1
|
Paula Goetting-Minesky M, Godovikova V, Saraithong P, Rickard AH, Crawley BR, Agolli SM, Fenno JC. Functional characterization and optimization of protein expression in Treponema denticola shuttle plasmids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.27.620309. [PMID: 39484406 PMCID: PMC11527128 DOI: 10.1101/2024.10.27.620309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Oral spirochetes are among a small group of keystone pathogens contributing to dysregulation of periodontal tissue homeostasis, leading to breakdown of the tissue and bone supporting the teeth in periodontal disease. Of the greater than sixty oral Treponema species and phylotypes, T. denticola is one of the few that can be grown in culture and the only one in which genetic manipulation has been shown to be practicable. T. denticola is thus a model organism for studying spirochete metabolic processes, interactions with other microbes and host cell and tissue responses relevant to oral diseases as well as venereal and nonvenereal treponematoses. We recently demonstrated enhanced transformation efficiency using a SyngenicDNA-based shuttle plasmid resistant to T. denticola restriction-modification systems. Here we expand on this work by further characterizing the shuttle plasmid and optimizing expression of cloned genes using several promoter-gene constructs for genetic complementation and exogenous gene expression, including the first inducible system for controlled expression of potentially toxic plasmid-encoded genes in Treponema . Our results highlight the importance of precise pairing of promoters and genes of interest to obtaining biologically optimal protein expression. This work expands the utility of the shuttle plasmid and will facilitate future studies employing shuttle plasmids in analysis of Treponema physiology and behavior. IMPORTANCE Rigorous genetic analysis in oral spirochetes has been hampered by the limited utility of available versions of the E. coli-T. denticola shuttle plasmid system. We report expanded characterization of the shuttle plasmid, including relative activity of diverse promoters and the first inducible expression system described for T. denticola. We show that careful customization of the shuttle plasmid for specific applications is crucial for obtaining successful results.
Collapse
|
2
|
Merritt J, Kreth J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular microbiology studies. FEMS Microbiol Rev 2023; 47:fuac050. [PMID: 36549660 PMCID: PMC10719069 DOI: 10.1093/femsre/fuac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Advancements in DNA sequencing technologies within the last decade have stimulated an unprecedented interest in the human microbiome, largely due the broad diversity of human diseases found to correlate with microbiome dysbiosis. As a direct consequence of these studies, a vast number of understudied and uncharacterized microbes have been identified as potential drivers of mucosal health and disease. The looming challenge in the field is to transition these observations into defined molecular mechanistic studies of symbiosis and dysbiosis. In order to meet this challenge, many of these newly identified microbes will need to be adapted for use in experimental models. Consequently, this review presents a comprehensive overview of the molecular microbiology tools and techniques that have played crucial roles in genetic studies of the bacteria found within the human oral microbiota. Here, we will use specific examples from the oral microbiome literature to illustrate the biology supporting these techniques, why they are needed in the field, and how such technologies have been implemented. It is hoped that this information can serve as a useful reference guide to help catalyze molecular microbiology studies of the many new understudied and uncharacterized species identified at different mucosal sites in the body.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| |
Collapse
|
3
|
Abstract
There have been more than 60 different oral Treponema species identified in the oral cavity; however, only few species can be cultivated in vitro reliably. Among those cultivable species, due to its medical importance and genetic tractability, Treponema denticola, one of the keystone pathogens associated with human periodontitis, has emerged as a paradigm model organism to understanding the genetics, etiology, and pathophysiology of oral Treponema species. During the last two decades, several genetic tools have been developed, which have played an instrumental role in the study of T. denticola. This chapter describes the experimental design and procedure of genetic manipulations of T. denticola.
Collapse
|
4
|
Oral spirochetes: Pathogenic mechanisms in periodontal disease. Microb Pathog 2020; 144:104193. [PMID: 32304795 DOI: 10.1016/j.micpath.2020.104193] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
Periodontitis is an infectious inflammatory disease resulting from infection of biofilm forming bacteria. Several bacterial factors regulate inflammatory response and cause to tissue damage and loss of connection between gingival and tooth. Since bacterial virulence factors and also host immune responses have role, understanding of periodontal disease is complex, in overall we can say that in this disease epithelium is deleted by bacteria. Oral spirochetes are related to periodontitis, among them, Treponema denticola, have been associated with periodontal diseases such as early-onset periodontitis, necrotizing ulcerative gingivitis, and acute pericoronitis. This review will analyse mechanisms of pathogenesis of spirochetes in periodontitis. Microorganisms cause destruction of gingival tissue by two mechanisms. In one, damage results from the direct action of bacterial enzymes and cytotoxic products of bacterial metabolism. In the other, only bacterial components have role, and tissue destruction is the inevitable side effect of a subverted and exaggerated host inflammatory response to plaque antigens.
