1
|
Luo S, Cai J, Yin F, Lu L, Liu Z, Wang Y, Fu X, Ding S, Kojima N, Ma M. M3-DPPE Liposomal Nanoparticles Encapsulating CLEC12A Enhance CD206-Mediated Endocytosis and Efficacy in the Collagen-Induced Arthritis Model. ACS APPLIED BIO MATERIALS 2025. [PMID: 39794898 DOI: 10.1021/acsabm.4c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
OBJECTIVE This study aimed to investigate the efficacy of M3-DPPE liposomal nanoparticles encapsulated with mRNA encoding cytokines (M3-mRNAs) in targeting macrophages for the treatment of inflammation-induced joint injury. METHODS in vitro, M3-mRNAs were administered to peritoneal exudate macrophages (PEMs), and the uptake was assessed using flow cytometry. The mechanism of uptake was investigated by blocking the CLEC12A pathway with M3-SiCLEC12A and observing CD206-mediated endocytosis. In vivo, the distribution of Dir-labeled M3-drugs was monitored using IVIS imaging, and its accumulation in inflammatory and noninflammatory areas was evaluated. The therapeutic potential was evaluated in collagen-induced arthritis (CIA) model mice by assessing macrophage polarization, joint pathology, and cytokine expression. RESULTS in vitro studies demonstrated that M3-mRNAs were taken up significantly by PEMs via CD206-mediated endocytosis. In vivo imaging showed that Dir-labeled M3-drugs accumulated predominantly in inflammatory areas and subsequently in bone injury joints. Treatment with M3-drugs in collagen-induced arthritis model mice increased the population of F4/80+ and F4/80+/CD206+ M2 macrophages in inflamed joints, leading to reduced joint fibrosis and modulation of cytokine levels, including decreased pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, and INF-γ) and increased anti-inflammatory cytokines (IL-10 and TGF-β). CONCLUSIONS M3-SiCLEC12A enhanced CD206-mediated endocytosis of M3-mRNAs and M3-drugs in macrophages, promoting the production of corresponding proteins and modulating the immune microenvironment. This treatment approach shows promise in repairing inflammation-induced bone and joint injury by balancing pro-inflammatory and anti-inflammatory cytokines. However, further research is required to address drug tolerance and safety concerns and minimize potential side effects before clinical application in autoimmune diseases caused by inflammation.
Collapse
Affiliation(s)
- Shulin Luo
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Junfeng Cai
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Laiya Lu
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Zheng Liu
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yunxia Wang
- Shanghai Novopathway Biotechnology Co. Ltd, Building No5, East Huaxia Road No.333, Pudong New Area, Shanghai 201203, China
| | - Xiaocong Fu
- Shanghai Novopathway Biotechnology Co. Ltd, Building No5, East Huaxia Road No.333, Pudong New Area, Shanghai 201203, China
| | - Shuangfeng Ding
- Shanghai Novopathway Biotechnology Co. Ltd, Building No5, East Huaxia Road No.333, Pudong New Area, Shanghai 201203, China
| | - Naoya Kojima
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Min Ma
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| |
Collapse
|
2
|
Imhof D, Hänggeli KPA, De Sousa MCF, Vigneswaran A, Hofmann L, Amdouni Y, Boubaker G, Müller J, Hemphill A. Working towards the development of vaccines and chemotherapeutics against neosporosis-With all of its ups and downs-Looking ahead. ADVANCES IN PARASITOLOGY 2024; 124:91-154. [PMID: 38754928 DOI: 10.1016/bs.apar.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.
Collapse
Affiliation(s)
- Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maria Cristina Ferreira De Sousa
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Larissa Hofmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Immunization with a Multivalent Listeria monocytogenes Vaccine Leads to a Strong Reduction in Vertical Transmission and Cerebral Parasite Burden in Pregnant and Non-Pregnant Mice Infected with Neospora caninum. Vaccines (Basel) 2023; 11:vaccines11010156. [PMID: 36680001 PMCID: PMC9863997 DOI: 10.3390/vaccines11010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Neospora caninum is an apicomplexan parasite that causes abortion and stillbirth in cattle. We employed the pregnant neosporosis mouse model to investigate the efficacy of a modified version of the attenuated Listeria monocytogenes vaccine vector Lm3Dx_NcSAG1, which expresses the major N. caninum surface antigen SAG1. Multivalent vaccines were generated by the insertion of gra7 and/or rop2 genes into Lm3Dx_NcSAG1, resulting in the double mutants, Lm3Dx_NcSAG1_NcGRA7 and Lm3Dx_NcSAG1_NcROP2, and the triple mutant, Lm3Dx_NcSAG1_NcGRA7_NcROP2. Six experimental groups of female BALB/c mice were inoculated intramuscularly three times at two-week intervals with 1 × 107 CFU of the respective vaccine strains. Seven days post-mating, mice were challenged by the subcutaneous injection of 1 × 105N. caninum NcSpain-7 tachyzoites. Non-pregnant mice, dams and their offspring were observed daily until day 25 post-partum. Immunization with Lm3Dx_NcSAG1 and Lm3Dx_NcSAG1_NcGRA7_NcROP2 resulted in 70% postnatal pup survival, whereas only 50% and 58% of pups survived in the double mutant-vaccinated groups. Almost all pups had died at the end of the experiment in the infection control. The triple mutant was the most promising vaccine candidate, providing the highest rate of protection against vertical transmission (65%) and CNS infection. Overall, integrating multiple antigens into Lm3Dx_SAG1 resulted in lower vertical transmission and enhanced protection against cerebral infection in dams and in non-pregnant mice.
Collapse
|
4
|
Yang CS, Yang CY, Ayanniyi OO, Chen YQ, Lu ZX, Zhang JY, Liu LY, Hong YH, Cheng RR, Zhang X, Zong QQ, Zhao HX, Xu QM. Development and application of an indirect ELISA to detect antibodies to Neospora caninum in cattle based on a chimeric protein rSRS2-SAG1-GRA7. Front Vet Sci 2022; 9:1028677. [PMID: 36590802 PMCID: PMC9797966 DOI: 10.3389/fvets.2022.1028677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Neospora caninum is an important apicomplexan parasite causing neosporosis in cattle. The disease is recognized as one of the most important cause of reproductive problems and abortion in cattle worldwide. In this context, we developed an indirect enzyme-linked immunosorbent assays (ELISA) with chimeric protein rSRS2-SAG1-GRA7 to diagnose antibodies to Neospora-infection. This indirect ELISA was compared to indirect fluorescent antibody test (IFAT) and western blotting (WB), and the sensitivity and specificity results of ELISA were calculated to be 86.7 and 96.1%, respectively. The overall coincidence rate was 92.6% using IFAT and WB. Additionally, 329 aborting dairy cattle serum samples were tested using this ELISA to evaluate the prevalence of N. caninum in Ningxia, China. The positive rate of N. caninum in these farms was from 19.05 to 57.89%, and the mean rate was 41.64% (±11.01%), indicating that infection with N. caninum may be one of the important causes of cattle abortion in this region. This established rSRS2-SAG1-GRA7 indirect ELISA is capable for detecting the antibodies against N. caninum, and it could be a useful screening tool for monitoring the epidemiology of neosporosis in cattle.
Collapse
Affiliation(s)
- Cong-Shan Yang
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Chuan-Yin Yang
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Olalekan-Opeyemi Ayanniyi
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Ya-Qian Chen
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhen-Xiao Lu
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Jin-Yi Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Lu-Yao Liu
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Yu-Hang Hong
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Rong-Rong Cheng
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiang Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Qin-Qin Zong
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Hong-Xi Zhao
- Department of Veterinary Medicine, School of Agriculture, Ningxia University, Yinchuan, China,*Correspondence: Hong-Xi Zhao
| | - Qian-Ming Xu
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Qian-Ming Xu
| |
Collapse
|
5
|
Role of dense granule antigen 7 in vertical transmission of Neospora caninum in C57BL/6 mice infected during early pregnancy. Parasitol Int 2022; 89:102576. [PMID: 35301119 DOI: 10.1016/j.parint.2022.102576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022]
Abstract
Neosporosis is a parasitic disease affecting the health of dogs and cattle worldwide. It is caused by Neospora caninum, an obligate intracellular apicomplexan parasite. Dogs are its definitive host, it mostly infects livestock animals, especially cattle that acts as intermediate host. It is necessary to have well-established models of abortion and vertical transmission in experimental animals, in order to determine basic control measures for the N. caninum infection. We evaluated the role of N. caninum dense granule antigen 7 (NcGRA7) in the vertical transmission of N. caninum using the C57BL/6 pregnant mouse model. We inoculated mice on day 3.5 of pregnancy with parental Nc-1 or NcGRA7-deficient parasites (NcGRA7KO). Post-mortem analyses were performed on day 30 after birth and the surviving pups were kept until day 30 postpartum. The number of parasites in the brain tissues of offspring from NcGRA7KO-infected dams was significantly lower than that of the Nc-1-infected dams under two infection doses (1 × 106 and 1 × 105 tachyzoites/mouse). The vertical transmission rates in the NcGRA7KO-infected group were significantly lower than those of the Nc1-infected group. To understand the mechanism by which the lack of NcGRA7 decreases the vertical transmission, pregnant mice were sacrificed on day 13.5 of pregnancy (10 days after infection), although parasite DNA was detected in the placentas, no significant difference was found between the two parasite lines. Histopathological analysis revealed a greater inflammatory response in the placentas from NcGRA7KO-infected dams than in those from the parental strain. This finding correlates with upregulated chemokine mRNA expression for CCL2, CCL8, and CXCL9 in the placentas from the NcGRA7KO-infected mice. In conclusion, these results suggest that loss of NcGRA7 triggers an inflammatory response in the placenta, resulting in decreased vertical transmission of N. caninum.
