreign antigens, including Shigella O-antigens. In this study, we separately cloned genes necessary for the biosynthesis of the Shigella flexneri serotype 2a and 3a O-antigens, which have been shown to provide broad cross-protection to multiple disease-predominant S. flexneri serotypes. The cloned S. flexneri 2a rfb operon, along with bgt and gtrII, contained on the SfII bacteriophage, was sufficient in Ty21a to express the heterologous S. flexneri 2a O-antigen containing the 3,4 antigenic determinants. Further, this rfb operon, along with gtrA, gtrB, and gtrX contained on the Sfx bacteriophage and oac contained on the Sf6 bacteriophage, was sufficient to express S. flexneri 3a O-antigen containing the 6, 7, and 8 antigenic determinants. Ty21a, with these plasmid-carried or chromosomally inserted genes, demonstrated simultaneous and stable expression of homologous S Typhi O-antigen plus the heterologous S. flexneri O-antigen. Candidate Ty21a vaccine strains expressing heterologous S. flexneri 2a or 3a lipopolysaccharide (LPS) elicited significant serum antibody responses against both homologous S Typhi and heterologous Shigella LPS and protected mice against virulent S. flexneri 2a or 3a challenges. These new S. flexneri 2a and 3a O-antigen-expressing Ty21a vaccine strains, together with our previously constructed Ty21a strains expressing Shigella sonnei or Shigella dysenteriae 1 O-antigens, have the potential to be used together for simultaneous protection against the predominant causes of shigellosis worldwide as well as against typhoid fever.
Collapse
|
13
|
Zhao X, Dai Q, Jia R, Zhu D, Liu M, Wang M, Chen S, Sun K, Yang Q, Wu Y, Cheng A. Two Novel Salmonella Bivalent Vaccines Confer Dual Protection against Two Salmonella Serovars in Mice. Front Cell Infect Microbiol 2017; 7:391. [PMID: 28929089 PMCID: PMC5591321 DOI: 10.3389/fcimb.2017.00391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/22/2017] [Indexed: 12/12/2022] Open
Abstract
Non-typhoidal Salmonella includes thousands of serovars that are leading causes of foodborne diarrheal illness worldwide. In this study, we constructed three bivalent vaccines for preventing both Salmonella Typhimurium and Salmonella Newport infections by using the aspartate semialdehyde dehydrogenase (Asd)-based balanced-lethal vector-host system. The constructed Asd+ plasmid pCZ11 carrying a subset of the Salmonella Newport O-antigen gene cluster including the wzx-wbaR-wbaL-wbaQ-wzy-wbaW-wbaZ genes was introduced into three Salmonella Typhimurium mutants: SLT19 (Δasd) with a smooth LPS phenotype, SLT20 (Δasd ΔrfbN) with a rough LPS phenotype, and SLT22 (Δasd ΔrfbN ΔpagL::T araC PBADrfbN) with a smooth LPS phenotype when grown with arabinose. Immunoblotting demonstrated that SLT19 harboring pCZ11 [termed SLT19 (pCZ11)] co-expressed the homologous and heterologous O-antigens; SLT20 (pCZ11) exclusively expressed the heterologous O-antigen; and when arabinose was available, SLT22 (pCZ11) expressed both types of O-antigens, while in the absence of arabinose, SLT22 (pCZ11) expressed only the heterologous O-antigen. Exclusive expression of the heterologous O-antigen in Salmonella Typhimurium decreased the swimming ability of the bacterium and its susceptibility to polymyxin B. Next, the crp gene was deleted from the three recombinant strains for attenuation purposes, generating the three bivalent vaccine strains SLT25 (pCZ11), SLT26 (pCZ11), and SLT27 (pCZ11), respectively. Groups of BALB/c mice (12 mice/group) were orally immunized with 109 CFU of each vaccine strain twice at an interval of 4 weeks. Compared with a mock immunization, immunization with all three vaccine strains induced significant serum IgG responses against both Salmonella Typhimurium and Salmonella Newport LPS. The bacterial loads in the mouse tissues were significantly lower in the three vaccine-strain-immunized groups than in the mock group after either Salmonella Typhimurium or Salmonella Newport lethal challenge. All of the mice in the three vaccine-immunized groups survived the lethal Salmonella Typhimurium challenge. In contrast, SLT26 (pCZ11) and SLT27 (pCZ11) conferred full protection against lethal Salmonella Newport challenge, but SLT25 (pCZ11) provided only 50% heterologous protection. Thus, we developed two novel Salmonella bivalent vaccines, SLT26 (pCZ11) and SLT27 (pCZ11), suggesting that the delivery of a heterologous O-antigen in attenuated Salmonella strains is a prospective approach for developing Salmonella vaccines with broad serovar coverage.
Collapse
Affiliation(s)
- Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Qinlong Dai
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kunfeng Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
14
|
Zhao X, Dai Q, Zhu D, Liu M, Chen S, Sun K, Yang Q, Wu Y, Kong Q, Jia R. Recombinant attenuated Salmonella Typhimurium with heterologous expression of the Salmonella Choleraesuis O-polysaccharide: high immunogenicity and protection. Sci Rep 2017; 7:7127. [PMID: 28754982 PMCID: PMC5533773 DOI: 10.1038/s41598-017-07689-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/03/2017] [Indexed: 11/29/2022] Open
Abstract
Non-typhoidal Salmonella are associated with gastrointestinal disease worldwide and invasive disease in Africa. We constructed novel bivalent vaccines through the recombinant expression of heterologous O-antigens from Salmonella Choleraesuis in Salmonella Typhimurium. A recombinant Asd+ plasmid pCZ1 with the cloned Salmonella Choleraesuis O-antigen gene cluster was introduced into three constructed Salmonella Typhimurium Δasd mutants: SLT11 (ΔrfbP), SLT12 (ΔrmlB-rfbP) and SLT16 (ΔrfbP ∆pagL::TT araCPBADrfbP). Immunoblotting demonstrated that SLT11 (pCZ1) and SLT12 (pCZ1) efficiently expressed the heterologous O-antigen. In the presence of arabinose, SLT16 (pCZ1) expressed both the homologous and heterologous O-antigens, whereas in the absence of arabinose, SLT16 (pCZ1) mainly expressed the heterologous O-antigen. We deleted the crp/cya genes in SLT12 (pCZ1) and SLT16 (pCZ1) for attenuation purposes, generating the recombinant vaccine strains SLT17 (pCZ1) and SLT18 (pCZ1). Immunization with either SLT17 (pCZ1) or SLT18 (pCZ1) induced specific IgG against the heterologous O-antigen, which mediated significant killing of Salmonella Choleraesuis and provided full protection against a lethal homologous challenge in mice. Furthermore, SLT17 (pCZ1) or SLT18 (pCZ1) immunization resulted in 83% or 50% heterologous protection against Salmonella Choleraesuis challenge, respectively. Our study demonstrates that heterologous O-antigen expression is a promising strategy for the development of multivalent Salmonella vaccines.
