1
|
Sun J, Wang J, Jiang X, Xia J, Han Y, Chen M, Xu J, Deng S, Cheng C, Song H. LADS: a powerful vaccine platform for cancer immunotherapy and prevention. BMC Biol 2024; 22:291. [PMID: 39696249 DOI: 10.1186/s12915-024-02086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The intracellular bacterium Listeria monocytogenes is an attractive vector for cancer immunotherapy as it can effectively deliver tumor antigens to antigen-presenting cells, leading to a robust antitumor response. RESULTS In this study, we developed a novel vaccine platform called Listeria-based Live Attenuated Double Substitution (LADS), which involves introducing two amino acid substitutions (N478AV479A) into the virulence factor listeriolysin O (LLO). LADS is a safe vaccine platform, with an attenuation of nearly 7000-fold, while retaining complete immunogenicity due to the absence of deletion of any virulence factors. We developed two LADS-based vaccines, LADS-E7 and LADS-AH1, which deliver the human papillomavirus (HPV) type 16 E7 oncoprotein and murine colon carcinoma immunodominant antigen AH1, respectively. Treatment with LADS-E7 or LADS-AH1 significantly inhibited and regressed established tumors, while also dramatically increasing the populations of tumor-infiltrated antigen-specific CD8+ T cells. RNA-sequencing analysis of tumor tissue samples revealed that LADS-E7 altered the expression of genes related to the immune response. Moreover, intratumoral injection of LADS-based vaccines induced strong antitumor responses, generating systemic antitumor responses to control distant tumor growth. Encouragingly, LADS-E7 or LADS-AH1 immunization effectively prevented tumor formation and growth. CONCLUSIONS Our findings demonstrate that LADS-based vaccines represent a more powerful platform for the development of immunotherapeutic and preventive vaccines against cancers and infectious diseases.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Xin Jiang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jing Xia
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Yue Han
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Mianmian Chen
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Jiali Xu
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Simin Deng
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Changyong Cheng
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China.
| | - Houhui Song
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China.
| |
Collapse
|
2
|
Lu Y, Mei N, Ying Y, Wang D, Li X, Zhao Y, Zhu Y, Shen S, Yin B. Bacteria-Based Nanoprobes for Cancer Therapy. Int J Nanomedicine 2024; 19:759-785. [PMID: 38283198 PMCID: PMC10821665 DOI: 10.2147/ijn.s438164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Surgical removal together with chemotherapy and radiotherapy has used to be the pillars of cancer treatment. Although these traditional methods are still considered as the first-line or standard treatments, non-operative situation, systemic toxicity or resistance severely weakened the therapeutic effect. More recently, synthetic biological nanocarriers elicited substantial interest and exhibited promising potential for combating cancer. In particular, bacteria and their derivatives are omnipotent to realize intrinsic tumor targeting and inhibit tumor growth with anti-cancer agents secreted and immune response. They are frequently employed in synergistic bacteria-mediated anticancer treatments to strengthen the effectiveness of anti-cancer treatment. In this review, we elaborate on the development, mechanism and advantage of bacterial therapy against cancer and then systematically introduce the bacteria-based nanoprobes against cancer and the recent achievements in synergistic treatment strategies and clinical trials. We also discuss the advantages as well as the limitations of these bacteria-based nanoprobes, especially the questions that hinder their application in human, exhibiting this novel anti-cancer endeavor comprehensively.
Collapse
Affiliation(s)
- Yiping Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Nan Mei
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yinwei Ying
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Dongdong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xuanxuan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yajing Zhao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yuqi Zhu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Shun Shen
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Rius-Rocabert S, Llinares Pinel F, Pozuelo MJ, García A, Nistal-Villan E. Oncolytic bacteria: past, present and future. FEMS Microbiol Lett 2020; 366:5521890. [PMID: 31226708 DOI: 10.1093/femsle/fnz136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
More than a century ago, independent groups raised the possibility of using bacteria to selectively infect tumours. Such treatment induces an immune reaction that can cause tumour rejection and protect the patient against further recurrences. One of the first holistic approximations to use bacteria in cancer treatment was performed by William Coley, considered the father of immune-therapy, at the end of XIX century. Since then, many groups have used different bacteria to test their antitumour activity in animal models and patients. The basis for this reactivity implies that innate immune responses activated upon bacteria recognition, also react against the tumour. Different publications have addressed several aspects of oncolytic bacteria. In the present review, we will focus on revisiting the historical aspects using bacteria as oncolytic agents and how they led to the current clinical trials. In addition, we address the molecules present in oncolytic bacteria that induce specific toxic effects against the tumors as well as the activation of host immune responses in order to trigger antitumour immunity. Finally, we discuss future perspectives that could be considered in the different fields implicated in the implementation of this kind of therapy in order to improve the current use of bacteria as oncolytic agents.
