1
|
Bhowmik S, Pathak A, Pandey S, Devnath K, Sett A, Jyoti N, Bhando T, Akhter J, Chugh S, Singh R, Sharma TK, Pathania R. Acinetobacter baumannii represses type VI secretion system through a manganese-dependent small RNA-mediated regulation. mBio 2024:e0302524. [PMID: 39704509 DOI: 10.1128/mbio.03025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Type VI secretion system (T6SS) is utilized by many Gram-negative bacteria to eliminate competing bacterial species and manipulate host cells. Acinetobacter baumannii ATCC 17978 utilizes T6SS at the expense of losing pAB3 plasmid to induce contact-dependent killing of competitor microbes, resulting in the loss of antibiotic resistance carried by pAB3. However, the regulatory network associated with T6SS in A. baumannii remains poorly understood. Here, we identified an Mn2+-dependent post-transcriptional regulation of T6SS mediated by a bonafide small RNA, AbsR28. A. baumannii utilizes MumT, an Mn2+-uptake inner membrane transporter, for the uptake of extracellular Mn2+ during oxidative stress. We demonstrate that the abundance of intracellular Mn2+ enables complementary base pairing of AbsR28-tssM mRNA (that translates to TssM, one of the vital inner membrane components of T6SS), inducing RNase E-mediated degradation of tssM mRNA and resulting in T6SS repression. Thus, AbsR28 mediates a crosstalk between MumT and T6SS in A. baumannii.IMPORTANCESmall RNAs (sRNAs) are identified as critical components within the bacterial regulatory networks involved in fine regulation of virulence-associated factors. The sRNA-mediated regulation of type VI secretion system (T6SS) in Acinetobacter baumannii was unchartered. Previously, it was demonstrated that A. baumannii ATCC 17978 cells switch from T6- to T6+ phenotype, resulting in the loss of antibiotic resistance conferred by plasmid pAB3. Furthermore, the derivatives of pAB3 found in recent clinical isolates of A. baumannii harbor expanded antibiotic resistance genes and multiple determinants for virulence factors. Hence, the loss of this plasmid for T6SS activity renders A. baumannii T6+ cells susceptible to antibiotics and compromises their virulence. Our findings show how A. baumannii tends to inactivate T6SS through an sRNA-mediated regulation that relies on Mn2+ and retains pAB3 during infection to retain antibiotic resistance genes carried on the plasmid.
Collapse
Affiliation(s)
- Somok Bhowmik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Avik Pathak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shivam Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Kuldip Devnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Abhiroop Sett
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Nishant Jyoti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Timsy Bhando
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Jawed Akhter
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
- Center of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
2
|
Kalindamar S, Abdelhamed H, Kordon AO, Tekedar HC, Pinchuk L, Karsi A. Characterization of Type VI secretion system in Edwardsiella ictaluri. PLoS One 2023; 18:e0296132. [PMID: 38153949 PMCID: PMC10754466 DOI: 10.1371/journal.pone.0296132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023] Open
Abstract
Edwardsiella ictaluri is a Gram-negative facultative intracellular fish pathogen causing enteric septicemia of catfish (ESC). While various secretion systems contribute to E. ictaluri virulence, the Type VI secretion system (T6SS) remains poorly understood. In this study, we constructed 13 E. ictaluri T6SS mutants using splicing by overlap extension PCR and characterized them, assessing their uptake and survival in channel catfish (Ictalurus punctatus) peritoneal macrophages, attachment and invasion in channel catfish ovary (CCO) cells, in vitro stress resistance, and virulence and efficacy in channel catfish. Among the mutants, EiΔevpA, EiΔevpH, EiΔevpM, EiΔevpN, and EiΔevpO exhibited reduced replication inside peritoneal macrophages. EiΔevpM, EiΔevpN, and EiΔevpO showed significantly decreased attachment to CCO cells, while EiΔevpN and EiΔevpO also displayed reduced invasion of CCO cells (p < 0.05). Overall, T6SS mutants demonstrated enhanced resistance to oxidative and nitrosative stress in the nutrient-rich medium compared to the minimal medium. However, EiΔevpA, EiΔevpH, EiΔevpM, EiΔevpN, and EiΔevpO were susceptible to oxidative stress in both nutrient-rich and minimal medium. In fish challenges, EiΔevpD, EiΔevpE, EiΔevpG, EiΔevpJ, and EiΔevpK exhibited attenuation and provided effective protection against E. ictaluri wild-type (EiWT) infection in catfish fingerlings. However, their attenuation and protective efficacy were lower in catfish fry. These findings shed light on the role of the T6SS in E. ictaluri pathogenesis, highlighting its significance in intracellular survival, host cell attachment and invasion, stress resistance, and virulence. The attenuated T6SS mutants hold promise as potential candidates for protective immunization strategies in catfish fingerlings.
Collapse
Affiliation(s)
- Safak Kalindamar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ordu University, Ordu, Türkiye
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Adef O. Kordon
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Hasan C. Tekedar
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Lesya Pinchuk
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Attila Karsi
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| |
Collapse
|
3
|
Pradhan J, Pradhan D, Sahu JK, Mishra S, Mallick S, Das S, Negi VD. A novel rspA gene regulates biofilm formation and virulence of Salmonella Typhimurium. Microb Pathog 2023; 185:106432. [PMID: 37926364 DOI: 10.1016/j.micpath.2023.106432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Salmonella spp. are facultative anaerobic, Gram-negative, rod-shaped bacteria and belongs to the Enterobacteriaceae family. Although much has been known about Salmonella pathogenesis, the functional characterizations of certain genes are yet to be explored. The rspA (STM14_1818) is one such gene with putative dehydratase function, and its role in pathogenesis is unknown. The background information showed that rspA gene is upregulated in Salmonella when it resides inside macrophages, which led us to investigate its role in Salmonella pathogenesis. We generated the rspA knockout strain and complement strain in S. Typhimurium 14028. Ex-vivo and in-vivo infectivity was looked at macrophage and epithelial cell lines and Caenorhabditis elegans (C. elegans). The mutant strain differentially formed the biofilm at different temperatures by altering the expression of genes involved in the synthesis of cellulose and curli. Besides, the mutant strain is hyperproliferative intracellularly and showed increased bacterial burden in C. elegans. The mutant strain became more infectious and lethal, causing faster death of the worms than the wild type, and also modulates the worm's innate immunity. Thus, we found that the rspA deletion mutant was more pathogenic. In this study, we concluded that the rspA gene differentially regulates the biofilm formation in a temperature dependent manner by modulating the genes involved in the synthesis of cellulose and curli and negatively regulates the Salmonella virulence for longer persistence inside the host.
Collapse
Affiliation(s)
- Jasmin Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Diana Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Jugal Kishor Sahu
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Satyajit Mishra
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Swarupa Mallick
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Surajit Das
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Vidya Devi Negi
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
4
|
Speare L, Jackson A, Septer AN. Calcium Promotes T6SS-Mediated Killing and Aggregation between Competing Symbionts. Microbiol Spectr 2022; 10:e0139722. [PMID: 36453912 PMCID: PMC9769598 DOI: 10.1128/spectrum.01397-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/05/2022] [Indexed: 12/03/2022] Open
Abstract
Bacteria use a variety of strategies to exclude competitors from accessing resources, including space within a host niche. Because these mechanisms are typically costly to deploy, they are often tightly regulated for use in environments where the benefits outweigh the energetic cost. The type VI secretion system (T6SS) is a competitive mechanism that allows inhibitors to kill competing microbes by physically puncturing and translocating cytotoxic effectors directly into neighboring competitor cells. Although T6SSs are encoded in both symbiotic and free-living taxa where they may be actively secreting into the extracellular milieu during growth in liquid culture, there is little evidence for bacteria engaging in T6SS-mediated, contact-dependent killing under low-viscosity liquid conditions. Here, we determined that calcium acts as a pH-dependent cue to activate the assembly of an antibacterial T6SS in a Vibrio fischeri light organ symbiont in a low-viscosity liquid medium. Moreover, competing V. fischeri isolates formed mixed-strain aggregates that promoted the contact necessary for T6SS-dependent elimination of a target population. Our findings expand our knowledge of V. fischeri T6SS ecology and identify a low-viscosity liquid condition where cells engage in contact-dependent killing. IMPORTANCE Microbes deploy competitive mechanisms to gain access to resources such as nutrients or space within an ecological niche. Identifying when and where these strategies are employed can be challenging given the complexity and variability of most natural systems; therefore, studies evaluating specific cues that conditionally regulate interbacterial competition can inform the ecological context for such competition. In this work, we identified a pH-dependent chemical cue in seawater, calcium, which promotes activation of a contact-dependent interbacterial weapon in the marine symbiont Vibrio fischeri. This finding underscores the importance of using ecologically relevant salts in growth media and the ability of bacterial cells to sense and integrate multiple environmental cues to assess the need for a weapon. Identification of these cues provides insight into the types of environments where employing a weapon is advantageous to the survival and propagation of a bacterial population.
Collapse
Affiliation(s)
- Lauren Speare
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Aundre Jackson
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alecia N. Septer
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Liyanapathiranage P, Jones JB, Potnis N. Mutation of a Single Core Gene, tssM, of Type VI Secretion System of Xanthomonas perforans Influences Virulence, Epiphytic Survival, and Transmission During Pathogenesis on Tomato. PHYTOPATHOLOGY 2022; 112:752-764. [PMID: 34543058 DOI: 10.1094/phyto-02-21-0069-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xanthomonas perforans is a seedborne hemibiotrophic pathogen that successfully establishes infection in the phyllosphere of tomato. While most studies investigating mechanistic basis of pathogenesis have focused on successful apoplastic growth, factors important during asymptomatic colonization in the early stages of disease development are not well understood. In this study, we show that tssM gene of the type VI secretion system cluster i3* (T6SS-i3*) plays a significant role during initial asymptomatic epiphytic colonization at different stages during the life cycle of the pathogen. Mutation in a core gene, tssM of T6SS-i3*, imparted higher aggressiveness to the pathogen, as indicated by higher overall disease severity, higher in planta growth, and shorter latent infection period compared with the wild-type upon dip inoculation of 4- to 5-week-old tomato plants. Contribution of tssM toward aggressiveness was evident during vertical transmission from seed to seedling, with wild-type showing reduced disease severity as well as lower in planta populations on seedlings compared with the mutant. Presence of functional TssM offered higher epiphytic fitness as well as higher dissemination potential to the pathogen when tested in an experimental setup mimicking transplant house high-humidity conditions. We showed higher osmotolerance being one mechanism by which TssM offers higher epiphytic fitness. Taken together, these data reveal that functional TssM plays a larger role in offering ecological advantage to the pathogen. TssM prolongs the association of hemibiotrophic pathogen with the host, minimizing overall disease severity yet facilitating successful dissemination.