Collapse
Affiliation(s)
- Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qinlong Dai
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Kunfeng Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China. .,Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-5401, USA.
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, Sichuan, 611130, P.R. China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.
| |
Collapse
|
15
|
Sváb D, Bálint B, Vásárhelyi B, Maróti G, Tóth I. Comparative Genomic and Phylogenetic Analysis of a Shiga Toxin Producing Shigella sonnei (STSS) Strain. Front Cell Infect Microbiol 2017; 7:229. [PMID: 28611956 PMCID: PMC5447701 DOI: 10.3389/fcimb.2017.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/17/2017] [Indexed: 01/26/2023] Open
Abstract
Shigella strains are important agents of bacillary dysentery, and in recent years Shigella sonnei has emerged as the leading cause of shigellosis in industrialized and rapidly developing countries. More recently, several S. sonnei and Shigella flexneri strains producing Shiga toxin (Stx) have been reported from sporadic cases and from an outbreak in America. In the present study we aimed to shed light on the evolution of a recently identified Shiga toxin producing S. sonnei (STSS) isolated in Europe. Here we report the first completely assembled whole genome sequence of a multidrug resistant (MDR) Stx-producing S. sonnei (STSS) clinical strain and reveal its phylogenetic relations. STSS 75/02 proved to be resistant to ampicillin, streptomycin, tetracycline, chloramphenicol, thrimetoprim, and sulfomethoxazol. The genome of STSS 75/02 contains a 4,891,717 nt chromosome and seven plasmids including the 214 kb invasion plasmid (pInv) harboring type III secretion system genes and associated effectors. The chromosome harbors 23 prophage regions including the Stx1 converting prophage. The genome carries all virulence determinants necessary for an enteroinvasive lifestyle, as well as the Stx1 encoding gene cluster within an earlier described inducible converting prophage. In silico SNP genotyping of the assembled genome as well as 438 complete or draft S. sonnei genomes downloaded from NCBI GenBank revealed that S. sonnei 75/02 belongs to the more recently diverged global MDR lineage (IIIc). Targeted screening of 1131 next-generation sequencing projects taken from NCBI Short Read Archive of confirms that only a few S. sonnei isolates are Stx positive. Our results suggest that the acquisition of Stx phages could have occurred in different environments as independent events and that multiple horizontal transfers are responsible for the appearance of Stx phages in S. sonnei strains.
Collapse
Affiliation(s)
- Domonkos Sváb
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Hungarian Academy of SciencesBudapest, Hungary
| | | | | | - Gergely Maróti
- Biological Research Centre, Institute of Biochemistry, Hungarian Academy of SciencesSzeged, Hungary
| | - István Tóth
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Hungarian Academy of SciencesBudapest, Hungary
| |
Collapse
|
16
|
Dharmasena MN, Feuille CM, Starke CEC, Bhagwat AA, Stibitz S, Kopecko DJ. Development of an Acid-Resistant Salmonella Typhi Ty21a Attenuated Vector For Improved Oral Vaccine Delivery. PLoS One 2016; 11:e0163511. [PMID: 27673328 PMCID: PMC5046385 DOI: 10.1371/journal.pone.0163511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/09/2016] [Indexed: 02/01/2023] Open
Abstract
The licensed oral, live-attenuated bacterial vaccine for typhoid fever, Salmonella enterica serovar Typhi strain Ty21a, has also been utilized as a vaccine delivery platform for expression of diverse foreign antigens that stimulate protection against shigellosis, anthrax, plague, or human papilloma virus. However, Ty21a is acid-labile and, for effective oral immunization, stomach acidity has to be either neutralized with buffer or by-passed with Ty21a in an enteric-coated capsule (ECC). Several studies have shown that efficacy is reduced when Ty21a is administered in an ECC versus as a buffered liquid formulation, the former limiting exposure to GI tract lymphoid tissues. However, the ECC was selected as a more practical delivery format for both packaging/shipping and vaccine administration ease. We have sought to increase Ty21a acid-resistance to allow for removal from the ECC and immune enhancement. To improve Ty21a acid-resistance, glutamate-dependent acid resistance genes (GAD; responsible for Shigella spp. survival at very low pH) were cloned on a multi-copy plasmid (pGad) under a controllable arabinose-inducible promoter. pGad enhanced acid survival of Ty21a by 5 logs after 3 hours at pH 2.5, when cells were pre-grown in arabinose and under conditions that promote an acid-tolerance response (ATR). For genetically 100% stable expression, we inserted the gad genes into the Ty21a chromosome, using a method that allowed for subsequent removal of a selectable antibiotic resistance marker. Further, both bacterial growth curves and survival assays in cultured human monocytes/macrophages suggest that neither the genetic methods employed nor the resulting acid-resistance conferred by expression of the Gad proteins in Ty21a had any effect on the existing attenuation of this vaccine strain.