Collapse
|
6
|
Tuo W, Feng X, Cao L, Vinyard B, Dubey JP, Fetterer R, Jenkins M. Vaccination with Neospora caninum-cyclophilin and -profilin confers partial protection against experimental neosporosis-induced abortion in sheep. Vaccine 2021; 39:4534-4544. [PMID: 34176703 DOI: 10.1016/j.vaccine.2021.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to evaluate the protective efficacy of a vaccine consisting of recombinant Neospora caninum-cyclophilin (NcCyP) and -profilin (NcPro) in sheep. At 42 d and 21 d prior to mating, adult Dorset ewes were immunized with the rNcCyP-rNcPro vaccine (Group 1) or co-purifying non-recombinant (NR) control vaccine (Group 2). At 90 days post-mating, all immunized ewes and were challenged by intravenous injection with 106Nesopora caninum Illinois tachyzoites (NcTZ). Significant protection (P < 0.05) was observed in Group 1 with 9 out of 13 ewes giving birth to live-born lambs (69.2%), whereas all Group 2 ewes aborted (6/6). Neospora caninum was detected by PCR in both fetal and placental tissues from all Group 2 aborting ewes and in the placental tissues of Group 1 aborting ewes. In contrast, tissues and placentas of Group 1 live-born lambs were Neospora DNA-negative. Immunoreactive Neospora antigens were demonstrated in placentas associated with abortions, but not in tissues of aborted fetuses or those of the live-born lambs and their associated placentas. Anti-NcCyP and anti-NcPro titers were high in sera from Group 1 ewes and were further boosted by challenge infection, resulting in long-lasting (≥14.5 mos.) elevated titers. Lambs born to Group 1 ewes also had high NcCyP and NcPro titers in pre-colostrum sera. Immunofluorescence staining (IFA) of NcTZ with Group 1 post-immunization sera revealed both surface and internal TZ staining, a pattern consistent with that observed with rabbit sera to rNcCyP or rNcPro. Infection of NR-vaccinated ewes produced high but transient anti-NcCyP and anti-NcPro Ab titers. The results indicate that the NcCyP-NcPro vaccine elicited strong anti-N. caninum responses and conferred significant protection against abortion and transplacental transmission of N. caninum TZ in sheep.
Collapse
Affiliation(s)
- Wenbin Tuo
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, United States
| | - Xiaosheng Feng
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lili Cao
- Academy of Animal Sciences and Technology, Changchun, China
| | | | - J P Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, United States
| | - Raymond Fetterer
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, United States
| | - Mark Jenkins
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, United States.
| |
Collapse
|
7
|
Fereig RM, Shimoda N, Abdelbaky HH, Kuroda Y, Nishikawa Y. Neospora GRA6 possesses immune-stimulating activity and confers efficient protection against Neospora caninum infection in mice. Vet Parasitol 2019; 267:61-68. [PMID: 30878088 DOI: 10.1016/j.vetpar.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 10/27/2022]
Abstract
Vaccination has the potential to be the most cost-effective control measure for reducing the economic burden of neosporosis in cattle. In this study, the immune-stimulatory effect of recombinant Neospora caninum dense granule protein 6 (NcGRA6) was confirmed via its triggering of IL-12p40 production in murine macrophages. BALB/c mice were immunized with recombinant NcGRA6 fused with glutathione S-transferase (GST) protein with or without oligomannose-coated-liposomes (OMLs) as the potential adjuvant. Specific IgG1 antibody production was observed from 21 and 35 days after the first immunization in NcGRA6+GST- and NcGRA6+GST-OML-immunized mice, respectively. However, specific IgG2a was detected 1 week after the infection, and IgG2a levels of the NcGRA6+GST- group were higher than those of the NcGRA6+GST-OML-group. Moreover, spleen cell proliferation with concomitant interferon-gamma production was detected in mice immunized with NcGRA6+GST, indicating that a significant cellular immune response was induced. Mouse survival rates against N. caninum challenge infection were 91.7% for NcGRA6+GST and 83.3% for NcGRA6+GST-OML, which were significantly higher than those of control groups (GST-OML: 25%, phosphate-buffered saline: 16.7%). This indicates that naked NcGRA6+GST induced protective immunity. Thus, our findings highlight the immune-stimulating potential of NcGRA6 and the ability to induce protective immunity against N. caninum infection in mice.
Collapse
Affiliation(s)
- Ragab M Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Naomi Shimoda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Hanan H Abdelbaky
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Yasuhiro Kuroda
- Department of Applied Biochemistry, Tokai University, Kita-kaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
8
|
JIA L, GUO H, LIU M, GAO Y, ZHANG L, LI H, XIE S, ZHANG N. Construction of an Adenovirus Vaccine Expressing the Cross-reactive Antigen AMA1 for Neospora caninum and Toxoplasma gondii and Its Immune Response in an Animal Model. IRANIAN JOURNAL OF PARASITOLOGY 2018; 13:235-243. [PMID: 30069207 PMCID: PMC6068368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/25/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND We aimed to construct an adenovirus expressing a cross-reactive fragment of the apical membrane antigen 1 (AMA1) antigen and evaluated the concomitant immune response in BABL/c mice, allowing protection against N. caninum and T. gondii infection. METHODS The study was conducted in Agricultural College of Yanbian University, Yanji, Jilin, China In 2015-2016. Primers were designed using the AMA1 gene sequences of N. caninum (AB265823.1) and T. gondii (AF010264.1). After linearization of the plasmid ADV4-NcAMA1 and the framework plasmid pacAd5, a total of 293T cells were cotransfected and Ad5-NcAMA1 recombinant adenovirus were packed. BALB/c mice were inoculated. Simultaneously serum IgG antibody levels and IFN-γ and IL-4 cytokine levels were determined by ELISA. After immunization three times in two weeks, each group of BABL/c mice were divided into two groups, respectively given intraperitoneal inoculation by the Neospora tachyzoite and Toxoplasma tachyzoite. Then we observed the clinical symptoms and statistical survival rate of mice. RESULTS The level of IgG in BABL/c mice immunized with Ad5-NcAMA1 was significantly increased when compared with that of pVAX1-NcAMA1 and PBS groups (P<0.01). At the same time, the cytokine levels of IFN-γ and IL-4 were also higher in the Ad4-NcAMA1 group than in the control groups (P<0.01). Moreover, BABL/c mice immunized with Ad5-NcAMA1, pVAX1-NcAMA1, and PBS showed survival rates of 75%, 45% and 20% after N. caninum infection, and 45%, 10% and 0% after T. gondii infection, respectively. CONCLUSION The adenovirus vaccineAd5-NcAMA1 could provide protective immunity against N. caninum and T. gondii infection.
Collapse
Affiliation(s)
- Lijun JIA
- Dept. of Veterinary Medicine, Agricultural College of Yanbian University, Yanji, Jilin 133000, China
| | - Huanping GUO
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Mingming LIU
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yang GAO
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Lei ZHANG
- Dept. of Veterinary Medicine, Agricultural College of Yanbian University, Yanji, Jilin 133000, China
| | - Hang LI
- Dept. of Veterinary Medicine, Agricultural College of Yanbian University, Yanji, Jilin 133000, China
| | - Suzhu XIE
- Dept. of Veterinary Medicine, Agricultural College of Yanbian University, Yanji, Jilin 133000, China
| | - Ningning ZHANG
- Dept. of Veterinary Medicine, Agricultural College of Yanbian University, Yanji, Jilin 133000, China
| |
Collapse
|
9
|
On the application of reverse vaccinology to parasitic diseases: a perspective on feature selection and ranking of vaccine candidates. Int J Parasitol 2017; 47:779-790. [PMID: 28893639 DOI: 10.1016/j.ijpara.2017.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 01/27/2023]
Abstract
Reverse vaccinology has the potential to rapidly advance vaccine development against parasites, but it is unclear which features studied in silico will advance vaccine development. Here we consider Neospora caninum which is a globally distributed protozoan parasite causing significant economic and reproductive loss to cattle industries worldwide. The aim of this study was to use a reverse vaccinology approach to compile a worthy vaccine candidate list for N. caninum, including proteins containing pathogen-associated molecular patterns to act as vaccine carriers. The in silico approach essentially involved collecting a wide range of gene and protein features from public databases or computationally predicting those for every known Neospora protein. This data collection was then analysed using an automated high-throughput process to identify candidates. The final vaccine list compiled was judged to be the optimum within the constraints of available data, current knowledge, and existing bioinformatics programs. We consider and provide some suggestions and experience on how ranking of vaccine candidate lists can be performed. This study is therefore important in that it provides a valuable resource for establishing new directions in vaccine research against neosporosis and other parasitic diseases of economic and medical importance.
