1
|
Zhu M, Sun Y. Bactericidal Antibody Responses to Meningococcal Recombinant Outer Membrane Proteins. J Microbiol Biotechnol 2024; 34:1419-1424. [PMID: 38955797 PMCID: PMC11294639 DOI: 10.4014/jmb.2401.01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 07/04/2024]
Abstract
Secretin PilQ is an antigenically conserved outer membrane protein that is present in most meningococci and PorA is a major protein that elicits bactericidal immune response in humans following natural disease and immunization. In the present study, BALB/c mice were immunized subcutaneously with rPilQ406-770 or rPorA together with Freund's adjuvant (FA). Serum antibody responses to serogroup A and B Neisseria meningitides whole cells or purified proteins and functional activity of antibodies were determined by ELISA and serum bactericidal assay (SBA), respectively. Serum IgG responses were significantly increased in the immunized group with rPilQ406-770 or rPorA together with FA compared to control groups. IgG antibody response of mice immunized with rPilQ406-770 was significantly more than mice immunized with rPorA (OD at 450 nm was 1.6 versus 0.83). The booster injections were effective in increasing the responses of anti-rPilQ406-770 or anti-rPorA IgG significantly. Antisera produced against rPilQ406-770 or rPorA demonstrated strong surface reactivity to serogroup B N. meningitides in comparison with control groups. Antisera raised against rPorA or rPilQ406-770 and FA demonstrated SBA titers from 1/1024 to 1/2048 against serogroup B. The strongest bactericidal activity was detected in sera from mice immunized with rPilQ406-770 mixed with FA. These results suggest that rPilQ406-770 is a potential vaccine candidate for serogroup B N. meningitidis.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Pediatrics, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan, Middle Road, Tianqiao District, Jinan, Shandong 250031, P.R. China
| | - Yunqing Sun
- Department of Pediatrics, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan, Middle Road, Tianqiao District, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
2
|
Brusletto BS, Hellerud BC, Øvstebø R, Brandtzaeg P. Neisseria meningitidis accumulate in large organs during meningococcal sepsis. Front Cell Infect Microbiol 2023; 13:1298360. [PMID: 38089821 PMCID: PMC10713808 DOI: 10.3389/fcimb.2023.1298360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Background Neisseria meningitidis (Nm) is the cause of epidemic meningitis and fulminant meningococcal septicemia. The clinical presentations and outcome of meningococcal septic shock is closely related to the circulating levels of lipopolysaccharides (LPS) and of Neisseria meningitidis DNA (Nm DNA). We have previously explored the distribution of Nm DNA in tissues from large organs of patients dying of meningococcal septic shock and in a porcine meningococcal septic shock model. Objective 1) To explore the feasibility of measuring LPS levels in tissues from the large organs in patients with meningococcal septic shock and in a porcine meningococcal septic shock model. 2) To evaluate the extent of contamination of non-specific LPS during the preparation of tissue samples. Patients and methods Plasma, serum, and fresh frozen (FF) tissue samples from the large organs of three patients with lethal meningococcal septic shock and two patients with lethal pneumococcal disease. Samples from a porcine meningococcal septic shock model were included. Frozen tissue samples were thawed, homogenized, and prepared for quantification of LPS by Pyrochrome® Limulus Amoebocyte Lysate (LAL) assay. Results N. meningitidis DNA and LPS was detected in FF tissue samples from large organs in all patients with meningococcal septic shock. The lungs are the organs with the highest LPS and Nm DNA concentration followed by the heart in two of the three meningococcal shock patients. Nm DNA was not detected in any plasma or tissue sample from patients with lethal pneumococcal infection. LPS was detected at a low level in all FF tissues from the two patients with lethal pneumococcal disease. The experimental porcine meningococcal septic shock model indicates that also in porcinis the highest LPS and Nm DNA concentration are detected in lungs tissue samples. The quantification analysis showed that the highest concentration of both Nm DNA and LPS are in the organs and not in the circulation of patients with lethal meningococcal septic shock. This was also shown in the experimental porcine meningococcal septic shock model. Conclusion Our results suggest that LPS can be quantified in mammalian tissues by using the LAL assay.
Collapse
Affiliation(s)
| | | | - Reidun Øvstebø
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Petter Brandtzaeg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Pediatrics, Oslo University Hospital, Nydalen, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
4
|
Agnew HN, Brazel EB, Tikhomirova A, van der Linden M, McLean KT, Paton JC, Trappetti C. Streptococcus pneumoniae Strains Isolated From a Single Pediatric Patient Display Distinct Phenotypes. Front Cell Infect Microbiol 2022; 12:866259. [PMID: 35433506 PMCID: PMC9008571 DOI: 10.3389/fcimb.2022.866259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of bacterial paediatric meningitis after the neonatal period worldwide, but the bacterial factors and pathophysiology that drive pneumococcal meningitis are not fully understood. In this work, we have identified differences in raffinose utilization by S. pneumoniae isolates of identical serotype and sequence type from the blood and cerebrospinal fluid (CSF) of a single pediatric patient with meningitis. The blood isolate displayed defective raffinose metabolism, reduced transcription of the raffinose utilization pathway genes, and an inability to grow in vitro when raffinose was the sole carbon source. The fitness of these strains was then assessed using a murine intranasal infection model. Compared with the CSF isolate, mice infected with the blood isolate displayed higher bacterial numbers in the nose, but this strain was unable to invade the ears of infected mice. A premature stop codon was identified in the aga gene in the raffinose locus, suggesting that this protein likely displays impaired alpha-galactosidase activity. These closely related strains were assessed by Illumina sequencing, which did not identify any single nucleotide polymorphisms (SNPs) between the two strains. However, these wider genomic analyses identified the presence of an alternative alpha-galactosidase gene that appeared to display altered sequence coverage between the strains, which may account for the observed differences in raffinose metabolic capacity. Together, these studies support previous findings that raffinose utilization capacity contributes to disease progression, and provide insight into a possible alternative means by which perturbation of this pathway may influence the behavior of pneumococci in the host environment, particularly in meningitis.
Collapse
Affiliation(s)
- Hannah N. Agnew
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
| | - Erin B. Brazel
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
| | - Alexandra Tikhomirova
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
| | - Mark van der Linden
- German National Reference Center for Streptoccocci, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Kimberley T. McLean
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
- *Correspondence: Claudia Trappetti, ; James C. Paton,
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
- *Correspondence: Claudia Trappetti, ; James C. Paton,
| |
Collapse
|
5
|
Manriquez V, Nivoit P, Urbina T, Echenique-Rivera H, Melican K, Fernandez-Gerlinger MP, Flamant P, Schmitt T, Bruneval P, Obino D, Duménil G. Colonization of dermal arterioles by Neisseria meningitidis provides a safe haven from neutrophils. Nat Commun 2021; 12:4547. [PMID: 34315900 PMCID: PMC8316345 DOI: 10.1038/s41467-021-24797-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 01/07/2023] Open
Abstract
The human pathogen Neisseria meningitidis can cause meningitis and fatal systemic disease. The bacteria colonize blood vessels and rapidly cause vascular damage, despite a neutrophil-rich inflammatory infiltrate. Here, we use a humanized mouse model to show that vascular colonization leads to the recruitment of neutrophils, which partially reduce bacterial burden and vascular damage. This partial effect is due to the ability of bacteria to colonize capillaries, venules and arterioles, as observed in human samples. In venules, potent neutrophil recruitment allows efficient bacterial phagocytosis. In contrast, in infected capillaries and arterioles, adhesion molecules such as E-Selectin are not expressed on the endothelium, and intravascular neutrophil recruitment is minimal. Our results indicate that the colonization of capillaries and arterioles by N. meningitidis creates an intravascular niche that precludes the action of neutrophils, resulting in immune escape and progression of the infection.
