1
|
Claesson R, Chiang HM, Lindholm M, Höglund Åberg C, Haubek D, Johansson A, Oscarsson J. Characterization of Aggregatibacter actinomycetemcomitans Serotype b Strains with Five Different, Including Two Novel, Leukotoxin Promoter Structures. Vaccines (Basel) 2020; 8:vaccines8030398. [PMID: 32698444 PMCID: PMC7563764 DOI: 10.3390/vaccines8030398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/23/2023] Open
Abstract
The JP2 genotype of A. actinomycetemcomitans, serotype b has attracted much interest during the past three decades due to its close association with periodontitis in young individuals and the enhanced expression of a leukotoxin (LtxA). A typical feature of this genotype is a 530-base pair (bp) deletion in the ltxCABD promoter region controlling leukotoxin expression. In the present work, we have characterized serotype b strains with four additional promoter types. Two novel types have been recognized, that is, one with a 230-bp deletion and one with a 172-bp duplication. Moreover, a strain with a 640-bp deletion and three strains with a full-length promoter, including the type strain Y4, were included in the present study. The seven strains were characterized by multi locus sequence typing (MLST) and arbitrarily primed polymerase chain reaction (PCR) and assessed for LtxA production. MLST showed that the strains with the non-JP2-like deletions represented distinct monophyletic groups, whereas the JP2 strain, HK1651, represented a separate branch. LtxA production was high in all three strains with a promoter deletion, whereas the other four strains showed significantly lower levels. It can be concluded that the genetic characterization and determination of LtxA production of A. actinomycetemcomitans isolates from individuals with periodontitis can contribute to the identification of novel virulent genotypes of this bacterium.
Collapse
Affiliation(s)
- Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (M.L.); (J.O.)
- Correspondence:
| | - Huei-Min Chiang
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (H.-M.C.); (C.H.Å.); (A.J.)
| | - Mark Lindholm
- Division of Oral Microbiology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (M.L.); (J.O.)
| | - Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (H.-M.C.); (C.H.Å.); (A.J.)
| | - Dorte Haubek
- Section for Paediatric Dentistry, Department of Dentistry and Oral Health, Aarhus University, 8000 Aarhus, Denmark;
| | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (H.-M.C.); (C.H.Å.); (A.J.)
| | - Jan Oscarsson
- Division of Oral Microbiology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (M.L.); (J.O.)
| |
Collapse
|
2
|
Abstract
The etiopathogenesis of severe periodontitis includes herpesvirus-bacteria coinfection. This article evaluates the pathogenicity of herpesviruses (cytomegalovirus and Epstein-Barr virus) and periodontopathic bacteria (Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) and coinfection of these infectious agents in the initiation and progression of periodontitis. Cytomegalovirus and A. actinomycetemcomitans/P. gingivalis exercise synergistic pathogenicity in the development of localized ("aggressive") juvenile periodontitis. Cytomegalovirus and Epstein-Barr virus are associated with P. gingivalis in adult types of periodontitis. Periodontal herpesviruses that enter the general circulation may also contribute to disease development in various organ systems. A 2-way interaction is likely to occur between periodontal herpesviruses and periodontopathic bacteria, with herpesviruses promoting bacterial upgrowth, and bacterial factors reactivating latent herpesviruses. Bacterial-induced gingivitis may facilitate herpesvirus colonization of the periodontium, and herpesvirus infections may impede the antibacterial host defense and alter periodontal cells to predispose for bacterial adherence and invasion. Herpesvirus-bacteria synergistic interactions, are likely to comprise an important pathogenic determinant of aggressive periodontitis. However, mechanistic investigations into the molecular and cellular interaction between periodontal herpesviruses and bacteria are still scarce. Herpesvirus-bacteria coinfection studies may yield significant new discoveries of pathogenic determinants, and drug and vaccine targets to minimize or prevent periodontitis and periodontitis-related systemic diseases.