Collapse
Affiliation(s)
- Madushini N. Dharmasena
- Laboratory of Mucosal Pathogens and Cellular Immunology, Food and Drug Administration-Center for Biologics Evaluation and Research, New Hampshire Avenue, Silver Spring, Maryland, United States of America
- * E-mail: (MND); (DJK)
| | - Catherine M. Feuille
- Laboratory of Mucosal Pathogens and Cellular Immunology, Food and Drug Administration-Center for Biologics Evaluation and Research, New Hampshire Avenue, Silver Spring, Maryland, United States of America
| | - Carly Elizabeth C. Starke
- Laboratory of Mucosal Pathogens and Cellular Immunology, Food and Drug Administration-Center for Biologics Evaluation and Research, New Hampshire Avenue, Silver Spring, Maryland, United States of America
| | - Arvind A. Bhagwat
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Scott Stibitz
- Laboratory of Mucosal Pathogens and Cellular Immunology, Food and Drug Administration-Center for Biologics Evaluation and Research, New Hampshire Avenue, Silver Spring, Maryland, United States of America
| | - Dennis J. Kopecko
- Laboratory of Mucosal Pathogens and Cellular Immunology, Food and Drug Administration-Center for Biologics Evaluation and Research, New Hampshire Avenue, Silver Spring, Maryland, United States of America
- * E-mail: (MND); (DJK)
| |
Collapse
|
17
|
Dharmasena MN, Osorio M, Filipova S, Marsh C, Stibitz S, Kopecko DJ. Stable expression ofShigella dysenteriaeserotype 1 O-antigen genes integrated into the chromosome of liveSalmonellaoral vaccine vector Ty21a. Pathog Dis 2016; 74:ftw098. [DOI: 10.1093/femspd/ftw098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
18
|
Saeui CT, Urias E, Liu L, Mathew MP, Yarema KJ. Metabolic glycoengineering bacteria for therapeutic, recombinant protein, and metabolite production applications. Glycoconj J 2015; 32:425-41. [PMID: 25931032 DOI: 10.1007/s10719-015-9583-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 12/12/2022]
Abstract
Metabolic glycoengineering is a specialization of metabolic engineering that focuses on using small molecule metabolites to manipulate biosynthetic pathways responsible for oligosaccharide and glycoconjugate production. As outlined in this article, this technique has blossomed in mammalian systems over the past three decades but has made only modest progress in prokaryotes. Nevertheless, a sufficient foundation now exists to support several important applications of metabolic glycoengineering in bacteria based on methods to preferentially direct metabolic intermediates into pathways involved in lipopolysaccharide, peptidoglycan, teichoic acid, or capsule polysaccharide production. An overview of current applications and future prospects for this technology are provided in this report.
Collapse
Affiliation(s)
- Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Esteban Urias
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Lingshu Liu
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Mohit P Mathew
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, USA.
- Translational Tissue Engineering Center, The Johns Hopkins University, 5029 Robert H. & Clarice Smith Building, 400 North Broadway, Baltimore, MD, 21231, USA.
| |
Collapse
|
19
|
Caboni M, Pédron T, Rossi O, Goulding D, Pickard D, Citiulo F, MacLennan CA, Dougan G, Thomson NR, Saul A, Sansonetti PJ, Gerke C. An O antigen capsule modulates bacterial pathogenesis in Shigella sonnei. PLoS Pathog 2015; 11:e1004749. [PMID: 25794007 PMCID: PMC4368438 DOI: 10.1371/journal.ppat.1004749] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/15/2015] [Indexed: 01/08/2023] Open
Abstract
Shigella is the leading cause for dysentery worldwide. Together with several virulence factors employed for invasion, the presence and length of the O antigen (OAg) of the lipopolysaccharide (LPS) plays a key role in pathogenesis. S. flexneri 2a has a bimodal OAg chain length distribution regulated in a growth-dependent manner, whereas S. sonnei LPS comprises a monomodal OAg. Here we reveal that S. sonnei, but not S. flexneri 2a, possesses a high molecular weight, immunogenic group 4 capsule, characterized by structural similarity to LPS OAg. We found that a galU mutant of S. sonnei, that is unable to produce a complete LPS with OAg attached, can still assemble OAg material on the cell surface, but a galU mutant of S. flexneri 2a cannot. High molecular weight material not linked to the LPS was purified from S. sonnei and confirmed by NMR to contain the specific sugars of the S. sonnei OAg. Deletion of genes homologous to the group 4 capsule synthesis cluster, previously described in Escherichia coli, abolished the generation of the high molecular weight OAg material. This OAg capsule strongly affects the virulence of S. sonnei. Uncapsulated knockout bacteria were highly invasive in vitro and strongly inflammatory in the rabbit intestine. But, the lack of capsule reduced the ability of S. sonnei to resist complement-mediated killing and to spread from the gut to peripheral organs. In contrast, overexpression of the capsule decreased invasiveness in vitro and inflammation in vivo compared to the wild type. In conclusion, the data indicate that in S. sonnei expression of the capsule modulates bacterial pathogenesis resulting in balanced capabilities to invade and persist in the host environment.
