1
|
Wang Y, Shi G, Wang X, Xie Z, Gou J, Huang L, Huang H, You W, Wang R, Yang Y, Wang F, Zhu T, Zhao D. Preliminary Evaluation of the Safety and Immunogenicity of a Novel Protein-Based Pneumococcal Vaccine in Healthy Adults Aged 18-49: A Phase Ia Randomized, Double Blind, Placebo-Controlled Clinical Study. Vaccines (Basel) 2024; 12:827. [PMID: 39203953 PMCID: PMC11358999 DOI: 10.3390/vaccines12080827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/03/2024] Open
Abstract
Background: Protein-based pneumococcal vaccines (PBPVs) may offer expanded protection against Streptococcus pneumoniae and tackle the antimicrobial resistance crisis in pneumococcal infections. This study examined the safety and immunogenicity in healthy adults vaccinated with three doses of a protein-based pneumococcal vaccine containing pneumococcal surface protein A (PspA) (PRX1, P3296 and P5668) and in combination with a recombinant detoxified pneumolysin protein (PlyLD). Methods: This phase Ia randomized, double blind, placebo-controlled clinical study enrolled healthy adults aged 18-49 years. The participants were randomized into experimental (low-dose, medium-dose, high-dose) and placebo groups in a ratio of 3:1. Three doses of investigational vaccine were given to the participants with an interval of two months. Safety endpoints included the occurrence of total adverse reactions, solicited local and systemic adverse reactions, unsolicited adverse reactions, serious adverse events (SAEs), and several laboratory parameters. Immunogenicity endpoints included geometric mean titers (GMT) of anti-PspA (PRX1, P3296 and P5668) and anti-PlyLD antibodies level as determined by ELISA, seropositivity rates of PspA and PlyLD antibodies (>4-fold increase) and neutralization activity of anti-Ply antibody in serum. Results: A total of 118 participants completed the study of three doses. The candidate PBPV was safe and well-tolerated in all experimental groups. No vaccine-related SAEs were observed in this study. Most solicited adverse reactions were mild and transient. The most frequently reported solicited adverse reactions in the medium- and high-dose groups was pain at the injection site, while in the low-dose group it was elevated blood pressure. The immunogenicity data showed a sharp increase in the GMT level of anti-PspA-RX1, anti-PspA-3296, anti-PspA-5668, and anti-PlyLD antibodies in serum. The results also showed that the elicited antibodies were dosage-dependent. The high-dose group showed a higher immune response against PspA-RX1, PspA-3296, PspA-5668, and PlyLD antigens. However, repeat vaccination did not increase the level of anti-PspA antibodies but the level of anti-PlyLD antibody. High seropositivity rates were also observed for anti-PspA-RX1, anti-PspA-3296, anti-PspA-5668, and anti-PlyLD antibodies. In addition, a significant difference in the GMT levels of anti-Ply antibody between the high-, medium-, and low-dose groups post each vaccination were indicated by neutralization activity tests. Conclusions: The PBPV showed a safe and immunogenic profile in this clinical trial. Taking into consideration both safety and immunogenicity data, we propose a single dose of 50 µg (medium dose) of PBPV as the optimum approach in providing expanded protection against Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Yanxia Wang
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China; (Y.W.); (Z.X.); (L.H.); (W.Y.)
| | - Gang Shi
- National Institutes for Food and Drug Control, Beijing 100050, China;
| | - Xue Wang
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Zhiqiang Xie
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China; (Y.W.); (Z.X.); (L.H.); (W.Y.)
| | - Jinbo Gou
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Lili Huang
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China; (Y.W.); (Z.X.); (L.H.); (W.Y.)
| | - Haitao Huang
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Wangyang You
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China; (Y.W.); (Z.X.); (L.H.); (W.Y.)
| | - Ruijie Wang
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Yongli Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China;
| | - Feiyu Wang
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Tao Zhu
- CanSino Biologics Inc., Tianjin 300457, China; (X.W.); (J.G.); (H.H.); (R.W.); (F.W.)
| | - Dongyang Zhao
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China; (Y.W.); (Z.X.); (L.H.); (W.Y.)
| |
Collapse
|
2
|
Gupta LK, Molla J, Prabhu AA. Story of Pore-Forming Proteins from Deadly Disease-Causing Agents to Modern Applications with Evolutionary Significance. Mol Biotechnol 2024; 66:1327-1356. [PMID: 37294530 DOI: 10.1007/s12033-023-00776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023]
Abstract
Animal venoms are a complex mixture of highly specialized toxic molecules. Among them, pore-forming proteins (PFPs) or toxins (PFTs) are one of the major disease-causing toxic elements. The ability of the PFPs in defense and toxicity through pore formation on the host cell surface makes them unique among the toxin proteins. These features made them attractive for academic and research purposes for years in the areas of microbiology as well as structural biology. All the PFPs share a common mechanism of action for the attack of host cells and pore formation in which the selected pore-forming motifs of the host cell membrane-bound protein molecules drive to the lipid bilayer of the cell membrane and eventually produces water-filled pores. But surprisingly their sequence similarity is very poor. Their existence can be seen both in a soluble state and also in transmembrane complexes in the cell membrane. PFPs are prevalent toxic factors that are predominately produced by all kingdoms of life such as virulence bacteria, nematodes, fungi, protozoan parasites, frogs, plants, and also from higher organisms. Nowadays, multiple approaches to applications of PFPs have been conducted by researchers both in basic as well as applied biological research. Although PFPs are very devastating for human health nowadays researchers have been successful in making these toxic proteins into therapeutics through the preparation of immunotoxins. We have discussed the structural, and functional mechanism of action, evolutionary significance through dendrogram, domain organization, and practical applications for various approaches. This review aims to emphasize the PFTs to summarize toxic proteins together for basic knowledge as well as to highlight the current challenges, and literature gap along with the perspective of promising biotechnological applications for their future research.
Collapse
Affiliation(s)
- Laxmi Kumari Gupta
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Johiruddin Molla
- Ghatal Rabindra Satabarsiki Mahavidyalaya Ghatal, Paschim Medinipur, Ghatal, West Bengal, 721212, India
| | - Ashish A Prabhu
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
3
|
Serra S, Iannotti V, Ferrante M, Tofiño-Vian M, Baxendale J, Silberberg G, Kohler TP, Hammerschmidt S, Ulijasz AT, Iovino F. The single D380 amino acid substitution increases pneumolysin cytotoxicity toward neuronal cells. iScience 2024; 27:109583. [PMID: 38632998 PMCID: PMC11022043 DOI: 10.1016/j.isci.2024.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Bacterial meningitis, frequently caused by Streptococcus pneumoniae (pneumococcus), represents a substantial global health threat leading to long-term neurological disorders. This study focused on the cholesterol-binding toxin pneumolysin (PLY) released by pneumococci, specifically examining clinical isolates from patients with meningitis and comparing them to the PLY-reference S. pneumoniae strain D39. Clinical isolates exhibit enhanced PLY release, likely due to a significantly higher expression of the autolysin LytA. Notably, the same single amino acid (aa) D380 substitution in the PLY D4 domain present in all clinical isolates significantly enhances cholesterol binding, pore-forming activity, and cytotoxicity toward SH-SY5Y-derived neuronal cells. Scanning electron microscopy of human neuronal cells and patch clamp electrophysiological recordings on mouse brain slices confirm the enhanced neurotoxicity of the PLY variant carrying the single aa substitution. This study highlights how a single aa modification enormously alters PLY cytotoxic potential, emphasizing the importance of PLY as a major cause of the neurological sequelae associated with pneumococcal meningitis.
Collapse
Affiliation(s)
- Simona Serra
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vittorio Iannotti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Joseph Baxendale
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas P. Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Andrew T. Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Li S, Liang H, Zhao SH, Yang XY, Guo Z. Recent progress in pneumococcal protein vaccines. Front Immunol 2023; 14:1278346. [PMID: 37818378 PMCID: PMC10560988 DOI: 10.3389/fimmu.2023.1278346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Pneumococcal infections continue to pose a significant global health concern, necessitating the development of effective vaccines. Despite the progress shown by pneumococcal polysaccharide and conjugate vaccines, their limited coverage and the emergence of non-vaccine serotypes have highlighted the need for alternative approaches. Protein-based pneumococcal vaccines, targeting conserved surface proteins of Streptococcus pneumoniae, have emerged as a promising strategy. In this review, we provide an overview of the advancements made in the development of pneumococcal protein vaccines. We discuss the key protein vaccine candidates, highlight their vaccination results in animal studies, and explore the challenges and future directions in protein-based pneumococcal vaccine.
Collapse
Affiliation(s)
- Sha Li
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, School of Bioengineering, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Hangeri Liang
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, School of Bioengineering, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Shui-Hao Zhao
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong, China
| | - Xiao-Yan Yang
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, School of Bioengineering, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Zhong Guo
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong, China
| |
Collapse
|
5
|
Duke JA, Avci FY. Emerging vaccine strategies against the incessant pneumococcal disease. NPJ Vaccines 2023; 8:122. [PMID: 37591986 PMCID: PMC10435554 DOI: 10.1038/s41541-023-00715-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
The incidence of invasive pneumococcal disease (IPD) caused by infection with the pathogen Streptococcus pneumoniae (Spn) has been on a downward trend for decades due to worldwide vaccination programs. Despite the clinical successes observed, the Center for Disease Control (CDC) reports that the continued global burden of S. pneumoniae will be in the millions each year, with a case-fatality rate hovering around 5%. Thus, it is a top priority to continue developing new Spn vaccination strategies to harness immunological insight and increase the magnitude of protection provided. As emphasized by the World Health Organization (WHO), it is also crucial to broaden the implementation of vaccines that are already obtainable in the clinical setting. This review focuses on the immune mechanisms triggered by existing pneumococcal vaccines and provides an overview of the current and upcoming clinical strategies being employed. We highlight the associated challenges of serotype selectivity and using pneumococcal-derived proteins as alternative vaccine antigens.
Collapse
Affiliation(s)
- Jeremy A Duke
- Sanofi, Suite 300, 2501 Discovery Drive, Orlando, FL, 32826, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
Ciacchi L, van de Garde MDB, Ladell K, Farenc C, Poelen MCM, Miners KL, Llerena C, Reid HH, Petersen J, Price DA, Rossjohn J, van Els CACM. CD4 + T cell-mediated recognition of a conserved cholesterol-dependent cytolysin epitope generates broad antibacterial immunity. Immunity 2023; 56:1082-1097.e6. [PMID: 37100059 DOI: 10.1016/j.immuni.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/31/2022] [Accepted: 03/30/2023] [Indexed: 04/28/2023]
Abstract
CD4+ T cell-mediated immunity against Streptococcus pneumoniae (pneumococcus) can protect against recurrent bacterial colonization and invasive pneumococcal diseases (IPDs). Although such immune responses are common, the pertinent antigens have remained elusive. We identified an immunodominant CD4+ T cell epitope derived from pneumolysin (Ply), a member of the bacterial cholesterol-dependent cytolysins (CDCs). This epitope was broadly immunogenic as a consequence of presentation by the pervasive human leukocyte antigen (HLA) allotypes DPB1∗02 and DPB1∗04 and recognition via architecturally diverse T cell receptors (TCRs). Moreover, the immunogenicity of Ply427-444 was underpinned by core residues in the conserved undecapeptide region (ECTGLAWEWWR), enabling cross-recognition of heterologous bacterial pathogens expressing CDCs. Molecular studies further showed that HLA-DP4-Ply427-441 was engaged similarly by private and public TCRs. Collectively, these findings reveal the mechanistic determinants of near-global immune focusing on a trans-phyla bacterial epitope, which could inform ancillary strategies to combat various life-threatening infectious diseases, including IPDs.