Collapse
Affiliation(s)
- Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Suprith SS, Setty S, Bhat K, Thakur S. Serotypes of Aggregatibacter actinomycetemcomitans in relation to periodontal status and assessment of leukotoxin in periodontal disease: A clinico-microbiological study. J Indian Soc Periodontol 2018; 22:201-208. [PMID: 29962698 PMCID: PMC6009160 DOI: 10.4103/jisp.jisp_36_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Context: Aggregatibacter actinomycetemcomitans (A.a) serotypes may add some important information of the pathogenetic background of periodontal infections. A.a leukotoxin is an important virulence factor in the pathogenesis of periodontal disease and its rate of progression. When compared to minimally leukotoxic strains, variants of A.a highly leukotoxic strains produce 10–20 times more leukotoxin. Aims: The aim of the present study was to detect serotypes a, b, c, d, and e of A.a its leukotoxin and find its correlation with periodontal status. Settings and Design: Microbiological analysis and cross-sectional study. Materials and Methods: A total of 80 subjects (40 chronic periodontitis and 40 aggressive periodontitis) in the age range of 14–55 years were selected. Subgingival plaque samples were collected and checked for the presence of A.a. Following isolation of the organism, detection of the serotypes and leukotoxin assessment was done. Statistical Analysis Used: The proportions of A.a were calculated using descriptive statistics in terms of percentage. Chi-square test was used to find association between serotype, leukotoxin, and periodontal disease in individual group. Results: Out of 80 plaque samples, 45% tested positive for A.a. serotype b was detected in 33.33%, whereas serotype e in 8.33% samples and serotype c in 2.77% samples. Serotypes a and d were not detected in any of the samples. A combination of serotypes was seen in 47.22% of the sites. Of these 76.47% showed a combination of 2 serotypes, while 23.52%showed a combination of 3 serotypes. 8.33% showed untypable serotype. All samples had low-toxic variants of A.a. Conclusions: Serotype b and serotype e were predominant in chronic periodontitis, and serotype b was predominant in aggressive periodontitis. An association could be present between serotype and periodontal disease.
Collapse
Affiliation(s)
| | - Swati Setty
- Department of Periodontics, SDM College of Dental Sciences and Hospital, Dharwad, Karnataka, India
| | - Kishore Bhat
- Department of Microbiology, Maratha Mandals Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Srinath Thakur
- Department of Periodontics, SDM College of Dental Sciences and Hospital, Dharwad, Karnataka, India
| |
Collapse
|
4
|
Sampathkumar V, Velusamy SK, Godboley D, Fine DH. Increased leukotoxin production: Characterization of 100 base pairs within the 530 base pair leukotoxin promoter region of Aggregatibacter actinomycetemcomitans. Sci Rep 2017; 7:1887. [PMID: 28507341 PMCID: PMC5432517 DOI: 10.1038/s41598-017-01692-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/30/2017] [Indexed: 12/14/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans leukotoxin (LtxA) is a major virulence factor that kills leukocytes permitting it’s escape from host immune surveillance. A. actinomycetemcomitans strains can produce high or low levels of toxin. Genetic differences reside in the “so called JP2” ltxA promoter region. These hyper-leukotoxin producing strains with the 530 bp deletion have been studied in detail. However, regions contained within the 530 bp deletion that could be responsible for modulation of leukotoxin production have not been defined. Here, we report, for the first time, on regions within the 530 bp that are responsible for high-levels of ltxA expression. We constructed a deletion of 530 bps in a primate isolate of A. actinomycetemcomitans, which produced leukotoxin equivalent to the JP2 strain. We then constructed sequential deletions in regions that span the 530 bps. Results indicated that expression of the ltxA transcript was reduced by a potential transcriptional terminator in promoter region 298 to 397 with a ΔG = −7.9 kcal/mol. We also confirmed previous findings that transcriptional fusion between the orfX region and ltxC increased ltxA expression. In conclusion, we constructed a hyper-leukotoxin producing A. actinomycetemcomitans strain and identified a terminator located in the promoter region extending from 298–397 that alters ltxA expression.
Collapse
Affiliation(s)
- Vandana Sampathkumar
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | | | - Dipti Godboley
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | - Daniel H Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA.
| |
Collapse
|
5
|
Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol 2017; 43:709-730. [PMID: 28407717 DOI: 10.1080/1040841x.2017.1303661] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transposable elements (TE), small mobile genetic elements unable to exist independently of the host genome, were initially believed to be exclusively deleterious genomic parasites. However, it is now clear that they play an important role as bacterial mutagenic agents, enabling the host to adapt to new environmental challenges and to colonize new niches. This review focuses on the impact of insertion sequences (IS), arguably the smallest TE, on bacterial genome plasticity and concomitant adaptability of phenotypic traits, including resistance to antibacterial agents, virulence, pathogenicity and catabolism. The direct consequence of IS transposition is the insertion of one DNA sequence into another. This event can result in gene inactivation as well as in modulation of neighbouring gene expression. The latter is usually mediated by de-repression or by the introduction of a complete or partial promoter located within the element. Furthermore, transcription and transposition of IS are affected by host factors and in some cases by environmental signals offering the host an adaptive strategy and promoting genetic variability to withstand the environmental challenges.