Collapse
Affiliation(s)
- Mariaelena Caboni
- Novartis Vaccines Institute for Global Health, Siena, Via Fiorentina, Italy
| | - Thierry Pédron
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Paris, France
| | - Omar Rossi
- Novartis Vaccines Institute for Global Health, Siena, Via Fiorentina, Italy
| | - David Goulding
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Derek Pickard
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Francesco Citiulo
- Novartis Vaccines Institute for Global Health, Siena, Via Fiorentina, Italy
| | | | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | | | - Allan Saul
- Novartis Vaccines Institute for Global Health, Siena, Via Fiorentina, Italy
| | - Philippe J. Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Paris, France
- Collège de France, Chaire de Microbiologie et Maladies Infectieuses, Paris, France
| | - Christiane Gerke
- Novartis Vaccines Institute for Global Health, Siena, Via Fiorentina, Italy
| |
Collapse
|
20
|
Radhika M, Saugata M, Murali H, Batra H. A novel multiplex PCR for the simultaneous detection of Salmonella enterica and Shigella species. Braz J Microbiol 2014; 45:667-76. [PMID: 25242957 PMCID: PMC4166298 DOI: 10.1590/s1517-83822014005000041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 09/09/2013] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica and Shigella species are commonly associated with food and water borne infections leading to gastrointestinal diseases. The present work was undertaken to develop a sensitive and reliable PCR based detection system for simultaneous detection of Salmonella enterica and Shigella at species level. For this the conserved regions of specific genes namely ipaH1, ipaH, wbgZ, wzy and invA were targeted for detection of Shigella genus, S. flexneri, S. sonnei, S. boydii and Salmonella enterica respectively along with an internal amplification control (IAC). The results showed that twenty Salmonella and eleven Shigella spp., were accurately identified by the assay without showing non-specificity against closely related other Enterobacteriaceae organisms and also against other pathogens. Further evaluation of multiplex PCR was undertaken on 50 natural samples of chicken, eggs and poultry litter and results compared with conventional culture isolation and identification procedure. The multiplex PCR identified the presence of Salmonella and Shigella strains with a short pre-enrichment step of 5 h in peptone water and the same samples were processed by conventional procedures for comparison. Therefore, this reported multiplex PCR can serve as an alternative to the tedious time-consuming procedure of culture and identification in food safety laboratories.
Collapse
Affiliation(s)
- M. Radhika
- Microbiology DivisionDefence Food Research LaboratorySiddharthanagar, MysoreKarnatakaIndiaMicrobiology Division, Defence Food Research Laboratory, Siddharthanagar, Mysore, Karnataka, India
| | - Majumder Saugata
- Microbiology DivisionDefence Food Research LaboratorySiddharthanagar, MysoreKarnatakaIndiaMicrobiology Division, Defence Food Research Laboratory, Siddharthanagar, Mysore, Karnataka, India
| | - H.S. Murali
- Microbiology DivisionDefence Food Research LaboratorySiddharthanagar, MysoreKarnatakaIndiaMicrobiology Division, Defence Food Research Laboratory, Siddharthanagar, Mysore, Karnataka, India
| | - H.V. Batra
- Microbiology DivisionDefence Food Research LaboratorySiddharthanagar, MysoreKarnatakaIndiaMicrobiology Division, Defence Food Research Laboratory, Siddharthanagar, Mysore, Karnataka, India
| |
Collapse
|
21
|
Ovchinnikova OG, Rozalski A, Liu B, Knirel YA. O-antigens of bacteria of the genus providencia: structure, serology, genetics, and biosynthesis. BIOCHEMISTRY (MOSCOW) 2014; 78:798-817. [PMID: 24010842 DOI: 10.1134/s0006297913070110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The genus Providencia consists of eight species of opportunistic pathogenic enterobacteria that can cause enteric diseases and urinary tract infections. The existing combined serological classification scheme of three species, P. alcalifaciens, P. stuartii, and P. rustigianii, is based on the specificity of O-antigens (O-polysaccharides) and comprises 63 O-serogroups. Differences between serogroups are related to polymorphism at a specific genome locus, the O-antigen gene cluster, responsible for O-antigen biosynthesis. This review presents data on structures of 36 O-antigens of Providencia, many of which contain unusual monosaccharides and non-carbohydrate components. The structural data correlate with the immunospecificity of the O-antigens and enable substantiation on a molecular level of serological relationships within the genus Providencia and between strains of Providencia and bacteria of the genera Proteus, Escherichia, and Salmonella. Peculiar features of the O-antigen gene cluster organization in 10 Providencia serogroups and biosynthetic pathways of nucleotide precursors of specific monosaccharide components of the O-antigens also are discussed.
Collapse
Affiliation(s)
- O G Ovchinnikova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia.
| | | | | | | |
Collapse
|
22
|
Abstract
Over the past three decades, a powerful array of techniques has been developed for expressing heterologous proteins and saccharides on the surface of bacteria. Surface-engineered bacteria, in turn, have proven useful in a variety of settings, including high-throughput screening, biofuel production, and vaccinology. In this chapter, we provide a comprehensive review of methods for displaying polypeptides and sugars on the bacterial cell surface, and discuss the many innovative applications these methods have found to date. While already an important biotechnological tool, we believe bacterial surface display may be further improved through integration with emerging methodology in other fields, such as protein engineering and synthetic chemistry. Ultimately, we envision bacterial display becoming a multidisciplinary platform with the potential to transform basic and applied research in bacteriology, biotechnology, and biomedicine.
Collapse
|
23
|
Haemophilus parainfluenzae expresses diverse lipopolysaccharide O-antigens using ABC transporter and Wzy polymerase-dependent mechanisms. Int J Med Microbiol 2013; 303:603-17. [PMID: 24035104 PMCID: PMC3989065 DOI: 10.1016/j.ijmm.2013.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/09/2013] [Accepted: 08/18/2013] [Indexed: 12/11/2022] Open
Abstract
Lipopolysaccharide O-antigens are the basis of serotyping schemes for Gram negative bacteria and help to determine the nature of host–bacterial interactions. Haemophilus parainfluenzae is a normal commensal of humans but is also an occasional pathogen. The prevalence, diversity and biosynthesis of O-antigens were investigated in this species for the first time. 18/18 commensal H. parainfluenzae isolates contain a O-antigen biosynthesis gene cluster flanked by glnA and pepB, the same position as the hmg locus for tetrasaccharide biosynthesis in Haemophilus influenzae. The O-antigen loci show diverse restriction digest patterns but fall into two main groups: (1) those encoding enzymes for the synthesis and transfer of FucNAc4N in addition to the Wzy-dependent mechanism of O-antigen synthesis and transport and (2) those encoding galactofuranose synthesis/transfer enzymes and an ABC transporter. The other glycosyltransferase genes differ between isolates. Three H. parainfluenzae isolates fell outside these groups and are predicted to synthesise O-antigens containing ribitol phosphate or deoxytalose. Isolates using the ABC transporter system encode a putative O-antigen ligase, required for the synthesis of O-antigen-containing LPS glycoforms, at a separate genomic location. The presence of an O-antigen contributes significantly to H. parainfluenzae resistance to the killing effect of human serum in vitro. The discovery of O-antigens in H. parainfluenzae is striking, as its close relative H. influenzae lacks this cell surface component.