Collapse
Affiliation(s)
- Valeria Manriquez
- Pathogenesis of Vascular Infections unit, INSERM, Institut Pasteur, Paris, France
| | - Pierre Nivoit
- Pathogenesis of Vascular Infections unit, INSERM, Institut Pasteur, Paris, France
| | - Tomas Urbina
- Pathogenesis of Vascular Infections unit, INSERM, Institut Pasteur, Paris, France
| | | | - Keira Melican
- Pathogenesis of Vascular Infections unit, INSERM, Institut Pasteur, Paris, France
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Patricia Flamant
- Experimental Neuropathology Unit, Institut Pasteur, Paris, France
| | | | - Patrick Bruneval
- Service d'Anatomie Pathologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Dorian Obino
- Pathogenesis of Vascular Infections unit, INSERM, Institut Pasteur, Paris, France.
| | - Guillaume Duménil
- Pathogenesis of Vascular Infections unit, INSERM, Institut Pasteur, Paris, France.
| |
Collapse
|
6
|
Rostamtabar M, Rahmani A, Baee M, Karkhah A, Prajapati VK, Ebrahimpour S, Nouri HR. Development a multi-epitope driven subunit vaccine for immune response reinforcement against Serogroup B of Neisseria meningitidis using comprehensive immunoinformatics approaches. INFECTION GENETICS AND EVOLUTION 2019; 75:103992. [PMID: 31394292 DOI: 10.1016/j.meegid.2019.103992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/22/2019] [Accepted: 08/02/2019] [Indexed: 11/28/2022]
Abstract
Serogroup B of Neisseria meningitidis is the main cause of mortality due to meningococcal meningitis. Despite of many investigations, there is still no effective vaccine to prevent this serious infection. Therefore, this study was conducted to design a multi-epitope based vaccine through immunoinformatics approaches. The T CD4+ and TCD8+ cells along with IFN-γ inducing epitopes were selected from TspA, FHbp, NspA, TbpB, PilQ and NspA antigens form serogroup B of Neisseria meningitidis. Furthermore, to induce strong helper T lymphocytes (HTLs) responses, Pan HLA DR-binding epitope (PADRE) was used. In addition, loop 5 and 7 of the PorB as a TLR2 agonist were added to the vaccine construct. Physico-chemical properties, secondary and tertiary structures of the proposed construct were assessed. Finally, homology modeling, refinement and molecular docking were carried out to evaluated the construct tertiary structure and protein-protein interaction, respectively. By fusing the CTL, HTL and IFN-γ predicted epitopes along with suitable adjuvant and linkers, a multi-epitope vaccine was constructed with a TAT sequence of HIV at the N-terminal. Immunoinformatics analyses confirmed a soluble and non-allergic protein with a molecular weight of 62.5 kDa and high antigenicity. Furthermore, the stability of the multi-epitope construct was established and showed strong potential to generate humoral and cell-mediated immune responses. In addition, through molecular docking and dynamic simulation, the microscopic interaction between the vaccine construct and TLR-2 were verified. In summary, immunoinformatics analysis demonstrated that the constructed multi-epitope vaccine had a strong potential of T and B-cell stimulation and it could possibly be used for prophylactic or therapeutic aims to protect against serogroup B of N. meningitidis.
Collapse
Affiliation(s)
- Maryam Rostamtabar
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Abolfazl Rahmani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Masoud Baee
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ahmad Karkhah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
7
|
Coureuil M, Jamet A, Bille E, Lécuyer H, Bourdoulous S, Nassif X. Molecular interactions between Neisseria meningitidis and its human host. Cell Microbiol 2019; 21:e13063. [PMID: 31167044 PMCID: PMC6899865 DOI: 10.1111/cmi.13063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Neisseria meningitidis is a Gram‐negative bacterium that asymptomatically colonises the nasopharynx of humans. For an unknown reason, N. meningitidis can cross the nasopharyngeal barrier and invade the bloodstream where it becomes one of the most harmful extracellular bacterial pathogen. This infectious cycle involves the colonisation of two different environments. (a) In the nasopharynx, N. meningitidis grow on the top of mucus‐producing epithelial cells surrounded by a complex microbiota. To survive and grow in this challenging environment, the meningococcus expresses specific virulence factors such as polymorphic toxins and MDAΦ. (b) Meningococci have the ability to survive in the extra cellular fluids including blood and cerebrospinal fluid. The interaction of N. meningitidis with human endothelial cells leads to the formation of typical microcolonies that extend overtime and promote vascular injury, disseminated intravascular coagulation, and acute inflammation. In this review, we will focus on the interplay between N. meningitidis and these two different niches at the cellular and molecular level and discuss the use of inhibitors of piliation as a potent therapeutic approach.
Collapse
Affiliation(s)
- Mathieu Coureuil
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France
| | - Anne Jamet
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Emmanuelle Bille
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Hervé Lécuyer
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Université de Paris, UMR_S 1151, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France
| | - Xavier Nassif
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
8
|
Sigurlásdóttir S, Wassing GM, Zuo F, Arts M, Jonsson AB. Deletion of D-Lactate Dehydrogenase A in Neisseria meningitidis Promotes Biofilm Formation Through Increased Autolysis and Extracellular DNA Release. Front Microbiol 2019; 10:422. [PMID: 30891026 PMCID: PMC6411758 DOI: 10.3389/fmicb.2019.00422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/18/2019] [Indexed: 11/23/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterium that asymptomatically colonizes the human nasopharyngeal mucosa. Pilus-mediated initial adherence of N. meningitidis to the epithelial mucosa is followed by the formation of three-dimensional aggregates, called microcolonies. Dispersal from microcolonies contributes to the transmission of N. meningitidis across the epithelial mucosa. We have recently discovered that environmental concentrations of host cell-derived lactate influences N. meningitidis microcolony dispersal. Here, we examined the ability of N. meningitidis mutants deficient in lactate metabolism to form biofilms. A lactate dehydrogenease A (ldhA) mutant had an increased level of biofilm formation. Deletion of ldhA increased the N. meningitidis cell surface hydrophobicity and aggregation. In this study, we used FAM20, which belongs to clonal complex ST-11 that forms biofilms independently of extracellular DNA (eDNA). However, treatment with DNase I abolished the increased biofilm formation and aggregation of the ldhA-deficient mutant, suggesting a critical role for eDNA. Compared to wild-type, the ldhA-deficient mutant exhibited an increased autolytic rate, with significant increases in the eDNA concentrations in the culture supernatants and in biofilms. Within the ldhA mutant biofilm, the transcription levels of the capsule, pilus, and bacterial lysis genes were downregulated, while norB, which is associated with anaerobic respiration, was upregulated. These findings suggest that the absence of ldhA in N. meningitidis promotes biofilm formation and aggregation through autolysis-mediated DNA release.
Collapse
Affiliation(s)
- Sara Sigurlásdóttir
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Gabriela M Wassing
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Fanglei Zuo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Melanie Arts
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Lécuyer H, Virion Z, Barnier JP, Matczak S, Bourdoulous S, Bianchini E, Saller F, Borgel D, Nassif X, Coureuil M. An ADAM-10 dependent EPCR shedding links meningococcal interaction with endothelial cells to purpura fulminans. PLoS Pathog 2018; 14:e1006981. [PMID: 29630665 PMCID: PMC5908201 DOI: 10.1371/journal.ppat.1006981] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/19/2018] [Accepted: 03/20/2018] [Indexed: 01/03/2023] Open
Abstract
Purpura fulminans is a deadly complication of Neisseria meningitidis infections due to extensive thrombosis of microvessels. Although a Disseminated Intra-vascular Coagulation syndrome (DIC) is frequently observed during Gram negative sepsis, it is rarely associated with extensive thrombosis like those observed during meningococcemia, suggesting that the meningococcus induces a specific dysregulation of coagulation. Another specific feature of N. meningitidis pathogenesis is its ability to colonize microvessels endothelial cells via type IV pili. Importantly, endothelial cells are key in controlling the coagulation cascade through the activation of the potent anticoagulant Protein C (PC) thanks to two endothelial cell receptors among which the Endothelial Protein C Receptor (EPCR). Considering that congenital or acquired deficiencies of PC are associated with purpura fulminans, we hypothesized that a defect in the activation of PC following meningococcal adhesion to microvessels is responsible for the thrombotic events observed during meningococcemia. Here we showed that the adhesion of N. meningitidis on endothelial cells results in a rapid and intense decrease of EPCR expression by inducing its cleavage in a process know as shedding. Using siRNA experiments and CRISPR/Cas9 genome edition we identified ADAM10 (A Disintegrin And Metalloproteinase-10) as the protease responsible for this shedding. Surprisingly, ADAM17, the only EPCR sheddase described so far, was not involved in this process. Finally, we showed that this ADAM10-mediated shedding of EPCR induced by the meningococcal interaction with endothelial cells was responsible for an impaired activation of Protein C. This work unveils for the first time a direct link between meningococcal adhesion to endothelial cells and a severe dysregulation of coagulation, and potentially identifies new therapeutic targets for meningococcal purpura fulminans. Neisseria meningitidis (meningococcus) is responsible for a severe syndrome called purpura fulminans in which the coagulation system is totally dysregulated, leading to an extensive occlusion of blood microvessels. The pathogenesis of this syndrome is still not understood. Here we show that the meningococcus, when adhering on the apical surface of endothelial cells, induces the activation of membranous protease named ADAM-10, which in turn hydrolyses a cellular receptor called EPCR. The latter is key for the activation of a circulating potent anticoagulant, the Protein C (PC). PC activation is then impaired following meningococcal adhesion on endothelial cells. This work unveils for the first time a specific dysregulation of coagulation induced by the meningococcus and potentially identifies new therapeutic targets for meningococcal purpura fulminans.