Collapse
|
5
|
Ng HM, Slakeski N, Butler CA, Veith PD, Chen YY, Liu SW, Hoffmann B, Dashper SG, Reynolds EC. The Role of Treponema denticola Motility in Synergistic Biofilm Formation With Porphyromonas gingivalis. Front Cell Infect Microbiol 2019; 9:432. [PMID: 31921707 PMCID: PMC6930189 DOI: 10.3389/fcimb.2019.00432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/04/2019] [Indexed: 12/29/2022] Open
Abstract
Chronic periodontitis has a polymicrobial biofilm etiology and interactions between key oral bacterial species, such as Porphyromonas gingivalis and Treponema denticola contribute to disease progression. P. gingivalis and T. denticola are co-localized in subgingival plaque and have been previously shown to exhibit strong synergy in growth, biofilm formation and virulence in an animal model of disease. The motility of T. denticola, although not considered as a classic virulence factor, may be involved in synergistic biofilm development between P. gingivalis and T. denticola. We determined the role of T. denticola motility in polymicrobial biofilm development using an optimized transformation protocol to produce two T. denticola mutants targeting the motility machinery. These deletion mutants were non-motile and lacked the gene encoding the flagellar hook protein of the periplasmic flagella (ΔflgE) or a component of the stator motor that drives the flagella (ΔmotB). The specificity of these gene deletions was determined by whole genome sequencing. Quantitative proteomic analyses of mutant strains revealed that the specific inactivation of the motility-associated gene, motB, had effects beyond motility. There were 64 and 326 proteins that changed in abundance in the ΔflgE and ΔmotB mutants, respectively. In the ΔflgE mutant, motility-associated proteins showed the most significant change in abundance confirming the phenotype change for the mutant was related to motility. However, the inactivation of motB as well as stopping motility also upregulated cellular stress responses in the mutant indicating pleiotropic effects of the mutation. T. denticola wild-type and P. gingivalis displayed synergistic biofilm development with a 2-fold higher biomass of the dual-species biofilms than the sum of the monospecies biofilms. Inactivation of T. denticola flgE and motB reduced this synergy. A 5-fold reduction in dual-species biofilm biomass was found with the motility-specific ΔflgE mutant suggesting that T. denticola periplasmic flagella are essential in synergistic biofilm formation with P. gingivalis.
Collapse
Affiliation(s)
- Hong Min Ng
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Nada Slakeski
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine A Butler
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul D Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Yu-Yen Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Sze Wei Liu
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Brigitte Hoffmann
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Stuart G Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
pyrF as a Counterselectable Marker for Unmarked Genetic Manipulations in Treponema denticola. Appl Environ Microbiol 2015; 82:1346-52. [PMID: 26682856 DOI: 10.1128/aem.03704-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022] Open
Abstract
The pathophysiology of Treponema denticola, an oral pathogen associated with both periodontal and endodontic infections, is poorly understood due to its fastidious growth and recalcitrance to genetic manipulations. Counterselectable markers are instrumental in constructing clean and unmarked mutations in bacteria. Here, we demonstrate that pyrF, a gene encoding orotidine-5'-monophosphate decarboxylase, can be used as a counterselectable marker in T. denticola to construct marker-free mutants. T. denticola is susceptible to 5-fluoroorotic acid (5-FOA). To establish a pyrF-based counterselectable knockout system in T. denticola, the pyrF gene was deleted. The deletion conferred resistance to 5-FOA in T. denticola. Next, a single-crossover mutant was constructed by reintroducing pyrF along with a gentamicin resistance gene (aacC1) back into the chromosome of the pyrF mutant at the locus of choice. In this study, we chose flgE, a flagellar hook gene that is located within a large polycistronic motility gene operon, as our target gene. The obtained single-crossover mutant (named FlgE(in)) regained the susceptibility to 5-FOA. Finally, FlgE(in) was plated on solid agar containing 5-FOA. Numerous colonies of the 5-FOA-resistant mutant (named FlgE(out)) were obtained and characterized by PCR and Southern blotting analyses. The results showed that the flgE gene was deleted and FlgE(out) was free of selection markers (i.e., pyrF and aacC1). Compared to previously constructed flgE mutants that contain an antibiotic selection marker, the deletion of flgE in FlgE(out) has no polar effect on its downstream gene expression. The system developed here will provide us with a new tool for investigating the genetics and pathogenicity of T. denticola.