Collapse
|
24
|
Genome Sequence of Salmonella enterica Serovar Typhi Oral Vaccine Strain Ty21a. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00650-13. [PMID: 23969054 PMCID: PMC3751609 DOI: 10.1128/genomea.00650-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Attenuated Salmonellaenterica serovar Typhi strain Ty21a is an important vaccine for controlling typhoid fever and serves as an oral vector for delivering heterologous antigens. The key attenuating features of this randomly mutated strain remain in question. Genome sequencing has revealed 679 single nucleotide polymorphisms (SNPs), and will help define alterations contributing to Ty21a safety and immunogenicity.
Collapse
|
25
|
Stable expression of Shigella sonnei form I O-polysaccharide genes recombineered into the chromosome of live Salmonella oral vaccine vector Ty21a. Int J Med Microbiol 2013; 303:105-13. [DOI: 10.1016/j.ijmm.2013.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/19/2012] [Accepted: 01/13/2013] [Indexed: 11/18/2022] Open
|
26
|
Liu B, Chen M, Perepelov AV, Liu J, Ovchinnikova OG, Zhou D, Feng L, Rozalski A, Knirel YA, Wang L. Genetic analysis of the O-antigen of Providencia alcalifaciens O30 and biochemical characterization of a formyltransferase involved in the synthesis of a Qui4N derivative. Glycobiology 2012; 22:1236-44. [PMID: 22661447 DOI: 10.1093/glycob/cws089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
O-Antigen is a component of the outer membrane of Gram-negative bacteria and one of the most variable cell surface constituents, giving rise to major antigenic variability. The diversity of O-antigen is almost entirely attributed to genetic variations in O-antigen gene clusters. Bacteria of the genus Providencia are facultative pathogens, which can cause urinary tract infections, wound infections and enteric diseases. Recently, the O-antigen gene cluster of Providencia was localized between the cpxA and yibK genes in the genome. However, few genes involved in the synthesis of Providencia O-antigens have been functionally identified. In this study, the putative O-antigen gene cluster of Providencia alcalifaciens O30 was sequenced and analyzed. Almost all putative genes for the O-antigen synthesis were found, including a novel formyltransferase gene vioF that was proposed to be responsible for the conversion of dTDP-4-amino-4,6- dideoxy-D-glucose (dTDP-D-Qui4N) to dTDP-4,6-dideoxy-4-formamido-D-glucose (dTDP-D-Qui4NFo). vioF was cloned, and the enzyme product was expressed as a His-tagged fusion protein, purified and assayed for its activity. High-performance liquid chromatography was used to monitor the enzyme-substrate reaction, and the structure of the product dTDP-D-Qui4NFo was established by electrospray ionization tandem mass spectrometry and nuclear magnetic resonance spectroscopy. Kinetic parameters of VioF were determined, and effects of temperature and cations on its activity were also examined. Together, the functional analyses support the identification of the O-antigen gene cluster of P. alcalifaciens O30.
Collapse
Affiliation(s)
- Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Tianjin, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Deldar AA, Yakhchali B. The influence of riboflavin and nicotinic acid on Shigella sonnei colony conversion. IRANIAN JOURNAL OF MICROBIOLOGY 2011; 3:13-20. [PMID: 22347577 PMCID: PMC3279797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES Shigella, causative of bacillary dysentery, has two colony forms. The loss of large virulence plasmid from virulent Shigella sonnei form I, during cell storage and subculturing, lead to avirulent form II. Environmental factors, e.g. culture media composition, could affect the conversion of the bacterial forms. MATERIALS AND METHODS In this study, some components, i.e., B-complex vitamins, nicotinic acid and riboflavin, were added to the bacterial culture medium and their influence on colony conversion were examined. RESULTS The findings revealed that colony conversion is temperature independent and growth on the SS agar did not stabilize the bacterium in form I. Also, the findings showed that colonies on the minimal media supplemented with nicotinic acid and riboflavin, were stable in form I. In addition, according to the findings, the active OxyR has potential binding sites upstream of two genes involved in the replication of large virulence plasmid and expression of O-polysaccharide, i.e., repB and wbgT, respectively. CONCLUSION Based on the findings of the present study, it is possible that nicotinic acid and riboflavin activate the transcriptional regulatory protein OxyR via dropping off the intracellular reducing power and in this way stabilize the colonies in form I.
Collapse
Affiliation(s)
| | - B Yakhchali
- Corresponding author: Dr. Bagher Yakhchali Address: National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e-Pajoohesh, km 15, Tehran-Karaj Highway, Tehran, Iran. Tel: +98-21-44580353. E-mail:
| |
Collapse
|
28
|
Structural characterization of ISCR8, ISCR22, and ISCR23, subgroups of IS91-like insertion elements. Antimicrob Agents Chemother 2010; 54:4321-8. [PMID: 20625149 DOI: 10.1128/aac.00006-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of ISCR8 (ISPps1) revealed that this group of insertion elements has to be subdivided into three subgroups: ISCR8, ISCR22, and ISCR23. The distinction of three subgroups is supported by phylogenetic analysis of the transposase open reading frames (ORFs). Comparison of over 20 complete and partial ISCR8/22/23 elements identified oriIS candidate sequences for all groups and a terIS candidate sequence for ISCR8. The oriIS sequences, their distance to the transposase ORFs, and the sequence of this intervening region are group specific, further supporting the definition of two new ISCR elements. ISCR8/22/23 have a very broad host range, including Gram-positive and Gram-negative bacteria, among which are several (opportunistic) pathogens. The IS often resides on plasmids or in the vicinity of other mobile elements and is mostly associated with genes for the degradation of halo- or nitro-aromatics. However, in one case ISCR8 was found in the neighborhood of an antibiotic resistance determinant in Klebsiella pneumoniae. ISCR8 resembles other IS91 family elements in mediating genetic rearrangements by homologous recombination between two copies. In Delftia acidovorans this led to the loss of the genes encoding dichlorprop cleavage. In conclusion, this study shows that ISCR8 could be a fully functional and active member of the IS91 family of insertion elements.