Collapse
Affiliation(s)
- Joachim Vandecraen
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium.,b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Michael Chandler
- c Laboratoire de Microbiologie et Génétique Moléculaires, Centre national de la recherche scientifique , Toulouse , France
| | - Abram Aertsen
- b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Rob Van Houdt
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium
| |
Collapse
|
6
|
Höglund Åberg C, Haubek D, Kwamin F, Johansson A, Claesson R. Leukotoxic activity of Aggregatibacter actinomycetemcomitans and periodontal attachment loss. PLoS One 2014; 9:e104095. [PMID: 25093857 PMCID: PMC4122431 DOI: 10.1371/journal.pone.0104095] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative periodontitis-associated bacterium that expresses a toxin that selectively affects leukocytes. This leukotoxin is encoded by an operon belonging to the core genome of this bacterial species. Variations in the expression of the leukotoxin have been reported, and a well-characterized specific clonal type (JP2) of this bacterium with enhanced leukotoxin expression has been isolated. In particular, the presence of the JP2 genotype significantly increases the risk for the progression of periodontal attachment loss (AL). Based on these findings we hypothesized that variations in the leukotoxicity are linked to disease progression in infected individuals. In the present study, the leukotoxicity of 239 clinical isolates of A. actinomycetemcomitans was analysed with different bioassays, and the genetic peculiarities of the isolates were related to their leukotoxicity based on examination with molecular techniques. The periodontal status of the individuals sampled for the presence of A. actinomycetemcomitans was examined longitudinally, and the importance of the observed variations in leukotoxicity was evaluated in relation to disease progression. Our data show that high leukotoxicity correlates with an enhanced risk for the progression of AL. The JP2 genotype isolates were all highly leukotoxic, while the isolates with an intact leukotoxin promoter (non-JP2 genotypes) showed substantial variation in leukotoxicity. Genetic characterization of the non-JP2 genotype isolates indicated the presence of highly leukotoxic genotypes of serotype b with similarities to the JP2 genotype. Based on these results, we conclude that A. actinomycetemcomitans harbours other highly virulent genotypes besides the previously described JP2 genotype. In addition, the results from the present study further highlight the importance of the leukotoxin as a key virulence factor in aggressive forms of periodontitis.
Collapse
Affiliation(s)
- Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | | | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Rolf Claesson
- Oral Microbiology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
7
|
Mlc is a transcriptional activator with a key role in integrating cyclic AMP receptor protein and integration host factor regulation of leukotoxin RNA synthesis in Aggregatibacter actinomycetemcomitans. J Bacteriol 2013; 195:2284-97. [PMID: 23475968 DOI: 10.1128/jb.02144-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans, a periodontal pathogen, synthesizes leukotoxin (LtxA), a protein that helps the bacterium evade the host immune response. Transcription of the ltxA operon is induced during anaerobic growth. The cyclic AMP (cAMP) receptor protein (CRP) indirectly increases ltxA expression, but the intermediary regulator is unknown. Integration host factor (IHF) binds to and represses the leukotoxin promoter, but neither CRP nor IHF is responsible for the anaerobic induction of ltxA RNA synthesis. Thus, we have undertaken studies to identify other regulators of leukotoxin transcription and to demonstrate how these proteins work together to modulate leukotoxin synthesis. First, analyses of ltxA RNA expression from defined leukotoxin promoter mutations in the chromosome identify positions -69 to -35 as the key control region and indicate that an activator protein modulates leukotoxin transcription. We show that Mlc, which is a repressor in Escherichia coli, functions as a direct transcriptional activator in A. actinomycetemcomitans; an mlc deletion mutant reduces leukotoxin RNA synthesis, and recombinant Mlc protein binds specifically at the -68 to -40 region of the leukotoxin promoter. Furthermore, we show that CRP activates ltxA expression indirectly by increasing the levels of Mlc. Analyses of Δmlc, Δihf, and Δihf Δmlc strains demonstrate that Mlc can increase RNA polymerase (RNAP) activity directly and that IHF represses ltxA RNA synthesis mainly by blocking Mlc binding. Finally, a Δihf Δmlc mutant still induces ltxA during anaerobic growth, indicating that there are additional factors involved in leukotoxin transcriptional regulation. A model for the coordinated regulation of leukotoxin transcription is presented.