Collapse
Affiliation(s)
- Hervé Lécuyer
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Paris, France
- Université Paris Descartes, Paris, France
- Assistance Publique–Hôpitaux de Paris, Hôpital Universitaire Necker Enfants Malades, Service de Microbiologie Clinique, Paris, France
- * E-mail:
| | - Zoé Virion
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Paris, France
- Université Paris Descartes, Paris, France
| | - Jean-Philippe Barnier
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Paris, France
- Université Paris Descartes, Paris, France
- Assistance Publique–Hôpitaux de Paris, Hôpital Universitaire Necker Enfants Malades, Service de Microbiologie Clinique, Paris, France
| | - Soraya Matczak
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Paris, France
- Université Paris Descartes, Paris, France
| | - Sandrine Bourdoulous
- Université Paris Descartes, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Elsa Bianchini
- INSERM UMR-S1176, Université Paris-Sud, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - François Saller
- INSERM UMR-S1176, Université Paris-Sud, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Delphine Borgel
- INSERM UMR-S1176, Université Paris-Sud, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Assistance Publique–Hôpitaux de Paris, Hôpital Universitaire Necker Enfants Malades, Service d’Hématologie Biologique, Paris, France
| | - Xavier Nassif
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Paris, France
- Université Paris Descartes, Paris, France
- Assistance Publique–Hôpitaux de Paris, Hôpital Universitaire Necker Enfants Malades, Service de Microbiologie Clinique, Paris, France
| | - Mathieu Coureuil
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Paris, France
- Université Paris Descartes, Paris, France
| |
Collapse
|
10
|
Nicolas L, Philip J, Larson S, Islam S, Lew JF, Glavin FL, Samraj RS. Severe Neonatal Purpura Fulminans Caused by Staphylococcus aureus. Clin Pediatr (Phila) 2017; 56:776-780. [PMID: 27449990 DOI: 10.1177/0009922816660693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Lara Nicolas
- 1 Department of Pediatrics, Shands Children's Hospital, UF Health, Gainesville, FL, USA
| | - Joseph Philip
- 1 Department of Pediatrics, Shands Children's Hospital, UF Health, Gainesville, FL, USA
| | - Shawn Larson
- 2 Department of Surgery, Shands Children's Hospital, UF Health, Gainesville, FL, USA
| | - Saleem Islam
- 2 Department of Surgery, Shands Children's Hospital, UF Health, Gainesville, FL, USA
| | - Judy F Lew
- 1 Department of Pediatrics, Shands Children's Hospital, UF Health, Gainesville, FL, USA
| | | | - Ravi S Samraj
- 1 Department of Pediatrics, Shands Children's Hospital, UF Health, Gainesville, FL, USA
| |
Collapse
|
11
|
Abstract
Animals that cannot sense endotoxin may die if they are infected by Gram-negative bacteria. Animals that sense endotoxin and respond too vigorously may also die, victims of their own inflammatory reactions. The outcome of Gram-negative bacterial infection is thus determined not only by an individual's ability to sense endotoxin and respond to its presence, but also by numerous phenomena that inactivate endotoxin and/or prevent harmful reactions to it. Endotoxin sensing requires the MD-2/TLR4 recognition complex and occurs principally in local tissues and the liver. This review highlights the known detoxification mechanisms, which include: (i) proteins that facilitate LPS sequestration by plasma lipoproteins, prevent interactions between the bioactive lipid A moiety and MD-2/TLR4, or promote cellular uptake via non-signaling pathway(s); (ii) enzymes that deacylate or dephosphorylate lipid A; (iii) mechanisms that remove LPS and Gram-negative bacteria from the bloodstream; and (iv) neuroendocrine adaptations that modulate LPS-induced mediator production or neutralize pro-inflammatory molecules in the circulation. In general, the mechanisms for sensing and detoxifying endotoxin seem to be compartmentalized (local versus systemic), dynamic, and variable between individuals. They may have evolved to confine infection and inflammation to extravascular sites of infection while preventing harmful systemic reactions. Integration of endotoxin sensing and detoxification is essential for successful host defense.
Collapse
Affiliation(s)
- Robert S. Munford
- Molecular Host Defense Laboratory, Departments of Internal Medicine and Microbiology, University of Texas Southwestern Medical School, Dallas, Texas, USA,
| |
Collapse
|
12
|
Takada S, Fujiwara S, Inoue T, Kataoka Y, Hadano Y, Matsumoto K, Morino K, Shimizu T. Meningococcemia in Adults: A Review of the Literature. Intern Med 2016; 55:567-72. [PMID: 26984070 DOI: 10.2169/internalmedicine.55.3272] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We mainly refer to the acute setting of meningococcemia. Meningococcemia is an infection caused by Neisseria meningitidis, which has 13 clinically significant serogroups that are distinguishable by the structure of their capsular polysaccharides. N. meningitidis, also called meningococcus, is a Gram-negative, aerobic, diplococcus bacterium. The various consequences of severe meningococcal sepsis include hypotension, disseminated intravascular coagulation (DIC), multiple organ failure, and osteonecrosis due to DIC. The gold standard for the identification of meningococcal infection is the bacteriologic isolation of N. meningitidis from body fluids such as blood, cerebrospinal fluid (CSF), synovial fluid, and pleural fluid. Blood, CSF, and skin biopsy cultures are used for diagnosis. Meningococcal infection is a medical emergency that requires antibiotic therapy and intensive supportive care. Management of the systemic circulation, respiration, and intracranial pressure is vital for improving the prognosis, which has dramatically improved since the wide availability of antibiotics. This review of the literature provides an overview of current concepts on meningococcemia due to N. meningitidis infection.
Collapse
Affiliation(s)
- Shimon Takada
- Department of General Internal Medicine, Nara City Hospital, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Immunohistochemistry in the diagnosis of cutaneous bacterial infections. Am J Dermatopathol 2015; 37:179-93; quiz 194-6. [PMID: 25699977 DOI: 10.1097/dad.0000000000000227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The identification of pathogens is of vital importance for the adequate treatment of infections. During the past 2 decades, the approach to histopathologic diagnosis has been dramatically transformed by immunohistochemistry (IHC) specifically in the diagnosis and classification of tumors and more recently in the diagnosis of infectious diseases in tissue samples. The main goals of this article were to: (1) identify by IHC the cutaneous structures where bacterial pathogens are expressed in the course of infection, (2) identify the specific cells in which bacterial pathogens are expressed in positive cases, and (3) describe the pattern of distribution of the bacterial antigens within these cells (nuclear, cytoplasmatic, or membranous). This article is an up-to-date overview of the potential uses and limitations of IHC in the histopathologic diagnosis of cutaneous bacterial infections. In conclusion, IHC is especially useful in the identification of microorganisms that are present in low numbers, stain poorly, are fastidious to grow, culture is not possible, or exhibit an atypical morphology.
Collapse
|
14
|
Jacobsen MC, Dusart PJ, Kotowicz K, Bajaj-Elliott M, Hart SL, Klein NJ, Dixon GL. A critical role for ATF2 transcription factor in the regulation of E-selectin expression in response to non-endotoxin components of Neisseria meningitidis. Cell Microbiol 2015; 18:66-79. [PMID: 26153406 PMCID: PMC4973847 DOI: 10.1111/cmi.12483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/26/2015] [Accepted: 07/05/2015] [Indexed: 01/15/2023]
Abstract
Vascular injury is a serious complication of sepsis due to the gram‐negative bacterium Neisseria meningitidis. One of the critical early steps in initiating this injury is via the interaction of leucocytes, particularly neutrophils, with adhesion molecules expressed on inflamed endothelium. We have previously demonstrated that both lipopolysaccharide (LPS) and non‐LPS components of meningococci can induce very high levels of expression of the vascular endothelial cell adhesion molecule E‐selectin, which is critical for early tethering and capture of neutrophils onto endothelium under flow. Using an LPS‐deficient strain of meningococcus, we showed that very high levels of expression can be induced in primary endothelial cells, even in the context of weak activation of the major host signal transduction factor [nuclear factor‐κB (NF‐κB)]. In this study, we show that the particular propensity for N. meningitidis to induce high levels of expression is regulated at a transcriptional level, and demonstrate a significant role for phosphorylation of the ATF2 transcription factor, likely via mitogen‐activated protein (MAP) kinases, on the activity of the E‐selectin promoter. Furthermore, inhibition of E‐selectin expression in response to the lpxA− strain by a p38 inhibitor indicates a significant role of a p38‐dependent MAPK signalling pathway in ATF2 activation. Collectively, these data highlight the role that LPS and other bacterial components have in modulating endothelial function and their involvement in the pathogenesis of meningococcal sepsis. Better understanding of these multiple mechanisms induced by complex stimuli such as bacteria, and the specific inflammatory pathways they activate, may lead to improved, focused interventions in both meningococcal and potentially bacterial sepsis more generally.