Collapse
|
10
|
Wedrychowicz H. Antiparasitic DNA vaccines in 21st century. Acta Parasitol 2015; 60:179-89. [PMID: 26203983 PMCID: PMC7088677 DOI: 10.1515/ap-2015-0026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 11/25/2022]
Abstract
Demands for effective vaccines to control parasitic diseases of humans and livestock have been recently exacerbated by the development of resistance of most pathogenic parasites to anti-parasitic drugs. Novel genomic and proteomic technologies have provided opportunities for the discovery and improvement of DNA vaccines which are relatively easy as well as cheap to fabricate and stable at room temperatures. However, their main limitation is rather poor immunogenicity, which makes it necessary to couple the antigens with adjuvant molecules. This paper review recent advances in the development of DNA vaccines to some pathogenic protozoa and helminths. Numerous studies were conducted over the past 14 years of 21st century, employing various administration techniques, adjuvants and new immunogenic antigens to increase efficacy of DNA vaccines. Unfortunately, the results have not been rewarding. Further research is necessary using more extensive combinations of antigens; alternate delivery systems and more efficient adjuvants based on knowledge of the immunomodulatory capacities of parasitic protozoa and helminths.
Collapse
MESH Headings
- Animals
- Disease Transmission, Infectious/prevention & control
- Drug Discovery/trends
- Helminthiasis/immunology
- Helminthiasis/prevention & control
- Helminthiasis/transmission
- Helminthiasis, Animal/immunology
- Helminthiasis, Animal/prevention & control
- Helminthiasis, Animal/transmission
- Humans
- Protozoan Infections/immunology
- Protozoan Infections/prevention & control
- Protozoan Infections/transmission
- Protozoan Infections, Animal/immunology
- Protozoan Infections, Animal/prevention & control
- Protozoan Infections, Animal/transmission
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, DNA/isolation & purification
Collapse
Affiliation(s)
- Halina Wedrychowicz
- Department of Molecular Biology, Laboratory of Molecular Parasitology, W. Stefański Institute Parasitology, Polish Academy of Sciences, 51/55 Twarda St., 00-818 Warsaw, Poland
| |
Collapse
|
11
|
A Neospora caninum vaccine using recombinant proteins fails to prevent foetal infection in pregnant cattle after experimental intravenous challenge. Vet Immunol Immunopathol 2014; 162:142-53. [PMID: 25467890 DOI: 10.1016/j.vetimm.2014.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/16/2014] [Accepted: 11/01/2014] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to evaluate the immunogenicity and protective efficacy of rNcSAG1, rNcHSP20 and rNcGRA7 recombinant proteins formulated with immune stimulating complexes (ISCOMs) in pregnant heifers against vertical transmission of Neospora caninum. Twelve pregnant heifers were divided into 3 groups of 4 heifers each, receiving different formulations before mating. Immunogens were administered twice subcutaneously: group A animals were inoculated with three recombinant proteins (rNcSAG1, rNcHSP20, rNcGRA7) formulated with ISCOMs; group B animals received ISCOM-MATRIX (without antigen) and group C received sterile phosphate-buffered saline (PBS) only. The recombinant proteins were expressed in Escherichia coli and purified nickel resin. All groups were intravenously challenged with the NC-1 strain of N. caninum at Day 70 of gestation and dams slaughtered at week 17 of the experiment. Heifers from group A developed specific antibodies against rNcSAG1, rNcHSP20 and rNcGRA7 prior to the challenge. Following immunization, an statistically significant increase of antibodies against rNcSAG1 and rNcHSP20 in all animals of group A was detected compared to animals in groups B and C at weeks 5, 13 and 16 (P<0.001). Levels of antibodies against rNcGRA7 were statistical higher in group A animals when compared with groups B and C at weeks 5 and 16 (P>0.001). There were no differences in IFN-γ production among the experimental groups at any time point (P>0.05). Transplacental transmission was determined in all foetuses of groups A, B and C by Western blot, immunohistochemistry and nested PCR. This work showed that rNcSAG1, rNcHSP20 and rNcGRA7 proteins while immunogenic in cattle failed to prevent the foetal infection in pregnant cattle challenged at Day 70 of gestation.
Collapse
|
12
|
Ferreirinha P, Dias J, Correia A, Pérez-Cabezas B, Santos C, Teixeira L, Ribeiro A, Rocha A, Vilanova M. Protective effect of intranasal immunization with Neospora caninum membrane antigens against murine neosporosis established through the gastrointestinal tract. Immunology 2014; 141:256-67. [PMID: 24128071 DOI: 10.1111/imm.12191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 12/11/2022] Open
Abstract
Neospora caninum is an Apicomplexa parasite that in the last two decades was acknowledged as the main pathogenic agent responsible for economic losses in the cattle industry. In the present study, the effectiveness of intranasal immunization with N. caninum membrane antigens plus CpG adjuvant was assessed in a murine model of intragastrically established neosporosis. Immunized mice presented a lower parasitic burden in the brain on infection with 5 × 10(7) tachyzoites, showing that significant protection was achieved by this immunization strategy. Intestinal IgA antibodies raised by immunization markedly agglutinated live N. caninum tachyzoites whereas previous opsonization with IgG antibodies purified from immunized mice sera reduced parasite survival within macrophage cells. Although an IgG1 : IgG2a ratio < 1 was detected in the immunized mice before and after infection, indicative of a predominant T helper type 1 immune response, no increased production of interferon-γ was detected in the spleen or mesenteric lymph nodes of the immunized mice. Altogether, these results show that mucosal immunization with N. caninum membrane proteins plus CpG adjuvant protect against intragastrically established neosporosis and indicate that parasite-specific mucosal and circulating antibodies have a protective role against this parasitic infection.
Collapse
Affiliation(s)
- Pedro Ferreirinha
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular - IBMC, Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Monney T, Hemphill A. Vaccines against neosporosis: what can we learn from the past studies? Exp Parasitol 2014; 140:52-70. [PMID: 24602874 DOI: 10.1016/j.exppara.2014.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/09/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Neospora caninum is an intracellular apicomplexan parasite, which is a leading cause of abortion in cattle; thus neosporosis represents an important veterinary health problem and is of high economic significance. The parasite can infect cattle via trans-placental transmission from an infected cow to its fetus (vertical transmission), or through the oral route via ingestion of food or water contaminated with oocysts that were previously shed with the feces of a canid definitive host (horizontal transmission). Although vaccination was considered a rational strategy to prevent bovine neosporosis, the only commercialized vaccine (Neoguard®) produced ambiguous results with relatively low efficacy, and was recently removed from the market. Therefore, there is a need to develop an efficient vaccine capable of preventing both, the horizontal transmission through infected food or water to a naïve animal as well as the vertical transmission from infected but clinically asymptomatic dams to the fetus. Different vaccine strategies have been investigated, including the use of live attenuated vaccines, killed parasite lysates, total antigens or antigen fractions from killed parasites, and subunit vaccines. The vast majority of experimental studies were performed in mice, and to a certain extent in gerbils, but there is also a large number of investigations that were conducted in cattle and sheep. However, it is difficult to directly compare these studies due to the high variability of the parameters employed. In this review, we will summarize the recent advances made in vaccine development against N. caninum in cattle and in mice and highlight the most important factors, which are likely to influence the degree of protection mediated by vaccination.