Collapse
Affiliation(s)
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| |
Collapse
|
6
|
Ma S, Liu X, Ma S, Jiang L. SopA inactivation or reduced expression is selected in intracellular Salmonella and contributes to systemic Salmonella infection. Res Microbiol 2020; 172:103795. [PMID: 33347947 DOI: 10.1016/j.resmic.2020.103795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Abstract
Pseudogenes are accumulated in host-restricted Salmonella enterica serovars, while pseudogenization is primarily regarded as a process that purges unnecessary genes from the genome. Here we showed that the inactivation of sopA, which encodes an effector of Salmonella Pathogenicity Island 1, in human-restricted S. enterica serovar Typhi (S. Ty) and Paratyphi A (S. PA) is under positive selection and aimed to reduce bacterial cytotoxicity toward host macrophages. Moreover, we found that the expression of sopA in Salmonella Typhimurium (S. Tm), a broad-host-range serovar which causes systemic disease in mice, was negatively regulated during mice infection and survival in murine macrophages. The sopA repression in S. Tm is mediated by IsrM, a small RNA absent from the genome of S. Ty and S. PA. Due to the lack of IsrM, sopA expression was unregulated in S. Ty and S. PA, which might have facilitated the convergent inactivation of sopA in these two serovars. In conclusion, our findings demonstrate that sopA inactivation or intracellular repression is the target of positive selection during the systemic infection caused by S. enterica serovars.
Collapse
Affiliation(s)
- Shuangshuang Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China.
| | - Xiaoqian Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China.
| | - Shuai Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China.
| | - Lingyan Jiang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China.
| |
Collapse
|
7
|
Wang P, Dong JF, Li RQ, Li L, Zou QH. Roles of the Hcp family proteins in the pathogenicity of Salmonella typhimurium 14028s. Virulence 2020; 11:1716-1726. [PMID: 33300449 PMCID: PMC7733977 DOI: 10.1080/21505594.2020.1854538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The type VI secretion system (T6SS) is a new secretion system that is widely distributed among Gram-negative bacteria. The core component hemolysin-coregulated protein (Hcp) can be used as both its structural protein and secretory protein or chaperone protein. Studies on Hcp are important to elucidate the overall virulence mechanism of T6SS. Salmonella typhimurium is an important foodborne pathogen. There are three copies of hcp genes identified in S. Typhimurium 14028s. This study aimed to characterize the functions of the three Hcp family proteins and to elucidate the interactions among them. The hcp gene deletion mutants were constructed by λ Red-based recombination system. Effects of hcp mutation on the pathogenicity of 14028s were studied by bacterial competition assays, Dictyostelium discoideum assays and mouse model. The three Hcp family proteins were found to play different roles. Hcp1 can affect the transcription of rpoS and type 2 flagellar gene and influence the motility of 14028s. It is also involved in the intracellular survival of 14028s in Dictyostelium discoideum; Hcp2 is involved in the early proliferative capacity of 14028s in mice and can prevent its excessive proliferation; Hcp3 did not show direct functions in these assays. Hcp1 can interact with Hcp2 and Hcp3. Deletion of one hcp gene can result in a transcription level variation in the other two hcp genes. Our findings elucidated the functions of the three Hcp family proteins in S.Typhimurium and illustrated that there are interactions between different Hcp proteins. This study will be helpful to fully understand how T6SS actions in an organism.
Collapse
Affiliation(s)
- Ping Wang
- Department of Microbiology& Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
| | - Jun-Fang Dong
- Department of Microbiology& Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
| | - Ren-Qing Li
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine , Beijing, China
| | - Lei Li
- Department of Microbiology& Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China.,The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology , Beijing, China
| | - Qing-Hua Zou
- Department of Microbiology& Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center , Beijing, China
| |
Collapse
|
8
|
A Family of T6SS Antibacterial Effectors Related to l,d-Transpeptidases Targets the Peptidoglycan. Cell Rep 2020; 31:107813. [DOI: 10.1016/j.celrep.2020.107813] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
|
9
|
Hu T, Chen R, Zhang L, Wang Z, Yang D, Zhang Y, Liu X, Liu Q. Balanced role of T3SS and T6SS in contribution to the full virulence of Edwardsiella piscicida. FISH & SHELLFISH IMMUNOLOGY 2019; 93:871-878. [PMID: 31400510 DOI: 10.1016/j.fsi.2019.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Edwardsiella piscicida is an important pathogen that infects a wide range of hosts, from fish to human. Its infection leads to extensive losses in a diverse array of commercially important fish, like Japanese flounder, turbot, and tilapia. During the infection, type III secretion system (T3SS) and type VI secretion system (T6SS) of E. piscicida play significant roles, but how T3SS and T6SS cooperatively contribute to its virulence is still unknown. In this study, we first examined the roles of T3SS and T6SS in different processes during E. piscicida infection of host cells, and revealed that T3SS of E. piscicida is responsible for promoting bacterial invasion, the following intracellular replication and inducing cell death in host cells, while T6SS restrains E. piscicida intracellular replication and cell death in J774A.1 cells, which suggested that T3SS and T6SS antagonistically concert E. piscicida infection. Furthermore, we found an significant decrease in transcription level of IL-1β in zebrafish kidney infected with T3SS mutant and an drastically increase in transcription level of TNF- α infected with T6SS mutant when compared with the wild-type. Interestingly, both T3SS and T6SS mutants showed significant attenuated virulence in the zebrafish infection model when compared with the wild-type. Finally, considering the cooperative role of T3SS and T6SS, we generated a mutant strain WEDΔT6SS based on the existing live attenuated vaccine (LAV) WED which showed improved vaccine safety and comparable immune protection. Therefore, WEDΔT6SS could be used as an optimized LAV in the future. Taken together, this work suggested a bilateral role of T3SS and T6SS which respectively act as spear and shield during E. piscicida infection, together contribute to E. piscicida virulence.
Collapse
Affiliation(s)
- Tianjian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ran Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingzhi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Bio-manufacturing, Shanghai, 200237, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Bio-manufacturing, Shanghai, 200237, China.
| |
Collapse
|
10
|
The Ferric Uptake Regulator Represses Type VI Secretion System Function by Binding Directly to the clpV Promoter in Salmonella enterica Serovar Typhimurium. Infect Immun 2019; 87:IAI.00562-19. [PMID: 31383745 DOI: 10.1128/iai.00562-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
Type VI secretion systems (T6SSs) are highly conserved and complex protein secretion systems that deliver effector proteins into eukaryotic hosts or other bacteria. T6SSs are regulated precisely by a variety of regulatory systems, which enables bacteria to adapt to varied environments. A T6SS within Salmonella pathogenicity island 6 (SPI-6) is activated during infection, and it contributes to the pathogenesis, as well as interbacterial competition, of Salmonella enterica serovar Typhimurium (S. Typhimurium). However, the regulation of the SPI-6 T6SS in S. Typhimurium is not well understood. In this study, we found that the SPI-6 T6SS core gene clpV was significantly upregulated in response to the iron-depleted condition and during infection. The global ferric uptake regulator (Fur) was shown to repress the clpV expression in the iron-replete medium. Moreover, electrophoretic mobility shift and DNase I footprinting assays revealed that Fur binds directly to the clpV promoter region at multiple sites spanning the transcriptional start site. We also observed that the relieving of Fur-mediated repression on clpV contributed to the interbacterial competition activity and pathogenicity of S. Typhimurium. These findings provide insights into the direct regulation of Fur in the expression and functional activity of SPI-6 T6SS in S. Typhimurium and thus help to elucidate the mechanisms of bacterial adaptability and virulence.
Collapse
|
11
|
Wang S, Yan Q, Zhang M, Huang L, Mao L, Zhang M, Xu X, Chen L, Qin Y. The role and mechanism of icmF in Aeromonas hydrophila survival in fish macrophages. JOURNAL OF FISH DISEASES 2019; 42:895-904. [PMID: 30919989 DOI: 10.1111/jfd.12991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Survival in host macrophages is an effective strategy for pathogenic bacteria to spread. Aeromonas hydrophila has been found to survive in fish macrophages, but the mechanisms remain unknown. In this paper, the roles and possible mechanisms of IcmF in bacterial survival in fish macrophages were investigated. First, a stable silencing strain icmF-RNAi was constructed by shRNA and RT-qPCR confirmed the expression of icmF was down-regulated by 94.42%. The expression of Hcp, DotU and VgrG was also decreased in icmF-RNAi. The intracellular survival rate of the wild-type strain was 92.3%, while the survival rate of icmF-RNAi was only 20.58%. The escape rate of the wild-type strain was 20%, while that of the icmF-RNAi was only 7.5%. Further studies indicated that the expression of icmF can significantly affect the adhesion, biofilm formation, motility and acid resistance of A. hydrophila, but has no significant effect on the growth of A. hydrophila even under the stress of H2 O2 . The results indicated that IcmF of A. hydrophila not only acts as a structural protein which participates in virulence-related characteristics such as bacterial motility, adhesion and biofilm formation, but also acts as a key functional protein which participates in the interaction between bacteria and host macrophages.