Collapse
Affiliation(s)
- M C Jacobsen
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK.,Department of Biology, Faculty of Science, University of Regina, Regina, SK, Canada
| | - P J Dusart
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK.,Science for Life Laboratory, Clinical Applied Proteomics, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - K Kotowicz
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK
| | - M Bajaj-Elliott
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK
| | - S L Hart
- Experimental and Personalised Medicine Section, Institute of Child Health, University College London, London, UK
| | - N J Klein
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK
| | - G L Dixon
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK.,Department of Microbiology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
15
|
Invasive meningococcal disease: a disease of the endothelial cells. Trends Mol Med 2014; 20:571-8. [PMID: 25178566 DOI: 10.1016/j.molmed.2014.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 02/04/2023]
Abstract
Neisseria meningitidis is an extracellular pathogen, which, once in the bloodstream, has the ability to form microcolonies on the apical surface of endothelia. Pathogen interaction with microvessels is mediated by bacterial type IV pili and two receptors on endothelial cells: CD147 and the β2-adrenoceptor. CD147 facilitates the adhesion of diplococci to the endothelium, whereas the β2-adrenoceptor facilitates cell signaling, and crossing of the blood-brain barrier. In this review, we discuss how meningococcal interaction with endothelial cells is responsible for the specific clinical features of invasive meningococcal infection such as meningitis, and a peripheral thrombotic/vascular leakage syndrome possibly leading to purpura fulminans.
Collapse
|
16
|
Lerolle N, Carlotti A, Melican K, Aubey F, Pierrot M, Diehl JL, Caille V, Hékimian G, Gandrille S, Mandet C, Bruneval P, Dumenil G, Borgel D. Assessment of the interplay between blood and skin vascular abnormalities in adult purpura fulminans. Am J Respir Crit Care Med 2013; 188:684-92. [PMID: 23924269 DOI: 10.1164/rccm.201302-0228oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Purpura fulminans in adults is a rare but devastating disease. Its pathophysiology is not well known. OBJECTIVES To understand the pathophysiology of skin lesions in purpura fulminans, the interplay between circulating blood and vascular alterations was assessed. METHODS Prospective multicenter study in four intensive care units. Patients with severe sepsis without skin lesions were recruited as control subjects. MEASUREMENTS AND MAIN RESULTS Twenty patients with severe sepsis and purpura fulminans were recruited for blood sampling, and skin biopsy was performed in deceased patients. High severity of disease and mortality rates (80%) was observed. Skin biopsies in purpura fulminans lesions revealed thrombosis and extensive vascular damage: vascular congestion and dilation, endothelial necrosis, alteration of markers of endothelial integrity (CD31) and of the protein C pathway receptors (endothelial protein C receptor, thrombomodulin). Elevated plasminogen activating inhibitor-1 mRNA was also observed. Comparison with control patients showed that these lesions were specific to purpura fulminans. By contrast, no difference was observed for blood hemostasis parameters, including soluble thrombomodulin, activated protein C, and disseminated intravascular coagulation markers. Bacterial presence at the vascular wall was observed specifically in areas of vascular damage in eight of nine patients tested (including patients with Streptococcus pneumoniae, Neisseria meningitidis, Escherichia coli, and Pseudomonas aeruginosa infection). CONCLUSIONS Thrombi and extensive vascular damage with multifaceted prothrombotic local imbalance are characteristics of purpura fulminans. A "vascular wall infection" hypothesis, responsible for endothelial damage and subsequent skin lesions, can be put forward.
Collapse
Affiliation(s)
- Nicolas Lerolle
- 1 Département de Réanimation Médicale et Médicine Hyperbare, Centre Hospitalier Universitaire Angers, and Faculté de Médecine, Université d'Angers, Angers, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Melican K, Duménil G. A humanized model of microvascular infection. Future Microbiol 2013; 8:567-9. [PMID: 23642111 DOI: 10.2217/fmb.13.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
18
|
Join-Lambert O, Lecuyer H, Miller F, Lelievre L, Jamet A, Furio L, Schmitt A, Pelissier P, Fraitag S, Coureuil M, Nassif X. Meningococcal Interaction to Microvasculature Triggers the Tissular Lesions of Purpura Fulminans. J Infect Dis 2013; 208:1590-7. [DOI: 10.1093/infdis/jit301] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
Lappann M, Danhof S, Guenther F, Olivares-Florez S, Mordhorst IL, Vogel U. In vitro resistance mechanisms of Neisseria meningitidis against neutrophil extracellular traps. Mol Microbiol 2013; 89:433-49. [PMID: 23750848 DOI: 10.1111/mmi.12288] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 02/02/2023]
Abstract
Neisseria meningitidis (Nm) is a leading cause of septicemia in childhood. Nm septicemia is unique with respect to very quick disease progression, high in vivo bacterial replication rate and its considerable mortality. Nm circumvents major mechanisms of innate immunity such as complement system and phagocytosis. Neutrophil extracellular traps (NETs) are formed from neutrophils during systemic infection and are suggested to contain invading microorganisms. Here, we investigated the interaction of Nm with NETs. Both, meningococci and spontaneously released outer membrane vesicles (SOMVs) were potent NET inducers. NETs were unable to kill NET bound meningococci, but slowed down their proliferation rate. Using Nm as model organism we identified three novel mechanisms how bacteria can evade NET-mediated killing: (i) modification of lipid A of meningococcal LPS with phosphoethanolamine protected Nm from NET-bound cathepsin G; (ii) expression of the high-affinity zinc uptake receptor ZnuD allowed Nm to escape NET-mediated nutritional immunity; (iii) binding of SOMVs to NETs saved Nm from NET binding and the consequent bacteriostatic effect. Escape from NETs may contribute to the most rapid progression of meningococcal disease. The induction of NET formation by Nm in vivo might aggravate thrombosis in vessels ultimately directing to disseminated intravascular coagulation (DIC).
Collapse
Affiliation(s)
- Martin Lappann
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Coureuil M, Join-Lambert O, Lécuyer H, Bourdoulous S, Marullo S, Nassif X. Pathogenesis of meningococcemia. Cold Spring Harb Perspect Med 2013; 3:3/6/a012393. [PMID: 23732856 DOI: 10.1101/cshperspect.a012393] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neisseria meningitidis is responsible for two major diseases: cerebrospinal meningitis and/or septicemia. The latter can lead to a purpura fulminans, an often-fatal condition owing to the associated septic shock. These two clinical aspects of the meningococcal infection are consequences of a tight interaction of meningococci with host endothelial cells. This interaction, mediated by the type IV pili, is responsible for the formation of microcolonies on the apical surface of the cells. This interaction is followed by the activation of signaling pathways in the host cells leading to the formation of a microbiological synapse. A low level of bacteremia is likely to favor the colonization of brain vessels, leading to bacterial meningitis, whereas the colonization of a large number of vessels by a high number of bacteria is responsible for one of the most severe forms of septic shock observed.
Collapse
|
21
|
Melican K, Michea Veloso P, Martin T, Bruneval P, Duménil G. Adhesion of Neisseria meningitidis to dermal vessels leads to local vascular damage and purpura in a humanized mouse model. PLoS Pathog 2013; 9:e1003139. [PMID: 23359320 PMCID: PMC3554624 DOI: 10.1371/journal.ppat.1003139] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/03/2012] [Indexed: 12/12/2022] Open
Abstract
Septic shock caused by Neisseria meningitidis is typically rapidly evolving and often fatal despite antibiotic therapy. Further understanding of the mechanisms underlying the disease is necessary to reduce fatality rates. Postmortem samples from the characteristic purpuric rashes of the infection show bacterial aggregates in close association with microvessel endothelium but the species specificity of N. meningitidis has previously hindered the development of an in vivo model to study the role of adhesion on disease progression. Here we introduced human dermal microvessels into SCID/Beige mice by xenografting human skin. Bacteria injected intravenously exclusively associated with the human vessel endothelium in the skin graft. Infection was accompanied by a potent inflammatory response with the secretion of human inflammatory cytokines and recruitment of inflammatory cells. Importantly, infection also led to local vascular damage with hemostasis, thrombosis, vascular leakage and finally purpura in the grafted skin, replicating the clinical presentation for the first time in an animal model. The adhesive properties of the type IV pili of N. meningitidis were found to be the main mediator of association with the dermal microvessels in vivo. Bacterial mutants with altered type IV pili function also did not trigger inflammation or lead to vascular damage. This work demonstrates that local type IV pili mediated adhesion of N. meningitidis to the vascular wall, as opposed to circulating bacteria, determines vascular dysfunction in meningococcemia.