Collapse
|
8
|
HAUBEK DORTE. The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans: evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. APMIS 2010:1-53. [DOI: 10.1111/j.1600-0463.2010.02665.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Henderson B, Ward JM, Ready D. Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen? Periodontol 2000 2010; 54:78-105. [DOI: 10.1111/j.1600-0757.2009.00331.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Repression of aerobic leukotoxin transcription by integration host factor in Aggregatibacter actinomycetemcomitans. Res Microbiol 2010; 161:541-8. [PMID: 20493253 DOI: 10.1016/j.resmic.2010.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 11/22/2022]
Abstract
Aggregatibacter actinomycetemcomitans has been implicated as the primary etiologic agent in localized aggressive periodontitis. This bacterium produces a leukotoxin which may help the bacterium evade the host immune response. Leukotoxin transcription is induced when A. actinomycetemcomitans is grown anaerobically, as in the periodontal pocket. Previously, a 35 bp oxygen-response-element (ORE) was shown to be responsible for oxygen regulation at the leukotoxin promoter. However, the gene's transcription is not controlled by Fnr or ArcA, the major oxygen regulators in other bacteria. To identify the potentially novel protein(s) that regulate leukotoxin transcription, protein extracts of A. actinomycetemcomitans were tested for ORE binding by mobility shift assays; one ORE-specific binding complex was found. Standard fractionation protocols and protein sequencing identified the ORE binding protein as integration host factor (IHF). DNaseI protection assays showed that the IHF binding site overlaps the first half of the ORE. To assess the effect of IHF on leukotoxin synthesis, an A. actinomycetemcomitans deletion mutant in ihfB was constructed and characterized. Interestingly, leukotoxin RNA and protein synthesis was de-repressed in the ihf mutant, although leukotoxin synthesis in still oxygen-regulated in the mutant cells. Thus, IHF plays a direct role in repressing leukotoxin transcription, but another protein is also involved in regulating leukotoxin expression in response to oxygen.
Collapse
|
11
|
Kachlany SC. Aggregatibacter actinomycetemcomitans leukotoxin: from threat to therapy. J Dent Res 2010; 89:561-70. [PMID: 20200418 DOI: 10.1177/0022034510363682] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium that colonizes the human oral cavity and is the causative agent for localized aggressive periodontitis (LAP), an aggressive form of periodontal disease that occurs in adolescents. A. actinomycetemcomitans secretes a protein toxin, leukotoxin (LtxA), which helps the bacterium evade the host immune response during infection. LtxA is a membrane-active toxin that specifically targets white blood cells (WBCs). In this review, we discuss recent developments in this field, including the identification and characterization of genes and proteins involved in secretion, regulation of LtxA, biosynthesis, newly described activities of LtxA, and how LtxA may be used as a therapy for the treatment of diseases.
Collapse
Affiliation(s)
- S C Kachlany
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, 185 S. Orange Avenue, Medical Science Building C-636, Newark, NJ 07103, USA.
| |
Collapse
|
12
|
Inoue T, Fukui K, Ohta H. LEUKOTOXIN PRODUCTION BY ACTINOBACILLUS ACTINOMYCETEMCOMITANS. TOXIN REV 2008. [DOI: 10.1080/15569540500320839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Uria MJ, Zhang Q, Li Y, Chan A, Exley RM, Gollan B, Chan H, Feavers I, Yarwood A, Abad R, Borrow R, Fleck RA, Mulloy B, Vazquez JA, Tang CM. A generic mechanism in Neisseria meningitidis for enhanced resistance against bactericidal antibodies. J Exp Med 2008; 205:1423-34. [PMID: 18504306 PMCID: PMC2413038 DOI: 10.1084/jem.20072577] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The presence of serum bactericidal antibodies is a proven correlate of protection against systemic infection with the important human pathogen Neisseria meningitidis. We have identified three serogroup C N. meningitidis (MenC) isolates recovered from patients with invasive meningococcal disease that resist killing by bactericidal antibodies induced by the MenC conjugate vaccine. None of the patients had received the vaccine, which has been successfully introduced in countries in North America and Europe. The increased resistance was not caused by changes either in lipopolysaccharide sialylation or acetylation of the α2-9–linked polysialic acid capsule. Instead, the resistance of the isolates resulted from the presence of an insertion sequence, IS1301, in the intergenic region (IGR) between the sia and ctr operons, which are necessary for capsule biosynthesis and export, respectively. The insertion sequence led to an increase in the transcript levels of surrounding genes and the amount of capsule expressed by the strains. The increased amount of capsule was associated with down-regulation of the alternative pathway of complement activation, providing a generic mechanism by which the bacterium protects itself against bactericidal antibodies. The strains with IS1301 in the IGR avoided complement-mediated lysis in the presence of bactericidal antibodies directed at the outer membrane protein, PorA, or raised against whole cells.