Collapse
|
7
|
A Modified Shuttle Plasmid Facilitates Expression of a Flavin Mononucleotide-Based Fluorescent Protein in Treponema denticola ATCC 35405. Appl Environ Microbiol 2015; 81:6496-504. [PMID: 26162875 DOI: 10.1128/aem.01541-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/07/2015] [Indexed: 12/18/2022] Open
Abstract
Oral pathogens, including Treponema denticola, initiate the dysregulation of tissue homeostasis that characterizes periodontitis. However, progress of research on the roles of T. denticola in microbe-host interactions and signaling, microbial communities, microbial physiology, and molecular evolution has been hampered by limitations in genetic methodologies. This is typified by an extremely low transformation efficiency and inability to transform the most widely studied T. denticola strain with shuttle plasmids. Previous studies have suggested that robust restriction-modification (R-M) systems in T. denticola contributed to these problems. To facilitate further molecular genetic analysis of T. denticola behavior, we optimized existing protocols such that shuttle plasmid transformation efficiency was increased by >100-fold over prior reports. Here, we report routine transformation of T. denticola ATCC 35405 with shuttle plasmids, independently of both plasmid methylation status and activity of the type II restriction endonuclease encoded by TDE0911. To validate the utility of this methodological advance, we demonstrated expression and activity in T. denticola of a flavin mononucleotide-based fluorescent protein (FbFP) that is active under anoxic conditions. Addition of routine plasmid-based fluorescence labeling to the Treponema toolset will enable more-rigorous and -detailed studies of the behavior of this organism.
Collapse
|
8
|
Kanamycin Resistance Cassette for Genetic Manipulation of Treponema denticola. Appl Environ Microbiol 2015; 81:4329-38. [PMID: 25888173 DOI: 10.1128/aem.00478-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/14/2015] [Indexed: 12/24/2022] Open
Abstract
Treponema denticola has been recognized as an important oral pathogen of the "red complex" bacterial consortium that is associated with the pathogenesis of endodontal and periodontal diseases. However, little is known about the virulence of T. denticola due to its recalcitrant genetic system. The difficulty in genetically manipulating oral spirochetes is partially due to the lack of antibiotic resistance cassettes that are useful for gene complementation following allelic replacement mutagenesis. In this study, a kanamycin resistance cassette was identified and developed for the genetic manipulation of T. denticola ATCC 35405. Compared to the widely used ermF-ermAM cassette, the kanamycin cassette used in the transformation experiments gave rise to additional antibiotic-resistant T. denticola colonies. The kanamycin cassette is effective for allelic replacement mutagenesis as demonstrated by inactivation of two open reading frames of T. denticola, TDE1430 and TDE0911. In addition, the cassette is also functional in trans-chromosomal complementation. This was determined by functional rescue of a periplasmic flagellum (PF)-deficient mutant that had the flgE gene coding for PF hook protein inactivated. The integration of the full-length flgE gene into the genome of the flgE mutant rescued all of the defects associated with the flgE mutant that included the lack of PF filament and spirochetal motility. Taken together, we demonstrate that the kanamycin resistance gene is a suitable cassette for the genetic manipulation of T. denticola that will facilitate the characterization of virulence factors attributed to this important oral pathogen.
Collapse
|
9
|
Abstract
Thiamine pyrophosphate (TPP), the biologically active form of thiamine (also known as vitamin B1), is an essential cofactor for several important enzymes involved in carbohydrate metabolism, and therefore, it is required for all living organisms. We recently found that a thiamine-binding protein (TDE_0143) is essential for the survival of Treponema denticola, an important bacterial pathogen that is associated with human periodontitis. In this report, we provide experimental evidence showing that TP_0144, a homolog of TDE_0143 from the syphilis spirochete Treponema pallidum, is a thiamine-binding protein that has biochemical features and functions that are similar to those of TDE_0143. First, structural modeling analysis reveal that both TDE_0143 and TP_0144 contain a conserved TPP-binding site and share similar structures to the thiamine-binding protein of Escherichia coli. Second, biochemical analysis shows that these two proteins bind to TPP with similar dissociation constant (Kd) values (TDE_0143, Kd of 36.50 nM; TP_0144, Kd of 32.62 nM). Finally, heterologous expression of TP_0144 in a ΔTDE_0143 strain, a previously constructed TDE_0143 mutant of T. denticola, fully restores its growth and TPP uptake when exogenous thiamine is limited. Collectively, these results indicate that TP_0144 is a thiamine-binding protein that is indispensable for T. pallidum to acquire exogenous thiamine, a key nutrient for bacterial survival. In addition, the studies shown in this report further underscore the feasibility of using T. denticola as a platform to study the biology and pathogenicity of T. pallidum and probably other uncultivable treponemal species as well.