Collapse
Affiliation(s)
- Keira Melican
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Paula Michea Veloso
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Tiffany Martin
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Patrick Bruneval
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
- AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Guillaume Duménil
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| |
Collapse
|
22
|
Miller F, Lécuyer H, Join-Lambert O, Bourdoulous S, Marullo S, Nassif X, Coureuil M. Neisseria meningitidis colonization of the brain endothelium and cerebrospinal fluid invasion. Cell Microbiol 2012. [PMID: 23189983 DOI: 10.1111/cmi.12082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The brain and meningeal spaces are protected from bacterial invasion by the blood-brain barrier, formed by specialized endothelial cells and tight intercellular junctional complexes. However, once in the bloodstream, Neisseria meningitidis crosses this barrier in about 60% of the cases. This highlights the particular efficacy with which N. meningitidis targets the brain vascular cell wall. The first step of central nervous system invasion is the direct interaction between bacteria and endothelial cells. This step is mediated by the type IV pili, which induce a remodelling of the endothelial monolayer, leading to the opening of the intercellular space. In this review, strategies used by the bacteria to survive in the bloodstream, to colonize the brain vasculature and to cross the blood-brain barrier will be discussed.
Collapse
Affiliation(s)
- Florence Miller
- INSERM, unité U1002, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Coureuil M, Join-Lambert O, Lécuyer H, Bourdoulous S, Marullo S, Nassif X. Mechanism of meningeal invasion by Neisseria meningitidis. Virulence 2012; 3:164-72. [PMID: 22366962 PMCID: PMC3396695 DOI: 10.4161/viru.18639] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The blood-cerebrospinal fluid barrier physiologically protects the meningeal spaces from blood-borne bacterial pathogens, due to the existence of specialized junctional interendothelial complexes. Few bacterial pathogens are able to reach the subarachnoidal space and among those, Neisseria meningitidis is the one that achieves this task the most constantly when present in the bloodstream. Meningeal invasion is a consequence of a tight interaction of meningococci with brain endothelial cells. This interaction, mediated by the type IV pili, is responsible for the formation of microcolonies on the apical surface of the cells. This interaction is followed by the activation of signaling pathways in the host cells leading to the formation of endothelial docking structures resembling those elicited by the interaction of leukocytes with endothelial cells during extravasation. The consequence of these bacterial-induced signaling events is the recruitment of intercellular junction components in the docking structure and the subsequent opening of the intercellular junctions.
Collapse
|
24
|
Abstract
Neisseria meningitidisis an organism whose environmental niche is limited to the human host. It can frequently colonize the human nasopharynx and has the ability to cause severe systemic infections. These infections can be sporadic, endemic or occur in outbreaks associated with more virulent meningococcal strains. Studies have demonstrated that the meningococcus can form biofilms both in vivo and ex vivo. In this chapter, we discuss methods to establish biofilms in the laboratory for in-depth biochemical, genetic, or microscopic studies.
Collapse
Affiliation(s)
- Michael A Apicella
- The Department of Microbiology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA.
| | | | | |
Collapse
|
25
|
Haghi F, Peerayeh SN, Siadat SD, Zeighami H. Recombinant outer membrane secretin PilQ(406-770) as a vaccine candidate for serogroup B Neisseria meningitidis. Vaccine 2012; 30:1710-4. [PMID: 22234267 DOI: 10.1016/j.vaccine.2011.12.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 12/01/2011] [Accepted: 12/17/2011] [Indexed: 11/15/2022]
Abstract
Secretin PilQ is an antigenically conserved outer membrane protein which is present on most meningococci. This protein naturally expressed at high levels and is essential for meningococcal pilus expression at the cell surface. A 1095 bp fragment of C-terminal of secretin pilQ from serogroup B Neisseria meningitidis was cloned into prokaryotic expression vector pET-28a. Recombinant protein was overexpressed with IPTG and affinity-purified by Ni-NTA agarose. BALB/c mice were immunized subcutaneously with purified rPilQ(406-770) mixed with Freund's adjuvant. Serum antibody responses to serogroups A and B N. meningitidis whole cells or purified rPilQ(406-770) and functional activity of antibodies were determined by ELISA and SBA, respectively. The output of rPilQ(406-770) was approximately 50% of the total bacterial proteins. Serum IgG responses were significantly increased in immunized group with PilQ(406-770) mixed with Freund's adjuvant in comparison with control groups. Antisera produced against rPilQ(406-770) demonstrated strong surface reactivity to serogroups A and B N. meningitidis tested by whole-cell ELISA. Surface reactivity to serogroup B N. meningitidis was higher than serogroup A. The sera from PilQ(406-770) immunized animals were strongly bactericidal against serogroups A and B. These results suggest that rPilQ(406-770) is a potential vaccine candidate for serogroup B N. meningitidis.
Collapse
Affiliation(s)
- Fakhri Haghi
- Department of Bacteriology, Tarbiat Modares University, Tehran, Iran.
| | | | | | | |
Collapse
|
26
|
Abstract
The clinical symptoms induced by Neisseria meningitidis reflect compartmentalized intravascular and intracranial bacterial growth and inflammation. In this chapter, we describe a classification system for meningococcal disease based on the nature of the clinical symptoms. Meningococci invade the subarachnoid space and cause meningitis in as many as 50-70% of patients. The bacteremic phase is moderate in patients with meningitis and mild systemic meningococcemia but graded high in patients with septic shock. Three landmark studies using this classification system and comprising 862 patients showed that 37-49% developed meningitis without shock, 10-18% shock without meningitis, 7-12% shock and meningitis, and 18-33% had mild meningococcemia without shock or meningitis. N. meningitidis lipopolysaccharide (LPS) is the principal trigger of the innate immune system via activation of the Toll-like receptor 4-MD2 cell surface receptor complex on myeloid and nonmyeloid human cells. The intracellular signals are conveyed via MyD88-dependent and -independent pathways altering the expression of >4,600 genes in target cells such as monocytes. However, non-LPS molecules contribute to inflammation, but 10-100-fold higher concentrations are required to reach the same responses as induced by LPS. Activation of the complement and coagulation systems is related to the bacterial load in the circulation and contributes to the development of shock, organ dysfunction, thrombus formation, bleeding, and long-term complications in patients. Despite rapid intervention and advances in patient intensive care, why as many as 30% of patients with systemic meningococcal disease develop massive meningococcemia leading to shock and death is still not understood.
Collapse
Affiliation(s)
- Petter Brandtzaeg
- Departments of Pediatrics and Medical Biochemistry, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
27
|
Two strikingly different signaling pathways are induced by meningococcal type IV pili on endothelial and epithelial cells. Infect Immun 2011; 80:175-86. [PMID: 22064711 DOI: 10.1128/iai.05837-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Following adhesion on brain microvasculature, Neisseria meningitidis is able to cross the blood-brain barrier (BBB) by recruiting the polarity complex and the cell junction proteins, thus allowing the opening of the paracellular route. This feature is the consequence of the activation by the type IV pili of the β2-adrenergic receptor/β-arrestin signaling pathway. Here, we have extended this observation to primary peripheral endothelial cells, and we report that the interaction of N. meningitidis with the epithelium is strikingly different. The recruitment of the junctional components by N. meningitidis is indeed restricted to endothelial cell lines, and no alteration of the cell-cell junctions can be seen in epithelial monolayers following meningococcal type IV pilus-mediated colonization. Consistently, the β2-adrenergic receptor/β-arrestin pathway was not hijacked by bacteria adhering on epithelial cells. In addition, we showed that the consequences of the bacterial signaling on epithelial cells is different from that of endothelial cells, since N. meningitidis-induced signaling which protects the microcolonies from shear stress on endothelial cells is unable to do so on epithelial cells. Finally, we report that the minor pilin PilV, which has been shown to be essential for endothelial cell response, is not a required bacterial determinant to induce an epithelial cell response. These data demonstrate that even though pilus-mediated signaling induces an apparently similar cortical plaque, in epithelial and endothelial cell lineages, the signaling pathways are strikingly different in both models.
Collapse
|
28
|
Biofilm formation by the human pathogen Neisseria meningitidis. Med Microbiol Immunol 2010; 199:173-83. [PMID: 20376486 DOI: 10.1007/s00430-010-0149-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Indexed: 10/19/2022]
Abstract
The past decade has seen an increasing interest in biofilm formation by Neisseria meningitidis, a human facultative pathogen causing life-threatening childhood disease commencing from asymptomatic nasopharyngeal colonization. Studying the biology of in vitro biofilm formation improves the understanding of inter-bacterial processes in asymptomatic carriage, of bacterial aggregate formation on host cells, and of meningococcal population biology. This paper reviews publications referring to meningococcal biofilm formation with an emphasis on the role of motility and of extracellular DNA. The theory of sub-dividing the meningococcal population in settler and spreader lineages is discussed, which provides a mechanistic framework for the assumed balance of colonization efficacy and transmission frequency.