Collapse
Affiliation(s)
- Suyun Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Meimei Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Leilei Mao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Mengmeng Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Liwei Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
12
|
Immunogenicity and protective efficacy of mucosal delivery of recombinant hcp of Campylobacter jejuni Type VI secretion system (T6SS) in chickens. Mol Immunol 2019; 111:182-197. [PMID: 31078054 DOI: 10.1016/j.molimm.2019.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/05/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022]
Abstract
The type VI secretion system (T6SS) has recently emerged as a new pattern of protein secretions in Campylobacter jejuni (C. jejuni). Within the T6SS cluster, hemolysin co-regulated protein (hcp) is considered as a hallmark of functional T6SS and holds key role in bacterial virulence. As poultry is the primary reservoir of C. jejuni and the major sources for human infection, we evaluated the capacity of recombinant hcp (rhcp) immunization in blocking C. jejuni colonization in chickens with an aim to control bacterial transmission to humans via poultry food chain. Considering the mucosal route is the primary portal for C. jejuni entry and gut mucosa offers the apposite site for C. jejuni adherence, we investigated the immune-protective potential of intra-gastric administration of rhcp using chitosan-based nanoparticles. To achieve this goal, full length coding sequence of hcp gene from C. jejuni was cloned and expressed in E. coli. Purified rhcp was entrapped in chitosan-Sodium tripolyphosphate nanoparticles (CS-TPP NPs) and orally gavaged in chickens. Our results suggest that intra-gastric immunization of CS-TPP-rhcp induces consistent and steady increase in intestinal (sIgA) and systemic antibody (IgY) response against rhcp with significant reduction in cecal load of C. jejuni. The protection afforded by rhcp associated cellular responses with Th1 and Th17 profile in terms of increased expression of NFkB, IL-1β, IL-8, IL-6, IFN-γ and IL-17 A genes. Though systemic immunization of rhcp with IFA resulting in a robust systemic (IgY) and local (sIgA) antibody response, mucosal administration of rhcp loaded CS-TPP NPs was found to be superior in terms of bacterial clearance. Altogether, present study suggests that chitosan based intra-gastric delivery of rhcp have several advantages over the injectable composition and could be a promising vaccine approach to effectively control C. jejuni colonization in chickens.
Collapse
|
13
|
Vonaesch P, Anderson M, Sansonetti PJ. Pathogens, microbiome and the host: emergence of the ecological Koch's postulates. FEMS Microbiol Rev 2018; 42:273-292. [PMID: 29325027 DOI: 10.1093/femsre/fuy003] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Even though tremendous progress has been made in the last decades to elucidate the mechanisms of intestinal homeostasis, dysbiosis and disease, we are only at the beginning of understanding the complexity of the gut ecosystem and the underlying interaction networks. We are also only starting to unravel the mechanisms that pathogens have evolved to overcome the barriers imposed by the microbiota and host to exploit the system to their own benefit. Recent work in these domains clearly indicates that the 'traditional Koch's postulates', which state that a given pathogen leads to a distinct disease, are not valid for all 'infectious' diseases, but that a more complete and complex interpretation of Koch's postulates is needed in order to understand and explain them. This review summarises the current understanding of what defines a healthy gut ecosystem and highlights recent progress in uncovering the interplay between the host, its microbiota and invading intestinal pathogens. Based on these recent findings, we propose a new interpretation of Koch's postulates that we term 'ecological Koch's postulates'.
Collapse
Affiliation(s)
- Pascale Vonaesch
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue du Dr. Roux, Paris 75015, France
| | - Mark Anderson
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue du Dr. Roux, Paris 75015, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue du Dr. Roux, Paris 75015, France
| |
Collapse
|
14
|
Brock DA, Haselkorn TS, Garcia JR, Bashir U, Douglas TE, Galloway J, Brodie F, Queller DC, Strassmann JE. Diversity of Free-Living Environmental Bacteria and Their Interactions With a Bactivorous Amoeba. Front Cell Infect Microbiol 2018; 8:411. [PMID: 30533398 PMCID: PMC6266680 DOI: 10.3389/fcimb.2018.00411] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023] Open
Abstract
A small subset of bacteria in soil interact directly with eukaryotes. Which ones do so can reveal what is important to a eukaryote and how eukaryote defenses might be breached. Soil amoebae are simple eukaryotic organisms and as such could be particularly good for understanding how eukaryote microbiomes originate and are maintained. One such amoeba, Dictyostelium discoideum, has both permanent and temporary associations with bacteria. Here we focus on culturable bacterial associates in order to interrogate their relationship with D. discoideum. To do this, we isolated over 250 D. discoideum fruiting body samples from soil and deer feces at Mountain Lake Biological Station. In one-third of the wild D. discoideum we tested, one to six bacterial species were found per fruiting body sorus (spore mass) for a total of 174 bacterial isolates. The remaining two-thirds of D. discoideum fruiting body samples did not contain culturable bacteria, as is thought to be the norm. A majority (71.4%) of the unique bacterial haplotypes are in Proteobacteria. The rest are in either Actinobacteria, Bacteriodetes, or Firmicutes. The highest bacterial diversity was found in D. discoideum fruiting bodies originating from deer feces (27 OTUs), greater than either of those originating in shallow (11 OTUs) or in deep soil (4 OTUs). Rarefaction curves and the Chao1 estimator for species richness indicated the diversity in any substrate was not fully sampled, but for soil it came close. A majority of the D. discoideum-associated bacteria were edible by D. discoideum and supported its growth (75.2% for feces and 81.8% for soil habitats). However, we found several bacteria genera were able to evade phagocytosis and persist in D. discoideum cells through one or more social cycles. This study focuses not on the entire D. discoideum microbiome, but on the culturable subset of bacteria that have important eukaryote interactions as prey, symbionts, or pathogens. These eukaryote and bacteria interactions may provide fertile ground for investigations of bacteria using amoebas to gain an initial foothold in eukaryotes and of the origins of symbiosis and simple microbiomes.
Collapse
Affiliation(s)
- Debra A Brock
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Tamara S Haselkorn
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Justine R Garcia
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Usman Bashir
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Tracy E Douglas
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Jesse Galloway
- Mountain Lake Biological Laboratory, University of Virginia, Mountain Lake, VA, United States
| | - Fisher Brodie
- Mountain Lake Biological Laboratory, University of Virginia, Mountain Lake, VA, United States
| | - David C Queller
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Joan E Strassmann
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| |
Collapse
|
15
|
Wang M, Cao H, Wang Q, Xu T, Guo X, Liu B. The Roles of Two Type VI Secretion Systems in Cronobacter sakazakii ATCC 12868. Front Microbiol 2018; 9:2499. [PMID: 30405562 PMCID: PMC6204376 DOI: 10.3389/fmicb.2018.02499] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/01/2018] [Indexed: 01/18/2023] Open
Abstract
The type VI secretion system (T6SS), which has been found in 25% of gram-negative bacteria, is a crucial virulence factor in several pathogens. Although T6SS gene loci have been discovered in Cronobacter species, one of the major opportunistic foodborne pathogens, its function has not been elucidated. In this study, the roles of two phylogenetically distinct T6SS gene clusters in Cronobacter sakazakii ATCC12868 were investigated. Analysis of 138 genome sequences of C. sakazakii strains, we found that one T6SS gene cluster (T6SS-1) was ubiquitous in all examined strains, whereas another (T6SS-2) was absent or degenerated in a large proportion of the strains (n = 97). In addition, we confirmed the T6SS-1 antibacterial function through an in-frame deletion in the vasK and hcp genes. Compared with the wild-type strain, the T6SS-2-deficient mutant presented a much stronger colonization of organs when infecting neonatal rats. Thus, we proposed that T6SS-2 plays a role in pathogenic processes. This is the first study to investigate the functions of T6SS in C. sakazakii, and the results will extend our understanding of the pathogenic and phylogenetic characteristics of C. sakazakii.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China
| | - Hengchun Cao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China
| | - Qian Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China
| | - Tingting Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China
| | - Xi Guo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Economic-Technological Development Area, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Yang X, Pan J, Wang Y, Shen X. Type VI Secretion Systems Present New Insights on Pathogenic Yersinia. Front Cell Infect Microbiol 2018; 8:260. [PMID: 30109217 PMCID: PMC6079546 DOI: 10.3389/fcimb.2018.00260] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022] Open
Abstract
The type VI secretion system (T6SS) is a versatile secretion system widely distributed in Gram-negative bacteria that delivers multiple effector proteins into either prokaryotic or eukaryotic cells, or into the extracellular milieu. T6SS participates in various physiological processes including bacterial competition, host infection, and stress response. Three pathogenic Yersinia species, namely Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica, possess different copies of T6SSs with distinct biological functions. This review summarizes the pathogenic, antibacterial, and stress-resistant roles of T6SS in Yersinia and the ion-transporting ability in Y. pseudotuberculosis. In addition, the T6SS-related effectors and regulators identified in Yersinia are discussed.
Collapse
Affiliation(s)
- Xiaobing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Junfeng Pan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yao Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
Wang N, Liu J, Pang M, Wu Y, Awan F, Liles MR, Lu C, Liu Y. Diverse roles of Hcp family proteins in the environmental fitness and pathogenicity of Aeromonas hydrophila Chinese epidemic strain NJ-35. Appl Microbiol Biotechnol 2018; 102:7083-7095. [PMID: 29862449 DOI: 10.1007/s00253-018-9116-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023]
Abstract
The type VI secretion system (T6SS) has been considered as a crucial factor in bacterial competition and virulence. The hemolysin co-regulated protein (Hcp) is the hallmark of T6SS. The secretion of Hcp in Aeromonas hydrophila Chinese epidemic strain NJ-35 indicated a functional T6SS. In this study, three copies of the hcp gene were identified in the genome of strain NJ-35. We targeted these Hcp family proteins for generating deletion mutants. These mutants showed varying levels in Hcp production, the interaction with other bacteria or eukaryotic cells, and bacterial virulence. Hcp1 was necessary for T6SS assembly and played a predominant role in the bacterial competition; Hcp2 negatively functioned in the biofilm formation and bacterial adhesion and was more involved in the A. hydrophila virulence in zebrafish and survival against the predation of Tetrahymena, and Hcp3 positively influenced the biofilm formation and bacterial adhesion. These findings illustrate that the T6SS of A. hydrophila NJ-35 is active, and the three Hcp family proteins take part in different processes in environmental adaptation and virulence of this bacterium. This study will provide valuable insights into our understanding of microbial interactions and thus contribute to a broader effort to manipulate these interactions for therapeutic or environmental benefit.