Collapse
Affiliation(s)
- Thierry Monney
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| |
Collapse
|
14
|
Jia LJ, Zhang SF, Qian NC, Xuan XN, Yu LZ, Zhang XM, Liu MM. Generation and immunity testing of a recombinant adenovirus expressing NcSRS2-NcGRA7 fusion protein of bovine Neospora caninum. THE KOREAN JOURNAL OF PARASITOLOGY 2013; 51:247-53. [PMID: 23710096 PMCID: PMC3662072 DOI: 10.3347/kjp.2013.51.2.247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/19/2012] [Accepted: 02/17/2013] [Indexed: 11/23/2022]
Abstract
Neospora caninum is the etiologic agent of bovine neosporosis, which affects the reproductive performance of cattle worldwide. The transmembrane protein, NcSRS2, and dense-granule protein, NcGRA7, were identified as protective antigens based on their ability to induce significant protective immune responses in murine neosporosis models. In the current study, NcSRS2 and NcGRA7 genes were spliced by overlap-extension PCR in a recombinant adenovirus termed Ad5-NcSRS2-NcGRA 7, expressing the NcSRS2-NcGRA7 gene, and the efficacy was evaluated in mice. The results showed that the titer of the recombinant adenovirus was 10(9)TCID50/ml. Three weeks post-boost immunization (w.p.b.i.), the IgG antibody titer in sera was as high as 1:4,096. IFN-γ and IL-4 levels were significantly different from the control group (P<0.01). This research established a solid foundation for the development of a recombinant adenovirus vaccine against bovine N. caninum.
Collapse
Affiliation(s)
- Li-Jun Jia
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, Yanbian University, Yanji, Jilin Province, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Low efficacy of NcGRA7, NcSAG4, NcBSR4 and NcSRS9 formulated in poly-ɛ-caprolactone against Neospora caninum infection in mice. Vaccine 2012; 30:4983-92. [DOI: 10.1016/j.vaccine.2012.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/07/2012] [Accepted: 05/15/2012] [Indexed: 12/28/2022]
|
16
|
Dong J, Otsuki T, Kato T, Park EY. Development of a diagnostic method for neosporosis in cattle using recombinant Neospora caninum proteins. BMC Biotechnol 2012; 12:19. [PMID: 22558916 PMCID: PMC3441611 DOI: 10.1186/1472-6750-12-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 03/29/2012] [Indexed: 05/05/2023] Open
Abstract
Background Neosporosis is an infectious disease primarily of cattle and dogs, caused by intracellular parasite, Neospora caninum. Neosporosis appears to be a major cause of abortion in dairy cattle worldwide and causes to huge economic loss to dairy industry. Results Recombinant surface associated antigen 1 (NcSAG1), NcSAG1 related sequence 2 (NcSRS2) and the dense granule antigen 2 (NcGRA2) of N. caninum were expressed either in silkworm or in Escherichia coli and purified. The purified recombinant proteins bound to the N. caninum-specific antibodies in serum samples from infected cattle as revealed by an enzyme-linked immunosorbent assay (ELISA). By co-immobilizing these recombinant proteins, a novel indirect ELISA was developed for detection of neosporosis. With the use of 32 serum samples, comprising 12 positive serum samples and 20 negative serum samples, the sensitivity and specificity of the assay were found to be 91.7 and 100%, respectively. Seventy-two serum samples from dairy farms were also tested and one was diagnosed with neosporasis with both this method and a commercial assay. Conclusions A diagnostic method employing recombinant proteins of N. caninum was developed. The method showed high sensitivity and specificity. Diagnostic test with field serum samples suggested its applicability to the practical diagnosis of neosporosis.
Collapse
Affiliation(s)
- Jinhua Dong
- Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | | | | | | |
Collapse
|
17
|
Hiasa J, Kohara J, Nishimura M, Xuan X, Tokimitsu H, Nishikawa Y. ELISAs based on rNcGRA7 and rNcSAG1 antigens as an indicator of Neospora caninum activation. Vet Parasitol 2012; 187:379-85. [PMID: 22365337 DOI: 10.1016/j.vetpar.2012.01.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 11/29/2022]
Abstract
Bovine abortion caused by the Apicomplexa parasite Neospora caninum is a major economical problem in the livestock industry worldwide. However, the relationship between N. caninum infection and abortion is still unknown. Our study aimed to elucidate the relationship between parasite-specific antibody responses, parasite stages and abortion. In experimentally infected cattle, anti-NcGRA7 IgG1 antibody was predominantly detected during the acute infection stage, while the production of anti-NcSAG1 IgG1 antibody was observed during both acute and chronic stages. Furthermore, levels of anti-NcGRA7 IgG2 antibody were lower than those of anti-NcSAG1 IgG2 antibody. When tested on cattle with Neospora-associated abortion, positive rates of the anti-NcGRA7 IgG2 antibody were significantly lower than those of the anti-NcSAG1 antibody, although there was no difference in IgG1 antibody-positive rates between the two antigens. In addition, anti-NcGRA7 IgG2 antibodies were not detected in cattle for more than 30days after abortion. Our results suggested that anti-NcGRA7 and anti-NcSAG1 antibodies are suitable indicators for the activation stage of N. caninum infection and broad detection of the infection, respectively. In conclusion, the use of recombinant NcGRA7 and NcSAG1-based ELISAs will be useful for evaluating the abortion risk associated with N. caninum infection.
Collapse
Affiliation(s)
- Jun Hiasa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Monney T, Debache K, Hemphill A. Vaccines against a Major Cause of Abortion in Cattle, Neospora caninum Infection. Animals (Basel) 2011; 1:306-25. [PMID: 26486502 PMCID: PMC4513463 DOI: 10.3390/ani1030306] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 01/09/2023] Open
Abstract
Simple Summary We review the efforts to develop a vaccine against neosporosis, caused by the apicomplexan parasite Neospora caninum. Vertical transmission is the main mode of infection, and can lead to stillbirth, abortion, or birth of weak calves. We provide information on the biology of Neospora caninum and on the disease caused by this parasite, and summarize the current understanding on how the host deals with infection. We review studies on live- and subunit-vaccines, and demonstrate advantages and setbacks in the use of small laboratory animal models in investigations on a disease with high relevance in cattle. Abstract Neosporosis, caused by the apicomplexan parasite Neospora caninum, represents one of the economically most important causes of abortion in cattle. During pregnancy, the parasite infects the placental tissue and the fetus, which can lead to stillbirth, abortion, or birth of weak calves. Alternatively, calves are born without clinical symptoms, but they can carry over the parasite to the next generation. In addition, N. caninum causes neuromuscular disease in dogs. The economic importance of neosporosis has prompted researchers to invest in the development of measures to prevent infection of cattle by vaccination. A good vaccine must stimulate protective cellular immune responses as well as antibody responses at mucosal sites and, systemically, must activate T-helper cells to produce relevant cytokines, and must elicit specific antibodies that aid in limiting parasite proliferation, e.g., by interference with host cell invasion, activation of complement, and/or opsonization of parasites to have them killed by macrophages. Different types of vaccines have been investigated, either in bovines or in the mouse model. These include live vaccines such as naturally less virulent isolates of N. caninum, attenuated strains generated by irradiation or chemical means, or genetically modified transgenic strains. Live vaccines were shown to be very effective; however, there are serious disadvantages in terms of safety, costs of production, and stability of the final product. Subunit vaccines have been intensively studied, as they would have clear advantages such as reduced costs in production, processing and storage, increased stability and shelf life. The parasite antigens involved in adhesion and invasion of host cells, such as surface constituents, microneme-, rhoptry- and dense granule-components represent interesting targets. Subunit vaccines have been applied as bacterially expressed recombinant antigens or as DNA vaccines. Besides monovalent vaccines also polyvalent combinations of different antigens have been used, providing increased protection. Vaccines have been combined with immunostimulating carriers and, more recently, chimeric vaccines, incorporating immuno-relevant domains of several antigens into a single protein, have been developed.
Collapse
Affiliation(s)
- Thierry Monney
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| | - Karim Debache
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| |
Collapse
|
19
|
RecNcMIC3-1-R is a microneme- and rhoptry-based chimeric antigen that protects against acute neosporosis and limits cerebral parasite load in the mouse model for Neospora caninum infection. Vaccine 2011; 29:6967-75. [PMID: 21787824 DOI: 10.1016/j.vaccine.2011.07.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 11/23/2022]
Abstract
In order to achieve host cell entry, the apicomplexan parasite Neospora caninum relies on the contents of distinct organelles, named micronemes, rhoptries and dense granules, which are secreted at defined timepoints during and after host cell entry. It was shown previously that a vaccine composed of a mixture of three recombinant antigens, corresponding to the two microneme antigens NcMIC1 and NcMIC3 and the rhoptry protein NcROP2, prevented disease and limited cerebral infection and transplacental transmission in mice. In this study, we selected predicted immunogenic domains of each of these proteins and created four different chimeric antigens, with the respective domains incorporated into these chimers in different orders. Following vaccination, mice were challenged intraperitoneally with 2 × 10(6)N. caninum tachzyoites and were then carefully monitored for clinical symptoms during 4 weeks post-infection. Of the four chimeric antigens, only recNcMIC3-1-R provided complete protection against disease with 100% survivors, compared to 40-80% of survivors in the other groups. Serology did not show any clear differences in total IgG, IgG1 and IgG2a levels between the different treatment groups. Vaccination with all four chimeric variants generated an IL-4 biased cytokine expression, which then shifted to an IFN-γ-dominated response following experimental infection. Sera of recNcMIC3-1-R vaccinated mice reacted with each individual recombinant antigen, as well as with three distinct bands in Neospora extracts with similar Mr as NcMIC1, NcMIC3 and NcROP2, and exhibited distinct apical labeling in tachyzoites. These results suggest that recNcMIC3-1-R is an interesting chimeric vaccine candidate and should be followed up in subsequent studies in a fetal infection model.