Collapse
Affiliation(s)
- Lisa Ciacchi
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Martijn D B van de Garde
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Utrecht 3721MA, the Netherlands
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Carine Farenc
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Martien C M Poelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Utrecht 3721MA, the Netherlands
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Carmen Llerena
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hugh H Reid
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Petersen
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK.
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK.
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Utrecht 3721MA, the Netherlands; Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584CL, the Netherlands.
| |
Collapse
|
7
|
Devarakonda Y, Reddy MVNJ, Neethu RS, Chandran A, Syal K. Multi epitope vaccine candidate design against Streptococcus pneumonia. J Biomol Struct Dyn 2023; 41:12654-12667. [PMID: 36636838 DOI: 10.1080/07391102.2023.2167123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
Streptococcus pneumonia, the causative agent of sepsis, meningitis and pneumonia, is held responsible for causing invasive diseases predominantly in children along with adults from both developing and developed countries. The available vaccines coverage in the context of different serotypes is limited and emergence of non-vaccine serotypes could further emerge as a threat in future. Advanced immunoinformatics tools have been used for developing a multi epitope subunit vaccine. In the current study we have subjected these four surface antigenic proteins Ply, PsaA, PspA and PspK to construct vaccine designs. We have predicted different B-cell and T-cell epitopes by using NetCTL 1.2, IEDB (Immune Epitope Databases) and ABCpred. An adjuvant (griselimycin) has been added to the vaccine construct sequence in order to improve its immunogenicity. The vaccine construct has been evaluated for its antigenicity, allergenicity, toxicity and different physio-chemical properties. The bioinformatic tools have been used for prediction, refinement and validation of the 3 D structure. Further, the vaccine structure has been docked with a toll-like receptor (TLR-4) by ClusPro 2.0. In conclusion, the proposed multi-epitope vaccine designs could potentially activate both humoral and cellular immune responses and has a potential to be a vaccine candidate against S.pneumoniae, and requires experimental validation for ensuring immunogenicity and safety profile.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yogeshwar Devarakonda
- Department of Biological Sciences, Center for Genetics and Molecular Microbiology, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad, India
| | - M V N Janaradhan Reddy
- Department of Biological Sciences, Center for Genetics and Molecular Microbiology, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad, India
| | - R S Neethu
- Department of Biological Sciences, Center for Genetics and Molecular Microbiology, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad, India
| | - Aneesh Chandran
- Department of Biotechnology and Microbiology, Kannur University, Kannur, India
| | - Kirtimaan Syal
- Department of Biological Sciences, Center for Genetics and Molecular Microbiology, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad, India
| |
Collapse
|
8
|
Cima Cabal MD, Molina F, López-Sánchez JI, Pérez-Santín E, Del Mar García-Suárez M. Pneumolysin as a target for new therapies against pneumococcal infections: A systematic review. PLoS One 2023; 18:e0282970. [PMID: 36947540 PMCID: PMC10032530 DOI: 10.1371/journal.pone.0282970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND This systematic review evaluates pneumolysin (PLY) as a target for new treatments against pneumococcal infections. Pneumolysin is one of the main virulence factors produced by all types of pneumococci. This toxin (53 kDa) is a highly conserved protein that binds to cholesterol in eukaryotic cells, forming pores that lead to cell destruction. METHODS The databases consulted were MEDLINE, Web of Science, and Scopus. Articles were independently screened by title, abstract, and full text by two researchers, and using consensus to resolve any disagreements that occurred. Articles in other languages different from English, patents, cases report, notes, chapter books and reviews were excluded. Searches were restricted to the years 2000 to 2021. Methodological quality was evaluated using OHAT framework. RESULTS Forty-one articles describing the effects of different molecules that inhibit PLY were reviewed. Briefly, the inhibitory molecules found were classified into three main groups: those exerting a direct effect by binding and/or blocking PLY, those acting indirectly by preventing its effects on host cells, and those whose mechanisms are unknown. Although many molecules are proposed as toxin blockers, only some of them, such as antibiotics, peptides, sterols, and statins, have the probability of being implemented as clinical treatment. In contrast, for other molecules, there are limited studies that demonstrate efficacy in animal models with sufficient reliability. DISCUSSION Most of the studies reviewed has a good level of confidence. However, one of the limitations of this systematic review is the lack of homogeneity of the studies, what prevented to carry out a statistical comparison of the results or meta-analysis. CONCLUSION A panel of molecules blocking PLY activity are associated with the improvement of the inflammatory process triggered by the pneumococcal infection. Some molecules have already been used in humans for other purposes, so they could be safe for use in patients with pneumococcal infections. These patients might benefit from a second line treatment during the initial stages of the infection preventing acute respiratory distress syndrome and invasive pneumococcal diseases. Additional research using the presented set of compounds might further improve the clinical management of these patients.
Collapse
Affiliation(s)
- María Dolores Cima Cabal
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - Felipe Molina
- Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - José Ignacio López-Sánchez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - Efrén Pérez-Santín
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - María Del Mar García-Suárez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| |
Collapse
|
9
|
Aceil J, Avci FY. Pneumococcal Surface Proteins as Virulence Factors, Immunogens, and Conserved Vaccine Targets. Front Cell Infect Microbiol 2022; 12:832254. [PMID: 35646747 PMCID: PMC9133333 DOI: 10.3389/fcimb.2022.832254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen that causes over 1 million deaths annually despite the availability of several multivalent pneumococcal conjugate vaccines (PCVs). Due to the limitations surrounding PCVs along with an evolutionary rise in antibiotic-resistant and unencapsulated strains, conserved immunogenic proteins as vaccine targets continue to be an important field of study for pneumococcal disease prevention. In this review, we provide an overview of multiple classes of conserved surface proteins that have been studied for their contribution to pneumococcal virulence. Furthermore, we discuss the immune responses observed in response to these proteins and their promise as vaccine targets.
Collapse
|
10
|
Gingerich AD, Mousa JJ. Diverse Mechanisms of Protective Anti-Pneumococcal Antibodies. Front Cell Infect Microbiol 2022; 12:824788. [PMID: 35155281 PMCID: PMC8834882 DOI: 10.3389/fcimb.2022.824788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
The gram-positive bacterium Streptococcus pneumoniae is a leading cause of pneumonia, otitis media, septicemia, and meningitis in children and adults. Current prevention and treatment efforts are primarily pneumococcal conjugate vaccines that target the bacterial capsule polysaccharide, as well as antibiotics for pathogen clearance. While these methods have been enormously effective at disease prevention and treatment, there has been an emergence of non-vaccine serotypes, termed serotype replacement, and increasing antibiotic resistance among these serotypes. To combat S. pneumoniae, the immune system must deploy an arsenal of antimicrobial functions. However, S. pneumoniae has evolved a repertoire of evasion techniques and is able to modulate the host immune system. Antibodies are a key component of pneumococcal immunity, targeting both the capsule polysaccharide and protein antigens on the surface of the bacterium. These antibodies have been shown to play a variety of roles including increasing opsonophagocytic activity, enzymatic and toxin neutralization, reducing bacterial adherence, and altering bacterial gene expression. In this review, we describe targets of anti-pneumococcal antibodies and describe antibody functions and effectiveness against S. pneumoniae.
Collapse
Affiliation(s)
- Aaron D. Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
- *Correspondence: Jarrod J. Mousa,
| |
Collapse
|
11
|
Park SS, Gonzalez-Juarbe N, Riegler AN, Im H, Hale Y, Platt MP, Croney C, Briles DE, Orihuela CJ. Streptococcus pneumoniae binds to host GAPDH on dying lung epithelial cells worsening secondary infection following influenza. Cell Rep 2021; 35:109267. [PMID: 34133917 PMCID: PMC8265312 DOI: 10.1016/j.celrep.2021.109267] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae (Spn) alone and during co-infection with influenza A virus (IAV) can result in severe pneumonia with mortality. Pneumococcal surface protein A (PspA) is an established virulence factor required for Spn evasion of lactoferricin and C-reactive protein-activated complement-mediated killing. Herein, we show that PspA functions as an adhesin to dying host cells. We demonstrate that PspA binds to host-derived glyceraldehyde-3-phosphate dehydrogenase (GAPDH) bound to outward-flipped phosphatidylserine residues on dying host cells. PspA-mediated adhesion was to apoptotic, pyroptotic, and necroptotic cells, but not healthy lung cells. Using isogenic mutants of Spn, we show that PspA-GAPDH-mediated binding to lung cells increases pneumococcal localization in the lower airway, and this is enhanced as a result of pneumolysin exposure or co-infection with IAV. PspA-mediated binding to GAPDH requires amino acids 230-281 in its α-helical domain with intratracheal inoculation of this PspA fragment alongside the bacteria reducing disease severity in an IAV/Spn pneumonia model.
Collapse
Affiliation(s)
- Sang-Sang Park
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Ashleigh N Riegler
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hansol Im
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yvette Hale
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maryann P Platt
- Infectious Diseases and Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Christina Croney
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - David E Briles
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carlos J Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
12
|
Kucinskaite-Kodze I, Simanavicius M, Dapkunas J, Pleckaityte M, Zvirbliene A. Mapping of Recognition Sites of Monoclonal Antibodies Responsible for the Inhibition of Pneumolysin Functional Activity. Biomolecules 2020; 10:biom10071009. [PMID: 32650398 PMCID: PMC7408604 DOI: 10.3390/biom10071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The pathogenicity of many bacteria, including Streptococcus pneumoniae, depends on pore-forming toxins (PFTs) that cause host cell lysis by forming large pores in cholesterol-containing cell membranes. Therefore, PFTs-neutralising antibodies may provide useful tools for reducing S. pneumoniae pathogenic effects. This study aimed at the development and characterisation of monoclonal antibodies (MAbs) with neutralising activity to S. pneumoniae PFT pneumolysin (PLY). Five out of 10 produced MAbs were able to neutralise the cytolytic activity of PLY on a lung epithelial cell line. Epitope mapping with a series of recombinant overlapping PLY fragments revealed that neutralising MAbs are directed against PLY loops L1 and L3 within domain 4. The epitopes of MAbs 3A9, 6E5 and 12F11 located at L1 loop (aa 454–471) were crucial for PLY binding to the immobilised cholesterol. In contrast, the MAb 12D10 recognising L3 (aa 403–423) and the MAb 3F3 against the conformational epitope did not interfere with PLY-cholesterol interaction. Due to conformation-dependent binding, the approach to use overlapping peptides for fine epitope mapping of the neutralising MAbs was unsuccessful. Therefore, the epitopes recognised by the MAbs were analysed using computational methods. This study provides new data on PLY sites involved in functional activity.