Collapse
Affiliation(s)
- Nannan Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Maoda Pang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yafeng Wu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Center for Control and Prevention of Aquatic Animal Infectious Diseases, Nanjing, China
| | - Furqan Awan
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, USA
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
18
|
Panzenhagen PHN, Cabral CC, Suffys PN, Franco RM, Rodrigues DP, Conte-Junior CA. Comparative genome analysis and characterization of the Salmonella Typhimurium strain CCRJ_26 isolated from swine carcasses using whole-genome sequencing approach. Lett Appl Microbiol 2018; 66:352-359. [PMID: 29397031 DOI: 10.1111/lam.12859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/11/2018] [Accepted: 01/20/2018] [Indexed: 02/03/2023]
Abstract
Salmonella pathogenicity relies on virulence factors many of which are clustered within the Salmonella pathogenicity islands. Salmonella also harbours mobile genetic elements such as virulence plasmids, prophage-like elements and antimicrobial resistance genes which can contribute to increase its pathogenicity. Here, we have genetically characterized a selected S. Typhimurium strain (CCRJ_26) from our previous study with Multiple Drugs Resistant profile and high-frequency PFGE clonal profile which apparently persists in the pork production centre of Rio de Janeiro State, Brazil. By whole-genome sequencing, we described the strain's genome virulent content and characterized the repertoire of bacterial plasmids, antibiotic resistance genes and prophage-like elements. Here, we have shown evidence that strain CCRJ_26 genome possible represent a virulence-associated phenotype which may be potentially virulent in human infection. SIGNIFICANCE AND IMPACT OF THE STUDY Whole-genome sequencing technologies are still costly and remain underexplored for applied microbiology in Brazil. Hence, this genomic description of S. Typhimurium strain CCRJ_26 will provide help in future molecular epidemiological studies. The analysis described here reveals a quick and useful pipeline for bacterial virulence characterization using whole-genome sequencing approach.
Collapse
Affiliation(s)
- P H N Panzenhagen
- Food Science Program, Chemistry Institute, University Federal of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil
| | - C C Cabral
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil.,Faculty of Veterinary Medicine, Severino Sombra University (USS), Vassouras, Rio de Janeiro, Brazil
| | - P N Suffys
- Laboratory of Molecular Biology and Diagnosis of Infectious Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - R M Franco
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil
| | - D P Rodrigues
- National Reference Laboratory Diagnosis of Enteric Bacteria, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - C A Conte-Junior
- Food Science Program, Chemistry Institute, University Federal of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil.,National Institute of Quality Control in Health, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Bacterial Pathogen Emergence Requires More than Direct Contact with a Novel Passerine Host. Infect Immun 2018; 86:IAI.00863-17. [PMID: 29311238 PMCID: PMC5820954 DOI: 10.1128/iai.00863-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022] Open
Abstract
While direct contact may sometimes be sufficient to allow a pathogen to jump into a new host species, in other cases, fortuitously adaptive mutations that arise in the original donor host are also necessary. Viruses have been the focus of most host shift studies, so less is known about the importance of ecological versus evolutionary processes to successful bacterial host shifts. Here we tested whether direct contact with the novel host was sufficient to enable the mid-1990s jump of the bacterium Mycoplasma gallisepticum from domestic poultry to house finches (Haemorhous mexicanus). We experimentally inoculated house finches with two genetically distinct M. gallisepticum strains obtained either from poultry (Rlow) or from house finches (HF1995) during an epizootic outbreak. All 15 house finches inoculated with HF1995 became infected, whereas Rlow successfully infected 12 of 15 (80%) inoculated house finches. Comparisons among infected birds showed that, relative to HF1995, Rlow achieved substantially lower bacterial loads in the host respiratory mucosa and was cleared faster. Furthermore, Rlow-infected finches were less likely to develop clinical symptoms than HF1995-infected birds and, when they did, displayed milder conjunctivitis. The lower infection success of Rlow relative to HF1995 was not, however, due to a heightened host antibody response to Rlow. Taken together, our results indicate that contact between infected poultry and house finches was not, by itself, sufficient to explain the jump of M. gallisepticum to house finches. Instead, mutations arising in the original poultry host would have been necessary for successful pathogen emergence in the novel finch host.
Collapse
|
20
|
Andersson JA, Sha J, Erova TE, Fitts EC, Ponnusamy D, Kozlova EV, Kirtley ML, Chopra AK. Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis. Front Cell Infect Microbiol 2017; 7:448. [PMID: 29090192 PMCID: PMC5650977 DOI: 10.3389/fcimb.2017.00448] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM) screening approach. From this screen, the role of rbsA, which encodes an ATP-binding protein of ribose transport system, and vasK, an essential component of the type VI secretion system (T6SS), were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE), and ypo1119-1120, identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE) of the T2SS, the ypo2884-encoded protein has homology to the βγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp) exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%), in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely ΔlppΔypo0815, ΔlppΔypo2884, ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3. We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp) and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3 mutant strains were 55-100% protected upon subsequent re-challenge with wild-type CO92 in a pneumonic model. Further, evaluation of the attenuated T6SS mutant strains in vitro revealed significant alterations in phagocytosis, intracellular survival in murine macrophages, and their ability to induce cytotoxic effects on macrophages. The results reported here provide further evidence of the utility of the STM screening approach for the identification of novel virulence factors and to possibly target such genes for the development of novel live-attenuated vaccine candidates for plague.
Collapse
Affiliation(s)
- Jourdan A Andersson
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Tatiana E Erova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Duraisamy Ponnusamy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Elena V Kozlova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ashok K Chopra
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States.,WHO Collaborating Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
21
|
Kamber T, Pothier JF, Pelludat C, Rezzonico F, Duffy B, Smits THM. Role of the type VI secretion systems during disease interactions of Erwinia amylovora with its plant host. BMC Genomics 2017; 18:628. [PMID: 28818038 PMCID: PMC5561584 DOI: 10.1186/s12864-017-4010-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022] Open
Abstract
Background Type VI secretion systems (T6SS) are widespread among Gram-negative bacteria and have a potential role as essential virulence factors or to maintain symbiotic interactions. Three T6SS gene clusters were identified in the genome of E. amylovora CFBP 1430, of which T6SS-1 and T6SS-3 represent complete T6SS machineries, while T6SS-2 is reduced in its gene content. Results To assess the contribution of T6SSs to virulence and potential transcriptomic changes of E. amylovora CFBP 1430, single and double mutants in two structural genes were generated for T6SS-1 and T6SS-3. Plant assays showed that mutants in T6SS-3 were slightly more virulent in apple shoots while inducing less disease symptoms on apple flowers, indicating that T6SSs have only a minor effect on virulence of E. amylovora CFBP 1430. The mutations led under in vitro conditions to the differential expression of type III secretion systems, iron acquisition, chemotaxis, flagellar, and fimbrial genes. Comparison of the in planta and in vitro transcriptome data sets revealed a common differential expression of three processes and a set of chemotaxis and motility genes. Additional experiments proved that T6SS mutants are impaired in their motility. Conclusion These results suggest that the deletion of T6SSs alters metabolic and motility processes. Nevertheless, the difference in lesion development in apple shoots and flower necrosis of T6SS mutants was indicative that T6SSs influences the disease progression and the establishment of the pathogen on host plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4010-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tim Kamber
- Agroscope Changins-Wädenswil ACW, Plant Protection Division, 8820, Wädenswil, CH, Switzerland
| | - Joël F Pothier
- Agroscope Changins-Wädenswil ACW, Plant Protection Division, 8820, Wädenswil, CH, Switzerland.,Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820, Wädenswil, CH, Switzerland
| | - Cosima Pelludat
- Agroscope Changins-Wädenswil ACW, Plant Protection Division, 8820, Wädenswil, CH, Switzerland
| | - Fabio Rezzonico
- Agroscope Changins-Wädenswil ACW, Plant Protection Division, 8820, Wädenswil, CH, Switzerland.,Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820, Wädenswil, CH, Switzerland
| | - Brion Duffy
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820, Wädenswil, CH, Switzerland
| | - Theo H M Smits
- Agroscope Changins-Wädenswil ACW, Plant Protection Division, 8820, Wädenswil, CH, Switzerland. .,Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820, Wädenswil, CH, Switzerland.
| |
Collapse
|
22
|
Abstract
Bacterial type VI secretion systems (T6SSs) function as contractile nanomachines to puncture target cells and deliver lethal effectors. In the 10 years since the discovery of the T6SS, much has been learned about the structure and function of this versatile protein secretion apparatus. Most of the conserved protein components that comprise the T6SS apparatus itself have been identified and ascribed specific functions. In addition, numerous effector proteins that are translocated by the T6SS have been identified and characterized. These protein effectors usually represent toxic cargoes that are delivered by the attacker cell to a target cell. Researchers in the field are beginning to better understand the lifestyle or physiology that dictates when bacteria normally express their T6SS. In this article, we consider what is known about the structure and regulation of the T6SS, the numerous classes of antibacterial effector T6SS substrates, and how the action of the T6SS relates to a given lifestyle or behavior in certain bacteria.
Collapse
|
23
|
Wang T, Chen K, Gao F, Kang Y, Chaudhry MT, Wang Z, Wang Y, Shen X. ZntR positively regulates T6SS4 expression in Yersinia pseudotuberculosis. J Microbiol 2017; 55:448-456. [PMID: 28281200 DOI: 10.1007/s12275-017-6540-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/21/2022]
Abstract
The type VI secretion system (T6SS) is a widespread and versatile protein secretion system found in most Gram-negative bacteria. Studies of T6SS have mainly focused on its role in virulence toward host cells and inter-bacterial interactions, but studies have also shown that T6SS4 in Yersinia pseudotuberculosis participates in the acquisition of zinc ions to alleviate the accumulation of hydroxyl radicals induced by multiple stressors. Here, by comparing the gene expression patterns of wild-type and zntR mutant Y. pseudotuberculosis cells using RNA-seq analysis, T6SS4 and 17 other biological processes were found to be regulated by ZntR. T6SS4 was positively regulated by ZntR in Y. pseudotuberculosis, and further investigation demonstrated that ZntR regulates T6SS4 by directly binding to its promoter region. T6SS4 expression is regulated by zinc via ZntR, which maintains intracellular zinc homeostasis and controls the concentration of reactive oxygen species to prevent bacterial death under oxidative stress. This study provides new insights into the regulation of T6SS4 by a zinc-dependent transcriptional regulator, and it provides a foundation for further investigation of the mechanism of zinc transport by T6SS.