Collapse
|
10
|
Abstract
Oral Treponema species, most notably T. denticola, are implicated in the destructive effects of human periodontal disease. Progress in the molecular analysis of interactions between T. denticola and host proteins is reviewed here, with particular emphasis on the characterization of surface-expressed and secreted proteins of T. denticola involved in interactions with host cells, extracellular matrix components, and components of the innate immune system.
Collapse
Affiliation(s)
- J. Christopher Fenno
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Development of a modified gentamicin resistance cassette for genetic manipulation of the oral spirochete Treponema denticola. Appl Environ Microbiol 2012; 78:2059-62. [PMID: 22247130 DOI: 10.1128/aem.07461-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Herein, we report that a modified gentamicin cassette and a PCR-based method can be used for targeted mutagenesis of the oral spirochete Treponema denticola. This approach minimizes polar effects and spontaneous antibiotic resistance. Therefore, it can serve as a reliable tool for genetic manipulation of T. denticola.
Collapse
|
12
|
Disruption of a type II endonuclease (TDE0911) enables Treponema denticola ATCC 35405 to accept an unmethylated shuttle vector. Appl Environ Microbiol 2011; 77:4573-8. [PMID: 21602384 DOI: 10.1128/aem.00417-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oral spirochete Treponema denticola is associated with human periodontal disease. T. denticola ATCC 35405 and ATCC 33520 are two routinely used laboratory strains. Compared to T. denticola ATCC 33520, ATCC 35405 is more virulent but less accessible to genetic manipulations. For instance, the shuttle vectors of ATCC 33520 cannot be transformed into strain ATCC 35405. The lack of a shuttle vector has been a barrier to study the biology and virulence of T. denticola ATCC 35405. In this report, we hypothesize that T. denticola ATCC 35405 may have a unique DNA restriction-modification (R-M) system that prevents it from accepting the shuttle vectors of ATCC 33520 (e.g., the shuttle plasmid pBFC). To test this hypothesis, DNA restriction digestion, PCR, and Southern blot analyses were conducted to identify the differences between the R-M systems of these two strains. DNA restriction digestion analysis of these strains showed that only the cell extract from ATCC 35405 was able to digest pBFC. Consistently, PCR and Southern blot analyses revealed that the genome of T. denticola ATCC 35405 encodes three type II endonucleases that are absent in ATCC 33520. Among these three endonucleases, TDE0911 was predicted to cleave unmethylated double-stranded DNA and to be most likely responsible for the cleavage of unmethylated pBFC. In agreement with this prediction, the mutant of TDE0911 failed to cleave unmethylated pBFC plasmid, and it could accept the unmethylated shuttle vector. The study described here provides us with a new tool and strategy to genetically manipulate T. denticola, in particular ATCC 35405, and other strains that may carry similar endonucleases.
Collapse
|
13
|
McDowell JV, Frederick J, Miller DP, Goetting-Minesky MP, Goodman H, Fenno JC, Marconi RT. Identification of the primary mechanism of complement evasion by the periodontal pathogen, Treponema denticola. Mol Oral Microbiol 2010; 26:140-9. [PMID: 21375704 DOI: 10.1111/j.2041-1014.2010.00598.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treponema denticola, a periodontal pathogen, binds the complement regulatory protein Factor H (FH). Factor H binding protein B (FhbB) is the sole FH binding protein produced by T. denticola. The interaction of FhbB with FH is unique in that FH is bound to the cell and then cleaved by the T. denticola protease, dentilisin. A ∼ 50-kDa product generated by dentilisin cleavage is retained at the cell surface. Until this study, a direct role for the FhbB-FH interaction in complement evasion and serum sensitivity had not been demonstrated. Here we assess the serum resistance of T. denticola strain 35405 (Td35405wt) and isogenic mutants deficient in dentilisin (Td35405-CCE) and FhbB production (Td35405ΔfhbB), respectively. Both dentilisin and FhbB have been postulated to be key virulence factors that mediate complement evasion. Consistent with conditions in the subgingival crevice, an environment with a significant concentration of complement, Td35405wt was resistant to serum concentrations as high as 25%. Deletion of fhbB (Td35405ΔfhbB), which resulted in the complete loss of FH binding ability, but not inactivation of dentilisin activity (Td35405-CCE), rendered T. denticola highly sensitive to 25% human serum with 80% of the cells being disrupted after 4 h of incubation. Heat treatment of the serum to inactivate complement confirmed that killing was mediated by complement. These results indicate that the FH-FhbB interaction is required for serum resistance whereas dentilisin is not. This report provides new insight into the novel complement evasion mechanisms of T. denticola.