Collapse
|
29
|
Examination of type IV pilus expression and pilus-associated phenotypes in Kingella kingae clinical isolates. Infect Immun 2010; 78:1692-9. [PMID: 20145101 DOI: 10.1128/iai.00908-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kingella kingae is a gram-negative bacterium that is being recognized increasingly as a cause of septic arthritis and osteomyelitis in young children. Previous work established that K. kingae expresses type IV pili that mediate adherence to respiratory epithelial and synovial cells. PilA1 is the major pilus subunit in K. kingae type IV pili and is essential for pilus assembly. To develop a better understanding of the role of K. kingae type IV pili during colonization and invasive disease, we examined a collection of clinical isolates for pilus expression and in vitro adherence. In addition, in a subset of isolates we performed nucleotide sequencing to assess the level of conservation of PilA1. The majority of respiratory and nonendocarditis blood isolates were piliated, while the majority of joint fluid, bone, and endocarditis blood isolates were nonpiliated. The piliated isolates formed either spreading/corroding or nonspreading/noncorroding colonies and were uniformly adherent, while the nonpiliated isolates formed domed colonies and were nonadherent. PilA1 sequence varied significantly from strain to strain, resulting in substantial variability in antibody reactivity. These results suggest that type IV pili may confer a selective advantage on K. kingae early in infection and a selective disadvantage on K. kingae at later stages in the pathogenic process. We speculate that PilA1 is immunogenic during natural infection and undergoes antigenic variation to escape the immune response.
Collapse
|
30
|
Neil RB, Apicella MA. Clinical and laboratory evidence for Neisseria meningitidis biofilms. Future Microbiol 2009; 4:555-63. [PMID: 19492966 DOI: 10.2217/fmb.09.27] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neisseria meningitidis is the etiologic agent of meningococcal meningitis. Carriage of the organism is approximately 10% while active disease occurs at a rate of 1:100,000. Recent publications demonstrate that N. meningitidis has the ability to form biofilms on glass, plastic or cultured human bronchial epithelial cells. Microcolony-like structures are also observed in histological sections from patients with active meningococcal disease. This review investigates the possible role of meningococcal biofilms in carriage and active disease, based on the laboratory and clinical aspects of the disease.
Collapse
Affiliation(s)
- R Brock Neil
- University of Iowa, Hygienic Laboratory, 102 Oakdale Campus, H101 OH, Iowa City, IA 52242-5002, USA
| | | |
Collapse
|
31
|
Plüddemann A, Hoe JC, Makepeace K, Moxon ER, Gordon S. The macrophage scavenger receptor A is host-protective in experimental meningococcal septicaemia. PLoS Pathog 2009; 5:e1000297. [PMID: 19214213 PMCID: PMC2633608 DOI: 10.1371/journal.ppat.1000297] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/13/2009] [Indexed: 11/18/2022] Open
Abstract
Macrophage Scavenger Receptor A (SR-A) is a major non-opsonic receptor for Neisseria meningitidis on mononuclear phagocytes in vitro, and the surface proteins NMB0278, NMB0667, and NMB1220 have been identified as ligands for SR-A. In this study we ascertain the in vivo role of SR-A in the recognition of N. meningitidis MC58 (serogroup B) in a murine model of meningococcal septicaemia. We infected wild-type and SR-A(-/-) animals intraperitoneally with N. meningitidis MC58 and monitored their health over a period of 50 hours. We also determined the levels of bacteraemia in the blood and spleen, and measured levels of the pro-inflammatory cytokine interleukin-6 (IL-6). The health of SR-A(-/-) animals deteriorated more rapidly, and they showed a 33% reduction in survival compared to wild-type animals. SR-A(-/-) animals consistently exhibited higher levels of bacteraemia and increased levels of IL-6, compared to wild-type animals. Subsequently, we constructed a bacterial mutant (MC58-278-1220) lacking two of the SR-A ligands, NMB0278 and NMB1220. Mutation of NMB0667 proved to be lethal. When mice were infected with the mutant bacteria MC58-278-1220, no significant differences could be observed in the health, survival, bacteraemia, and cytokine production between wild-type and SR-A(-/-) animals. Overall, mutant bacteria appeared to cause less severe symptoms of septicaemia, and a competitive index assay showed that higher levels of wild-type bacteria were recovered when animals were infected with a 1ratio1 ratio of wild-type MC58 and mutant MC58-278-1220 bacteria. These data represent the first report of the protective role of SR-A, a macrophage-restricted, non-opsonic receptor, in meningococcal septicaemia in vivo, and the importance of the recognition of bacterial protein ligands, rather than lipopolysaccharide.
Collapse
Affiliation(s)
- Annette Plüddemann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - J. Claire Hoe
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Katherine Makepeace
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - E. Richard Moxon
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Munford RS. Sensing gram-negative bacterial lipopolysaccharides: a human disease determinant? Infect Immun 2008; 76:454-65. [PMID: 18086818 PMCID: PMC2223455 DOI: 10.1128/iai.00939-07] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Robert S Munford
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390-9113, USA.
| |
Collapse
|
33
|
Munford RS. Severe sepsis and septic shock: the role of gram-negative bacteremia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:467-96. [PMID: 18039123 DOI: 10.1146/annurev.pathol.1.110304.100200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract Although Gram-negative bacteria have often been implicated in the pathogenesis of severe sepsis and septic shock, how they trigger these often lethal syndromes is uncertain. In particular, the role played by blood-borne bacteria is controversial. This review considers two alternatives. In the first, circulating Gram-negative bacteria induce toxic reactions directly within the vasculature; in the second, the major inflammatory stimulus occurs in local extravascular sites of infection and circulating bacteria contribute little to inducing toxic responses. Evidence for each alternative is found in the literature. Bacteremia and severe sepsis are not so closely linked that the most striking cases can be a model for the rest. Intravascular and extravascular triggers may warrant different approaches to prevention and therapy.
Collapse
Affiliation(s)
- Robert S Munford
- Departments of Internal Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9113, USA.
| |
Collapse
|
34
|
Abstract
Meningococcus, an obligate human bacterial pathogen, remains a worldwide and devastating cause of epidemic meningitis and sepsis. However, advances have been made in our understanding of meningococcal biology and pathogenesis, global epidemiology, transmission and carriage, host susceptibility, pathophysiology, and clinical presentations. Approaches to diagnosis, treatment, and chemoprophylaxis are now in use on the basis of these advances. Importantly, the next generation of meningococcal conjugate vaccines for serogroups A, C, Y, W-135, and broadly effective serogroup B vaccines are on the horizon, which could eliminate the organism as a major threat to human health in industrialised countries in the next decade. The crucial challenge will be effective introduction of new meningococcal vaccines into developing countries, especially in sub-Saharan Africa, where they are urgently needed.
Collapse
Affiliation(s)
- David S Stephens
- Emory University School of Medicine, Atlanta, GA, USA; Research Service (151I), Atlanta VA Medical Center, Decatur, GA, USA.
| | | | - Petter Brandtzaeg
- Departments of Paediatrics and Clinical Chemistry, Ullevål University Hospital and Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
35
|
Arend SM, Lavrijsen APM, Kuijken I, van der Plas RN, Kuijper EJ. Prospective controlled study of the diagnostic value of skin biopsy in patients with presumed meningococcal disease. Eur J Clin Microbiol Infect Dis 2006; 25:643-9. [PMID: 16964510 DOI: 10.1007/s10096-006-0199-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Microbiological tests for diagnosis of acute meningococcal disease are important for the clinical management of patients with this often-fatal illness, but cultures are frequently negative after antibiotics have been administered. Retrospective studies suggest that examination of skin biopsies may aid a rapid diagnosis and that cultures of skin biopsies are often positive even after antimicrobial treatment has commenced. This prospective controlled study aimed to assess the diagnostic value of skin biopsy compared with investigations of blood and cerebrospinal fluid (CSF) in patients with skin lesions and presumed meningococcal disease. A total of 43 patients, 31 with suspected acute meningococcal infection and 12 controls, were included. All skin biopsies were investigated by Gram stain and routine microbiological culture. In 25 patients, meningococcal infection was diagnosed microbiologically. The clinical diagnosis was meningococcal meningitis in 8 patients, meningococcal sepsis in 11 patients, and a combination of both in 6 patients. The sensitivity of cultures of blood, CSF, and skin biopsies was 56%, 50%, and 36%, respectively. When culture and Gram stain were combined, positive results were obtained in 56%, 64%, and 56%, respectively. There was no correlation between the diagnostic yield of skin biopsies and previous antibiotic treatment. In 14 patients, the diagnosis was based exclusively on one positive sample: CSF in 7 (28%) patients, blood in 4 (16%) patients, and skin biopsy in 3 (12%) patients. The sensitivity of skin biopsies was highest in patients with the least extensive skin lesions. Specificity was 100%. Microbiological investigation of skin biopsies increased the diagnostic yield and could be considered a component of the routine diagnostic work-up in patients with suspected meningococcal infection, even after the initiation of antimicrobial treatment.