Collapse
Affiliation(s)
- Tietao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Keqi Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Fen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yiwen Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Muhammad Tausif Chaudhry
- Environmental Analytical Laboratory, National Physical and Standards Laboratory, PCSIR, Islamabad, Pakistan
| | - Zhuo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China.
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China.
| |
Collapse
|
24
|
Abstract
The type VI secretion system (T6SS) is a multiprotein complex widespread in Proteobacteria and dedicated to the delivery of toxins into both prokaryotic and eukaryotic cells. It thus participates in interbacterial competition as well as pathogenesis. The T6SS is a contractile weapon, related to the injection apparatus of contractile tailed bacteriophages. Basically, it assembles an inner tube wrapped by a sheath-like structure and anchored to the cell envelope via a membrane complex. The energy released by the contraction of the sheath propels the inner tube through the membrane channel and toward the target cell. Although the assembly and the mechanism of action are conserved across species, the repertoire of secreted toxins and the diversity of the regulatory mechanisms and of target cells make the T6SS a highly versatile secretion system. The T6SS is particularly represented in Escherichia coli pathotypes and Salmonella serotypes. In this review we summarize the current knowledge regarding the prevalence, the assembly, the regulation, and the roles of the T6SS in E. coli, Salmonella, and related species.
Collapse
Affiliation(s)
- Laure Journet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Centre National de la Recherche Scientifique (CNRS) - Aix-Marseille Université, UMR 7255, 13402 Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Centre National de la Recherche Scientifique (CNRS) - Aix-Marseille Université, UMR 7255, 13402 Marseille Cedex 20, France
| |
Collapse
|
25
|
Brown NA, Urban M, Hammond-Kosack KE. The trans-kingdom identification of negative regulators of pathogen hypervirulence. FEMS Microbiol Rev 2016; 40:19-40. [PMID: 26468211 PMCID: PMC4703069 DOI: 10.1093/femsre/fuv042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/30/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023] Open
Abstract
Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen-host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed.
Collapse
Affiliation(s)
- Neil A Brown
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Martin Urban
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Kim E Hammond-Kosack
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| |
Collapse
|
26
|
Hachani A, Wood TE, Filloux A. Type VI secretion and anti-host effectors. Curr Opin Microbiol 2015; 29:81-93. [PMID: 26722980 DOI: 10.1016/j.mib.2015.11.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022]
Abstract
Secretion systems play a central role in infectious diseases by enabling pathogenic bacteria to deliver virulence factors into target cells. The type VI secretion system (T6SS) mediates bacterial antagonism in various environments including eukaryotic niches, such as the gut. This molecular machine injects lethal toxins directly in target bacterial cells. It provides an advantage to pathogens encountering the commensal flora of the host and indirectly contributes to colonization and persistence. Yet, the T6SS is not employed for the sole purpose of bacterial killing and several T6SS effectors are dedicated to the subversion of eukaryotic cells. As described for type III and type IV secretion systems, these effectors impede host cell functions and promote immune evasion, thereby enabling successful infection.
Collapse
Affiliation(s)
- Abderrahman Hachani
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, SW72AZ London, United Kingdom; Department of Pathogen Molecular Biology, Faculty of Infection and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom; Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Thomas E Wood
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, SW72AZ London, United Kingdom
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, SW72AZ London, United Kingdom.
| |
Collapse
|
27
|
Type Six Secretion System of Bordetella bronchiseptica and Adaptive Immune Components Limit Intracellular Survival During Infection. PLoS One 2015; 10:e0140743. [PMID: 26485303 PMCID: PMC4618060 DOI: 10.1371/journal.pone.0140743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/30/2015] [Indexed: 11/19/2022] Open
Abstract
The Type Six Secretion System (T6SS) is required for Bordetella bronchiseptica cytotoxicity, cytokine modulation, infection, and persistence. However, one-third of recently sequenced Bordetella bronchiseptica strains of the predominantly human-associated Complex IV have lost their T6SS through gene deletion or degradation. Since most human B. bronchiseptica infections occur in immunocompromised patients, we determine here whether loss of Type Six Secretion is beneficial to B. bronchiseptica during infection of immunocompromised mice. Infection of mice lacking adaptive immunity (Rag1-/- mice) with a T6SS-deficient mutant results in a hypervirulent phenotype that is characterized by high numbers of intracellular bacteria in systemic organs. In contrast, wild-type B. bronchiseptica kill their eukaryotic cellular hosts via a T6SS-dependent mechanism that prevents survival in systemic organs. High numbers of intracellular bacteria recovered from immunodeficient mice but only low numbers from wild-type mice demonstrates that B. bronchiseptica survival in an intracellular niche is limited by B and T cell responses. Understanding the nature of intracellular survival during infection, and its effects on the generation and function of the host immune response, are important to contain and control the spread of Bordetella-caused disease.
Collapse
|
28
|
Lin J, Cheng J, Chen K, Guo C, Zhang W, Yang X, Ding W, Ma L, Wang Y, Shen X. The icmF3 locus is involved in multiple adaptation- and virulence-related characteristics in Pseudomonas aeruginosa PAO1. Front Cell Infect Microbiol 2015; 5:70. [PMID: 26484316 PMCID: PMC4589678 DOI: 10.3389/fcimb.2015.00070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/18/2015] [Indexed: 11/24/2022] Open
Abstract
The type VI secretion system (T6SS) is widely distributed in Gram-negative bacteria. Three separate T6SSs called H1-, H2-, and H3-T6SS have been discovered in Pseudomonas aeruginosa PAO1. Recent studies suggest that, in contrast to the H1-T6SS that targets prokaryotic cells, H2- and H3-T6SS are involved in interactions with both prokaryotic and eukaryotic cells. However, the detailed functions of T6SS components are still uncharacterized. The intracellular multiplication factor (IcmF) protein is conserved in type VI secretion systems (T6SS) of all different bacterial pathogens. Bioinformatic analysis revealed that IcmF3 in P. aeruginosa PAO1 is different from other IcmF homologs and may represent a new branch of these proteins with distinct functions. Herein, we have investigated the function of IcmF3 in this strain. We have shown that deletion of the icmF3 gene in P. aeruginosa PAO1 is associated with pleiotropic phenotypes. The icmF3 mutant has variant colony morphology and an hypergrowth phenotype in iron-limiting medium. Surprisingly, this mutant is also defective for the production of pyoverdine, as well as defects in swimming motility and virulence in a C. elegans worm model. The icmF3 mutant exhibits higher conjugation frequency than the wild type and increased biofilm formation on abiotic surfaces. Additionally, expression of two phenazine biosynthetic loci is increased in the icmF3 mutant, leading to the overproduction of pyocyanin. Finally, the mutant exhibits decreased susceptibility to aminoglycosides such as tobramycin and gentamicin. And the detected phenotypes can be restored completely or partially by trans complementation of wild type icmF3 gene. The pleiotropic effects observed upon icmF3 deletion demonstrate that icmF3 plays critical roles in both pathogenesis and environmental adaptation in P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Jinshui Lin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Juanli Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China ; Life Sciences Department, Yuncheng University Yuncheng, China
| | - Keqi Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Chenghao Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Weipeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Xu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Wei Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Li Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University Yangling, China
| |
Collapse
|
29
|
Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp. avenae by Principle Component Analysis. Int J Mol Sci 2015; 16:22008-26. [PMID: 26378528 PMCID: PMC4613294 DOI: 10.3390/ijms160922008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/17/2022] Open
Abstract
Valine glycine repeat G (VgrG) proteins are regarded as one of two effectors of Type VI secretion system (T6SS) which is a complex multi-component secretion system. In this study, potential biological roles of T6SS structural and VgrG genes in a rice bacterial pathogen, Acidovorax avenae subsp. avenae (Aaa) RS-1, were evaluated under seven stress conditions using principle component analysis of gene expression. The results showed that growth of the pathogen was reduced by H₂O₂ and paraquat-induced oxidative stress, high salt, low temperature, and vgrG mutation, compared to the control. However, pathogen growth was unaffected by co-culture with a rice rhizobacterium Burkholderia seminalis R456. In addition, expression of 14 T6SS structural and eight vgrG genes was significantly changed under seven conditions. Among different stress conditions, high salt, and low temperature showed a higher effect on the expression of T6SS gene compared with host infection and other environmental conditions. As a first report, this study revealed an association of T6SS gene expression of the pathogen with the host infection, gene mutation, and some common environmental stresses. The results of this research can increase understanding of the biological function of T6SS in this economically-important pathogen of rice.