Collapse
|
29
|
Anthrax protective antigen delivered by Salmonella enterica serovar Typhi Ty21a protects mice from a lethal anthrax spore challenge. Infect Immun 2009; 77:1475-82. [PMID: 19179420 DOI: 10.1128/iai.00828-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Bacillus anthracis, the etiological agent of anthrax disease, is a proven weapon of bioterrorism. Currently, the only licensed vaccine against anthrax in the United States is AVA Biothrax, which, although efficacious, suffers from several limitations. This vaccine requires six injectable doses over 18 months to stimulate protective immunity, requires a cold chain for storage, and in many cases has been associated with adverse effects. In this study, we modified the B. anthracis protective antigen (PA) gene for optimal expression and stability, linked it to an inducible promoter for maximal expression in the host, and fused it to the secretion signal of the Escherichia coli alpha-hemolysin protein (HlyA) on a low-copy-number plasmid. This plasmid was introduced into the licensed typhoid vaccine strain, Salmonella enterica serovar Typhi strain Ty21a, and was found to be genetically stable. Immunization of mice with three vaccine doses elicited a strong PA-specific serum immunoglobulin G response with a geometric mean titer of 30,000 (range, 5,800 to 157,000) and lethal-toxin-neutralizing titers greater than 16,000. Vaccinated mice demonstrated 100% protection against a lethal intranasal challenge with aerosolized spores of B. anthracis 7702. The ultimate goal is a temperature-stable, safe, oral human vaccine against anthrax infection that can be self-administered in a few doses over a short period of time.
Collapse
|
30
|
Nagy G, Pál T. Lipopolysaccharide: a tool and target in enterobacterial vaccine development. Biol Chem 2008; 389:513-20. [PMID: 18953717 DOI: 10.1515/bc.2008.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lipopolysaccharide (LPS) is an essential component of Gram-negative bacteria. While mutants exhibiting truncated LPS molecules are usually over-attenuated, alternative approaches that affect the extent or timing of LPS expression, as well as its modification may establish the optimal balance for a live vaccine strain of sufficient attenuation and retained immunogenicity. On the other hand, a specific immune response to LPS molecules in itself is capable of conferring protective immunity to certain enterobacterial pathogens. Therefore, purified LPS derivatives could be used as parenteral vaccines. This review summarizes various LPS-based vaccination strategies, as well as approaches that utilize LPS mutants as whole-cell vaccines.
Collapse
Affiliation(s)
- Gábor Nagy
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
| | | |
Collapse
|
31
|
Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Wang Q, Reeves PR, Wang L. Structure and genetics ofShigellaO antigens. FEMS Microbiol Rev 2008; 32:627-53. [DOI: 10.1111/j.1574-6976.2008.00114.x] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Aanensen DM, Mavroidi A, Bentley SD, Reeves PR, Spratt BG. Predicted functions and linkage specificities of the products of the Streptococcus pneumoniae capsular biosynthetic loci. J Bacteriol 2007; 189:7856-76. [PMID: 17766420 PMCID: PMC2168755 DOI: 10.1128/jb.00837-07] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sequences of the capsular biosynthetic (cps) loci of 90 serotypes of Streptococcus pneumoniae have recently been determined. Bioinformatic procedures were used to predict the general functions of 1,973 of the 1,999 gene products and to identify proteins within the same homology group, Pfam family, and CAZy glycosyltransferase family. Correlating cps gene content with the 54 known capsular polysaccharide (CPS) structures provided tentative assignments of the specific functions of the different homology groups of each functional class (regulatory proteins, enzymes for synthesis of CPS constituents, polymerases, flippases, initial sugar transferases, glycosyltransferases [GTs], phosphotransferases, acetyltransferases, and pyruvyltransferases). Assignment of the glycosidic linkages catalyzed by the 342 GTs (92 homology groups) is problematic, but tentative assignments could be made by using this large set of cps loci and CPS structures to correlate the presence of particular GTs with specific glycosidic linkages, by correlating inverting or retaining linkages in CPS repeat units with the inverting or retaining mechanisms of the GTs predicted from their CAZy family membership, and by comparing the CPS structures of serotypes that have very similar cps gene contents. These large-scale comparisons between structure and gene content assigned the linkages catalyzed by 72% of the GTs, and all linkages were assigned in 32 of the serotypes with known repeat unit structures. Clear examples where very similar initial sugar transferases or glycosyltransferases catalyze different linkages in different serotypes were also identified. These assignments should provide a stimulus for biochemical studies to evaluate the reactions that are proposed.
Collapse
Affiliation(s)
- David M Aanensen
- Department of Infectious Disease Epidemiology, Imperial College London, Room G22, Old Medical School Building, St. Mary's Hospital, Norfolk Place, London W2 1PG, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Levine MM, Kotloff KL, Barry EM, Pasetti MF, Sztein MB. Clinical trials of Shigella vaccines: two steps forward and one step back on a long, hard road. Nat Rev Microbiol 2007; 5:540-53. [PMID: 17558427 PMCID: PMC3771495 DOI: 10.1038/nrmicro1662] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
More than 50 years of research has yielded numerous Shigella vaccine candidates that have exemplified both the promise of vaccine-induced prevention of shigellosis and the impediments to developing a safe and effective vaccine for widespread use, a goal that has yet to be attained. This Review discusses the most advanced strategies for Shigella vaccine development, the immune responses that are elicited following disease or vaccination, the factors that have accelerated or impeded Shigella vaccine development and our ideas for the way forward.