Collapse
Affiliation(s)
- Sergio Rius-Rocabert
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| | - Francisco Llinares Pinel
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| | - Maria Jose Pozuelo
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| | - Antonia García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Faculty of Pharmacy, San Pablo-CEU University, Boadilla del Monte, E-28668 Madrid, Spain
| | - Estanislao Nistal-Villan
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| |
Collapse
|
4
|
Moscoso M, García P, Cabral MP, Rumbo C, Bou G. A D-Alanine auxotrophic live vaccine is effective against lethal infection caused by Staphylococcus aureus. Virulence 2018; 9:604-620. [PMID: 29297750 PMCID: PMC5955480 DOI: 10.1080/21505594.2017.1417723] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus infections are becoming a major global health issue due to the rapid emergence of multidrug-resistant strains. Therefore, there is an urgent need to develop an effective vaccine to prevent and control these infections. In order to develop a universal immunization strategy, we constructed a mutant derivative of S. aureus 132 which lacks the genes involved in D-alanine biosynthesis, a structural component of cell wall peptidoglycan. This unmarked deletion mutant requires the exogenous addition of D-alanine for in vitro growth. The aim of this study was to examine the ability of this D-alanine auxotroph to induce protective immunity against staphylococcal infection. Our findings demonstrate that this deletion mutant is highly attenuated, elicits a protective immune response in mice and generates cross-reactive antibodies. Moreover, the D-alanine auxotroph was completely eliminated from the blood of mice after its intravenous or intraperitoneal injection. We determined that the protective effect was dependent on antibody production since the adoptive transfer of immune serum into naïve mice resulted in effective protection against S. aureus bacteremia. In addition, splenocytes from mice immunized with the D-alanine auxotroph vaccine showed specific production of IL-17A after ex vivo stimulation. We conclude that this D-alanine auxotroph protects mice efficiently against virulent staphylococcal strains through the combined action of antibodies and IL-17A, and therefore constitutes a promising vaccine candidate against staphylococcal disease, for which no licensed vaccine is available yet.
Collapse
Affiliation(s)
- Miriam Moscoso
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| | - Patricia García
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| | - Maria P Cabral
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| | - Carlos Rumbo
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain.,b International Research Center in Critical Raw Materials-ICCRAM, University of Burgos , Burgos , Spain.,c Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology. Consolidated Research Unit UIC-154. Castilla y León. Spain. University of Burgos. Hospital del Rey s/n , Burgos , Spain
| | - Germán Bou
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| |
Collapse
|
5
|
Flickinger JC, Rodeck U, Snook AE. Listeria monocytogenes as a Vector for Cancer Immunotherapy: Current Understanding and Progress. Vaccines (Basel) 2018; 6:E48. [PMID: 30044426 PMCID: PMC6160973 DOI: 10.3390/vaccines6030048] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 01/10/2023] Open
Abstract
Listeria monocytogenes, a Gram-positive facultative anaerobic bacterium, is becoming a popular vector for cancer immunotherapy. Indeed, multiple vaccines have been developed utilizing modified Listeria as a tool for generating immune responses against a variety of cancers. Moreover, over a dozen clinical trials testing Listeria cancer vaccines are currently underway, which will help to understand the utility of Listeria vaccines in cancer immunotherapy. This review aims to summarize current views on how Listeria-based vaccines induce potent antitumor immunity and the current state of Listeria-based cancer vaccines in clinical trials.