Collapse
|
20
|
Tuo W, Zhao Y, Zhu D, Jenkins MC. Immunization of female BALB/c mice with Neospora cyclophilin and/or NcSRS2 elicits specific antibody response and prevents against challenge infection by Neospora caninum. Vaccine 2011; 29:2392-9. [PMID: 21281689 DOI: 10.1016/j.vaccine.2011.01.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/14/2011] [Accepted: 01/14/2011] [Indexed: 11/17/2022]
Abstract
Neospora caninum is the causal agent of bovine neosporosis which results in high levels of abortion. The present study determined the protective efficacy of two Neospora antigens--Neospora cyclophilin (NcCyP) and NcSRS2. The ability of native NcCyP to upregulate mouse IFN-γ was also confirmed in this study. Recombinant NcCyP or NcSRS2 were tested either alone or in combination and formulated with adjuvant ImmuMax-SR and CpG. Female BALB/c mice (n=15) of 10-12 weeks of age were immunized s.c. twice over a 2-week interval with vaccines containing either NcCyP (20 μg/dose) alone, NcSRS2 (20 μg/dose) alone, NcCyP plus NcSRS2, or non-recombinant bacterial antigen (NR) in 2 separate trials. All mice were challenge-infected 3 weeks following the booster immunization and necropsied 3 weeks after the challenge infection. Brain and serum were collected and Nc-specific DNA sequence in brain tissue and antibodies in serum were analyzed by PCR or ELISA/Western blotting. Results showed that mice vaccinated with rNcCyP, rNcSRS2, or both rNcCyP and rNcSRS2 responded with high levels of NcCyP or NcSRS2 specific antibodies. Overall, mice received vaccines formulated with either rNcCyP or rNcCyP and rNcSRS2 had a higher (p<0.01) percent protection when compared to the mock- or non-vaccinated mice. The group immunized with rNcSRS2 alone exhibited slightly lower levels of protection, which was higher (p<0.05) than that of the non-vaccinated group but did not differ (p=0.06) from that of the mock-vaccinated group. The results of the present study indicate that NcCyP is a highly efficacious vaccine candidate which may be useful in protection against Neospora infection.
Collapse
Affiliation(s)
- Wenbin Tuo
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, USDA/ARS, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
21
|
Neospora caninum: Application of apical membrane antigen 1 encapsulated in the oligomannose-coated liposomes for reduction of offspring mortality from infection in BALB/c mice. Exp Parasitol 2010; 125:130-6. [DOI: 10.1016/j.exppara.2010.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/24/2009] [Accepted: 01/12/2010] [Indexed: 11/19/2022]
|
22
|
Jenkins MC, Tuo W, Feng X, Cao L, Murphy C, Fetterer R. Neospora caninum: cloning and expression of a gene coding for cytokine-inducing profilin. Exp Parasitol 2010; 125:357-62. [PMID: 20211619 DOI: 10.1016/j.exppara.2010.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/26/2010] [Accepted: 03/01/2010] [Indexed: 11/27/2022]
Abstract
Profilins are actin-binding proteins that in Toxoplasma gondii stimulate innate immunity in mice by binding Toll-like receptors (TLR) on dendritic cells (DC) leading to release of inflammatory cytokines, primarily IL-12 and IFN-gamma. The purpose of the present study was to characterize Neospora caninum profilin, termed NcProfilin. Recombinant NcProfilin was purified by affinity chromatography, and used to prepare specific antisera to allow characterization of native NcProfilin antigen in N. caninum tachyzoites. By immunoblotting, recombinant NcProfilin is 22kDa, and is similar in size to the respective 22kDa native protein. Immunofluorescence and immunoelectron microscopy localized native NcProfilin to the apical end of N. caninum tachyzoites. Incubation of recombinant NcProfilin with spleen cells from BALB/c mice induced release of IFN-gamma. Also, injection of BALB/c mice with purified rNcProfilin elicited a strong IFN-gamma and IL-12 responses at 6 and 24h after injection indicating that NcProfilin may be an important protein in regulation of cytokine responses to N. caninum.
Collapse
Affiliation(s)
- Mark C Jenkins
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Aguado-Martínez A, Alvarez-García G, Fernández-García A, Risco-Castillo V, Marugán-Hernández V, Ortega-Mora LM. Failure of a vaccine using immunogenic recombinant proteins rNcSAG4 and rNcGRA7 against neosporosis in mice. Vaccine 2009; 27:7331-8. [PMID: 19782735 DOI: 10.1016/j.vaccine.2009.09.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 11/25/2022]
Abstract
The development of an effective vaccine against Neospora caninum infection in cattle is an important issue due to the significant economic impact of this parasitic disease worldwide. In this work, the immune response, safety and efficacy of different vaccine formulations using the N. caninum recombinant proteins rNcSAG4 (the first bradyzoite-specific protein assayed as a vaccine) and rNcGRA7 were evaluated in mouse models. The survival curves of pups from all vaccinated groups showed a slight delay in time to death compared to control groups; this difference was statistically significant for rNcSAG4+adjuvant group. Immune response of mice vaccinated with rNcSAG4 was characterized by reduced specific IgG and cytokine levels with an equilibrated IFN-gamma/IL-10 balance. Regarding mice vaccinated with rNcGRA7, a very strong humoral and cellular immune response was generated characterized by a hyper-production of IFN-gamma. This response was not accompanied by significant protection. Vaccination with a mixture of both recombinant proteins reduced infection in lung and brain during acute and chronic infection, respectively, although it was not statistically significant. In summary, no significant protection was obtained with these vaccine formulations in the present mouse models. However, the study reveals some positive results on immune response and efficacy for both recombinant proteins; these results are being discussed in order to suggest new approaches with new chronic infection mouse models and adjuvants.
Collapse
Affiliation(s)
- Adriana Aguado-Martínez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Thaxton JE, Romero R, Sharma S. TLR9 activation coupled to IL-10 deficiency induces adverse pregnancy outcomes. THE JOURNAL OF IMMUNOLOGY 2009; 183:1144-54. [PMID: 19561095 DOI: 10.4049/jimmunol.0900788] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pregnancy outcome is severely compromised by intrauterine infections and inflammation. Although the pregnant uterine microenvironment is replete with innate immune cells and TLR expression, the mechanisms that facilitate adverse effects of their activation are largely unknown. In this study, we mimic the activation of TLR9 with its pathogenic ligand hypomethylated CpG and demonstrate that IL-10 proficiency protects against CpG-induced pregnancy complications. We show that fetal resorption and preterm birth are rapidly induced in IL-10(-/-) mice by low doses of CpG (approximately 25 microg/mouse) when injected i.p. on gestational day 6 or gestational day 14, respectively. In contrast, wild-type mice failed to experience such effects at comparable doses, but pups born at term displayed craniofacial/limb defects in response to higher doses (approximately 400 microg/mouse). Pregnancy complications in IL-10(-/-) mice were associated with unexpected and robust TLR9-triggered activation and amplification of uterine neutrophil and macrophage subpopulations followed by their migration to the placental zone. Furthermore, a dramatic increase in serum levels of mouse KC and TNF-alpha production by uterine F4/80(+) cells, but not uterine NK or Gr-1(+)CD11b(+) cells, was observed. Depletion of F4/80(+) macrophages or neutralization of TNF-alpha rescued pregnancy to term. Our results have important implications for IL-10-mediated "uterine tolerance" against CpG-driven innate immune activation.
Collapse
Affiliation(s)
- Jessica E Thaxton
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905 USA
| | | | | |
Collapse
|
25
|
Reichel MP, Ellis JT. Neospora caninum--how close are we to development of an efficacious vaccine that prevents abortion in cattle? Int J Parasitol 2009; 39:1173-87. [PMID: 19497326 DOI: 10.1016/j.ijpara.2009.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
Abstract
Neospora caninum is a protozoan parasite that causes abortion in cattle around the world. Although the clinical signs of disease in both dogs and cattle have now been recognised for over 20years, treatment and control options are still limited, despite the availability of a commercial vaccine in some countries of the world. The case for an efficacious vaccine has not been convincingly waged by farmers, veterinarians and other members of the agricultural and rural communities. In recent times, however, economic modelling has been used to estimate the industry losses due to Neospora-associated abortion, providing, in turn, the business case for forms of control for this parasite, including the development of vaccines. In this review, we document progress in all areas of the vaccine development pipeline, including live, killed and recombinant forms and the animal models available for vaccine evaluation. In addition, we summarise the main outcomes on the economics of Neospora control and suggest that the current boom in the global dairy industry increases the specific need for a vaccine against N. caninum-associated abortion.