Collapse
|
13
|
Cortex Cercis chinensis Granules Attenuate Streptococcus pneumoniae Virulence by Targeting Pneumolysin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8537026. [PMID: 32617112 PMCID: PMC7315261 DOI: 10.1155/2020/8537026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/03/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022]
Abstract
Pore-forming toxins produced by bacteria are some of the most important molecular weapons for bacterial virulence. Pneumolysin (PLY) is a pore-forming toxin secreted by Streptococcus pneumoniae (S. pneumoniae) and plays a vital role in the spread, colonization, and invasion of this bacterium in the host, indicating that PLY is a promising target for developing treatments against S. pneumoniae infection. In this study, Cortex Cercis chinensis granules (CCCGs), a prescription drug on the market, were shown to inhibit the pore-forming activity of PLY and protect against PLY-mediated cell hemolysis and A549 cell death without antibacterial activity or inhibition of PLY production. In addition, CCCG treatment inhibited the oligomerization of PLY. Animal experiments showed that CCCGs can reduce the death of mice infected with S. pneumoniae, the degree of pathological damage to the lungs, and the levels of TNF-α and IL-6 in the lungs. In summary, our results demonstrated that CCCGs, a marketed Chinese medicine, inhibit PLY activity and subsequently attenuate S. pneumoniae virulence, which would offer a novel strategy for fighting S. pneumoniae infection and a new use for CCCGs.
Collapse
|
14
|
Nishimoto AT, Rosch JW, Tuomanen EI. Pneumolysin: Pathogenesis and Therapeutic Target. Front Microbiol 2020; 11:1543. [PMID: 32714314 PMCID: PMC7343714 DOI: 10.3389/fmicb.2020.01543] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen responsible for widespread illness and is a major global health issue for children, the elderly, and the immunocompromised population. Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) and key pneumococcal virulence factor involved in all phases of pneumococcal disease, including transmission, colonization, and infection. In this review we cover the biology and cytolytic function of PLY, its contribution to S. pneumoniae pathogenesis, and its known interactions and effects on the host with regard to tissue damage and immune response. Additionally, we review statins as a therapeutic option for CDC toxicity and PLY toxoid as a vaccine candidate in protein-based vaccines.
Collapse
Affiliation(s)
- Andrew T Nishimoto
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jason W Rosch
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Elaine I Tuomanen
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
15
|
Briles DE, Paton JC, Mukerji R, Swiatlo E, Crain MJ. Pneumococcal Vaccines. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0028-2018. [PMID: 31858954 PMCID: PMC10921951 DOI: 10.1128/microbiolspec.gpp3-0028-2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pneumoniae is a Gram-Positive pathogen that is a major causative agent of pneumonia, otitis media, sepsis and meningitis across the world. The World Health Organization estimates that globally over 500,000 children are killed each year by this pathogen. Vaccines offer the best protection against S. pneumoniae infections. The current polysaccharide conjugate vaccines have been very effective in reducing rates of invasive pneumococcal disease caused by vaccine type strains. However, the effectiveness of these vaccines have been somewhat diminished by the increasing numbers of cases of invasive disease caused by non-vaccine type strains, a phenomenon known as serotype replacement. Since, there are currently at least 98 known serotypes of S. pneumoniae, it may become cumbersome and expensive to add many additional serotypes to the current 13-valent vaccine, to circumvent the effect of serotype replacement. Hence, alternative serotype independent strategies, such as vaccination with highly cross-reactive pneumococcal protein antigens, should continue to be investigated to address this problem. This chapter provides a comprehensive discussion of pneumococcal vaccines past and present, protein antigens that are currently under investigation as vaccine candidates, and other alternatives, such as the pneumococcal whole cell vaccine, that may be successful in reducing current rates of disease caused by S. pneumoniae.
Collapse
Affiliation(s)
- D E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - J C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - R Mukerji
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - E Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA
| | - M J Crain
- Department of Pediatrics and Microbiology, University of Alabama at Birmingham
| |
Collapse
|
16
|
Kim JY, Seo SM, Lee HK, Kim HW, Choi YK. Comparison of the virulence of Streptococcus pneumoniae in ICR mouse stocks of three different origins. Lab Anim Res 2019; 35:5. [PMID: 31463224 PMCID: PMC6707427 DOI: 10.1186/s42826-019-0002-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/11/2019] [Indexed: 01/13/2023] Open
Abstract
Streptococcus pneumoniae causes many people to suffer from pneumonia, septicemia, and other diseases worldwide. To identify the difference in susceptibility of and treatment efficacy against S. pneumoniae in three ICR mouse stocks (Korl:ICR, A:ICR, and B:ICR) with different origins, mice were infected with 2 × 106, 2 × 107, and 2 × 108 CFU of S. pneumoniae D39 intratracheally. The survival of mice was observed until three weeks after the infection. The three stocks of mice showed no significant survival rate difference at 2 × 106 and 2 × 107 CFU. However, the lung and spleen weight in the A:ICR stock was significantly different from that in the other two stocks, whereas the liver weight in B:ICR stock was significantly lower than that in the other two stocks. Interestingly, no significant CFU difference in the organs was observed between the ICR stocks. The level of interferon gamma inducible protein 10 in Korl:ICR was significantly lower than that in the other two stocks. The level of granulocyte colony stimulating factor in B:ICR was significantly lower than in the other two stocks. However, tumor-necrosis factor-alpha and interleukin-6 levels showed no significant difference between the ICR stocks. In the vancomycin efficacy test after the S. pneumoniae infection, both the single-dose and double-dose vancomycin-treated groups showed a significantly better survival rate than the control group. There was no significant survival difference between the three stocks. These data showed that Korl:ICR, A:ICR, and B:ICR have no susceptibility difference to the S. pneumoniae D39 serotype 2.
Collapse
Affiliation(s)
- Jun-Young Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Sun-Min Seo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Han-Kyul Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Han-Woong Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| |
Collapse
|
17
|
Antibody Treatment against Angiopoietin-Like 4 Reduces Pulmonary Edema and Injury in Secondary Pneumococcal Pneumonia. mBio 2019; 10:mBio.02469-18. [PMID: 31164474 PMCID: PMC6550533 DOI: 10.1128/mbio.02469-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Secondary bacterial lung infection by Streptococcus pneumoniae (S. pneumoniae) poses a serious health concern, especially in developing countries. We posit that the emergence of multiantibiotic-resistant strains will jeopardize current treatments in these regions. Deaths arising from secondary infections are more often associated with acute lung injury, a common consequence of hypercytokinemia, than with the infection per se Given that secondary bacterial pneumonia often has a poor prognosis, newer approaches to improve treatment outcomes are urgently needed to reduce the high levels of morbidity and mortality. Using a sequential dual-infection mouse model of secondary bacterial lung infection, we show that host-directed therapy via immunoneutralization of the angiopoietin-like 4 c-isoform (cANGPTL4) reduced pulmonary edema and damage in infected mice. RNA sequencing analysis revealed that anti-cANGPTL4 treatment improved immune and coagulation functions and reduced internal bleeding and edema. Importantly, anti-cANGPTL4 antibody, when used concurrently with either conventional antibiotics or antipneumolysin antibody, prolonged the median survival of mice compared to monotherapy. Anti-cANGPTL4 treatment enhanced immune cell phagocytosis of bacteria while restricting excessive inflammation. This modification of immune responses improved the disease outcomes of secondary pneumococcal pneumonia. Taken together, our study emphasizes that host-directed therapeutic strategies are viable adjuncts to standard antimicrobial treatments.IMPORTANCE Despite extensive global efforts, secondary bacterial pneumonia still represents a major cause of death in developing countries and is an important cause of long-term functional disability arising from lung tissue damage. Newer approaches to improving treatment outcomes are needed to reduce the significant morbidity and mortality caused by infectious diseases. Our study, using an experimental mouse model of secondary S. pneumoniae infection, shows that a multimodal treatment that concurrently targets host and pathogen factors improved lung tissue integrity and extended the median survival time of infected mice. The immunoneutralization of host protein cANGPTL4 reduced the severity of pulmonary edema and damage. We show that host-directed therapeutic strategies as well as neutralizing antibodies against pathogen virulence factors are viable adjuncts to standard antimicrobial treatments such as antibiotics. In view of their different modes of action compared to antibiotics, concurrent immunotherapies using antibodies are potentially efficacious against secondary pneumococcal pneumonia caused by antibiotic-resistant pathogens.
Collapse
|
18
|
Janesch P, Rouha H, Badarau A, Stulik L, Mirkina I, Caccamo M, Havlicek K, Maierhofer B, Weber S, Groß K, Steinhäuser J, Zerbs M, Varga C, Dolezilkova I, Maier S, Zauner G, Nielson N, Power CA, Nagy E. Assessing the function of pneumococcal neuraminidases NanA, NanB and NanC in in vitro and in vivo lung infection models using monoclonal antibodies. Virulence 2019; 9:1521-1538. [PMID: 30289054 PMCID: PMC6177239 DOI: 10.1080/21505594.2018.1520545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Streptococcus pneumoniae isolates express up to three neuraminidases (sialidases), NanA, NanB and NanC, all of which cleave the terminal sialic acid of glycan-structures that decorate host cell surfaces. Most research has focused on the role of NanA with limited investigations evaluating the roles of all three neuraminidases in host-pathogen interactions. We generated two highly potent monoclonal antibodies (mAbs), one that blocks the enzymatic activity of NanA and one cross-neutralizing NanB and NanC. Total neuraminidase activity of clinical S. pneumoniae isolates could be inhibited by this mAb combination in enzymatic assays. To detect desialylation of cell surfaces by pneumococcal neuraminidases, primary human tracheal/bronchial mucocilial epithelial tissues were infected with S. pneumoniae and stained with peanut lectin. Simultaneous targeting of the neuraminidases was required to prevent desialylation, suggesting that inhibition of NanA alone is not sufficient to preserve terminal lung glycans. Importantly, we also found that all three neuraminidases increased the interaction of S. pneumoniae with human airway epithelial cells. Lectin-staining of lung tissues of mice pre-treated with mAbs before intranasal challenge with S. pneumoniae confirmed that both anti-NanA and anti-NanBC mAbs were required to effectively block desialylation of the respiratory epithelium in vivo. Despite this, no effect on survival, reduction in pulmonary bacterial load, or significant changes in cytokine responses were observed. This suggests that neuraminidases have no pivotal role in this murine pneumonia model that is induced by high bacterial challenge inocula and does not progress from colonization as it happens in the human host.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Karin Groß
- a Arsanis Biosciences , Vienna , Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nguyen BN, Peterson BN, Portnoy DA. Listeriolysin O: A phagosome-specific cytolysin revisited. Cell Microbiol 2019; 21:e12988. [PMID: 30511471 DOI: 10.1111/cmi.12988] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
Abstract
Listeriolysin O (LLO) is an essential determinant of Listeria monocytogenes pathogenesis that mediates the escape of L. monocytogenes from host cell vacuoles, thereby allowing replication in the cytosol without causing appreciable cell death. As a member of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins, LLO is unique in that it is secreted by a facultative intracellular pathogen, whereas all other CDCs are produced by pathogens that are largely extracellular. Replacement of LLO with other CDCs results in strains that are extremely cytotoxic and 10,000-fold less virulent in mice. LLO has structural and regulatory features that allow it to function intracellularly without causing cell death, most of which map to a unique N-terminal region of LLO referred to as the proline, glutamic acid, serine, threonine (PEST)-like sequence. Yet, while LLO has unique properties required for its intracellular site of action, extracellular LLO, like other CDCs, affects cells in a myriad of ways. Because all CDCs form pores in cholesterol-containing membranes that lead to rapid Ca2+ influx and K+ efflux, they consequently trigger a wide range of host cell responses, including mitogen-activated protein kinase activation, histone modification, and caspase-1 activation. There is no debate that extracellular LLO, like all other CDCs, can stimulate multiple cellular activities, but the primary question we wish to address in this perspective is whether these activities contribute to L. monocytogenes pathogenesis.