Collapse
Affiliation(s)
- Maria Jose Uria
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
- Reference Laboratory for Neisseria, National Center of Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Qian Zhang
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| | - Yanwen Li
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| | - Angel Chan
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| | - Rachel M. Exley
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| | - Bridget Gollan
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| | - Hannah Chan
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, England, UK
| | - Ian Feavers
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, England, UK
| | - Andy Yarwood
- JEOL (UK) Ltd., JEOL House, Silvercourt, Watchmead, Welwyn Garden City, Hertfordshire AL7 1LT, England, UK
| | - Raquel Abad
- Reference Laboratory for Neisseria, National Center of Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Ray Borrow
- Vaccine Evaluation Unit, North West Regional HPA Laboratory, Manchester Royal Infirmary, Manchester M13 9WZ, England, UK
| | - Roland A. Fleck
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, England, UK
| | - Barbara Mulloy
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, England, UK
| | - Julio A. Vazquez
- Reference Laboratory for Neisseria, National Center of Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Christoph M. Tang
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| |
Collapse
|
14
|
Schaeffer LM, Schmidt ML, Demuth DR. Induction of Aggregatibacter actinomycetemcomitans leukotoxin expression by IS1301 and orfA. MICROBIOLOGY-SGM 2008; 154:528-538. [PMID: 18227257 DOI: 10.1099/mic.0.2007/012195-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most Aggregatibacter actinomycetemcomitans strains express relatively low levels of leukotoxin, encoded by the orfA-ltxCABD operon. However, several strains isolated from patients with localized aggressive periodontitis are hyperleukotoxic and transcribe the ltx operon at high levels. These strains possess a copy of IS1301 in the ltx promoter and previous studies have suggested that the presence of the insertion sequence increases ltx transcription by uncoupling a cis-acting negative regulator of ltx expression from the basal elements of the ltx promoter. However, we now report that replacing IS1301 with an equal length of random sequence has little effect on transcriptional activity of the ltx promoter, suggesting that the physical displacement of the negative regulatory element does not contribute to the hyperleukotoxic phenotype of IS1301-containing strains. Instead, we show that a -10-like element upstream of the transposase ORF of IS1301 is required for increased transcriptional activity of the ltx promoter. Site-specific mutation of the -10 sequence, or reversing the orientation of IS1301 relative to the basal ltx promoter elements, reduced transcriptional activity to levels exhibited by the native ltx promoter. However, no increase in transcription was observed when IS1301 was recombinantly inserted into a ltx promoter that contained a truncated copy of orfA, suggesting that an intact orfA may also be required for IS1301-mediated induction of ltxCABD. Therefore, to determine if orfA functions as a regulator of ltx expression, three independent ltx-promoter-lacZ-reporter constructs containing frameshift mutations in orfA were analysed. Each exhibited significantly lower expression of beta-galactosidase than the control reporter with intact orfA. In addition, OrfA protein was shown, by mobility shift electrophoresis, to interact with the ltx promoter at or downstream of the -35 sequence. These results suggest that a potential transposase promoter and the OrfA polypeptide may modulate leukotoxin expression in hyperleukotoxic A. actinomycetemcomitans strains containing IS1301.