Collapse
Affiliation(s)
- John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | - Ulrich Rodeck
- Department of Dermatology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
6
|
Abstract
Safe and efficacious vaccines are arguably the most successful medical interventions of all time. Yet the ongoing discovery of new pathogens, along with emergence of antibiotic-resistant pathogens and a burgeoning population at risk of such infections, imposes unprecedented public health challenges. To meet these challenges, innovative strategies to discover and develop new or improved anti-infective vaccines are necessary. These approaches must intersect the most meaningful insights into protective immunity and advanced technologies with capabilities to deliver immunogens for optimal immune protection. This goal is considered through several recent advances in host-pathogen relationships, conceptual strides in vaccinology, and emerging technologies. Given a clear and growing risk of pandemic disease should the threat of infection go unmet, developing vaccines that optimize protective immunity against high-priority and antibiotic-resistant pathogens represents an urgent and unifying imperative.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90024.,Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509; .,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509.,Los Angeles Biomedical Research Institute, Torrance, California 90502
| | | |
Collapse
|
7
|
Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection. mBio 2013; 4:e00282-13. [PMID: 23716572 PMCID: PMC3663569 DOI: 10.1128/mbio.00282-13] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes infection leads to robust induction of an innate immune signaling pathway referred to as the cytosolic surveillance pathway (CSP), characterized by expression of beta interferon (IFN-β) and coregulated genes. We previously identified the IFN-β stimulatory ligand as secreted cyclic di-AMP. Synthesis of c-di-AMP in L. monocytogenes is catalyzed by the diadenylate cyclase DacA, and multidrug resistance transporters are necessary for secretion. To identify additional bacterial factors involved in L. monocytogenes detection by the CSP, we performed a forward genetic screen for mutants that induced altered levels of IFN-β. One mutant that stimulated elevated levels of IFN-β harbored a transposon insertion in the gene lmo0052. Lmo0052, renamed here PdeA, has homology to a cyclic di-AMP phosphodiesterase, GdpP (formerly YybT), of Bacillus subtilis and is able to degrade c-di-AMP to the linear dinucleotide pApA. Reduction of c-di-AMP levels by conditional depletion of the di-adenylate cyclase DacA or overexpression of PdeA led to marked decreases in growth rates, both in vitro and in macrophages. Additionally, mutants with altered levels of c-di-AMP had different susceptibilities to peptidoglycan-targeting antibiotics, suggesting that the molecule may be involved in regulating cell wall homeostasis. During intracellular infection, increases in c-di-AMP production led to hyperactivation of the CSP. Conditional depletion of dacA also led to increased IFN-β expression and a concomitant increase in host cell pyroptosis, a result of increased bacteriolysis and subsequent bacterial DNA release. These data suggest that c-di-AMP coordinates bacterial growth, cell wall stability, and responses to stress and plays a crucial role in the establishment of bacterial infection. Listeria monocytogenes is a Gram-positive intracellular pathogen and the causative agent of the food-borne illness listeriosis. Upon infection, L. monocytogenes stimulates expression of IFN-β and coregulated genes dependent upon host detection of a secreted bacterial signaling nucleotide, c-di-AMP. Using a forward genetic screen for mutants that induced high levels of host IFN-β expression, we identified a c-di-AMP phosphodiesterase, PdeA, that degrades c-di-AMP. Here we characterize L. monocytogenes mutants that express enhanced or diminished levels of c-di-AMP. Decreased c-di-AMP levels by conditional depletion of the diadenylate cyclase (DacA) or overexpression of PdeA attenuated bacterial growth and led to bacteriolysis, suggesting that its production is essential for viability and may regulate cell wall metabolism. Mutants lacking PdeA had a distinct transcriptional profile, which may provide insight into additional roles for the molecule. This work demonstrates that c-di-AMP is a critical signaling molecule required for bacterial replication, cell wall stability, and pathogenicity.
Collapse
|
8
|
An attenuated Listeria monocytogenes vector primes more potent simian immunodeficiency virus-specific mucosal immunity than DNA vaccines in mice. J Virol 2013; 87:4751-5. [PMID: 23388715 DOI: 10.1128/jvi.03085-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A human immunodeficiency virus type 1 (HIV-1) vaccine that induces potent immune responses in the gastrointestinal mucosa would be highly desirable. Here we show that attenuated recombinant Listeria monocytogenes, administered orally utilizing its natural route of infection, induces potent mucosal as well as systemic immune responses in mice. Moreover, these responses can be boosted efficiently with replication-incompetent adenoviral vectors. L. monocytogenes elicited more potent simian immunodeficiency virus (SIV) Gag-specific CD8(+) T lymphocyte responses in mucosal compartments than DNA vaccines.