Collapse
Affiliation(s)
- Brittney N Nguyen
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California
| | - Bret N Peterson
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California
| |
Collapse
|
20
|
Pharmacological Targeting of Pore-Forming Toxins as Adjunctive Therapy for Invasive Bacterial Infection. Toxins (Basel) 2018; 10:toxins10120542. [PMID: 30562923 PMCID: PMC6316385 DOI: 10.3390/toxins10120542] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022] Open
Abstract
For many of the most important human bacterial infections, invasive disease severity is fueled by the cell damaging and pro-inflammatory effects of secreted pore-forming toxins (PFTs). Isogenic PFT-knockout mutants, e.g., Staphylococcus aureus lacking α-toxin or Streptococcus pneumoniae deficient in pneumolysin, show attenuation in animal infection models. This knowledge has inspired multi-model investigations of strategies to neutralize PFTs or counteract their toxicity as a novel pharmacological approach to ameliorate disease pathogenesis in clinical disease. Promising examples of small molecule, antibody or nanotherapeutic drug candidates that directly bind and neutralize PFTs, block their oligomerization or membrane receptor interactions, plug establishment membrane pores, or boost host cell resiliency to withstand PFT action have emerged. The present review highlights these new concepts, with a special focus on β-PFTs produced by leading invasive human Gram-positive bacterial pathogens. Such anti-virulence therapies could be applied as an adjunctive therapy to antibiotic-sensitive and -resistant strains alike, and further could be free of deleterious effects that deplete the normal microflora.
Collapse
|
21
|
Nagy E, Nagy G, Power CA, Badarau A, Szijártó V. Anti-bacterial Monoclonal Antibodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1053:119-153. [PMID: 29549638 DOI: 10.1007/978-3-319-72077-7_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The failing efficacy of antibiotics and the high mortality rate among high-risk patients calls for new treatment modalities for bacterial infections. Due to the vastly divergent pathogenesis of human pathogens, each microbe requires a tailored approach. The main modes of action of anti-bacterial antibodies are virulence factor neutralization, complement-mediated bacterial lysis and enhancement of opsonophagocytic uptake and killing (OPK). Gram-positive bacteria cannot be lysed by complement and their pathogenesis often involves secreted toxins, therefore typically toxin-neutralization and OPK activity are required to prevent and ameliorate disease. In fact, the success stories in terms of approved products, in the anti-bacterial mAb field are based on toxin neutralization (Bacillus anthracis, Clostridium difficile). In contrast, Gram-negative bacteria are vulnerable to antibody-dependent complement-mediated lysis, while their pathogenesis rarely relies on secreted exotoxins, and involves the pro-inflammatory endotoxin (lipopolysaccharide). Given the complexity of bacterial pathogenesis, antibody therapeutics are expected to be most efficient upon targeting more than one virulence factor and/or combining different modes of action. The improved understanding of bacterial pathogenesis combined with the versatility and maturity of antibody discovery technologies available today are pivotal for the design of novel anti-bacterial therapeutics. The intensified research generating promising proof-of-concept data, and the increasing number of clinical programs with anti-bacterial mAbs, indicate that the field is ready to fulfill its promise in the coming years.
Collapse
Affiliation(s)
- Eszter Nagy
- Arsanis Biosciences GmbH/Arsanis, Inc, Vienna, Austria.
| | - Gábor Nagy
- Arsanis Biosciences GmbH/Arsanis, Inc, Vienna, Austria
| | | | | | | |
Collapse
|
22
|
Anderson R, Nel JG, Feldman C. Multifaceted Role of Pneumolysin in the Pathogenesis of Myocardial Injury in Community-Acquired Pneumonia. Int J Mol Sci 2018; 19:E1147. [PMID: 29641429 PMCID: PMC5979279 DOI: 10.3390/ijms19041147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Pneumolysin (PLY), a member of the family of Gram-positive bacterial, cholesterol-dependent, β-barrel pore-forming cytolysins, is the major protein virulence factor of the dangerous respiratory pathogen, Streptococcus pneumoniae (pneumococcus). PLY plays a major role in the pathogenesis of community-acquired pneumonia (CAP), promoting colonization and invasion of the upper and lower respiratory tracts respectively, as well as extra-pulmonary dissemination of the pneumococcus. Notwithstanding its role in causing acute lung injury in severe CAP, PLY has also been implicated in the development of potentially fatal acute and delayed-onset cardiovascular events, which are now recognized as being fairly common complications of this condition. This review is focused firstly on updating mechanisms involved in the immunopathogenesis of PLY-mediated myocardial damage, specifically the direct cardiotoxic and immunosuppressive activities, as well as the indirect pro-inflammatory/pro-thrombotic activities of the toxin. Secondly, on PLY-targeted therapeutic strategies including, among others, macrolide antibiotics, natural product antagonists, cholesterol-containing liposomes, and fully humanized monoclonal antibodies, as well as on vaccine-based preventive strategies. These sections are preceded by overviews of CAP in general, the role of the pneumococcus as the causative pathogen, the occurrence and types of CAP-associated cardiac complication, and the structure and biological activities of PLY.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
| | - Jan G Nel
- Department of Haematology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria 0001, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 0002, South Africa.
| |
Collapse
|
23
|
|
24
|
Kinetics of antibodies against pneumococcal proteins and their relationship to nasopharyngeal carriage in the first two months of life. PLoS One 2017; 12:e0185824. [PMID: 28982123 PMCID: PMC5628860 DOI: 10.1371/journal.pone.0185824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022] Open
Abstract
Introduction The currently used Streptococcus pneumoniae vaccines have had a significant impact on the pneumococcal diseases caused by the serotypes they cover. Their limitations have stimulated a search for alternate vaccines that will cover all serotypes, be affordable and effective in young children. Pneumococcal protein antigens are potential vaccine candidates that may meet some of the shortfalls of the current vaccines. Thus, this study aimed to determine the relationship between antibodies against pneumococcal protein antigens and nasopharyngeal carriage in infants. Methods One hundred and twenty mother-infant pairs were enrolled into the study. They had nasopharyngeal swabs(NPS) taken at birth and every two weeks for the first eight weeks after delivery, and blood samples were obtained at birth and every four weeks for the first eight weeks after delivery. Nasopharyngeal carriage of S. pneumoniae was determined from the NPS and antibodies against the pneumococcal proteins CbpA, PspA and rPly were measured in the blood samples. Results The S. pneumoniae carriage rate in infants increased to that of mothers by eight weeks of age. The odds of carriage in infants was 6.2 times (95% CI: 2.0–18.9) higher when their mothers were also carriers. Bacterial density in infants was lower at birth compared to their mothers (p = 0.004), but increased with age and became higher than that of their mothers at weeks 4 (p = 0.009), 6 (p = 0.002) and 8 (p<0.0001). At birth, the infants’ antibodies against CbpA, and rPly pneumococcal protein antigens were similar, but that of PspA was lower (p<0.0001), compared to their mothers. Higher antibody concentrations to CbpA [OR (95% CI): 0.49 (0.26–0.92, p = 0.03)], but not PspA and rPly, were associated with protection against carriage in the infants. Conclusion Naturally induced antibodies against the three pneumococcal protein antigens were transferred from mother to child. The proportion of infants with nasopharyngeal carriage and the bacterial density of S. pneumoniae increased with age within the first eight weeks of life. Higher concentrations of antibodies against CbpA, but not PspA and rPly, were associated with reduced risk of nasopharyngeal carriage of S. pneumoniae in infants.
Collapse
|
25
|
Prymula R, Szenborn L, Silfverdal SA, Wysocki J, Albrecht P, Traskine M, Gardev A, Song Y, Borys D. Safety, reactogenicity and immunogenicity of two investigational pneumococcal protein-based vaccines: Results from a randomized phase II study in infants. Vaccine 2017; 35:4603-4611. [PMID: 28729019 DOI: 10.1016/j.vaccine.2017.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Vaccination with formulations containing pneumococcal protein antigens such as pneumolysin toxoid (dPly) and histidine-triad protein D (PhtD) may extend serotype-related protection of pneumococcal conjugate vaccines (PCVs) against Streptococcus pneumoniae. METHODS This phase II, multi-center, observer-blind trial conducted in Europe (NCT01204658) assessed 2 investigational vaccines containing 10 serotype-specific polysaccharide conjugates of PHiD-CV and either 10 or 30µg of dPly and PhtD each. Infants randomized 1:1:1:1 received 4 doses of PHiD-CV/dPly/PhtD-10, PHiD-CV/dPly/PhtD-30, PHiD-CV, or 13-valent PCV (PCV13), co-administered with DTPa-HBV-IPV/Hib, at ages ∼2, 3, 4 and 12-15months. Occurrences of fever >40.0°C following primary vaccination with PHiD-CV/dPly/PhtD vaccines compared to PHiD-CV (non-inferiority objective), dose superiority, safety and immunogenicity were assessed. RESULTS 575 children received primary vaccination, and 564 booster vaccination. The non-inferiority objective was met; no fever >40.0°C causally related to vaccination was reported during primary vaccination. Incidence of adverse events appeared similar between the 3 PHiD-CV groups. Serious adverse events were reported in 13, 9, 21 (1 related to vaccination), and 17 children in the PHiD-CV/dPly/PhtD-10, PHiD-CV/dPly/PhtD-30, PHiD-CV, and PCV13 groups, respectively. PHiD-CV/dPly/PhtD-30 was superior to PHiD-CV/dPly/PhtD-10 in terms of post-dose 3 anti-Ply and Anti-PhtD antibody levels. Anti-Ply and anti-PhtD antibody levels were higher in both PHiD-CV/dPly/PhtD groups than in controls and increased from post-primary to post-booster timepoint. Post-primary and booster vaccination, for each PHiD-CV serotype, ≥98.5% of participants in PHiD-CV/dPly/PhtD groups had antibody concentrations ≥ 0.2μg/mL, except for 6B (≥72.3%) and 23F (≥82.7%) post-primary vaccination. Similar results were observed in the PHiD-CV group. Immune responses to protein D and DTPa-HBV-IPV/Hib were within similar ranges for the 3 PHiD-CV groups. CONCLUSION Both PHiD-CV/dPly/PhtD formulations co-administered with DTPa-HBV-IPV/Hib in infants were well-tolerated and immunogenic for dPly and PhtD antigens, while immune responses to serotype-specific, protein D and co-administered antigens did not appear altered in comparison to PHiD-CV group.