Collapse
Affiliation(s)
- Michael P Reichel
- Department of Medical and Molecular Biosciences, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | | |
Collapse
|
26
|
Vaccination with recombinant NcROP2 combined with recombinant NcMIC1 and NcMIC3 reduces cerebral infection and vertical transmission in mice experimentally infected with Neospora caninum tachyzoites. Int J Parasitol 2009; 39:1373-84. [PMID: 19447110 DOI: 10.1016/j.ijpara.2009.04.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/23/2009] [Accepted: 04/23/2009] [Indexed: 11/22/2022]
Abstract
We investigated the protective potential of recombinant his-tagged antigens recNcMIC1, recNcMIC3 and recNcROP2, applied either as single vaccines or as vaccine combinations, in BALB/c mouse models for cerebral and fetal infection. Subsequently, mice were mated and challenged by i.p. inoculation of 2 x 10(6)Neospora caninum tachyzoites at day 7 of pregnancy. The mortality and morbidity of adult mice (non-pregnant and dams) and of the newborn pups was studied for a period of 40 days following birth. Vaccination of non-pregnant mice with recNcROP2 or combinations of recNcROP2 with recNcMIC antigens significantly reduced the numbers of mice suffering from clinical signs, and morbidity was completely prevented with the combination of all three antigens. Of the dams, the groups receiving either recNcROP2 alone or the combination of all three antigens did not exhibit any morbidity, the groups receiving ROP2 mixed with either MIC1 or MIC3 exhibited reduced numbers of deaths, and in the infection control group and the adjuvant group 50% and 43% of mice, respectively, succumbed to disease. For pups, the highest survival rates were noted for the groups receiving recNcROP2 (50%) and recNcROP2/NcMIC1/NcMIC3 (35%), while in the infection- and adjuvant- control groups all pups died, the latest at days 25 and 30, respectively. Quantification of parasite DNA by N. caninum-specific real-time PCR revealed consistently lower parasite burdens in brain tissue of pups from vaccinated groups compared with the controls. However, dense granule antigen 2 (GRA2) real-time reverse transcriptase-PCR on brain tissue of surviving pups (applied here to detect viable parasites) demonstrated that only the pups from the group vaccinated with all three antigens in combination appeared free of viable tachyzoites, while in all other groups viable parasites were still present. Serological analysis of humoral (total IgG, IgG1 and IgG2a) and serum cytokine (IL-4 and IFN-gamma) responses showed that this effect was associated with a Th-2-biased immune response, with a clearly elevated IL-4/IFN-gamma ratio in the mice receiving all three antigens in combination. In conclusion, a mixture of recombinant antigens representing important secretory micronemal and rhoptry proteins leads to a significant protection against vertical transmission of N. caninum in mice.
Collapse
|
27
|
Immunization with oligomannose-coated liposome-entrapped dense granule protein 7 protects dams and offspring from Neospora caninum infection in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:792-7. [PMID: 19357313 DOI: 10.1128/cvi.00032-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study demonstrates that the subcutaneous administration of Neospora caninum dense granule protein 7 (NcGRA7) entrapped in liposomes coated with mannotriose strongly induces the parasite-specific T-helper type 1 immune response and humoral antibody in mice. Although anti-NcGRA7 immunoglobulin G1 antibody production was induced in mice injected with NcGRA7 alone, the dams and offspring were never protected from N. caninum infection. The immunization of mice with liposome-entrapped NcGRA7 before pregnancy resulted in increased offspring survival and decreased the infection rates in the brains of dams after parasite infection at 6 to 9 days of gestation. In conclusion, oligomannose-coated liposome-entrapped NcGRA7 can be used as a new type of effective vaccine to control neosporosis.
Collapse
|
28
|
Ribeiro DP, Freitas MMP, Cardoso MRD, Pajuaba ACAM, Silva NM, Mineo TWP, Silva JS, Mineo JR, Silva DAO. CpG-ODN combined with Neospora caninum lysate, but not with excreted-secreted antigen, enhances protection against infection in mice. Vaccine 2009; 27:2570-9. [PMID: 19428863 DOI: 10.1016/j.vaccine.2009.02.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 02/05/2009] [Accepted: 02/06/2009] [Indexed: 01/12/2023]
Abstract
CpG oligodeoxynucleotides (ODN) have shown to be potent immunoadjuvants for several pathogens, but there is limited information concerning their use in immunization protocols against neosporosis. This study aimed to evaluate the potential of CpG-ODN combined with Neospora lysate antigen (NLA) or excreted-secreted antigen (NcESA) to induce protective immune response against Neospora caninum infection in mice. C57BL/6 mice were vaccinated subcutaneously three times at 2-week intervals with NLA, NLA+CpG, NcESA, NcESA+CpG, CpG (adjuvant control) or PBS (infection control). Serological assays showed an increased specific IgG2a response in animals immunized with either antigen plus adjuvant and elevated levels of the IgG1 isotype in those vaccinated with antigens alone. Splenocyte proliferative responses upon antigen stimulation were higher in groups immunized with NLA or NcESA combined with CpG, showing increased IL-12 levels. Also, mice vaccinated with NcESA or NcESA+CpG demonstrated higher IFN-gamma levels and IFN-gamma/IL-10 ratio. After lethal challenge, mice immunized with NLA+CpG or NLA had lower morbidity score and body weight changes in comparison to other groups, and animals did not succumb during acute infection. In contrast, NcESA+CpG or NcESA groups exhibited the highest morbidity scores, body weight impairment and mortality rates, associated with greatest brain parasite burden and inflammation. In conclusion, CpG-ODN was able to induce a Th1-type humoral immune response with predominant IgG2a levels for either NLA or NcESA, but resulting in an effective Th1-driven cellular immune response and total protection only when combined with NLA. Vaccination with NcESA alone or combined with CpG resulted in a strong cellular immune response associated with high levels of IFN-gamma and inflammation, rendering mice more susceptible to parasite challenge.
Collapse
Affiliation(s)
- Dâmaso P Ribeiro
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, Av. Pará 1720, Uberlândia 38400-902, MG, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Debache K, Guionaud C, Alaeddine F, Mevissen M, Hemphill A. Vaccination of mice with recombinant NcROP2 antigen reduces mortality and cerebral infection in mice infected with Neospora caninum tachyzoites. Int J Parasitol 2008; 38:1455-63. [PMID: 18495126 DOI: 10.1016/j.ijpara.2008.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/04/2008] [Accepted: 04/06/2008] [Indexed: 10/22/2022]
Abstract
Rhoptry antigens are involved in a variety of cellular functions related to host cell invasion, formation of the parasitophorous vacuole and parasite-host cell interplay. The cDNA sequence of one of these antigens, NcROP2 was identified from Neospora caninum expressed sequence tags (ESTs), amplified by reverse transcription-PCR, expressed in Escherichia coli as a (His)(6)-tagged recombinant protein (recNcROP2) and purified over Ni(2+)-affinity chromatography. Both recNcROP2 and antibodies directed against recNcROP2 had a negative impact on N. caninum tachyzoite host cell invasion in vitro, indicating that this protein participates in the host cell entry process. Subsequently, the protective efficacy of NcROP2 as a potential vaccine candidate was evaluated in a C57BL/6 mouse cerebral disease model. Mice were vaccinated three times at 2-week intervals with recNcROP2 emulsified either in Freund's incomplete adjuvants (FIA) or saponin, and control groups were treated with adjuvants alone (adjuvants control) or PBS (infection control). Subsequently, mice were challenged with 2x10(6)N. caninum tachyzoites. Nine mice, all belonging to the infection control or adjuvants control groups, exhibited clinical signs of cerebral neosporosis and succumbed to infection, whilst no clinical signs were noted for recNcROP2-vaccinated mice. For all other animals, the experiment was terminated 35 days p.i. Cerebral parasite burdens were assessed by quantitative PCR in all mice, and were revealed to be significantly reduced in the recNcROP2-vaccinated mice. ELISA of sera revealed IgG1 to be elevated in recNcROP2-saponin vaccinated mice, whilst IgG2a was higher in recNcROP2-FIA vaccinated animals. This shows that, depending on the adjuvants used, vaccination with NcROP2 induces a protective Th-1- or Th-2-biased immune response against experimental N. caninum infection.