Collapse
|
9
|
Abstract
Active immunotherapy targeting dendritic cells (DCs) has shown great promise in preclinical models and in human clinical trials for the treatment of malignant disease. Sipuleucel-T (Provenge, Dendreon, Seattle, WA), which consists of antigen-loaded dendritic cells (DCs), recently became the first targeted therapeutic cancer vaccine to be approved by the US Food and Drug Administration (FDA). However, ex vivo therapies such as Provenge have practical limitations and elicit an immune response with limited scope. By contrast, live-attenuated Listeria monocytogenes (Lm) naturally targets DCs in vivo and stimulates both innate and adaptive cellular immunity. Lm-based vaccines engineered to express cancer antigens have demonstrated striking efficacy in several animal models and have resulted in encouraging anecdotal survival benefit in early human clinical trials. Two different Lm-based vaccine platforms have advanced into phase II clinical trials in cervical and pancreatic cancer. Future Lm-based clinical vaccine candidates are expected to feature polyvalent antigen expression and to be used in combination with other immunotherapies or conventional therapies such as radiotherapy and chemotherapy to augment efficacy.
Collapse
Affiliation(s)
- Dung T Le
- The Sidney Kimmel Cancer Center and the Skip Viragh Pancreatic Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | | | | |
Collapse
|
10
|
Johnson PV, Blair BM, Zeller S, Kotton CN, Hohmann EL. Attenuated Listeria monocytogenes vaccine vectors expressing influenza A nucleoprotein: preclinical evaluation and oral inoculation of volunteers. Microbiol Immunol 2011; 55:304-17. [PMID: 21338384 DOI: 10.1111/j.1348-0421.2011.00322.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Listeria monocytogenes vectors have shown promise for delivery of viral and tumor antigens in animals. We used two mutant vector strains deleted for actA/plcB (BMB72) and actA/inlB (BMB54), and engineered both strains to secrete a heterologous nucleoprotein antigen from the Influenza A virus. Strains were evaluated in vitro and in mice. Twenty-two healthy volunteers received single oral doses of either strain in a physiological study of safety, shedding, and immunogenicity. Volunteers were observed in the hospital for seven days and had daily blood cultures, routine safety blood tests (complete blood count with differential; hepatic and renal function), and fecal cultures; none had fever, positive blood cultures, prolonged shedding, or serious or unexpected events. Four of 12 volunteers who received the actA/plcB-deleted strain had minor, transient, asymptomatic serum transaminase elevations (maximum increase 1.4× upper normal). Six of six volunteers who received ≥4 × 10(9) colony forming units had detectable mucosal immune responses to listerial antigens, but not to the vectored influenza antigen. Approximately half the volunteers had modest interferon-γ ELISpot responses to a complex listerial antigen, but none had increases over their baseline responses to the influenza antigen. Comparison with prior work suggests that foreign antigen expression, and perhaps also freezing, may adversely affect the organisms' immunogenicity.
Collapse
Affiliation(s)
- Paul V Johnson
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
11
|
Khanna KM, Blair DA, Vella AT, McSorley SJ, Datta SK, Lefrançois L. T cell and APC dynamics in situ control the outcome of vaccination. THE JOURNAL OF IMMUNOLOGY 2010; 185:239-52. [PMID: 20530268 DOI: 10.4049/jimmunol.0901047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The factors controlling the progression of an immune response to generation of protective memory are poorly understood. We compared the in situ and ex vivo characteristics of CD8 T cells responding to different forms of the same immunogen. Immunization with live Listeria monocytogenes, irradiated L. monocytogenes (IRL), or heat-killed L. monocytogenes (HKL) induced rapid activation of CD8 T cells. However, only IRL and live L. monocytogenes inoculation induced sustained proliferation and supported memory development. Gene and protein expression analysis revealed that the three forms of immunization led to three distinct transcriptional and translational programs. Prior to cell division, CD8 T cell-dendritic cell clusters formed in the spleen after live L. monocytogenes and IRL but not after HKL immunization. Furthermore, HKL immunization induced rapid remodeling of splenic architecture, including loss of marginal zone macrophages, which resulted in impaired bacterial clearance. These results identify initial characteristics of a protective T cell response that have implications for the development of more effective vaccination strategies.