Collapse
Affiliation(s)
- Roman Prymula
- Department of Social Medicine, Faculty of Medicine in Hradec Králové, Charles University in Prague, Šimkova 870, 500 38 Hradec Králové, Czech Republic.
| | - Leszek Szenborn
- Department and Clinic of Pediatric Infectious Diseases, Wroclaw Medical University, 2-2A, Chalubinskiego, 50-368 Wroclaw, Poland.
| | | | - Jacek Wysocki
- Poznań University of Medical Sciences, ul. H.Święcickiego 6, 60-781 Poznań, Poland; Regional Medical Center for Mother and Child, ul. Smoluchowskiego 11, 60-179 Poznań, Poland.
| | - Piotr Albrecht
- Medical University of Warsaw, Department of Paediatric Gastroenterology and Nutrition, ul. Żwirki i Wigury 63A, 02-091 Warsaw, Poland.
| | | | | | - Yue Song
- GSK, Av. Fleming 20, 1300 Wavre, Belgium.
| | | |
Collapse
|
26
|
Odutola A, Ota MOC, Antonio M, Ogundare EO, Saidu Y, Foster-Nyarko E, Owiafe PK, Ceesay F, Worwui A, Idoko OT, Owolabi O, Bojang A, Jarju S, Drammeh I, Kampmann B, Greenwood BM, Alderson M, Traskine M, Devos N, Schoonbroodt S, Swinnen K, Verlant V, Dobbelaere K, Borys D. Efficacy of a novel, protein-based pneumococcal vaccine against nasopharyngeal carriage of Streptococcus pneumoniae in infants: A phase 2, randomized, controlled, observer-blind study. Vaccine 2017; 35:2531-2542. [PMID: 28389097 DOI: 10.1016/j.vaccine.2017.03.071] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Conserved pneumococcal proteins are potential candidates for inclusion in vaccines against pneumococcal diseases. In the first part of a two-part study, an investigational vaccine (PHiD-CV/dPly/PhtD-30) containing 10 pneumococcal serotype-specific polysaccharide conjugates (10VT) combined with pneumolysin toxoid and pneumococcal histidine triad protein D (30μg each) was well tolerated by Gambian children. Part two, presented here, assessed the efficacy of two PHiD-CV/dPly/PhtD formulations against pneumococcal nasopharyngeal carriage (NPC) prevalence in infants. METHODS In this phase 2, randomized, controlled, observer-blind trial, healthy infants aged 8-10weeks, recruited from a peri-urban health center, were randomized (1:1:1:1:1:1) into six groups. Four groups received PHiD-CV/dPly/PhtD (10 or 30μg of each protein), PHiD-CV, or 13-valent pneumococcal conjugate vaccine at ages 2-3-4months (3+0 infant schedule) and two groups PHiD-CV/dPly/PhtD-30 or PHiD-CV at 2-4-9months (2+1 infant schedule). The primary objective was impact on non-10VT NPC at ages 5-9-12months. Secondary objectives included confirmatory analysis of protein dose superiority and safety/reactogenicity. Impact on pneumococcal NPC acquisition, bacterial load, and ply and phtD gene sequencing were explored. RESULTS 1200 infants were enrolled between June 2011 and May 2012. Prevalences of pneumococcal (60-67%) and non-10VT (55-61%) NPC were high at baseline. Across all post-vaccination time points, efficacy of PHiD-CV/dPly/PhtD-10 and PHiD-CV/dPly/PhtD-30 against non-10VT NPC (3+0 schedule) was 1.1% (95% CI -21.5, 19.5) and 2.1% (-20.3, 20.3), respectively; efficacy of PHiD-CV/dPly/PhtD-30 (2+1 schedule) was 0.5% (-22.1, 18.9) versus PHiD-CV. No differences were observed in pneumococcal NPC acquisition, clearance, or bacterial load. Both protein-based vaccines elicited immune responses to pneumococcal proteins. CONCLUSIONS In this high carriage prevalence setting, inclusion of pneumococcal proteins in the PHiD-CV/dPly/PhtD investigational vaccine had no impact on pneumococcal NPC in infants, regardless of protein dose or schedule. Future evaluations will assess its impact against pneumococcal disease endpoints. FUNDING PATH, GlaxoSmithKline Biologicals SA. ClinicalTrials.gov identifier NCT01262872.
Collapse
Affiliation(s)
- Aderonke Odutola
- Medical Research Council Unit, Vaccines & Immunity Theme, Banjul, Gambia.
| | - Martin O C Ota
- Medical Research Council Unit, Vaccines & Immunity Theme, Banjul, Gambia.
| | - Martin Antonio
- Medical Research Council Unit, Vaccines & Immunity Theme, Banjul, Gambia.
| | - Ezra O Ogundare
- Medical Research Council Unit, Vaccines & Immunity Theme, Banjul, Gambia.
| | - Yauba Saidu
- Medical Research Council Unit, Vaccines & Immunity Theme, Banjul, Gambia.
| | | | - Patrick K Owiafe
- Medical Research Council Unit, Vaccines & Immunity Theme, Banjul, Gambia.
| | - Fatima Ceesay
- Medical Research Council Unit, Vaccines & Immunity Theme, Banjul, Gambia.
| | - Archibald Worwui
- Medical Research Council Unit, Vaccines & Immunity Theme, Banjul, Gambia.
| | - Olubukola T Idoko
- Medical Research Council Unit, Vaccines & Immunity Theme, Banjul, Gambia.
| | - Olumuyiwa Owolabi
- Medical Research Council Unit, Vaccines & Immunity Theme, Banjul, Gambia.
| | - Abdoulie Bojang
- Medical Research Council Unit, Vaccines & Immunity Theme, Banjul, Gambia.
| | - Sheikh Jarju
- Medical Research Council Unit, Vaccines & Immunity Theme, Banjul, Gambia.
| | - Isatou Drammeh
- Medical Research Council Unit, Vaccines & Immunity Theme, Banjul, Gambia.
| | - Beate Kampmann
- Medical Research Council Unit, Vaccines & Immunity Theme, Banjul, Gambia.
| | - Brian M Greenwood
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Anderson R, Feldman C. Pneumolysin as a potential therapeutic target in severe pneumococcal disease. J Infect 2017; 74:527-544. [PMID: 28322888 DOI: 10.1016/j.jinf.2017.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/09/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022]
Abstract
Acute pulmonary and cardiac injury remain significant causes of morbidity and mortality in those afflicted with severe pneumococcal disease, with the risk for early mortality often persisting several years beyond clinical recovery. Although remaining to be firmly established in the clinical setting, a considerable body of evidence, mostly derived from murine models of experimental infection, has implicated the pneumococcal, cholesterol-binding, pore-forming toxin, pneumolysin (Ply), in the pathogenesis of lung and myocardial dysfunction. Topics covered in this review include the burden of pneumococcal disease, risk factors, virulence determinants of the pneumococcus, complications of severe disease, antibiotic and adjuvant therapies, as well as the structure of Ply and the role of the toxin in disease pathogenesis. Given the increasing recognition of the clinical potential of Ply-neutralisation strategies, the remaining sections of the review are focused on updates of the types, benefits and limitations of currently available therapies which may attenuate, directly and/or indirectly, the injurious actions of Ply. These include recently described experimental therapies such as various phytochemicals and lipids, and a second group of more conventional agents the members of which remain the subject of ongoing clinical evaluation. This latter group, which is covered more extensively, encompasses macrolides, statins, corticosteroids, and platelet-targeted therapies, particularly aspirin.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology and Institute of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
28
|
Odutola A, Ota MO, Ogundare EO, Antonio M, Owiafe P, Worwui A, Greenwood B, Alderson M, Traskine M, Verlant V, Dobbelaere K, Borys D. Reactogenicity, safety and immunogenicity of a protein-based pneumococcal vaccine in Gambian children aged 2-4 years: A phase II randomized study. Hum Vaccin Immunother 2016; 12:393-402. [PMID: 26618243 PMCID: PMC5049746 DOI: 10.1080/21645515.2015.1111496] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pneumococcal conjugate vaccines (PCVs) have been successful in preventing invasive pneumococcal disease but effectiveness has been challenged by replacement of vaccine serotypes with non-vaccine serotypes. Vaccines targeting common pneumococcal protein(s) found in most/all pneumococci may overcome this limitation. This phase II study assessed safety and immunogenicity of a new protein-based pneumococcal vaccine containing polysaccharide conjugates of 10 pneumococcal serotypes combined with pneumolysin toxoid(dPly) and pneumococcal histidine triad protein D(PhtD) (PHiD-CV/dPly/PhtD-30) in African children. 120 Gambian children (2–4 years, not previously vaccinated against Streptococcus pneumoniae) randomized (1:1) received a single dose of PHiD-CV/dPly/PhtD-30 or PCV13. Adverse events occurring over 4 d post-vaccination were reported, and blood samples obtained pre- and 1-month post-vaccination. Serious adverse events were reported for 6 months post-vaccination. Solicited local and systemic adverse events were reported at similar frequency in each group. One child (PHiD-CV/dPly/PhtD-30 group) reported a grade 3 local reaction to vaccination. Haematological and biochemical parameters seemed similar pre- and 1-month post-vaccination in each group. High pre-vaccination Ply and PhtD antibody concentrations were observed in each group, but only increased in PHiD-CV/dPly/PhtD-30 vaccinees one month post-vaccination. One month post-vaccination, for each vaccine serotype ≥96.2% of PHiD-CV/dPly/PhtD-30 vaccinees had serotype-specific polysaccharide antibody concentrations ≥0.20µg/mL except serotypes 6B (80.8%) and 23F (65.4%), and ≥94.1% had OPA titres of ≥8 except serotypes 1 (51.9%), 5 (38.5%) and 6B (78.0%), within ranges seen in PCV13-vaccinated children. A single dose of PHiD-CV/dPly/PhtD-30 vaccine, administered to Gambian children aged 2–4 y not previously vaccinated with a pneumococcal vaccine, was well-tolerated and immunogenic.