Collapse
MESH Headings
- Antibodies, Bacterial/blood
- Child, Preschool
- Clinical Trials as Topic
- Dysentery, Bacillary/epidemiology
- Dysentery, Bacillary/immunology
- Dysentery, Bacillary/microbiology
- Dysentery, Bacillary/prevention & control
- Humans
- Immunity, Cellular
- Infant
- Shigella/classification
- Shigella/immunology
- Shigella Vaccines/administration & dosage
- Shigella Vaccines/adverse effects
- Shigella Vaccines/immunology
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/adverse effects
- Vaccines, Attenuated/immunology
Collapse
Affiliation(s)
- Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | |
Collapse
|
34
|
Xu DQ, Cisar JO, Osorio M, Wai TT, Kopecko DJ. Core-linked LPS expression of Shigella dysenteriae serotype 1 O-antigen in live Salmonella Typhi vaccine vector Ty21a: Preclinical evidence of immunogenicity and protection. Vaccine 2007; 25:6167-75. [PMID: 17629369 DOI: 10.1016/j.vaccine.2007.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 06/01/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
Shigella dysenteriae serotype 1 (S. dysenteriae 1) causes severe shigellosis that is typically associated with high mortality. Antibodies against Shigella serotype-specific O-polysaccharide (O-Ps) have been shown to be host protective. In this study, the rfb locus and the rfp gene with their cognate promoter regions were PCR-amplified from S. dysenteriae 1, cloned, and sequenced. Deletion analysis showed that eight rfb ORFs plus rfp are necessary for biosynthesis of this O-Ps. A tandemly-linked rfb-rfp gene cassette was cloned into low copy plasmid pGB2 to create pSd1. Avirulent Salmonella enterica serovar Typhi (S. Typhi) Ty21a harboring pSd1 synthesized S. Typhi 9, 12 LPS as well as typical core-linked S. dysenteriae 1 LPS. Animal immunization studies showed that Ty21a (pSd1) induces protective immunity against high stringency challenge with virulent S. dysenteriae 1 strain 1617. These data further demonstrate the utility of S. Typhi Ty21a as a live, bacterial vaccine delivery system for heterologous O-antigens, supporting the promise of a bifunctional oral vaccine for prevention of shigellosis and typhoid fever.
Collapse
Affiliation(s)
- De Qi Xu
- Laboratory of Enteric and Sexually Transmitted Diseases, FDA-CBER, Bethesda, MD 20892, United States.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Shigellosis, commonly known as bacillary dysentery, is an enterobacterial disease caused by the Shigella genus, which now belongs to the Escherichia tribe, because of their genetic and phenotypic similarities. S. sonnei, flexneri, boydii and dysenteriae differ in their epidemiologic and pathogenic characteristics. S. sonnei is predominant in industrialized countries and causes the mildest disease. S. dysentery is especially dangerous because it occurs in outbreaks, sometimes in catastrophic situations, and has a high mortality rate. Shigellosis typically causes watery diarrhea followed by dysentery. It may be associated with a variety of mild to severe or even life-threatening complications. Shigellosis is a significant public health problem in developing countries where it remains a major cause of diarrhea-related morbidity and mortality, especially among children. Annual cases worldwide are estimated at 160 million. Shigellosis is a highly contagious disease of poor and crowded communities, with fecal-oral (hand-to-mouth) transmission, and an extremely low minimum infectious dose. Multidrug resistance is a serious problem. Ciprofloxacin is the first-line antibiotic, recommended for 3 days. Prevention and control should include personal hygiene, hand washing, sanitation, and water supply. No vaccine is available, but several candidates are currently being evaluated.
Collapse
Affiliation(s)
- Xavier Nicolas
- Service de médecine interne et maladies infectieuses, Hôpital Clermont-Tonnerre, Brest.
| | | | | |
Collapse
|
36
|
Cheng J, Wang Q, Wang W, Wang Y, Wang L, Feng L. Characterization of E. coli O24 and O56 O antigen gene clusters reveals a complex evolutionary history of the O24 gene cluster. Curr Microbiol 2006; 53:470-6. [PMID: 17072668 DOI: 10.1007/s00284-006-0032-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 06/10/2006] [Indexed: 10/24/2022]
Abstract
O antigen is part of the lipopolysaccharide present in the outer membrane of Gram-negative bacteria. It has many different forms, which are almost entirely due to genetic variations of O antigen gene clusters. In this study, the O antigen gene clusters of E. coli O24 and O56 were sequenced, and all genes were assigned functions on the basis of homology. Comparison of O antigen gene clusters indicated that E. coli O24 O antigen gene cluster has possibly arisen from the E. coli O56 gene cluster, through inactivation of two glycosyltransferase genes and acquisition of two new genes from E. coli O157 and O152, respectively. The insertion sequence elements seemed to play important roles for the assembly of the O24 O antigen gene cluster. This is the first time that the evolutionary history of a multi-origin O antigen gene cluster is clearly demonstrated. Genes specific to E. coli O24 and O56 were also identified, which may be used for development of DNA-based serotyping schemes.