Collapse
Affiliation(s)
- Kamal M Khanna
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | |
Collapse
|
12
|
Nondividing but metabolically active gamma-irradiated Brucella melitensis is protective against virulent B. melitensis challenge in mice. Infect Immun 2009; 77:5181-9. [PMID: 19703982 DOI: 10.1128/iai.00231-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brucella spp. are gram-negative bacteria that cause the most frequent zoonotic disease worldwide, with more than 500,000 human infections yearly; however, no human vaccine is currently available. As with other intracellular organisms, cytotoxic mechanisms against infected cells are thought to have an important role in controlling infection and mediating long-term immunity. Live attenuated strains developed for use in animals elicit protection but retain unacceptable levels of virulence. Thus, the optimal design for a brucellosis vaccine requires a nonliving vaccine that confers effective immunity. Historically, inactivation methods such as chemical or heat treatment successfully impair Brucella reproductive capacity; nevertheless, metabolically inactive vaccines (subunit or killed) present very limited efficacy. Hence, we hypothesized that bacterial metabolism plays a major role in creating the proper antigenic and adjuvant properties required for efficient triggering of protective responses. Here, we demonstrate that inactivation of Brucella melitensis by gamma-irradiation inhibited its replication capability and yet retained live-Brucella protective features. Irradiated Brucella possessed metabolic and transcriptional activity, persisted in macrophages, generated antigen-specific cytotoxic T cells, and protected mice against virulent bacterial challenge, without signs of residual virulence. In conclusion, pathogen metabolic activity has a positive role in shaping protective responses, and the generation of inactivated and yet metabolically active microbes is a promising strategy for safely vaccinating against intracellular organisms such as B. melitensis.
Collapse
|
13
|
Skoberne M, Yewdall A, Bahjat KS, Godefroy E, Lauer P, Lemmens E, Liu W, Luckett W, Leong M, Dubensky TW, Brockstedt DG, Bhardwaj N. KBMA Listeria monocytogenes is an effective vector for DC-mediated induction of antitumor immunity. J Clin Invest 2008; 118:3990-4001. [PMID: 19033668 PMCID: PMC2579623 DOI: 10.1172/jci31350] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 10/01/2008] [Indexed: 01/16/2023] Open
Abstract
Vaccine strategies that utilize human DCs to enhance antitumor immunity have yet to realize their full potential. Approaches that optimally target a spectrum of antigens to DCs are urgently needed. Here we report the development of a platform for loading DCs with antigen. It is based on killed but metabolically active (KBMA) recombinant Listeria monocytogenes and facilitates both antigen delivery and maturation of human DCs. Highly attenuated KBMA L. monocytogenes were engineered to express an epitope of the melanoma-associated antigen MelanA/Mart-1 that is recognized by human CD8+ T cells when presented by the MHC class I molecule HLA-A*0201. The engineered KBMA L. monocytogenes induced human DC upregulation of costimulatory molecules and secretion of pro-Th1 cytokines and type I interferons, leading to effective priming of Mart-1-specific human CD8+ T cells and lysis of patient-derived melanoma cells. KBMA L. monocytogenes expressing full-length NY-ESO-1 protein, another melanoma-associated antigen, delivered the antigen for presentation by MHC class I and class II molecules independent of the MHC haplotype of the DC donor. A mouse therapeutic tumor model was used to show that KBMA L. monocytogenes efficiently targeted APCs in vivo to induce protective antitumor responses. Together, our data demonstrate that KBMA L. monocytogenes may be a powerful platform that can both deliver recombinant antigen to DCs for presentation and provide a potent DC-maturation stimulus, making it a potential cancer vaccine candidate.