Collapse
Affiliation(s)
- A Odutola
- a Medical Research Council Unit ; Banjul , The Gambia
| | - M O Ota
- a Medical Research Council Unit ; Banjul , The Gambia
| | - E O Ogundare
- a Medical Research Council Unit ; Banjul , The Gambia
| | - M Antonio
- a Medical Research Council Unit ; Banjul , The Gambia
| | - P Owiafe
- a Medical Research Council Unit ; Banjul , The Gambia
| | - A Worwui
- a Medical Research Council Unit ; Banjul , The Gambia
| | - B Greenwood
- b London School of Hygiene & Tropical Medicine ; London , UK
| | | | | | | | | | - D Borys
- d GSK Vaccines ; Wavre , Belgium
| |
Collapse
|
29
|
Otitis-prone Children Have Immunologic Deficiencies in Naturally Acquired Nasopharyngeal Mucosal Antibody Response after Streptococcus pneumoniae Colonization. Pediatr Infect Dis J 2016; 35:54-60. [PMID: 26448450 DOI: 10.1097/inf.0000000000000949] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Acute otitis media (AOM) is the most common pediatric bacterial infection, and stringently defined otitis-prone (sOP) children have immunologic deficiencies. We recently found that nasopharyngeal (NP) colonization by Streptococcus pneumoniae (Spn) elicits a NP mucosal antibody response to vaccine candidate pneumococcal proteins that correlate with protection from AOM in non-sOP (NOP) children. Here, we sought to determine if sOP children experience significantly higher colonization rates with Spn than NOP children, develop lower naturally acquired NP mucosal antibody responses to those same pneumococcal proteins after colonization by Spn, and suffer greater frequency of AOM as a consequence. METHODS NP samples were collected from 130 NOP and 45 sOP children during 270 healthy visits and 201 AOM visits between 6 and 24 months of age. Spn were identified by standard culture. NP mucosal IgG and IgA levels to vaccine candidate proteins pneumococcal histidine triad protein D, pneumococcal choline binding protein A (PcpA) and pneumolysin D1 were measured by quantitative enzyme-linked immunosorbent assay. RESULTS sOP children had significantly higher colonization frequency by Spn (P < 0.0001) and significantly lower IgG and IgA levels to all 3 vaccine candidate proteins studied compared with NOP children (all P values <0.05) except IgG to Ply D1 (P = 0.31). Spn colonization in NOP children led to 2-fold to 5-fold increase in mucosal IgG and IgA levels to all 3 proteins (all P values <0.01), whereas Spn colonization in sOP children generally failed to elicit antibody responses (all P values >0.05). PcpA was unique in inducing significant increases in mucosal IgA (P = 0.02). When high mucosal IgG levels to all 3 proteins and IgA to PcpA were measured, they correlated with reduced AOM in sOP children. CONCLUSION sOP children experience significantly higher colonization rates with Spn, develop lower naturally acquired NP mucosal antibody responses to pneumococcal vaccine candidate proteins pneumococcal histidine triad protein D, PcpA and pneumolysin D1 after colonization by Spn, and suffer greater frequency of AOM if they do not generate high mucosal antibody to the studied proteins.
Collapse
|
30
|
Tumor necrosis factor-alpha deficiency impairs host defense against Streptococcus pneumoniae. Lab Anim Res 2015; 31:78-85. [PMID: 26155202 PMCID: PMC4490149 DOI: 10.5625/lar.2015.31.2.78] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/21/2015] [Accepted: 05/31/2015] [Indexed: 11/25/2022] Open
Abstract
Streptococcus pneumoniae is a major human pathogen that is involved in community-acquired pneumonia. Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine that activates immune responses against infection, invasion, injury, or inflammation. To study the role of TNF-α during S. pneumoniae infection, a murine pneumococcal pneumonia model was used. We intranasally infected C57BL/6J wild-type (WT) and TNF-α knockout (KO) mice with S. pneumoniae D39 serotype 2. In TNF-α KO mice, continuous and distinct loss of body weight, and low survival rates were observed. Bacterial counts in the lungs and blood of TNF-α KO mice were significantly higher than those in WT mice. Histopathological lesions in the spleen of TNF-α KO mice were more severe than those in WT mice. In TNF-α KO mice, severe depletion of white pulp was observed and the number of apoptotic cells was significantly increased. Interferon-gamma (IFN-γ), IL-12p70 and IL-10 levels in serum were significantly increased in TNF-α KO mice. TNF-α is clearly involved in the regulation of S. pneumoniae infections. Early death and low survival rates of TNF-α KO mice were likely caused by a combination of impaired bacterial clearance and damage to the spleen. Our findings suggest that TNF-α plays a critical role in protecting the host from systemic S. pneumoniae infection.
Collapse
|
31
|
Diamant E, Torgeman A, Ozeri E, Zichel R. Monoclonal Antibody Combinations that Present Synergistic Neutralizing Activity: A Platform for Next-Generation Anti-Toxin Drugs. Toxins (Basel) 2015; 7:1854-81. [PMID: 26035486 PMCID: PMC4488679 DOI: 10.3390/toxins7061854] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/07/2015] [Accepted: 05/19/2015] [Indexed: 12/25/2022] Open
Abstract
Monoclonal antibodies (MAbs) are among the fastest-growing therapeutics and are being developed for a broad range of indications, including the neutralization of toxins, bacteria and viruses. Nevertheless, MAbs potency is still relatively low when compared to conventional polyclonal Ab preparations. Moreover, the efficacy of an individual neutralizing MAb may significantly be hampered by the potential absence or modification of its target epitope in a mutant or subtype of the infectious agent. These limitations of individual neutralizing MAbs can be overcome by using oligoclonal combinations of several MAbs with different specificities to the target antigen. Studies conducted in our lab and by others show that such combined MAb preparation may present substantial synergy in its potency over the calculated additive potency of its individual MAb components. Moreover, oligoclonal preparation is expected to be better suited to compensating for reduced efficacy due to epitope variation. In this review, the synergistic neutralization properties of combined oligoclonal Ab preparations are described. The effect of Ab affinity, autologous Fc fraction, and targeting a critical number of epitopes, as well as the unexpected contribution of non-neutralizing clones to the synergistic neutralizing effect are presented and discussed.
Collapse
Affiliation(s)
- Eran Diamant
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Amram Torgeman
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Eyal Ozeri
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Ran Zichel
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| |
Collapse
|
32
|
Trivalent pneumococcal protein recombinant vaccine protects against lethal Streptococcus pneumoniae pneumonia and correlates with phagocytosis by neutrophils during early pathogenesis. Vaccine 2015; 33:993-1000. [PMID: 25597944 DOI: 10.1016/j.vaccine.2015.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/04/2014] [Accepted: 01/06/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Due to the fact that current polysaccharide-based pneumococcal vaccines have limited serotype coverage, protein-based vaccine candidates have been sought for over a decade to replace or complement current vaccines. We previously reported that a trivalent Pneumococcal Protein recombinant Vaccine (PPrV), showed protection against pneumonia and sepsis in an infant murine model. Here we investigated immunological correlates of protection of PPrV in the same model. METHODS C57BL/6J infant mice were intramuscularly vaccinated at age 1-3 weeks with 3 doses of PPrV, containing pneumococcal histidine triad protein D (PhtD), pneumococcal choline binding protein A (PcpA), and detoxified pneumolysin mutant PlyD1. 3-4 weeks after last vaccination, serum and lung antibody levels to PPrV components were measured, and mice were intranasally challenged with a lethal dose of Streptococcus pneumoniae (Spn) serotype 6A. Lung Spn bacterial burden, number of neutrophils and alveolar macrophages, phagocytosed Spn by granulocytes, and levels of cytokines and chemokines were determined at 6, 12, 24, and 48h after challenge. RESULTS PPrV vaccination conferred 83% protection against Spn challenge. Vaccinated mice had significantly elevated serum and lung antibody levels to three PPrV components. In the first stage of pathogenesis of Spn induced pneumonia (6-24h after challenge), vaccinated mice had lower Spn bacterial lung burdens and more phagocytosed Spn in the granulocytes. PPrV vaccination led to lower levels of pro-inflammatory cytokines IL-6, IL-1β, and TFN-α, and other cytokines and chemokines (IL-12, IL-17, IFN-γ, MIP-1b, MIP-2 and KC, and G-CSF), presumably due to a lower lung bacterial burden. CONCLUSION Trivalent PPrV vaccination results in increased serum and lung antibody levels to the vaccine components, a reduction in Spn induced lethality, enhanced early clearance of Spn in lungs due to more rapid and thorough phagocytosis of Spn by neutrophils, and correspondingly a reduction in lung inflammation and tissue damage.
Collapse
|
33
|
Leroux-Roels G, Maes C, De Boever F, Traskine M, Rüggeberg JU, Borys D. Safety, reactogenicity and immunogenicity of a novel pneumococcal protein-based vaccine in adults: A phase I/II randomized clinical study. Vaccine 2014; 32:6838-46. [DOI: 10.1016/j.vaccine.2014.02.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
|
34
|
Tabata A, Ohkura K, Ohkubo Y, Tomoyasu T, Ohkuni H, Whiley RA, Nagamune H. The diversity of receptor recognition in cholesterol-dependent cytolysins. Microbiol Immunol 2014; 58:155-71. [PMID: 24401114 DOI: 10.1111/1348-0421.12131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/25/2013] [Accepted: 01/05/2014] [Indexed: 11/30/2022]
Abstract
Cholesterol-dependent cytolysins (CDCs) are bacterial pore-forming toxins secreted mainly by pathogenic Gram-positive bacteria. CDCs generally recognize and bind to membrane cholesterol to create pores and lyse target cells. However, in contrast to typical CDCs such as streptolysin O, several atypical CDCs have been reported. The first of these was intermedilysin, which is secreted by Streptococcus intermedius and has human cell-specificity, human CD59 (huCD59) being its receptor. In the study reported here, the diversity of receptor recognition among CDCs was investigated and multi-receptor recognition characteristics were identified within this toxin family. Streptococcus mitis-derived human platelet aggregation factor (Sm-hPAF) secreted by S. mitis strain Nm-65 isolated from a patient with Kawasaki disease was previously shown to hemolyze erythrocytes in a species-dependent manner, its maximum activity being in human cells. In the present study, it was found that Sm-hPAF recognizes both membrane cholesterol and huCD59 as receptors for triggering pore-formation. Moreover, vaginolysin (VLY) of Gardnerella vaginalis showed similar characteristics to Sm-hPAF regarding receptor recognition. On the basis of the results presented here, the mode of receptor recognition of CDCs can be categorized into the following three groups: (i) Group I, comprising typical CDCs with high affinity to cholesterol and no or very little affinity to huCD59; (ii) Group II, including atypical CDCs such as ILY, with no or very little affinity to cholesterol and high affinity to huCD59; and (iii) Group III, which contains atypical CDCs such as Sm-hPAF and VLY with affinity to both cholesterol and huCD59.