Collapse
Affiliation(s)
- Lyndsay M Schaeffer
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| | - M Lee Schmidt
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| | - Donald R Demuth
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| |
Collapse
|
15
|
Nakano R, Okamoto R, Nagano N, Inoue M. Resistance to gram-negative organisms due to high-level expression of plasmid-encoded ampC β-lactamase blaCMY-4 promoted by insertion sequence ISEcp1. J Infect Chemother 2007; 13:18-23. [PMID: 17334724 DOI: 10.1007/s10156-006-0483-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 10/10/2006] [Indexed: 10/23/2022]
Abstract
A Klebsiella pneumoniae strain, KU6500, which showed resistance to extended-spectrum beta-lactams and produced the plasmid-encoded AmpC beta-lactamase CMY-4, was identified from clinical isolates in Japan. The aim of this study was to identify the mechanism of the high-level expression of blaCMY-4. Sequence analysis indicated that the promoter element of Citrobacter freundii was conserved, but the insertion sequence ISEcp1 coding with the putative promoter element, was inserted into the AmpR binding site. We determined the influence of the promoter on blaCMY-4 expression and beta-lactam resistance. Two recombinant plasmids containing the entire blaCMY-4 gene, with or without the ISEcp1-mediated promoter sequences, were constructed and named pMWampC and pMWISEcp1, respectively. Escherichia coli DH5alpha (pMWISEcp1) was resistant to almost all beta-lactams tested and E. coli DH5alpha (pMWampC) was susceptible to all, except for cephalothin. In addition, the activity of each promoter was measured by subcloning the element into a promoterless luciferase plasmid pGL3-Basic vector. The expression of the putative promoter of ISEcp1 was 18.9-fold higher than that of C. freundii. These results suggest that the putative promoter element of ISEcp1 is necessary for the high-level expression of blaCMY-4 to confer resistance to extended-spectrum cephalosporins.
Collapse
Affiliation(s)
- Ryuichi Nakano
- School of Medicine and Environmental Infectious Diseases, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | | | |
Collapse
|
16
|
Fine DH, Kaplan JB, Kachlany SC, Schreiner HC. How we got attached to Actinobacillus actinomycetemcomitans: A model for infectious diseases. Periodontol 2000 2006; 42:114-57. [PMID: 16930309 DOI: 10.1111/j.1600-0757.2006.00189.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Daniel H Fine
- Center for Oral Infectious Diseases, Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | |
Collapse
|
17
|
Diaz R, Ghofaily LA, Patel J, Balashova NV, Freitas AC, Labib I, Kachlany SC. Characterization of leukotoxin from a clinical strain of Actinobacillus actinomycetemcomitans. Microb Pathog 2006; 40:48-55. [PMID: 16414241 DOI: 10.1016/j.micpath.2005.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
Actinobacillus actinomycetemcomitans is a Gram negative pathogen that is the etiologic agent of localized aggressive periodontitis (LAP), a rapidly progressing and severe disease of the oral cavity that affects predominantly adolescents. A. actinomycetemcomitans is also found in extraoral infections including infective endocarditis. As one of its many virulence determinants, A. actinomycetemcomitans produces the RTX (repeats in toxin) exotoxin, leukotoxin (LtxA). LtxA specifically kills leukocytes of humans and Old World Monkeys. All of our current knowledge of A. actinomycetemcomitans LtxA is based on the protein from strain JP2, a nonadherent laboratory isolate. Because laboratory isolates can lose virulence properties, we wished to examine LtxA from a clinical isolate, NJ4500. We show that localization patterns of LtxA do not differ between the strains. Subcellular localization studies with NJ4500 revealed that LtxA localizes to the outer membrane and that the interaction between LtxA and the surface of cells is specific. Surface localized LtxA was not removed with NaCl treatment and protease protection experiments revealed that approximately 10 kDa of LtxA is exposed. We purified secreted LtxA from NJ4500 and found that the specific activity of this toxin was greater than that of secreted LtxA from JP2. For other RTX toxins, fatty acid modification affects toxin activity, and A. actinomycetemcomitans LtxA is predicted to be modified. We show by two-dimensional gel electrophoresis that NJ4500 LtxA is more highly modified than JP2 LtxA, suggesting that the difference in activities could be due to differential modification. Studies of A. actinomycetemcomitans pathogenesis should therefore consider LtxA from clinical isolates.
Collapse
Affiliation(s)
- Roger Diaz
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, 185 S. Orange Avenue, Medical Science Building C-636, Newark, NJ 07103, USA
| | | | | | | | | | | | | |
Collapse
|