Collapse
|
30
|
Wang T, Si M, Song Y, Zhu W, Gao F, Wang Y, Zhang L, Zhang W, Wei G, Luo ZQ, Shen X. Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity. PLoS Pathog 2015; 11:e1005020. [PMID: 26134274 PMCID: PMC4489752 DOI: 10.1371/journal.ppat.1005020] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 06/09/2015] [Indexed: 12/21/2022] Open
Abstract
Type VI secretion systems (T6SSs) are widespread multi-component machineries that translocate effectors into either eukaryotic or prokaryotic cells, for virulence or for interbacterial competition. Herein, we report that the T6SS-4 from Yersinia pseudotuberculosis displays an unexpected function in the transportation of Zn2+ to combat diverse stresses and host immunity. Environmental insults such as oxidative stress induce the expression of T6SS-4 via OxyR, the transcriptional factor that also regulates many oxidative response genes. Zinc transportation is achieved by T6SS-4-mediated translocation of a novel Zn2+-binding protein substrate YezP (YPK_3549), which has the capacity to rescue the sensitivity to oxidative stress exhibited by T6SS-4 mutants when added to extracellular milieu. Disruption of the classic zinc transporter ZnuABC together with T6SS-4 or yezP results in mutants that almost completely lost virulence against mice, further highlighting the importance of T6SS-4 in resistance to host immunity. These results assigned an unconventional role to T6SSs, which will lay the foundation for studying novel mechanisms of metal ion uptake by bacteria and the role of this process in their resistance to host immunity and survival in harmful environments. One unique feature of type VI secretion system is the presence of multiple distinct systems in certain bacterial species. It is well established that some of these systems function to compete for their living niches among diverse bacterial species, whilst the activity of many such transporters remains unknown. Because metal ions are essential components to virtually all forms of life including bacteria, eukaryotic hosts have evolved complicated strategies to sequester metal ions, which constitute a major branch of their nutritional immunity. Therefore the ability to acquire metal ions is critical for bacterial virulence. This study reveals that the T6SS-4 of Yersinia pseudotuberculosis (Yptb) functions to import Zn2+ from the environment to mitigate the detrimental effects such as hydroxyl radicals induced by diverse stresses. Expression of the transporter is activated by multiple regulatory proteins, including OxyR and OmpR that sense diverse environmental cues. Zinc ion acquisition is achieved by translocating a Zn2+-binding substrate YezP, which is co-regulated with T6SS-4 by OxyR. Our results reveal a novel role for type VI secretion system, which is important in the study of the mechanism of metal ion acquisition by bacteria and the role of this process in bacterial pathogenesis and survival in detrimental environments.
Collapse
Affiliation(s)
- Tietao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Meiru Si
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunhong Song
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhan Zhu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Fen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Weipeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
31
|
Wong J, Chen Y, Gan YH. Host Cytosolic Glutathione Sensing by a Membrane Histidine Kinase Activates the Type VI Secretion System in an Intracellular Bacterium. Cell Host Microbe 2015; 18:38-48. [PMID: 26094804 DOI: 10.1016/j.chom.2015.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/26/2015] [Accepted: 06/02/2015] [Indexed: 12/17/2022]
Abstract
Type VI secretion systems (T6SSs) are major virulence mechanisms in many Gram-negative bacteria, but the physiological signals that activate them are not well understood. The T6SS1 of Burkholderia pseudomallei is essential for pathogenesis in mammalian hosts and is only expressed when the bacterium is intracellular. We found that signals for T6SS1 activation reside in the host cytosol. Through site-directed mutagenesis and biochemical studies, we identified low molecular weight thiols, particularly glutathione, as the signal sensed by a periplasmic cysteine residue (C62) on the histidine kinase sensor VirA. Upon glutathione exposure, dimeric VirA is converted to monomers via reduction at C62. When glutathione in the host was depleted, T6SS1 expression was abrogated, and bacteria could no longer induce multinucleate giant cell formation, the hallmark of T6SS1 function. Therefore, intracellular bacteria exploit the abundance of glutathione in host cytosol as a signal for expression of virulence at the appropriate time and place.
Collapse
Affiliation(s)
- Jocelyn Wong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore. MD7, 8 Medical Drive, Singapore 117597, Singapore
| | - Yahua Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore. MD7, 8 Medical Drive, Singapore 117597, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore. MD7, 8 Medical Drive, Singapore 117597, Singapore.
| |
Collapse
|
32
|
H-NS Silencing of the Salmonella Pathogenicity Island 6-Encoded Type VI Secretion System Limits Salmonella enterica Serovar Typhimurium Interbacterial Killing. Infect Immun 2015; 83:2738-50. [PMID: 25916986 DOI: 10.1128/iai.00198-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/16/2015] [Indexed: 12/26/2022] Open
Abstract
The secretion of bacterial toxin proteins is achieved by dedicated machineries called secretion systems. The type VI secretion system (T6SS) is a widespread versatile machine used for the delivery of protein toxins to both prokaryotic and eukaryotic cells. In Salmonella enterica serovar Typhimurium, the expression of the T6SS genes is activated during macrophage or mouse infection. Here, we show that the T6SS gene cluster is silenced by the histone-like nucleoid structuring H-NS protein using a combination of reporter fusions, electrophoretic mobility shift assays, DNase footprinting, and fluorescence microscopy. We further demonstrate that derepression of the S. Typhimurium T6SS genes induces T6SS-dependent intoxication of competing bacteria. Our results suggest that relieving T6SS H-NS silencing may be used as a sense-and-kill mechanism that will help S. Typhimurium to homogenize and synchronize the microbial population to gain efficiency during infection.
Collapse
|
33
|
The Type VI Secretion System Modulates Flagellar Gene Expression and Secretion in Citrobacter freundii and Contributes to Adhesion and Cytotoxicity to Host Cells. Infect Immun 2015; 83:2596-604. [PMID: 25870231 DOI: 10.1128/iai.03071-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
The type VI secretion system (T6SS) as a virulence factor-releasing system contributes to virulence development of various pathogens and is often activated upon contact with target cells. Citrobacter freundii strain CF74 has a complete T6SS genomic island (GI) that contains clpV, hcp-2, and vgr T6SS genes. We constructed clpV, hcp-2, vgr, and T6SS GI deletion mutants in CF74 and analyzed their effects on the transcriptome overall and, specifically, on the flagellar system at the levels of transcription and translation. Deletion of the T6SS GI affected the transcription of 84 genes, with 15 and 69 genes exhibiting higher and lower levels of transcription, respectively. Members of the cell motility class of downregulated genes of the CF74ΔT6SS mutant were mainly flagellar genes, including effector proteins, chaperones, and regulators. Moreover, the production and secretion of FliC were also decreased in clpV, hcp-2, vgr, or T6SS GI deletion mutants in CF74 and were restored upon complementation. In swimming motility assays, the mutant strains were found to be less motile than the wild type, and motility was restored by complementation. The mutant strains were defective in adhesion to HEp-2 cells and were restored partially upon complementation. Further, the CF74ΔT6SS, CF74ΔclpV, and CF74Δhcp-2 mutants induced lower cytotoxicity to HEp-2 cells than the wild type. These results suggested that the T6SS GI in CF74 regulates the flagellar system, enhances motility, is involved in adherence to host cells, and induces cytotoxicity to host cells. Thus, the T6SS plays a wide-ranging role in C. freundii.
Collapse
|
34
|
Salmonella promotes virulence by repressing cellulose production. Proc Natl Acad Sci U S A 2015; 112:5183-8. [PMID: 25848006 DOI: 10.1073/pnas.1500989112] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellulose is the most abundant organic polymer on Earth. In bacteria, cellulose confers protection against environmental insults and is a constituent of biofilms typically formed on abiotic surfaces. We report that, surprisingly, Salmonella enterica serovar Typhimurium makes cellulose when inside macrophages. We determine that preventing cellulose synthesis increases virulence, whereas stimulation of cellulose synthesis inside macrophages decreases virulence. An attenuated mutant lacking the mgtC gene exhibited increased cellulose levels due to increased expression of the cellulose synthase gene bcsA and of cyclic diguanylate, the allosteric activator of the BcsA protein. Inactivation of bcsA restored wild-type virulence to the Salmonella mgtC mutant, but not to other attenuated mutants displaying a wild-type phenotype regarding cellulose. Our findings indicate that a virulence determinant can promote pathogenicity by repressing a pathogen's antivirulence trait. Moreover, they suggest that controlling antivirulence traits increases long-term pathogen fitness by mediating a trade-off between acute virulence and transmission.
Collapse
|
35
|
Identification and functional characterization of the novel Edwardsiella tarda effector EseJ. Infect Immun 2015; 83:1650-60. [PMID: 25667268 DOI: 10.1128/iai.02566-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Edwardsiella tarda is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish and gastro- and extraintestinal infections in humans. The type III secretion system (T3SS) of E. tarda has been identified as a key virulence factor that contributes to pathogenesis in fish. However, little is known about the associated effectors translocated by this T3SS. In this study, by comparing the profile of secreted proteins of the wild-type PPD130/91 and its T3SS ATPase ΔesaN mutant, we identified a new effector by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. This effector consists of 1,359 amino acids, sharing high sequence similarity with Orf29/30 of E. tarda strain EIB202, and is renamed EseJ. The secretion and translocation of EseJ depend on the T3SS. A ΔeseJ mutant strain adheres to epithelioma papillosum of carp (EPC) cells 3 to 5 times more extensively than the wild-type strain does. EseJ inhibits bacterial adhesion to EPC cells from within bacterial cells. Importantly, the ΔeseJ mutant strain does not replicate efficiently in EPC cells and fails to replicate in J774A.1 macrophages. In infected J774A.1 macrophages, the ΔeseJ mutant elicits higher production of reactive oxygen species than wild-type E. tarda. The replication defect is consistent with the attenuation of the ΔeseJ mutant in the blue gourami fish model: the 50% lethal dose (LD50) of the ΔeseJ mutant is 2.34 times greater than that of the wild type, and the ΔeseJ mutant is less competitive than the wild type in mixed infection. Thus, EseJ represents a novel effector that contributes to virulence by reducing bacterial adhesion to EPC cells and facilitating intracellular bacterial replication.
Collapse
|
36
|
Harrison JW, Dung TTN, Siddiqui F, Korbrisate S, Bukhari H, Tra MPV, Hoang NVM, Carrique-Mas J, Bryant J, Campbell JI, Studholme DJ, Wren BW, Baker S, Titball RW, Champion OL. Identification of possible virulence marker from Campylobacter jejuni isolates. Emerg Infect Dis 2015; 20:1026-9. [PMID: 24856088 PMCID: PMC4036754 DOI: 10.3201/eid2006.130635] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A novel protein translocation system, the type-6 secretion system (T6SS), may play a role in virulence of Campylobacter jejuni. We investigated 181 C. jejuni isolates from humans, chickens, and environmental sources in Vietnam, Thailand, Pakistan, and the United Kingdom for T6SS. The marker was most prevalent in human and chicken isolates from Vietnam.