Collapse
Affiliation(s)
- Atsushi Tabata
- Department of Biological Science and Technology, Institute of Technology and Science, University of Tokushima Graduate School, 2-1 Minamijosanjima-cho, Tokushima, Tokushima, 770-8506
| | | | | | | | | | | | | |
Collapse
|
35
|
Levofloxacin-ceftriaxone combination attenuates lung inflammation in a mouse model of bacteremic pneumonia caused by multidrug-resistant Streptococcus pneumoniae via inhibition of cytolytic activities of pneumolysin and autolysin. Antimicrob Agents Chemother 2014; 58:5164-80. [PMID: 24957840 DOI: 10.1128/aac.03245-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study, our objective was to determine whether a synergistic antimicrobial combination in vitro would be beneficial in the downregulation of pneumococcal virulence genes and whether the associated inflammation of the lung tissue induced by multidrug-resistant Streptococcus pneumoniae infection in vivo needs to be elucidated in order to consider this mode of therapy in case of severe pneumococcal infection. We investigated in vivo changes in the expression of these virulence determinants using an efficacious combination determined in previous studies. BALB/c mice were infected with 10(6) CFU of bacteria. Intravenous levofloxacin at 150 mg/kg and/or ceftriaxone at 50 mg/kg were initiated 18 h postinfection; the animals were sacrificed 0 to 24 h after the initiation of treatment. The levels of cytokines, chemokines, and C-reactive protein (CRP) in the serum and lungs, along with the levels of myeloperoxidase and nitric oxide the inflammatory cell count in bronchoalveolar lavage fluid (BALF), changes in pneumolysin and autolysin gene expression and COX-2 and inducible nitric oxide synthase (iNOS) protein expression in the lungs were estimated. Combination therapy downregulated inflammation and promoted bacterial clearance. Pneumolysin and autolysin expression was downregulated, with a concomitant decrease in the expression of COX-2 and iNOS in lung tissue. Thus, the combination of levofloxacin and ceftriaxone can be considered for therapeutic use even in cases of pneumonia caused by drug-resistant isolates.
Collapse
|
36
|
Contributions to protection from Streptococcus pneumoniae infection using the monovalent recombinant protein vaccine candidates PcpA, PhtD, and PlyD1 in an infant murine model during challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1037-45. [PMID: 24850621 DOI: 10.1128/cvi.00052-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A vaccine consisting of several conserved proteins with different functions directing the pathogenesis of pneumonia and sepsis would be preferred for protection against infection by Streptococcus pneumoniae. Infants will be the major population targeted for next-generation pneumococcal vaccines. Here, we investigated the potential efficacy provided by three recombinant pneumococcal vaccine candidate proteins--pneumococcal histidine triad D (PhtD), detoxified pneumolysin derivative (PlyD1), and pneumococcal choline-binding protein A (PcpA)--for reducing pneumonia and sepsis in an infant mouse vaccine model. We found vaccination with PhtD and PcpA provided high IgG antibody titers after vaccination in infant mice, similar to adult mice comparators. PlyD1-specific total IgG was significantly lower in infant mice, with minimal boosting with the second and third vaccinations. Similar isotypes of IgG for PhtD and PlyD1 were generated in infant compared to adult mice. Although lower total specific IgG to all three proteins was elicited in infant than in adult mice, the infant mice were protected from bacteremic pneumonia and sepsis mortality (PlyD1) and had lower lung bacterial burdens (PcpA and PhtD) after challenge. The observed immune responses coupled with bacterial reductions elicited by each of the monovalent proteins support further testing in human infant clinical trials.
Collapse
|
37
|
Prymula R, Pazdiora P, Traskine M, Rüggeberg JU, Borys D. Safety and immunogenicity of an investigational vaccine containing two common pneumococcal proteins in toddlers: A phase II randomized clinical trial. Vaccine 2014; 32:3025-34. [DOI: 10.1016/j.vaccine.2014.03.066] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/28/2014] [Accepted: 03/17/2014] [Indexed: 11/28/2022]
|
38
|
Verhoeven D, Xu Q, Pichichero ME. Vaccination with a Streptococcus pneumoniae trivalent recombinant PcpA, PhtD and PlyD1 protein vaccine candidate protects against lethal pneumonia in an infant murine model. Vaccine 2014; 32:3205-10. [PMID: 24731814 DOI: 10.1016/j.vaccine.2014.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022]
Abstract
Streptococcus pneumoniae infections continue to cause significant worldwide morbidity and mortality despite the availability of efficacious serotype-dependent vaccines. The need to incorporate emergent strains expressing additional serotypes into pneumococcal polysaccharide conjugate vaccines has led to an identified need for a pneumococcal protein-based vaccine effective against a broad scope of serotypes. A vaccine consisting of several conserved proteins with different functions during pathogenesis would be preferred. Here, we investigated the efficacy of a trivalent recombinant protein vaccine containing pneumococcal choline-binding protein A (PcpA), pneumococcal histidine triad D (PhtD), and genetically detoxified pneumolysin (PlyD1) in an infant mouse model. We found the trivalent vaccine conferred protection from lethal pneumonia challenges using serotypes 6A and 3. The observed protection with trivalent PcpA, PhtD, and PlyD1 vaccine in infant mice supports the ongoing study of this candidate vaccine in human infant clinical trials.
Collapse
Affiliation(s)
- David Verhoeven
- Rochester General Hospital Research Institute, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY 14621, United States
| | - Qingfu Xu
- Rochester General Hospital Research Institute, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY 14621, United States
| | - Michael E Pichichero
- Rochester General Hospital Research Institute, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY 14621, United States.
| |
Collapse
|
39
|
Cole JN, Henningham A, Gillen CM, Ramachandran V, Walker MJ. Human pathogenic streptococcal proteomics and vaccine development. Proteomics Clin Appl 2012; 2:387-410. [PMID: 21136841 DOI: 10.1002/prca.200780048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gram-positive streptococci are non-motile, chain-forming bacteria commonly found in the normal oral and bowel flora of warm-blooded animals. Over the past decade, a proteomic approach combining 2-DE and MS has been used to systematically map the cellular, surface-associated and secreted proteins of human pathogenic streptococcal species. The public availability of complete streptococcal genomic sequences and the amalgamation of proteomic, genomic and bioinformatic technologies have recently facilitated the identification of novel streptococcal vaccine candidate antigens and therapeutic agents. The objective of this review is to examine the constituents of the streptococcal cell wall and secreted proteome, the mechanisms of transport of surface and secreted proteins, and describe the current methodologies employed for the identification of novel surface-displayed proteins and potential vaccine antigens.
Collapse
Affiliation(s)
- Jason N Cole
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | |
Collapse
|
40
|
Neutralizing antibodies elicited by a novel detoxified pneumolysin derivative, PlyD1, provide protection against both pneumococcal infection and lung injury. Infect Immun 2012; 80:2212-20. [PMID: 22473606 DOI: 10.1128/iai.06348-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Streptococcus pneumoniae pneumolysin (PLY) is a virulence factor that causes toxic effects contributing to pneumococcal pneumonia. To date, deriving a PLY candidate vaccine with the appropriate detoxification and immune profile has been challenging. A pneumolysin protein that is appropriately detoxified and that retains its immunogenicity is a desirable vaccine candidate. In this study, we assessed the protective efficacy of our novel PlyD1 detoxified PLY variant and investigated its underlying mechanism of protection. Results have shown that PlyD1 immunization protected mice against lethal intranasal (i.n.) challenge with pneumococci and lung injury mediated by PLY challenge. Protection was associated with PlyD1-specific IgG titers and in vitro neutralization titers. Pretreatment of PLY with PlyD1-specific rat polyclonal antiserum prior to i.n. delivery of toxin reduced PLY-mediated lung lesions, interleukin-6 (IL-6) production, and neutrophil infiltration into lungs, indicating that protection from lung lesions induced by PLY is antibody mediated. Preincubation of PLY with a neutralizing monoclonal PLY antibody also specifically reduced the cytotoxic effects of PLY after i.n. inoculation in comparison to nonneutralizing monoclonal antibodies. These results indicate that the induction of neutralizing antibodies against PLY can contribute to protection against bacterial pneumonia by preventing the development of PLY-induced lung lesions and inflammation. Our detoxified PlyD1 antigen elicits such PLY neutralizing antibodies, thus serving as a candidate vaccine antigen for the prevention of pneumococcal pneumonia.
Collapse
|
41
|
Norcross EW, Sanders ME, Moore QC, Taylor SD, Tullos NA, Caston RR, Dixon SN, Nahm MH, Burton RL, Thompson H, McDaniel LS, Marquart ME. Active Immunization with Pneumolysin versus 23-Valent Polysaccharide Vaccine for Streptococcus pneumoniae Keratitis. Invest Ophthalmol Vis Sci 2011; 52:9232-43. [PMID: 22039231 DOI: 10.1167/iovs.10-6968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to determine whether active immunization against pneumolysin (PLY), or polysaccharide capsule, protects against the corneal damage associated with Streptococcus pneumoniae keratitis. METHODS New Zealand White rabbits were actively immunized with Freund's adjuvant mixed with pneumolysin toxoid (ψPLY), Pneumovax 23 (PPSV23; Merck, Whitehouse Station, NJ), or phosphate-buffered saline (PBS), before corneal infection with 10⁵ colony-forming units (CFU) of S. pneumoniae. Serotype-specific rabbit polyclonal antisera or mock antisera were passively administered to rabbits before either intravenous infection with 10¹¹ CFU S. pneumoniae or corneal infection with 10⁵ CFU of S. pneumoniae. RESULTS After active immunization, clinical scores of corneas of the rabbits immunized with ψPLY and Freund's adjuvant were significantly lower than scores of the rabbits that were mock immunized with PBS and Freund's adjuvant or with PPSV23 and Freund's adjuvant at 48 hours after infection (P ≤ 0.0010), whereas rabbits immunized with PPSV23 and Freund's adjuvant failed to show differences in clinical scores compared with those in mock-immunized rabbits (P = 1.00) at 24 and 48 hours after infection. Antisera from rabbits actively immunized with PPSV23 and Freund's adjuvant were nonopsonizing. Bacterial loads recovered from infected corneas were higher for the ψPLY- and PPSV23-immunized rabbits after infection with WU2, when compared with the mock-immunized rabbits (P ≤ 0.007). Conversely, after infection with K1443, the ψPLY-immunized rabbits had lower bacterial loads than the control rabbits (P = 0.0008). Quantitation of IgG, IgA, and IgM in the sera of ψPLY-immunized rabbits showed high concentrations of PLY-specific IgG. Furthermore, anti-PLY IgG purified from ψPLY-immunized rabbits neutralized the cytolytic effects of PLY on human corneal epithelial cells. Passive administration of serotype-specific antisera capable of opsonizing and killing S. pneumoniae protected against pneumococcal bacteremia (P ≤ 0.05), but not against keratitis (P ≥ 0.476). CONCLUSIONS Active immunization with pneumococcal capsular polysaccharide and Freund's adjuvant fails to produce opsonizing antibodies, and passive administration of serotype specific opsonizing antibodies offers no protection against pneumococcal keratitis in the rabbit, whereas active immunization with the conserved protein virulence factor PLY and Freund's adjuvant is able to reduce corneal inflammation associated with pneumococcal keratitis, but has variable effects on bacterial loads in the cornea.