Collapse
Affiliation(s)
- J V McDowell
- Department of Microbiology and Immunology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Goetting-Minesky MP, Fenno JC. A simplified erythromycin resistance cassette for Treponema denticola mutagenesis. J Microbiol Methods 2010; 83:66-8. [PMID: 20691222 DOI: 10.1016/j.mimet.2010.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/16/2010] [Accepted: 07/22/2010] [Indexed: 11/25/2022]
Abstract
The primary selectable marker for the genetic studies of Treponema denticola is a hybrid gene cassette containing both ermF and ermAM (ermB) genes. ErmB functions in Escherichia coli, while ErmF has been assumed to confer resistance in T. denticola. We demonstrate here that ErmB is sufficient for erythromycin selection in T. denticola and that the native ermB promoter drives ErmB expression.
Collapse
Affiliation(s)
- M Paula Goetting-Minesky
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | |
Collapse
|
15
|
Abstract
The expression of flagellin genes in most bacteria is typically regulated by the flagellum-specific sigma(28) factor FliA, and an anti-sigma(28) factor, FlgM. However, the regulatory hierarchy in several bacteria that have multiple flagellins is more complex. In these bacteria, the flagellin genes are often transcribed by at least two different sigma factors. The flagellar filament in spirochetes consists of one to three FlaB core proteins and at least one FlaA sheath protein. Here, the genetically amenable bacterium Brachyspira hyodysenteriae was used as a model spirochete to investigate the regulation of its four flagellin genes, flaA, flaB1, flaB2, and flaB3. We found that the flaB1 and flaB2 genes are regulated by sigma(28), whereas the flaA and flaB3 genes are controlled by sigma(70). The analysis of a flagellar motor switch fliG mutant further supported this proposition; in the mutant, the transcription of flaB1 and flaB2 was inhibited, but that of flaA and flaB3 was not. In addition, the continued expression of flaA and flaB3 in the mutant resulted in the formation of incomplete flagellar filaments that were hollow tubes and consisted primarily of FlaA. Finally, our recent studies have shown that each flagellin unit contributes to the stiffness of the periplasmic flagella, and this stiffness directly correlates with motility. The regulatory mechanism identified here should allow spirochetes to change the relative ratio of these flagellin proteins and, concomitantly, vary the stiffness of their flagellar filament.
Collapse
|
16
|
Kuramitsu HK, Chi B, Ikegami A. Genetic manipulation of Treponema denticola. CURRENT PROTOCOLS IN MICROBIOLOGY 2008; Chapter 12:Unit 12B.2. [PMID: 18770552 DOI: 10.1002/9780471729259.mc12b02s00] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The oral anaerobic spirochete, Treponema denticola, has been implicated in the etiology of human periodontal diseases; however, the molecular basis for the virulence of these organisms is still unclear. Potential pathogenic factors expressed by T. denticola have recently begun to be identified through the development of gene transfer approaches in this organism following electroporetic transformation. Several antibiotic resistance markers have been developed for use in the construction of monospecific mutants in these organisms. In addition, these antibiotic resistance cassettes have been more recently utilized to construct shuttle plasmids for complementation analysis of the mutants. These plasmids were also used to express heterologous spirochete genes in T. denticola. The transformation of other spirochetes such as T. phagedenis with these plasmids further suggests that it should be possible to develop similar gene transfer systems in other cultivable treponemes.