Collapse
Affiliation(s)
- Jiansong Cheng
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 HongDa Street, Tianjin, TEDA, 300457, P.R. China
| | | | | | | | | | | |
Collapse
|
37
|
Park NY, Lee JH, Kim MW, Jeong HG, Lee BC, Kim TS, Choi SH. Identification of the Vibrio vulnificus wbpP gene and evaluation of its role in virulence. Infect Immun 2006; 74:721-8. [PMID: 16369029 PMCID: PMC1346593 DOI: 10.1128/iai.74.1.721-728.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A wbpP gene encoding a putative UDP-N-acetyl-D-glucosamine C(4) epimerase was identified and cloned from Vibrio vulnificus. The functions of the wbpP gene, assessed by the construction of an isogenic mutant and by evaluating its phenotype changes, demonstrated that WbpP is essential in both the pathogenesis and the capsular polysaccharide biosynthesis of V. vulnificus.
Collapse
Affiliation(s)
- Na Young Park
- Department of Food Science and Technology, School of Agricultural Biotechnology, Center for Agricultural Biomaterials, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Walker RI. Considerations for development of whole cell bacterial vaccines to prevent diarrheal diseases in children in developing countries. Vaccine 2005; 23:3369-85. [PMID: 15837361 DOI: 10.1016/j.vaccine.2004.12.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 11/23/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
Enteric pathogens constitute a major pediatric threat in the developing world through their impact on morbidity and mortality, physical and cognitive development and cause and effect relationship with malnutrition. Although many bacterial pathogens can cause diarrheal diseases, a group of less than 10 including Shigella spp., enterotoxigenic Escherichia coli (ETEC), Vibrio cholerae, and possibly, Campylobacter jejuni account for a significant percentage of these diseases in developing countries. Rotavirus is also a major cause of diarrheal diseases. Vaccines against these agents offer a potentially effective control measure against these diseases, but safe, practical, and effective vaccines for many of these agents have yet to be realized. Many vaccine development approaches are under investigation, but the one that is currently most advanced and that has been most widely applied to enteric pathogens is the use of orally administered live or killed whole pathogen preparations. If inactivated, these vaccines will probably be administered as multiple doses with approximately 10(10) to 10(11) total particles per dose, but they are relatively safe for oral administration. Further, they may not require a buffer for delivery and can be stored in liquid formulations. Fewer doses may be required for some live attenuated pathogen vaccines, but a buffer will most likely be required for oral delivery and the product must be stored in a dried formulation. Also, safety becomes more of a concern with live pathogens depending on the degree of attenuation, host immunocompetence, and the total number and kinds of attenuated pathogens which may be present in a combined agent vaccine. Both live and killed whole pathogen vaccines can be immunogenic and have the possibility to serve as vectors for other antigens. Although many organisms and serotypes are clinically important, by exploiting antigenic cross reactivity and using some pathogen components as vectors for cloned antigens of other pathogens, it could be possible to induce immunity against major enteric pathogens/serotypes with <10 whole pathogen components in a multi-agent vaccine. Safe and effective mucosal adjuvants may in the future be useful in whole pathogen vaccines, but they do not seem to be essential for immunization. Further, dietary supplements such as zinc, mixed routes of delivery and new regimens are under study which may in the future enhance further the effectiveness of the whole pathogen vaccines which now seem realizable in the near term. For this to happen, however, a coordinated and committed effort is necessary now to address the immunologic, regulatory, manufacturing, testing and implementation issues which will be involved in the realization of this important product to benefit children's health worldwide.
Collapse
Affiliation(s)
- Richard I Walker
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike (HFM-425), Rockville, MD 20851-1448, USA.
| |
Collapse
|
39
|
Obhi RK, Creuzenet C. Biochemical characterization of the Campylobacter jejuni Cj1294, a novel UDP-4-keto-6-deoxy-GlcNAc aminotransferase that generates UDP-4-amino-4,6-dideoxy-GalNAc. J Biol Chem 2005; 280:20902-8. [PMID: 15790564 DOI: 10.1074/jbc.m413832200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Campylobacter jejuni produces multiple glycoproteins whose glycans contain 4-amino 6-deoxy sugars or their derivatives, such as diacetamidobacillosamine or pseudaminic acid. Because the proteoglycans contribute to bacterial virulence and their constitutive sugars are not commonly found in humans, inhibitors developed against the enzymes that are responsible for their biosynthesis could be novel therapeutic targets to fight this important food-borne pathogen. The biosynthesis of diacetamidobacillosamine is anticipated to involve a sugar nucleotide C6 dehydratase, a C4 aminotransferase and an acetyltransferase. We have identified a set of genes (cj1293, cj1294, and cj1298) potentially encoding one of each enzymatic activity, and demonstrated earlier that Cj1293 was a UDP-GlcNAc-specific C6 dehydratase. Others have shown that Cj1293 was involved in protein glycosylation. Here, we report on our investigation of the potential activity of Cj1294 as a sugar nucleotide C4 aminotransferase. Our biochemical characterization of overexpressed and purified protein shows that Cj1294 is a pyridoxal phosphate-dependent aminotransferase specific for UDP-4-keto-6-deoxy-GlcNAc that uses preferentially glutamic acid as an amino donor. A detailed physicokinetic study of Cj1294 was performed to determine the K(m) of 1.28 +/- 0.2 mm and k(cat) of 11.5 +/- 1.3 min(-1). Also, two residues essential for protein stability and activity, Arg(228) and Lys(181), respectively, were identified by site-directed mutagenesis. Finally, we demonstrated by NMR analysis of purified reaction product that Cj1294 produces UDP-4-amino-4,6-dideoxy-GalNAc. These results indicate that Cj1294 is involved in the biosynthesis of diacetamidofucosamine, a C4 epimer of diacetamidobacillosamine not yet described in C. jejuni proteoglycans, suggesting that the composition of C. jejuni proteoglycans is more variable than anticipated.
Collapse
Affiliation(s)
- Ravinder Kaur Obhi
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
40
|
Brett D, Droege M, Weber-Lehmann J. Optimization of industrial bacterial strains via mutation analysis: a high-throughput DNA sequencing and bioinformatic approach. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE : THE QUARTERLY MAGAZINE OF THE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY 2004; 23:74-6. [PMID: 15508388 DOI: 10.1109/memb.2004.1337953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
|