Collapse
Affiliation(s)
- S M Arend
- Department of Infectious Diseases, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Rowe HA, Griffiths NJ, Hill DJ, Virji M. Co-ordinate action of bacterial adhesins and human carcinoembryonic antigen receptors in enhanced cellular invasion by capsulate serum resistant Neisseria meningitidis. Cell Microbiol 2006; 9:154-68. [PMID: 16889622 DOI: 10.1111/j.1462-5822.2006.00775.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neisseria meningitidis (Nm) is a human specific opportunistic pathogen that occasionally penetrates mucosal barriers via the action of adhesins and invasins and evades host immune mechanisms during further dissemination via capsule expression. From in vitro studies, the primary adhesion of capsulate bacteria is believed to be mediated by polymeric pili, followed by invasion via outer membrane adhesins such as Opa proteins. As the latter requires the surface capsule to be down-modulated, invading bacteria would be serum sensitive and thus avirulent. However, there is recent evidence that capsulate bacteria may interact via Opa proteins when host cells express high levels of carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), their target receptors. Such a situation may arise following increased circulation of inflammatory cytokines that upregulate certain adhesion molecules on host cells. In this study, using a tetracycline controlled expression system, we have developed cell lines with inducible CEACAM expression to mimic post-inflammation state of target tissues and analysed the interplay between the three surface components capsule, pili and Opa proteins in cellular interactions. With two distinct cell lines, not only the level but also the rate of adhesion of capsulate Opa-expressing Nm increased concurrently with CEACAM density. Moreover, when threshold levels of receptor were reached, cellular invasion ensued in an Opa-dependent manner. In studies with cell lines intrinsically expressing pilus receptors, notable synergism in cellular interactions between pili and Opa of several meningococcal strains was observed and was independent of capsule type. A number of internalized bacteria were shown to express capsule and when directly isolated from host cells, these bacteria were as serum resistant as the inoculated phenotype. Furthermore, we observed that agents that block Opa-CEACAM binding substantially reduced cellular invasion, while maintaining a low level of cellular adhesion. These studies highlight some of the factors that may determine increased host susceptibility to infection by serum resistant phenotypes; and demonstrate the potential of selective inhibition of key interactions in preventing target tissue penetration while maintaining a level of colonization.
Collapse
Affiliation(s)
- Helen A Rowe
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
37
|
Kravitz GR, Dries DJ, Peterson ML, Schlievert PM. Purpura Fulminans Due toStaphylococcus aureus. Clin Infect Dis 2005; 40:941-7. [PMID: 15824983 DOI: 10.1086/428573] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 11/04/2004] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Purpura fulminans is an acute illness commonly associated with meningococcemia or invasive streptococcal disease, and it is typically characterized by disseminated intravascular coagulation (DIC) and purpuric skin lesions. In this article, we report the first 5 cases (to our knowledge) of purpura fulminans directly associated with Staphylococcus aureus strains that produce high levels of the superantigens toxic shock syndrome toxin-1 (TSST-1), staphylococcal enterotoxin serotype B (SEB), or staphylococcal enterotoxin serotype C (SEC). METHODS Cases were identified in the Minneapolis-St. Paul, Minnesota, metropolitan area during 2000-2004. S. aureus infection was diagnosed on the basis of culture results, and susceptibility to methicillin was determined. The ability of the isolated organisms to produce TSST-1, SEB, SEC, and Panton-Valentine leukocidin (PVL) was determined. TSST-1, SEB, and SEC levels were also quantified after in vitro growth of the organisms. RESULTS In 3 of the 5 cases, the infecting S. aureus strain was isolated from the blood cultures. In 2 of the 5 cases, the infecting S. aureus strain was isolated only from the respiratory tract, indicating that purpura fulminans and toxic shock syndrome resulted from exotoxin and/or other host factors, rather than septicemia. One of these latter 2 patients also had necrotizing pneumonia, and the isolated S. aureus was a methicillin-resistant strain that produced both SEC and PVL. Only 2 of the 5 patients survived, and 1 of the survivors received activated protein C. CONCLUSIONS Staphylococcal purpura fulminans may be a newly emerging illness associated with superantigen production. Medical practitioners should be aware of this illness.
Collapse
Affiliation(s)
- Gary R Kravitz
- St. Paul Infectious Disease Associates, St. Paul, Minnesota, USA
| | | | | | | |
Collapse
|
38
|
Wright JC, Hood DW, Randle GA, Makepeace K, Cox AD, Li J, Chalmers R, Richards JC, Moxon ER. lpt6, a gene required for addition of phosphoethanolamine to inner-core lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae. J Bacteriol 2004; 186:6970-82. [PMID: 15466050 PMCID: PMC522187 DOI: 10.1128/jb.186.20.6970-6982.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously described a gene, lpt3, required for the addition of phosphoethanolamine (PEtn) at the 3 position on the beta-chain heptose (HepII) of the inner-core Neisseria meningitidis lipopolysaccharide (LPS), but it has long been recognized that the inner-core LPS of some strains possesses PEtn at the 6 position (PEtn-6) on HepII. We have now identified a gene, lpt6 (NMA0408), that is required for the addition of PEtn-6 on HepII. The lpt6 gene is located in a region previously identified as Lgt-3 and is associated with other LPS biosynthetic genes. We screened 113 strains, representing all serogroups and including disease and carriage strains, for the lpt3 and lpt6 genes and showed that 36% contained both genes, while 50% possessed lpt3 only and 12% possessed lpt6 only. The translated amino acid sequence of lpt6 has a homologue (72.5% similarity) in a product of the Haemophilus influenzae Rd genome sequence. Previous structural studies have shown that all H. influenzae strains investigated have PEtn-6 on HepII. Consistent with this, we found that, among 70 strains representing all capsular serotypes and nonencapsulated H. influenzae strains, the lpt6 homologue was invariably present. Structural analysis of LPS from H. influenzae and N. meningitidis strains where lpt6 had been insertionally inactivated revealed that PEtn-6 on HepII could not be detected. The translated amino acid sequences from the N. meningitidis and H. influenzae lpt6 genes have conserved residues across their lengths and are part of a family of proven or putative PEtn transferases present in a wide range of gram-negative bacteria.
Collapse
Affiliation(s)
- J Claire Wright
- Molecular Infectious Diseases Group, Dept. of Pediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Magnuson TS, Neal AL, Geesey GG. Combining in situ reverse transcriptase polymerase chain reaction, optical microscopy, and X-ray photoelectron spectroscopy to investigate mineral surface-associated microbial activities. MICROBIAL ECOLOGY 2004; 48:578-588. [PMID: 15696391 DOI: 10.1007/s00248-004-0253-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 04/26/2004] [Indexed: 05/24/2023]
Abstract
A study was undertaken to investigate expression of a gene encoding a c-type cytochrome in cells of the dissimilatory metal reducing bacterium (DMRB) Geobacter sulfurreducens during association with poorly crystalline and crystalline solid-phase Fe(III)-oxides. The gene encoding OmcC (outer membrane c-type cytochrome) was used as a target for PCR-based molecular detection and visualization of omcC gene expression by individual cells and aggregates of cells of G. sulfurreducens associated with ferrihydrite and hematite mineral particles. Expression of omcC was demonstrated in individual bacterial cells associated with these Fe-oxide surfaces by in situ RT-PCR (IS-RT PCR) and epifluorescence microscopy. Epifluorescence microscopy also permitted visualization of total DAPI-stained cells in the same field of view to assess the fraction of the cell population expressing omcC. By combining reflected differential interference contrast (DIC) microscopy and epifluorescence microscopy, it was possible to determine the spatial relationship between cells expressing omcC and the mineral surface. Introduction of the fluorescently labeled lectin concanavalin A revealed extracellular polymeric substances (EPS) extending between aggregations of bacterial cells and the mineral surface. The results indicate that EPS mediates an association between cells of G. sulfurreducens and ferrihydrite particles, but that direct cell contact with the mineral surface is not required for expression of omcC. XPS analysis revealed forms of reduced Fe associated with areas of the mineral surface where EPS-mediated bacterial associations occurred. The results demonstrate that by combining molecular biology, reflectance microscopy, and XPS, chemical transformations at a mineral surface can be related to the expression of specific genes by individual bacterial cells and cell aggregates associated with the mineral surface. The approach should be useful in establishing involvement of specific gene products in a wide variety of surface chemical processes.