Collapse
Affiliation(s)
- Karim Debache
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| | | | | | | | | |
Collapse
|
30
|
Huang Y, Chen A, Li X, Chen Z, Zhang W, Song Y, Gurner D, Gardiner D, Basu S, Ho DD, Tsuji M. Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, alpha-galactosylceramide. Vaccine 2008; 26:1807-16. [PMID: 18329757 DOI: 10.1016/j.vaccine.2008.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 01/17/2008] [Accepted: 02/02/2008] [Indexed: 10/22/2022]
Abstract
A number of studies have shown that the natural killer T cell (NKT) ligand alpha-galactosylceramide (alpha-GalCer) serves as an adjuvant for various vaccines, including viral vaccines, parasite vaccines and protein vaccines. In this report, we investigated the adjuvant activity of alpha-GalCer on HIV-1 DNA vaccines in mice. This is a first study to show that alpha-GalCer can enhance the immunogenicity of DNA vaccines, since co-administration of alpha-GalCer with suboptimal doses of DNA vaccines greatly enhanced antigen-specific CD4+ T-cell and CD8+ T-cell responses. Differently from other vaccines, alpha-GalCer was also able to enhance HIV-specific antibody response 10-fold. It is of practical importance to find out that, in a DNA prime-DNA boost regimen, the adjuvant activity of alpha-GalCer was most profound when co-administered at the priming, but not at the boosting phase. In a dose-sparing experiment, we found that the level of cell-mediated immune responses in mice vaccinated with 5 microg of DNA in the presence of alpha-GalCer was equivalent to that of mice vaccinated with 50 microg of DNA in the absence of alpha-GalCer. Finally, results from CD1d and interferon-gamma receptor knockout mice confirm our previous data and determine the mechanistic dependence upon these molecules. These results illustrate that alpha-GalCer enhances the immunogenicity of DNA vaccines in a mechanism-based fashion. Since both mice and humans share the CD1d molecule, this information may aid in designing more effective DNA vaccines and vaccine adjuvants against HIV-1.
Collapse
Affiliation(s)
- Yaoxing Huang
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bovine immune response to inoculation with Neospora caninum surface antigen SRS2 lipopeptides mimics immune response to infection with live parasites. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:659-67. [PMID: 18305105 DOI: 10.1128/cvi.00436-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Infection of cattle with Neospora caninum protozoa, the causative agent of bovine protozoal abortion, results in robust cellular and humoral immune responses, particularly CD4(+) T-lymphocyte activation and gamma interferon (IFN-gamma) secretion. In the present study, N. caninum SRS2 (NcSRS2) T-lymphocyte-epitope-bearing subunits were incorporated into DNA and peptide preparations to assess CD4(+) cell proliferation and IFN-gamma T-lymphocyte-secretion immune responses in cattle with predetermined major histocompatibility complex (MHC) genotypes. In order to optimize dendritic-cell processing, NcSRS2 DNA vaccine was delivered with granulocyte macrophage-colony-stimulating factor and Flt3 ligand adjuvant. The synthesized NcSRS2 peptides were coupled with a palmitic acid molecule (lipopeptide) and delivered with Freund's adjuvant. Cattle vaccinated with NcSRS2 DNA vaccine alone did not induce T-lymphocyte activation or IFN-gamma secretion, whereas subsequent booster inoculation with NcSRS2-lipopeptides induced robust NcSRS2-specific immune responses. Compared to the response in control animals, NcSRS2-lipopeptide-immunized cattle had significantly increased NcSRS2-specific T-lymphocyte proliferation, numbers of IFN-gamma-secreting peripheral blood mononuclear cells, and immunoglobulin G1 (IgG1) and IgG2a antibody levels. The findings show that N. caninum NcSRS2 subunits bearing T-lymphocyte epitopes induced cell-mediated immune responses similar to the protective immune responses previously described against live parasite infection, namely T-lymphocyte activation and IFN-gamma secretion. The findings support the investigation of NcSRS2 immunogens for protection against N. caninum-induced fetal infection and abortion in cattle.
Collapse
|
32
|
Ramamoorthy S, Sanakkayala N, Vemulapalli R, Jain N, Lindsay DS, Schurig GS, Boyle SM, Sriranganathan N. Prevention of vertical transmission of Neospora caninum in C57BL/6 mice vaccinated with Brucella abortus strain RB51 expressing N. caninum protective antigens. Int J Parasitol 2007; 37:1531-8. [PMID: 17575983 DOI: 10.1016/j.ijpara.2007.04.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 04/22/2007] [Accepted: 04/26/2007] [Indexed: 11/17/2022]
Abstract
Bovine abortions caused by the apicomplexan parasite Neospora caninum have been responsible for severe economic losses to the cattle industry. Infected cows either experience abortion or transmit the parasite transplacentally at a rate of up to 95%. Neospora caninum vaccines that can prevent vertical transmission and ensure disruption in the life cycle of the parasite greatly aid in the management of neosporosis in the cattle industry. Brucella abortus strain RB51, a commercially available vaccine for bovine brucellosis, can also be used as a vector to express plasmid-encoded proteins from other pathogens. Neospora caninum protective antigens MIC1, MIC3, GRA2, GRA6 and SRS2 were expressed in strain RB51. Female C57BL/6 mice were vaccinated with a recombinant strain RB51 expressing N. caninum antigen or irradiated tachyzoites, boosted 4 weeks later and then bred. Antigen-specific IgG, IFN-gamma and IL-10 were detected in vaccinated pregnant mice. Vaccinated mice were challenged with 5 x 10(6)N. caninum tachyzoites between days 11-13 of pregnancy. Brain tissue was collected from pups 3 weeks after birth and examined for the presence of N. caninum by real-time PCR. The RB51-MIC3, RB51-GRA6, irradiated tachyzoite vaccine, pooled strain RB51-Neospora vaccine, RB51-MIC1 and RB51-SRS2 vaccines elicited approximately 6-38% protection against vertical transmission. However, the differences in parasite burden in brain tissue of pups from the control and vaccinated groups were highly significant for all groups. Thus, B. abortus strain RB51 expressing the specific N. caninum antigens induced substantial protection against vertical transmission of N. caninum in mice.
Collapse
|
33
|
Srinivasan S, Mueller J, Suana A, Hemphill A. VACCINATION WITH MICRONEME PROTEIN NCMIC4 INCREASES MORTALITY IN MICE INOCULATED WITH NEOSPORA CANINUM. J Parasitol 2007; 93:1046-55. [DOI: 10.1645/ge-1181r1.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
34
|
Bartley PM, Wright S, Chianini F, Buxton D, Innes EA. Inoculation of Balb/c mice with live attenuated tachyzoites protects against a lethal challenge of Neospora caninum. Parasitology 2007; 135:13-21. [PMID: 17767798 DOI: 10.1017/s0031182007003526] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neospora caninum tachyzoites attenuated through passage in tissue culture were tested for their ability to induce protective immunity against a lethal challenge dose of parasites. Balb/c mice were each inoculated with either 1x10(6) live virulent tachyzoites (Group 1) or 1x10(6) live attenuated tachyzoites (Group 2), while (Group 3) received a control inoculum. All mice were each challenged 28 days later with 5x10(6) virulent parasites. Histopathological lesions in the brains including necrosis and microgliosis were observed following post-mortem on day 28 post-challenge (p.c.) in 71% of Group 1 and 56% of Group 2. Immunohistochemistry (IHC) of these lesions showed tachyzoites and Neospora antigens to be associated with moderate brain lesions in 17% of Group 1, while in 11% of Group 2 N. caninum tissue cysts were detected, but these were not associated with lesions, Parasite DNA was detected by PCR in the brains of 86% of mice in Group 1 and 56% of mice in Group 2. Following challenge the mice in Group 3 showed high morbidity and 100% mortality within 17 days p.c. Positive IHC for N. caninum was seen in 88% of the Group 3 mice and parasite DNA was detected in all brain samples. This study shows that it is possible to protect against a lethal challenge of N. caninum through inoculation with attenuated or virulent tachyzoites. However, more severe pathology developed in mice initially inoculated with virulent parasites following a secondary challenge, compared to mice initially inoculated with attenuated parasites.