Collapse
|
37
|
Transcriptional response of selected genes of Salmonella enterica serovar Typhimurium biofilm cells during inactivation by superheated steam. Int J Food Microbiol 2015; 192:117-23. [DOI: 10.1016/j.ijfoodmicro.2014.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/03/2014] [Accepted: 10/05/2014] [Indexed: 01/30/2023]
|
38
|
Ohland CL, Jobin C. Microbial activities and intestinal homeostasis: A delicate balance between health and disease. Cell Mol Gastroenterol Hepatol 2014; 1:28-40. [PMID: 25729763 PMCID: PMC4339954 DOI: 10.1016/j.jcmgh.2014.11.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The concept that the intestinal microbiota modulates numerous physiological processes including immune development and function, nutrition and metabolism as well as pathogen exclusion is relatively well established in the scientific community. The molecular mechanisms driving these various effects and the events leading to the establishment of a "healthy" microbiome are slowly emerging. The objective of this review is to bring into focus important aspects of microbial/host interactions in the intestine and to discuss key molecular mechanisms controlling health and disease states. We will discuss recent evidence on how microbes interact with the host and one another and their impact on intestinal homeostasis.
Collapse
Affiliation(s)
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida
- Correspondence Address correspondence to: Christian Jobin, PhD, Department of Medicine, University of Florida, 2033 Mowry Road, Office 461, Gainesville, Florida 32610. fax: (352) 392-3944.
| |
Collapse
|
39
|
Yap KP, Gan HM, Teh CSJ, Chai LC, Thong KL. Comparative genomics of closely related Salmonella enterica serovar Typhi strains reveals genome dynamics and the acquisition of novel pathogenic elements. BMC Genomics 2014; 15:1007. [PMID: 25412680 PMCID: PMC4289253 DOI: 10.1186/1471-2164-15-1007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/06/2014] [Indexed: 12/31/2022] Open
Abstract
Background Typhoid fever is an infectious disease of global importance that is caused by Salmonella enterica subsp. enterica serovar Typhi (S. Typhi). This disease causes an estimated 200,000 deaths per year and remains a serious global health threat. S. Typhi is strictly a human pathogen, and some recovered individuals become long-term carriers who continue to shed the bacteria in their faeces, thus becoming main reservoirs of infection. Results A comparative genomics analysis combined with a phylogenomic analysis revealed that the strains from the outbreak and carrier were closely related with microvariations and possibly derived from a common ancestor. Additionally, the comparative genomics analysis with all of the other completely sequenced S. Typhi genomes revealed that strains BL196 and CR0044 exhibit unusual genomic variations despite S. Typhi being generally regarded as highly clonal. The two genomes shared distinct chromosomal architectures and uncommon genome features; notably, the presence of a ~10 kb novel genomic island containing uncharacterised virulence-related genes, and zot in particular. Variations were also detected in the T6SS system and genes that were related to SPI-10, insertion sequences, CRISPRs and nsSNPs among the studied genomes. Interestingly, the carrier strain CR0044 harboured far more genetic polymorphisms (83% mutant nsSNPs) compared with the closely related BL196 outbreak strain. Notably, the two highly related virulence-determinant genes, rpoS and tviE, were mutated in strains BL196 and CR0044, respectively, which revealed that the mutation in rpoS is stabilising, while that in tviE is destabilising. These microvariations provide novel insight into the optimisation of genes by the pathogens. However, the sporadic strain was found to be far more conserved compared with the others. Conclusions The uncommon genomic variations in the two closely related BL196 and CR0044 strains suggests that S. Typhi is more diverse than previously thought. Our study has demonstrated that the pathogen is continually acquiring new genes through horizontal gene transfer in the process of host adaptation, providing novel insight into its unusual genomic dynamics. The understanding of these strains and virulence factors, and particularly the strain that is associated with the large outbreak and the less studied asymptomatic Typhi carrier in the population, will have important impact on disease control. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1007) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
40
|
Durand E, Cambillau C, Cascales E, Journet L. VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. Trends Microbiol 2014; 22:498-507. [DOI: 10.1016/j.tim.2014.06.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 12/20/2022]
|
41
|
Porwollik S, Santiviago CA, Cheng P, Long F, Desai P, Fredlund J, Srikumar S, Silva CA, Chu W, Chen X, Canals R, Reynolds MM, Bogomolnaya L, Shields C, Cui P, Guo J, Zheng Y, Endicott-Yazdani T, Yang HJ, Maple A, Ragoza Y, Blondel CJ, Valenzuela C, Andrews-Polymenis H, McClelland M. Defined single-gene and multi-gene deletion mutant collections in Salmonella enterica sv Typhimurium. PLoS One 2014; 9:e99820. [PMID: 25007190 PMCID: PMC4089911 DOI: 10.1371/journal.pone.0099820] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/19/2014] [Indexed: 01/30/2023] Open
Abstract
We constructed two collections of targeted single gene deletion (SGD) mutants and two collections of targeted multi-gene deletion (MGD) mutants in Salmonella enterica sv Typhimurium 14028s. The SGD mutant collections contain (1), 3517 mutants in which a single gene is replaced by a cassette containing a kanamycin resistance (KanR) gene oriented in the sense direction (SGD-K), and (2), 3376 mutants with a chloramphenicol resistance gene (CamR) oriented in the antisense direction (SGD-C). A combined total of 3773 individual genes were deleted across these SGD collections. The MGD collections contain mutants bearing deletions of contiguous regions of three or more genes and include (3), 198 mutants spanning 2543 genes replaced by a KanR cassette (MGD-K), and (4), 251 mutants spanning 2799 genes replaced by a CamR cassette (MGD-C). Overall, 3476 genes were deleted in at least one MGD collection. The collections with different antibiotic markers permit construction of all viable combinations of mutants in the same background. Together, the libraries allow hierarchical screening of MGDs for different phenotypic followed by screening of SGDs within the target MGD regions. The mutants of these collections are stored at BEI Resources (www.beiresources.org) and publicly available.
Collapse
Affiliation(s)
- Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Pui Cheng
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Fred Long
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Jennifer Fredlund
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Shabarinath Srikumar
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Cecilia A. Silva
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Xin Chen
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Rocío Canals
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - M. Megan Reynolds
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Lydia Bogomolnaya
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Christine Shields
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Ping Cui
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Jinbai Guo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Yi Zheng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Tiana Endicott-Yazdani
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Hee-Jeong Yang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Aimee Maple
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Yury Ragoza
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Carlos J. Blondel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Camila Valenzuela
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Helene Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
42
|
Identification and characterization of outer membrane vesicle-associated proteins in Salmonella enterica serovar Typhimurium. Infect Immun 2014; 82:4001-10. [PMID: 24935973 DOI: 10.1128/iai.01416-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is a primary cause of enteric diseases and has acquired a variety of virulence factors during its evolution into a pathogen. Secreted virulence factors interact with commensal flora and host cells and enable Salmonella to survive and thrive in hostile environments. Outer membrane vesicles (OMVs) released from many Gram-negative bacteria function as a mechanism for the secretion of complex mixtures, including virulence factors. We performed a proteomic analysis of OMVs that were isolated under standard laboratory and acidic minimal medium conditions and identified 14 OMV-associated proteins that were observed in the OMV fraction isolated only under the acidic minimal medium conditions, which reproduced the nutrient-deficient intracellular milieu. The inferred roles of these 14 proteins were diverse, including transporter, enzyme, and transcriptional regulator. The absence of these proteins influenced Salmonella survival inside murine macrophages. Eleven of these proteins were predicted to possess secretion signal sequences at their N termini, and three (HupA, GlnH, and PhoN) of the proteins were found to be translocated into the cytoplasm of host cells. The comparative proteomic profiling of OMVs performed in this study revealed different protein compositions in the OMVs isolated under the two different conditions, which indicates that the OMV cargo depends on the growth conditions and provides a deeper insight into how Salmonella utilizes OMVs to adapt to environmental changes.
Collapse
|
43
|
Wübbeler JH, Hiessl S, Schuldes J, Thürmer A, Daniel R, Steinbüchel A. Unravelling the complete genome sequence of Advenella mimigardefordensis strain DPN7T and novel insights in the catabolism of the xenobiotic polythioester precursor 3,3'-dithiodipropionate. MICROBIOLOGY-SGM 2014; 160:1401-1416. [PMID: 24739217 DOI: 10.1099/mic.0.078279-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advenella mimigardefordensis strain DPN7(T) is a remarkable betaproteobacterium because of its extraordinary ability to use the synthetic disulfide 3,3'-dithiodipropionic acid (DTDP) as the sole carbon source and electron donor for aerobic growth. One application of DTDP is as a precursor substrate for biotechnically synthesized polythioesters (PTEs), which are interesting non-degradable biopolymers applicable for plastics materials. Metabolic engineering for optimization of PTE production requires an understanding of DTDP conversion. The genome of A. mimigardefordensis strain DPN7(T) was sequenced and annotated. The circular chromosome was found to be composed of 4,740,516 bp and 4112 predicted ORFs, whereas the circular plasmid consisted of 23,610 bp and 24 predicted ORFs. The genes participating in DTDP catabolism had been characterized in detail previously, but knowing the complete genome sequence and with support of Tn5: :mob-induced mutants, putatively involved transporter proteins and a transcriptional regulator were also identified. Most probably, DTDP is transported into the cell by a specific tripartite tricarboxylate transport system and is then cleaved by the disulfide reductase LpdA, sulfoxygenated by the 3-mercaptopropionate dioxygenase Mdo, activated by the CoA ligase SucCD and desulfinated by the acyl-CoA dehydrogenase-like desulfinase AcdA. Regulation of this pathway is presumably performed by a transcriptional regulator of the xenobiotic response element family. The excessive sulfate that is inevitably produced is secreted by the cells by a unique sulfate exporter of the CPA (cation : proton antiporter) superfamily.