Collapse
Affiliation(s)
- T S Magnuson
- Department of Microbiology and Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | | | | |
Collapse
|
40
|
Abstract
Phase and antigenic variation result in a heterogenic phenotype of a clonal bacterial population, in which individual cells either express the phase-variable protein(s) or not, or express one of multiple antigenic forms of the protein, respectively. This form of regulation has been identified mainly, but by no means exclusively, for a wide variety of surface structures in animal pathogens and is implicated as a virulence strategy. This review provides an overview of the many bacterial proteins and structures that are under the control of phase or antigenic variation. The context is mainly within the role of the proteins and variation for pathogenesis, which reflects the main body of literature. The occurrence of phase variation in expression of genes not readily recognizable as virulence factors is highlighted as well, to illustrate that our current knowledge is incomplete. From recent genome sequence analysis, it has become clear that phase variation may be more widespread than is currently recognized, and a brief discussion is included to show how genome sequence analysis can provide novel information, as well as its limitations. The current state of knowledge of the molecular mechanisms leading to phase variation and antigenic variation are reviewed, and the way in which these mechanisms form part of the general regulatory network of the cell is addressed. Arguments both for and against a role of phase and antigenic variation in immune evasion are presented and put into new perspective by distinguishing between a role in bacterial persistence in a host and a role in facilitating evasion of cross-immunity. Finally, examples are presented to illustrate that phase-variable gene expression should be taken into account in the development of diagnostic assays and in the interpretation of experimental results and epidemiological studies.
Collapse
Affiliation(s)
- Marjan W van der Woude
- Department of Microbiology, University of Pennsylvania, 202A Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA.
| | | |
Collapse
|
41
|
Dixon GLJ, Heyderman RS, van der Ley P, Klein NJ. High-level endothelial E-selectin (CD62E) cell adhesion molecule expression by a lipopolysaccharide-deficient strain of Neisseria meningitidis despite poor activation of NF-kappaB transcription factor. Clin Exp Immunol 2004; 135:85-93. [PMID: 14678268 PMCID: PMC1808929 DOI: 10.1111/j.1365-2249.2004.02335.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Binding of host inflammatory cells to the endothelium is a critical contributor to the vascular damage characteristic of severe meningococcal disease and is regulated by endothelial cell adhesion molecules such as ICAM-1, VCAM-1 and CD62E. Intact meningococci induce far higher levels of CD62E than lipopolysaccharide (LPS) alone, whereas LPS is at least as potent as meningococci at inducing both VCAM-1 and ICAM-1 expression. This suggests that meningococci possess additional factors other than LPS present in whole bacteria that result in differential adhesion molecule expression. To investigate this possibility, we studied the capacity of an LPS-deficient isogenic strain of serogroup B Neisseria meningitidis H44/76 (lpxA-) to induce endothelial cell adhesion molecule expression and translocation of the transcription factor NF-kappaB, and compared it to both parent and unencapsulated strains of both B1940 and H44/76 and purified LPS. Although the LPS-deficient isogenic mutant of strain H44/76 was found to be a poor inducer of NF-kappaB, it induced higher levels of CD62E expression than LPS alone. These data provide evidence that intact meningococci induce a range of signals in the endothelium that are distinct from those seen with purified LPS alone and that they occur in a LPS-dependent and LPS-independent manner. These signals may explain the potent effects of N. meningitidis on CD62E expression on vascular endothelium and provide a basis for the complex endothelial dysregulation seen in meningococcal sepsis.
Collapse
Affiliation(s)
- G L J Dixon
- Immunobiology Unit, Institute of Child Health, London, UK.
| | | | | | | |
Collapse
|
42
|
Gidney MAJ, Plested JS, Lacelle S, Coull PA, Wright JC, Makepeace K, Brisson JR, Cox AD, Moxon ER, Richards JC. Development, characterization, and functional activity of a panel of specific monoclonal antibodies to inner core lipopolysaccharide epitopes in Neisseria meningitidis. Infect Immun 2004; 72:559-69. [PMID: 14688137 PMCID: PMC351819 DOI: 10.1128/iai.72.1.559-569.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A panel of six murine monoclonal antibodies (MAbs) recognizing inner core lipopolysaccharide (LPS) epitopes of Neisseria meningitidis was prepared and characterized in order to determine the diversity of inner core LPS glycoforms among disease and carrier isolates. Two of these MAbs, L2-16 (immunoglobulin G2b [IgG2b]) and LPT3-1 (IgG2a), together with a third, previously described MAb, L3B5 (IgG3), showed reactivity, either individually or in combination, with all except 3 of 143 disease and carriage isolates (125 of 126 strains from blood, cerebrospinal fluid, or skin biopsy samples and 15 of 17 from nasopharyngeal cultures). MAbs L3B5, L2-16, and LPT3-1 were further characterized in an indirect immunofluorescence assay. All three MAbs bound to the bacterial cell surface, findings that correlated strongly with whole-cell enzyme-linked immunosorbent assay and immunodot blots. However, in contrast to our findings with L3B5, cell surface binding of L2-16 or LPT 3-1 did not correlate with functional activity as determined by bactericidal or infant rat passive protection assays against wild-type N. meningitidis strains. These findings are provocative with respect to the requirements for protective activity of antibodies and the development of inner core LPS vaccines against invasive meningococcal disease.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Monoclonal/immunology
- Blood Bactericidal Activity
- Cross Reactions
- Enzyme-Linked Immunosorbent Assay
- Epitopes/chemistry
- Epitopes/immunology
- Fluorescent Antibody Technique, Indirect
- Humans
- Lipopolysaccharides/chemistry
- Lipopolysaccharides/immunology
- Meningitis, Meningococcal/immunology
- Models, Molecular
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Neisseria meningitidis, Serogroup B/pathogenicity
- Neisseria meningitidis, Serogroup C/genetics
- Neisseria meningitidis, Serogroup C/immunology
- Neisseria meningitidis, Serogroup C/pathogenicity
- Opsonin Proteins
- Phagocytosis
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Margaret Anne J Gidney
- Institute for Biological Sciences, National Research Council, Ottawa, ON, K1A OR6, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Peters MJ, Heyderman RS, Faust S, Dixon GLJ, Inwald DP, Klein NJ. Severe meningococcal disease is characterized by early neutrophil but not platelet activation and increased formation and consumption of platelet-neutrophil complexes. J Leukoc Biol 2003; 73:722-30. [PMID: 12773504 DOI: 10.1189/jlb.1002509] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Approximately 25% of polymorphonuclear leukocytes (PMNL) circulate in heterotypic complexes with one or more activated platelets. These platelet-neutrophil complexes (PNC) require platelet CD62P expression for their formation and represent activated subpopulations of both cell types. In this study, we have investigated the presence, time course, and mechanisms of PNC formation in 32 cases of severe pediatric meningococcal disease (MD) requiring intensive care. There were marked early increases in PMNL CD11b/CD18 expression and activation, and reduced CD62L expression compared with intensive care unit control cases. Minimal platelet expression of the active form of alphaIIbbeta3 (GpIIb/IIIa) was seen. PNC were reduced on presentation and fell to very low levels after 24 h. Immunostaining of skin biopsies demonstrated that PNC appear outside the circulation in MD. In vitro studies of anticoagulated whole blood inoculated with Neisseria meningitidis supported these clinical findings with marked increases in PMNL CD11b/CD18 expression and activation but no detectable changes in platelet-activated alphaIIbbeta3 or CD62P expression. In vitro PMNL activation with N. meningitidis (or other agonists) potentiated the formation of PNC in response to platelet activation with adenine diphosphate. Therefore, in severe MD, PMNL activation is likely to promote PNC formation, and we suggest that the reduced levels of PNC seen in established MD reflect rapid loss of PNC from the circulation rather than reduced formation.
Collapse
Affiliation(s)
- M J Peters
- Infection and Microbiology Unit and. Portex Unit Critical Care Group, Institute of Child Health, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
44
|
Cox AD, Wright JC, Gidney MAJ, Lacelle S, Plested JS, Martin A, Moxon ER, Richards JC. Identification of a novel inner-core oligosaccharide structure in Neisseria meningitidis lipopolysaccharide. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1759-66. [PMID: 12694188 DOI: 10.1046/j.1432-1033.2003.03535.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The structure of the lipopolysaccharide (LPS) from three Neisseria meningitidis strains was elucidated. These strains were nonreactive with mAbs that recognize common inner-core epitopes from meningococcal LPS. It is well established that the inner core of meningococcal LPS consists of a diheptosyl-N-acetylglucosamine unit, in which the distal heptose unit (Hep II) can carry PEtn at the 3 or 6 position or not at all, and the proximal heptose residue (Hep I) is substituted at the 4 position by a glucose residue. Additional substitution at the 3 position of Hep II with a glucose residue is also a common structural feature in some strains. The structures of the O-deacylated LPSs and core oligosaccharides of the three chosen strains were deduced by a combination of monosaccharide analysis, NMR spectroscopy and MS. These analyses revealed the presence of a structure not previously identified in meningococcal LPS, in which an additional beta-configured glucose residue was found to substitute Hep I at the 2 position. This provided the structural basis for the nonreactivity of LPS with these mAbs. The determination of this novel structural feature identified a further degree of variability within the inner-core oligosaccharide of meningococcal LPS which may contribute to the interaction of meningococcal strains with their host.
Collapse
Affiliation(s)
- Andrew D Cox
- Institute for Biological Sciences, National Research Council, Ottawa, Canada.
| | | | | | | | | | | | | | | |
Collapse
|