Collapse
Affiliation(s)
- Erin W Norcross
- Department of Microbiology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Experimental human pneumococcal carriage models for vaccine research. Trends Microbiol 2011; 19:464-70. [DOI: 10.1016/j.tim.2011.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/02/2011] [Accepted: 06/13/2011] [Indexed: 01/14/2023]
|
43
|
Allicin from garlic neutralizes the hemolytic activity of intra- and extra-cellular pneumolysin O in vitro. Toxicon 2011; 57:540-5. [DOI: 10.1016/j.toxicon.2010.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 11/17/2022]
|
44
|
Varshney AK, Wang X, Cook E, Dutta K, Scharff MD, Goger MJ, Fries BC. Generation, characterization, and epitope mapping of neutralizing and protective monoclonal antibodies against staphylococcal enterotoxin B-induced lethal shock. J Biol Chem 2011; 286:9737-47. [PMID: 21233204 DOI: 10.1074/jbc.m110.212407] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
T-cell stimulating activity of Staphylococcal enterotoxin B (SEB) is an important factor in the pathogenesis of certain staphylococcal diseases including SEB mediated shock. SEB is one of the most potent superantigens known and treatment of SEB induced shock remains a challenge. We generated and characterized murine monoclonal antibodies (mAbs) to SEB in mice. We tested mAbs neutralize mitogenic effects of SEB in vitro and in vivo with T-cell proliferation assays and 2 murine models for SEB induced lethal shock (SEBILS). Epitope mapping suggests that all these mAbs recognize conformational epitopes that are destroyed by deleting the C terminus of the protein. Further site-directed mutagenesis identified potential residues involved in binding to SEB that differ between Methicillin resistant and sensitive Staphylococcus aureus strains. Only mAb 20B1 was effective as a monotherapy in treating SEBILS in HLA DR3 transgenic mice, which exhibit enhanced sensitivity to SEB. It is noteworthy that mAbs, 14G8 and 6D3 were not protective when given alone in the HLA DR3 mice but their efficacy of protection could be greatly enhanced when mAbs were co-administered simultaneously. Our data suggest combinations of defined mAbs may constitute a better treatment strategy and provide a new insight for the development of passive immunotherapy.
Collapse
Affiliation(s)
- Avanish K Varshney
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Förtsch C, Hupp S, Ma J, Mitchell TJ, Maier E, Benz R, Iliev AI. Changes in astrocyte shape induced by sublytic concentrations of the cholesterol-dependent cytolysin pneumolysin still require pore-forming capacity. Toxins (Basel) 2011; 3:43-62. [PMID: 22069689 PMCID: PMC3210454 DOI: 10.3390/toxins3010043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/30/2010] [Accepted: 01/04/2011] [Indexed: 11/21/2022] Open
Abstract
Streptococcus pneumoniae is a common pathogen that causes various infections, such as sepsis and meningitis. A major pathogenic factor of S. pneumoniae is the cholesterol-dependent cytolysin, pneumolysin. It produces cell lysis at high concentrations and apoptosis at lower concentrations. We have shown that sublytic amounts of pneumolysin induce small GTPase-dependent actin cytoskeleton reorganization and microtubule stabilization in human neuroblastoma cells that are manifested by cell retraction and changes in cell shape. In this study, we utilized a live imaging approach to analyze the role of pneumolysin’s pore-forming capacity in the actin-dependent cell shape changes in primary astrocytes. After the initial challenge with the wild-type toxin, a permeabilized cell population was rapidly established within 20-40 minutes. After the initial rapid permeabilization, the size of the permeabilized population remained unchanged and reached a plateau. Thus, we analyzed the non-permeabilized (non-lytic) population, which demonstrated retraction and shape changes that were inhibited by actin depolymerization. Despite the non-lytic nature of pneumolysin treatment, the toxin’s lytic capacity remained critical for the initiation of cell shape changes. The non-lytic pneumolysin mutants W433F-pneumolysin and delta6-pneumolysin, which bind the cell membrane with affinities similar to that of the wild-type toxin, were not able to induce shape changes. The initiation of cell shape changes and cell retraction by the wild-type toxin were independent of calcium and sodium influx and membrane depolarization, which are known to occur following cellular challenge and suggested to result from the ion channel-like properties of the pneumolysin pores. Excluding the major pore-related phenomena as the initiation mechanism of cell shape changes, the existence of a more complex relationship between the pore-forming capacity of pneumolysin and the actin cytoskeleton reorganization is suggested.
Collapse
Affiliation(s)
- Christina Förtsch
- DFG Membrane, Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (C.F.); (S.H.)
| | - Sabrina Hupp
- DFG Membrane, Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (C.F.); (S.H.)
| | - Jiangtao Ma
- Division of Infection and Immunity, Level 2, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK; (J.M.); (T.J.M.)
| | - Timothy J. Mitchell
- Division of Infection and Immunity, Level 2, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK; (J.M.); (T.J.M.)
| | - Elke Maier
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (E.M.); (R.B.)
| | - Roland Benz
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (E.M.); (R.B.)
| | - Asparouh I. Iliev
- DFG Membrane, Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany; (C.F.); (S.H.)
- Author to whom correspondence should be addressed; ; Tel.: +49-931-20148997; Fax: +49-931-20148539
| |
Collapse
|
46
|
|
47
|
Production and characterization of monoclonal antibodies against vaginolysin: Mapping of a region critical for its cytolytic activity. Toxicon 2010; 56:19-28. [DOI: 10.1016/j.toxicon.2010.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/05/2010] [Accepted: 03/08/2010] [Indexed: 11/21/2022]
|
48
|
Abstract
PURPOSE OF REVIEW The issue of whether the outcome of bacteremic pneumococcal infections is improved with the use of combination antibiotic therapy versus monotherapy is still not resolved. This review highlights recent studies that have addressed this issue. RECENT FINDINGS Some studies have indicated benefit of combination antibiotic therapy in severely ill patients with community-acquired pneumonia of all-cause. Conversely, in less severely ill hospitalized patients, fluoroquinolone monotherapy was as effective as fluoroquinolone combination regimens and a propensity analysis failed to show benefit of beta-lactam/macrolide combination over beta-lactam monotherapy. Studies across the world have shown a more favorable outcome in patients with community-acquired pneumonia treated with guideline-compliant therapy, mostly beta-lactam/macrolide combination regimens. The only recent study of patients with bacteremic pneumococcal pneumonia failed, however, to show benefit of combination therapy. A large number of investigations have yielded observations that address possible mechanisms by which combination therapy may have benefit, investigating issues such as cover for atypical pathogens, attenuation of pneumococcal virulence factors, and anti-inflammatory activity of the macrolide group of antibiotics. SUMMARY Despite a number of recent studies, the definitive decision regarding the need for combination antibiotic therapy for the effective management of bacteremic pneumococcal infections has not yet been formally resolved.
Collapse
|
49
|
Nakouzi A, Rivera J, Rest RF, Casadevall A. Passive administration of monoclonal antibodies to anthrolysin O prolong survival in mice lethally infected with Bacillus anthracis. BMC Microbiol 2008; 8:159. [PMID: 18811967 PMCID: PMC2559844 DOI: 10.1186/1471-2180-8-159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 09/23/2008] [Indexed: 12/02/2022] Open
Abstract
Background Bacillus anthracis has two major virulence factors: a tripartite toxin that produces lethal and edema toxins and a polyglutamic acid capsule. A recent report suggested that a toxin belonging to the cholesterol dependant cytolysin (CDC) family, anthrolysin O (ALO) was a new virulence factor for B. anthracis but subsequent studies have questioned its relevance in pathogenesis. In this study, we examined the immunogenicity of recombinant anthrolysin O (rALO) in mice. Results BALB/c mice immunized with rALO and boosted after two weeks, produce sera with strong Ab responses with a predominance of IgG1 and IgG2a. Five hybridomas to rALO were recovered representing the IgM, IgG1, and IgG2b isotypes. Passive administration of 3 of the five monoclonal antibodies (mAbs) to rALO prior to infection with lethal intravenous (i.v.) B. anthracis Sterne strain infection in mice was associated with enhanced average survival and a greater likelihood of surviving infection. A combination of two mAbs to ALO was more effective than either mAb separately. One mAb (64F8) slowed the toxicity of rALO for J774.16 macrophage-like cells. Conclusion Our results suggest that ALO contributes to the virulence of B. anthracis Sterne strain in this infection model and that Ab response to ALO may contribute to protection in certain circumstances.
Collapse
Affiliation(s)
- Antonio Nakouzi
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
50
|
Green SN, Sanders M, Moore QC, Norcross EW, Monds KS, Caballero AR, McDaniel LS, Robinson SA, Onwubiko C, O'Callaghan RJ, Marquart ME. Protection from Streptococcus pneumoniae keratitis by passive immunization with pneumolysin antiserum. Invest Ophthalmol Vis Sci 2008; 49:290-4. [PMID: 18172105 DOI: 10.1167/iovs.07-0492] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether passive immunization with pneumolysin antiserum can reduce corneal damage associated with pneumococcal keratitis. METHODS New Zealand White rabbits were intrastromally injected with Streptococcus pneumoniae and then passively immunized with control serum, antiserum against heat-inactivated pneumolysin (HI-PLY), or antiserum against cytotoxin-negative pneumolysin (psiPLY). Slit lamp examinations (SLEs) were performed at 24, 36, and 48 hours after infection. An additional four corneas from rabbits passively immunized with antiserum against psiPLY were examined up to 14 days after infection. Colony forming units (CFUs) were quantitated from corneas extracted at 20 and 48 hours after infection. Histopathology of rabbit eyes was performed at 48 hours after infection. RESULTS SLE scores at 36 and 48 hours after infection were significantly lower in rabbits passively immunized with HI-PLY antiserum than in control rabbits (P < or = 0.043). SLE scores at 24, 36, and 48 hours after infection were significantly lower in rabbits passively immunized with psiPLY antiserum than in control rabbits (P < or = 0.010). The corneas of passively immunized rabbits that were examined up to 14 days after infection exhibited a sequential decrease in keratitis, with an SLE score average of 2.000 +/- 1.586 at 14 days. CFUs recovered from infected corneas were not significantly different between each experimental group and the respective control group at 20 or 48 hours after infection (P > or = 0.335). Histologic sections showed more corneal edema and polymorphonuclear leukocyte (PMN) infiltration in control rabbits compared with passively immunized rabbits. CONCLUSIONS HI-PLY and psiPLY both elicit antibodies that provide passive protection against S. pneumoniae keratitis.
Collapse
Affiliation(s)
- Sherrina N Green
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|