Collapse
|
17
|
Izard J, Hsieh CE, Limberger RJ, Mannella CA, Marko M. Native cellular architecture of Treponema denticola revealed by cryo-electron tomography. J Struct Biol 2008; 163:10-7. [PMID: 18468917 DOI: 10.1016/j.jsb.2008.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 03/20/2008] [Accepted: 03/21/2008] [Indexed: 11/26/2022]
Abstract
Using cryo-electron tomography, we are developing a refined description of native cellular structures in the pathogenic spirochete Treponema denticola. Tightly organized bundles of periplasmic flagella were readily observed in intact plunge-frozen cells. The periplasmic space was measured in both wild-type and aflagellate strains, and found to widen by less than the diameter of flagella when the latter are present. This suggests that a structural change occurs in the peptidoglycan layer to accommodate the presence of the flagella. In dividing cells, the flagellar filaments were found to bridge the cytoplasmic cylinder constriction site. Cytoplasmic filaments, adjacent to the inner membrane, run parallel to the tightly organized flagellar filaments. The cytoplasmic filaments may be anchored by a narrow plate-like structure. The tapering of the cell ends was conserved between cells, with a patella-shaped structure observed in the periplasm at the tip of each cytoplasmic cylinder. Several incompletely characterized structures have been observed in the periplasm between dividing cells, including a cable-like structure linking two cytoplasmic cylinders and complex foil-shaped structures.
Collapse
Affiliation(s)
- Jacques Izard
- Department of Molecular Genetics, The Forsyth Institute, 140 Fenway, Boston, MA 02135, USA.
| | | | | | | | | |
Collapse
|
18
|
Heterologous expression of the Treponema pallidum laminin-binding adhesin Tp0751 in the culturable spirochete Treponema phagedenis. J Bacteriol 2008; 190:2565-71. [PMID: 18263731 PMCID: PMC2293214 DOI: 10.1128/jb.01537-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treponema pallidum subsp. pallidum, the causative agent of syphilis, is an unculturable, genetically intractable bacterium. Here we report the use of the shuttle vector pKMR4PEMCS for the expression of a previously identified T. pallidum laminin-binding adhesin, Tp0751, in the nonadherent, culturable spirochete Treponema phagedenis. Heterologous expression of Tp0751 in T. phagedenis was confirmed via reverse transcriptase PCR analysis with tp0751 gene-specific primers and immunofluorescence analysis with Tp0751-specific antibodies; the latter assay verified the expression of the laminin-binding adhesin on the treponemal surface. Expression of Tp0751 within T. phagedenis was functionally confirmed via laminin attachment assays, in which heterologous Tp0751 expression conferred upon T. phagedenis the capacity to attach to laminin. Further, specific inhibition of the attachment of T. phagedenis heterologously expressing Tp0751 to laminin was achieved by using purified antibodies raised against recombinant T. pallidum Tp0751. This is the first report of heterologous expression of a gene from an unculturable treponeme in T. phagedenis. This novel methodology will significantly advance the field of syphilis research by allowing targeted investigations of T. pallidum proteins purported to play a role in pathogenesis, and specifically host cell attachment, in the nonadherent spirochete T. phagedenis.
Collapse
|
19
|
Capone RF, Ning Y, Pakulis N, Alhazzazi T, Fenno JC. Characterization of Treponema denticola pyrF encoding orotidine-5'-monophosphate decarboxylase. FEMS Microbiol Lett 2006; 268:261-7. [PMID: 17187656 DOI: 10.1111/j.1574-6968.2006.00589.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The Treponema denticola ATCC 35405 genome annotation contains most of the genes for de novo pyrimidine biosynthesis. To initiate characterization of pyrimidine synthesis in Treponema, we focused on TDE2110 (the putative pyrF, encoding orotidine-5'-monophosphate decarboxlyase). Unlike the parent strain, an isogenic pyrF mutant was resistant to 5-fluoroorotic acid. In complex medium, growth of the pyrF mutant was independent of added uracil, indicating activity of a uracil uptake/salvage pathway. Transcription of pyrF was greatly reduced in T. denticola grown in excess uracil, demonstrating that de novo pyrimidine synthesis is regulated and suggesting a feedback mechanism. Treponema denticola PyrF complemented uracil auxotrophy in an Escherichia coli pyrF mutant. This study provides biochemical confirmation of T. denticola genome predictions of de novo and salvage pyrimidine pathways and provides proof of concept that pyrF has potential as a selectable marker in T. denticola.
Collapse
Affiliation(s)
- Ricardo F Capone
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | |
Collapse
|