Collapse
Affiliation(s)
- P M Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, Scotland, UK.
| | | | | | | | | |
Collapse
|
35
|
Innes EA, Vermeulen AN. Vaccination as a control strategy against the coccidial parasitesEimeria,ToxoplasmaandNeospora. Parasitology 2007; 133 Suppl:S145-68. [PMID: 17274844 DOI: 10.1017/s0031182006001855] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The protozoan parasitesEimeriaspp.Toxoplasma gondiiandNeospora caninumare significant causes of disease in livestock worldwide andT. gondiiis also an important human pathogen. Drugs have been used with varying success to help control aspects of these diseases and commercial vaccines are available for all three groups of parasites. However, there are issues with increasing development of resistance to many of the anti-coccidial drugs used to help control avian eimeriosis and public concerns about the use of drugs in food animals. In addition there are no drugs available that can act against the tissue cyst stage of eitherT. gondiiorN. caninumand thus cure animals or people of infection. All three groups of parasites multiply within the cells of their host species and therefore cell mediated immune mechanisms are thought to be an important component of host protective immunity. Successful vaccination strategies for bothEimeriaandToxoplasmahave relied on using a live vaccination approach using attenuated parasites which allows correct processing and presentation of antigen to the host immune system to stimulate appropriate cell mediated immune responses. However, live vaccines can have problems with safety, short shelf-life and large-scale production; therefore there is continued interest in devising new vaccines using defined recombinant antigens. The major challenges in devising novel vaccines are to select relevant antigens and then present them to the immune system in an appropriate manner to enable the induction of protective immune responses. With all three groups of parasites, vaccine preparations comprising antigens from the different life cycle stages may also be advantageous. In the case ofEimeriaparasites there are also problems with strain-specific immunity therefore a cocktail of antigens from different parasite strains may be required. Improving our knowledge of the different parasite transmission routes, host-parasite relationships, disease pathogenesis and determining the various roles of the host immune response being at times host-protective, parasite protective and in causing immunopathology will help to tailor a vaccination strategy against a particular disease target. This paper discusses current vaccination strategies to help combat infections withEimeria,ToxoplasmaandNeosporaand recent research looking towards developing new vaccine targets and approaches.
Collapse
Affiliation(s)
- E A Innes
- Moredun Research Institute, Pentlands Science Park, Edinburgh EH26 OPZ, UK.
| | | |
Collapse
|
36
|
Alvarez-García G, Pitarch A, Zaballos A, Fernández-García A, Gil C, Gómez-Bautista M, Aguado-Martínez A, Ortega-Mora LM. The NcGRA7 gene encodes the immunodominant 17 kDa antigen of Neospora caninum. Parasitology 2006; 134:41-50. [PMID: 17032479 DOI: 10.1017/s0031182006001284] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/28/2006] [Accepted: 07/07/2006] [Indexed: 11/06/2022]
Abstract
A Neospora caninum 17-19 kDa antigenic protein fraction (p17) in one-dimensional polyacrylamide gel electrophoresis (SDS-PAGE) is the immunodominant antigen recognized by sera from bovines naturally infected by N. caninum. To identify the proteins making up the p17 fraction, we screened a new N. caninum tachyzoite cDNA library with an affinity-purified antibody against p17 (APA17). We isolated several cDNA clones with 100% sequence identity to the NcGRA7 gene. This previously described gene encodes a dense granule protein with an apparent molecular mass of 33 kDa. A second line of evidence emerged through a combined proteomic approach associating two-dimensional PAGE (2D-PAGE) to Western blotting and to mass spectrometry to characterize the p17 fraction. Two acidic immunodominant but minority protein spots were recognized by APA17 and by bovine sera. These antigens of 17 and 33 kDa are respectively composed of 4 and 2 isoforms. Furthermore, p17 isolation by 2D-PAGE and peptide sequencing by tandem mass spectrometry yielded a partial sequence of 17 amino acids, which allowed the putative amino terminal region of the NcGRA7 protein to be identified unambiguously. The NcGRA7 protein, without the putative signal peptide at the NH2-terminus, was cloned and expressed in Escherichia coli and when the purified recombinant protein (rNcGRA7) was analysed by SDS-PAGE and mass spectrometry, 2 bands of 24 and 33 kDa were resolved and identified as NcGRA7. These results demonstrate that the immunodominant 17 kDa antigen of N. caninum is encoded by the NcGRA7 gene.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Base Sequence
- Blotting, Western
- Chlorocebus aethiops
- Coccidiosis/diagnosis
- Coccidiosis/immunology
- DNA, Complementary
- Databases, Nucleic Acid
- Electrophoresis, Gel, Two-Dimensional
- Expressed Sequence Tags
- Genes, Protozoan
- Molecular Sequence Data
- Neospora/chemistry
- Neospora/genetics
- Neospora/immunology
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tandem Mass Spectrometry
- Vero Cells
Collapse
Affiliation(s)
- G Alvarez-García
- Grupo SALUVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hemphill A, Vonlaufen N, Naguleswaran A. Cellular and immunological basis of the host-parasite relationship during infection with Neospora caninum. Parasitology 2006; 133:261-78. [PMID: 16753081 DOI: 10.1017/s0031182006000485] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 04/04/2006] [Accepted: 04/08/2006] [Indexed: 11/07/2022]
Abstract
Neospora caninum is an apicomplexan parasite that is closely related to Toxoplasma gondii, the causative agent of toxoplasmosis in humans and domestic animals. However, in contrast to T. gondii, N. caninum represents a major cause of abortion in cattle, pointing towards distinct differences in the biology of these two species. There are 3 distinct key features that represent potential targets for prevention of infection or intervention against disease caused by N. caninum. Firstly, tachyzoites are capable of infecting a large variety of host cells in vitro and in vivo. Secondly, the parasite exploits its ability to respond to alterations in living conditions by converting into another stage (tachyzoite-to-bradyzoite or vice versa). Thirdly, by analogy with T. gondii, this parasite has evolved mechanisms that modulate its host cells according to its own requirements, and these must, especially in the case of the bradyzoite stage, involve mechanisms that ensure long-term survival of not only the parasite but also of the host cell. In order to elucidate the molecular and cellular bases of these important features of N. caninum, cell culture-based approaches and laboratory animal models are being exploited. In this review, we will summarize the current achievements related to host cell and parasite cell biology, and will discuss potential applications for prevention of infection and/or disease by reviewing corresponding work performed in murine laboratory infection models and in cattle.
Collapse
Affiliation(s)
- A Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| | | | | |
Collapse
|
38
|
Alaeddine F, Keller N, Leepin A, Hemphill A. Reduced infection and protection from clinical signs of cerebral neosporosis in C57BL/6 mice vaccinated with recombinant microneme antigen NcMIC1. J Parasitol 2005; 91:657-65. [PMID: 16108562 DOI: 10.1645/ge-401r] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
NcMIC1 is a 460 amino acid Neospora caninum microneme protein implicated in host cell adhesion and invasion processes. In this study, we assessed the potential protectivity of NcMIC1-based vaccination against experimental N. caninum infection in mice, employing both recombinant antigen vaccines and DNA vaccines. Recombinant NcMIC1 (recNcMIC1) was expressed in Escherichia coli as gluthatione-S-transferase-fusion protein. The corresponding NcMIC1 cDNA was cloned into the pcDNA3.1 expression plasmid (pcDNA-MIC1), and expression was checked in transfected Vero cells. Mice (10 animals/group) were vaccinated either with recNcMIC1 antigen suspended in Ribi-adjuvant (3 intraperitoneal injections), pcDNA-NcMIC1 (3 intramuscular injections), or pcDNA-NcMIC1 (twice intramuscularly), followed by 1 intraperitoneal recNcMIC1 antigen boost. Control groups included corresponding treatments with adjuvant, pcDNA3.1 without insert, and PBS (= infection control). All vaccinated and control groups were then challenged intraperitoneally with 2 x 10(6) N. caninum tachyzoites. Animals were inspected daily for a period of 3 wk postinfection (PI). At day 21, all animals were killed and assessed for infection. Before day 21 PI, clinical signs such as walking disorders, rounded back, apathy, and paralysis occurred in infection controls (50% of the mice), pcDNA and adjuvant controls (20% each), and the combined pcDNA-NcMIC1/recNcMIC1-treated group (30%). No clinical symptoms were observed in the recNcMIC1 and pcDNA-NcMIC1 vaccinated groups. All mice were positive for cerebral N. caninum infection as assessed by PCR of brain tissue. However, quantitative real-time PCR revealed that the infection intensity was significantly reduced in the group vaccinated with recNcMIC1 antigen. Immunohistochemistry confirmed these findings. In contrast, the infection intensity was highest in the group vaccinated with the pcDNA-NcMIC1/recNcMIC1 combination, indicating that the sequential application of the DNA vaccine and recombinant antigen had a deleterious effect. Serological analysis showed that only recNcMIC1-immunized animals generated detectable antibody levels recognizing native NcMIC1. Thus, of all protocols applied here, only recNcMIC1 vaccination appears to be suited to reduce cerebral infection in mice challenged with N. caninum tachyzoites.
Collapse
Affiliation(s)
- Ferial Alaeddine
- Institute of Parasitology, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland
| | | | | | | |
Collapse
|