Collapse
Affiliation(s)
- Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Sebastian Hiessl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Jörg Schuldes
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Andrea Thürmer
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Alexander Steinbüchel
- Faculty of Biology, King Abdulaziz University, Jeddah, Saudi Arabia.,Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
44
|
Ma J, Sun M, Bao Y, Pan Z, Zhang W, Lu C, Yao H. Genetic diversity and features analysis of type VI secretion systems loci in avian pathogenic Escherichia coli by wide genomic scanning. INFECTION GENETICS AND EVOLUTION 2013; 20:454-64. [PMID: 24120694 DOI: 10.1016/j.meegid.2013.09.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/24/2013] [Accepted: 09/30/2013] [Indexed: 12/24/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) strains frequently cause extra-intestinal infections and significant economic losses. Recent studies revealed that the type VI secretion system (T6SS) is involved in APEC pathogenesis. Here we provide the first evidence of three distinguishable and conserved T6SS loci in APEC genomes. In addition, we present the prevalence and comparative genomic analysis of these three T6SS loci in 472 APEC isolates. The prevalence of T6SS1, T6SS2 and T6SS3 loci were 14.62% (69/472), 2.33% (11/472) and 0.85% (4/472) positive in the APEC collections, respectively, and revealed that >85% of the strains contained T6SS loci which consisted of the virulent phylogenetic groups D and B2. Comprehensive analysis showed prominent characteristics of T6SS1 locus, including wildly prevalence, rich sequence diversity, versatile VgrG islands and excellent expression competence in various E. coli pathotypes. Whereas the T6SS2 locus infatuated with ECOR groups B2 and sequence conservation, of which are only expressed in meningitis E. coli. Regrettably, the T6SS3 locus was encoded in negligible APEC isolates and lacked several key genes. An in-depth analysis about VgrG proteins indicated that their COG4253 and gp27 domain were involved in the transport of putative effector islands and recognition of host cells respectively, which revealed that VgrG proteins played an important role in functions formation of T6SS.
Collapse
Affiliation(s)
- Jiale Ma
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Das C, Dutta A, Rajasingh H, Mande SS. Understanding the sequential activation of Type III and Type VI Secretion Systems in Salmonella typhimurium using Boolean modeling. Gut Pathog 2013; 5:28. [PMID: 24079299 PMCID: PMC3849742 DOI: 10.1186/1757-4749-5-28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/14/2013] [Indexed: 01/13/2023] Open
Abstract
Background Three pathogenicity islands, viz. SPI-1 (Salmonella pathogenicity island 1), SPI-2 (Salmonella pathogenicity island 2) and T6SS (Type VI Secretion System), present in the genome of Salmonella typhimurium have been implicated in the virulence of the pathogen. While the regulation of SPI-1 and SPI-2 (both encoding components of the Type III Secretion System - T3SS) are well understood, T6SS regulation is comparatively less studied. Interestingly, inter-connections among the regulatory elements of these three virulence determinants have also been suggested to be essential for successful infection. However, till date, an integrated view of gene regulation involving the regulators of these three secretion systems and their cross-talk is not available. Results In the current study, relevant regulatory information available from literature have been integrated into a single Boolean network, which portrays the dynamics of T3SS (SPI-1 and SPI-2) and T6SS mediated virulence. Some additional regulatory interactions involving a two-component system response regulator YfhA have also been predicted and included in the Boolean network. These predictions are aimed at deciphering the effects of osmolarity on T6SS regulation, an aspect that has been suggested in earlier studies, but the mechanism of which was hitherto unknown. Simulation of the regulatory network was able to recreate in silico the experimentally observed sequential activation of SPI-1, SPI-2 and T6SS. Conclusions The present study integrates relevant gene regulatory data (from literature and our prediction) into a single network, representing the cross-communication between T3SS (SPI-1 and SPI-2) and T6SS. This holistic view of regulatory interactions is expected to improve the current understanding of pathogenesis of S. typhimurium.
Collapse
Affiliation(s)
- Chandrani Das
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Ltd., 54-B, Hadapsar Industrial Estate, Pune 411013, Maharashtra, India
| | - Anirban Dutta
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Ltd., 54-B, Hadapsar Industrial Estate, Pune 411013, Maharashtra, India
| | - Hannah Rajasingh
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Ltd., 54-B, Hadapsar Industrial Estate, Pune 411013, Maharashtra, India.,Present address: Novartis Healthcare Pvt. Ltd., #6 Raheja Mindspace, Hitec-city, Hyderabad 500081, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Ltd., 54-B, Hadapsar Industrial Estate, Pune 411013, Maharashtra, India
| |
Collapse
|
46
|
The lipopolysaccharide modification regulator PmrA limits Salmonella virulence by repressing the type three-secretion system Spi/Ssa. Proc Natl Acad Sci U S A 2013; 110:9499-504. [PMID: 23690578 DOI: 10.1073/pnas.1303420110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The regulatory protein PmrA controls expression of lipopolysaccharide (LPS) modification genes in Salmonella enterica serovar Typhimurium, the etiologic agent of human gastroenteritis and murine typhoid fever. PmrA-dependent LPS modifications confer resistance to serum, Fe(3+), and several antimicrobial peptides, suggesting that the pmrA gene is required for Salmonella virulence. We now report that, surprisingly, a pmrA null mutant is actually hypervirulent when inoculated i.p. into C3H/HeN mice. We establish that the PmrA protein binds to the promoter and represses transcription of ssrB, a virulence regulatory gene required for expression of the Spi/Ssa type three-secretion system inside macrophages. The pmrA mutant displayed heightened expression of SsrB-dependent genes and faster Spi/Ssa-dependent macrophage killing than wild-type Salmonella. A mutation in the ssrB promoter that abolished repression by the PmrA protein rendered Salmonella as hypervirulent as the pmrA null mutant. The antivirulence function of the PmrA protein may limit the acute phase of Salmonella infection, thereby enhancing pathogen persistence in host tissues.
Collapse
|
47
|
Miyata ST, Bachmann V, Pukatzki S. Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol 2013; 62:663-676. [PMID: 23429693 DOI: 10.1099/jmm.0.053983-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The type VI secretion system (T6SS) is a mechanism evolved by Gram-negative bacteria to negotiate interactions with eukaryotic and prokaryotic competitors. T6SSs are encoded by a diverse array of bacteria and include plant, animal, human and fish pathogens, as well as environmental isolates. As such, the regulatory mechanisms governing T6SS gene expression vary widely from species to species, and even from strain to strain within a given species. This review concentrates on the four bacterial genera that the majority of recent T6SS regulatory studies have been focused on: Vibrio, Pseudomonas, Burkholderia and Edwardsiella.
Collapse
Affiliation(s)
- Sarah T Miyata
- Department of Medical Microbiology and Immunology, 6-22 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Verena Bachmann
- Department of Medical Microbiology and Immunology, 6-22 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Stefan Pukatzki
- Department of Medical Microbiology and Immunology, 6-22 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
48
|
Kapitein N, Mogk A. Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol 2013; 16:52-8. [DOI: 10.1016/j.mib.2012.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/12/2012] [Accepted: 11/26/2012] [Indexed: 11/26/2022]
|
49
|
Genome expression analysis of nonproliferating intracellular Salmonella enterica serovar Typhimurium unravels an acid pH-dependent PhoP-PhoQ response essential for dormancy. Infect Immun 2012; 81:154-65. [PMID: 23090959 DOI: 10.1128/iai.01080-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genome-wide expression analyses have provided clues on how Salmonella proliferates inside cultured macrophages and epithelial cells. However, in vivo studies show that Salmonella does not replicate massively within host cells, leaving the underlying mechanisms of such growth control largely undefined. In vitro infection models based on fibroblasts or dendritic cells reveal limited proliferation of the pathogen, but it is presently unknown whether these phenomena reflect events occurring in vivo. Fibroblasts are distinctive, since they represent a nonphagocytic cell type in which S. enterica serovar Typhimurium actively attenuates intracellular growth. Here, we show in the mouse model that S. Typhimurium restrains intracellular growth within nonphagocytic cells positioned in the intestinal lamina propria. This response requires a functional PhoP-PhoQ system and is reproduced in primary fibroblasts isolated from the mouse intestine. The fibroblast infection model was exploited to generate transcriptome data, which revealed that ∼2% (98 genes) of the S. Typhimurium genome is differentially expressed in nongrowing intracellular bacteria. Changes include metabolic reprogramming to microaerophilic conditions, induction of virulence plasmid genes, upregulation of the pathogenicity islands SPI-1 and SPI-2, and shutdown of flagella production and chemotaxis. Comparison of relative protein levels of several PhoP-PhoQ-regulated functions (PagN, PagP, and VirK) in nongrowing intracellular bacteria and extracellular bacteria exposed to diverse PhoP-PhoQ-inducing signals denoted a regulation responding to acidic pH. These data demonstrate that S. Typhimurium restrains intracellular growth in vivo and support a model in which dormant intracellular bacteria could sense vacuolar acidification to stimulate the PhoP-PhoQ system for preventing intracellular overgrowth.
Collapse
|
50
|
A Type VI secretion system encoding locus is required for Bordetella bronchiseptica immunomodulation and persistence in vivo. PLoS One 2012; 7:e45892. [PMID: 23071529 PMCID: PMC3470547 DOI: 10.1371/journal.pone.0045892] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 08/27/2012] [Indexed: 11/19/2022] Open
Abstract
Type VI Secretion Systems (T6SSs) have been identified in numerous Gram-negative pathogens, but the lack of a natural host infection model has limited analysis of T6SS contributions to infection and pathogenesis. Here, we describe disruption of a gene within locus encoding a putative T6SS in Bordetella bronchiseptica strain RB50, a respiratory pathogen that circulates in a broad range of mammals, including humans, domestic animals, and mice. The 26 gene locus encoding the B. bronchiseptica T6SS contains apparent orthologs to all known core genes and possesses thirteen novel genes. By generating an in frame deletion of clpV, which encodes a putative ATPase required for some T6SS-dependent protein secretion, we observe that ClpV contributes to in vitro macrophage cytotoxicity while inducing several eukaryotic proteins associated with apoptosis. Additionally, ClpV is required for induction of IL-1β, IL-6, IL-17, and IL-10 production in J774 macrophages infected with RB50. During infections in wild type mice, we determined that ClpV contributes to altered cytokine production, increased pathology, delayed lower respiratory tract clearance, and long term nasal cavity persistence. Together, these results reveal a natural host infection system in which to interrogate T6SS contributions to immunomodulation and pathogenesis.
Collapse
|