Collapse
Affiliation(s)
- Mojca Skoberne
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Alice Yewdall
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Keith S. Bahjat
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Emmanuelle Godefroy
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Peter Lauer
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Edward Lemmens
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Weiqun Liu
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Will Luckett
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Meredith Leong
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Thomas W. Dubensky
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Dirk G. Brockstedt
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Nina Bhardwaj
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| |
Collapse
|
14
|
Brockstedt DG, Dubensky TW. Promises and challenges for the development of Listeria monocytogenes-based immunotherapies. Expert Rev Vaccines 2008; 7:1069-84. [PMID: 18767955 DOI: 10.1586/14760584.7.7.1069] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Active immunotherapy has shown great promise in preclinical models for the treatment of infectious and malignant disease. Yet, these promising results have not translated into approved therapies. One of the major deficits of active immunotherapies tested to date in advanced clinical studies has been their inability to stimulate both arms of the immune system appropriately. The interest in using recombinant bacteria as vaccine vectors for active immunotherapy derives in part from their ability to stimulate multiple innate immune pathways and, at the same time, to deliver antigen for presentation to the adaptive immune system. This review will focus on the development of live-attenuated and killed strains of the intracellular bacterium Listeria monocytogenes for treatment of chronic infections and cancer. Early clinical trials intended to demonstrate safety as well as proof of concept have recently been initiated in several indications. Advances in molecular engineering as well as successes and challenges for clinical development of L. monocytogenes-based vaccines will be discussed.
Collapse
Affiliation(s)
- Dirk G Brockstedt
- Anza Therapeutics, Inc., 2550 Stanwell Drive, Concord, CA 94520, USA.
| | | |
Collapse
|
15
|
Simon BE, Ybarra N, Bonneval AO, Barry RA. Plasmid DNA Delivery by d-Alanine-Deficient Listeria monocytogenes. Biotechnol Prog 2008; 22:1394-9. [PMID: 17022679 DOI: 10.1021/bp060177i] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Optimal DNA vaccine efficacy requires circumventing several obstacles, including low immunogenicity, a need for adjuvant, and the costs of purifying injection grade plasmid DNA. Bacterial delivery of plasmid DNA may provide an efficient and low-cost alternative to plasmid purification and injection. Also, the bacterial vector may exhibit potential as an immune adjuvant in vivo. Thus, we elected to examine the use of cell-wall-deficient Listeria monocytogenes as a DNA delivery vehicle in vitro. First, the D-alanine-deficient (Deltadal-dat) L. monocytogenes strain DP-L3506, which undergoes autolysis inside eukaryotic host cells in the absence of D-alanine, was transformed with a plasmid encoding green fluorescent protein (GFP) under control of the CMV promoter (pAM-EGFP). Then COS-7 and MC57G cell lines were infected with the transformed DP-L3506 at various multiplicities of infection (MOI) in the presence or absence of D-alanine. Subsequent GFP expression was observed in both cell lines by 24 h post-infection with DP-L3506(pAM-EGFP). Notably, no GFP positive cells were observed when D-alanine was omitted. Although transfection efficiency initially increased as a result of D-alanine supplementation, high concentration or long-term supplementation led to sustained bacterial growth that killed the infected host cells, resulting in fewer GFP-expressing cells. Thus, efficient DNA delivery by transformed bacteria must balance bacterial invasion and survival with target cell health and survival.
Collapse
Affiliation(s)
- Benjamin E Simon
- Department of Veterans Affairs Medical Center, Portland, Oregan, USA.
| | | | | | | |
Collapse
|
16
|
Selected prfA* mutations in recombinant attenuated Listeria monocytogenes strains augment expression of foreign immunogens and enhance vaccine-elicited humoral and cellular immune responses. Infect Immun 2008; 76:3439-50. [PMID: 18474644 DOI: 10.1128/iai.00245-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While recombinant Listeria monocytogenes strains can be explored as vaccine candidates, it is important to develop attenuated but highly immunogenic L. monocytogenes vaccine vectors. Here, prfA* mutations selected on the basis of upregulated expression of L. monocytogenes PrfA-dependent genes and proteins were assessed to determine their abilities to augment expression of foreign immunogens in recombinant L. monocytogenes vectors and therefore enhance vaccine-elicited immune responses (a prfA* mutation is a mutation that results in constitutive overexpression of PrfA and PrfA-dependent virulence genes; the asterisk distinguishes the mutation from inactivation or stop mutations). A total of 63 recombinant L. monocytogenes vaccine vectors expressing seven individual viral or bacterial immunogens each in nine different L. monocytogenes strains carrying wild-type prfA or having prfA* mutations were constructed and investigated. Mutations selected on the basis of increased PrfA activation in recombinant L. monocytogenes prfA* vaccine vectors augmented expression of seven individual protein immunogens remarkably. Consistently, prime and boost vaccination studies with mice indicated that the prfA(G155S) mutation in recombinant L. monocytogenes DeltaactA prfA* strains enhanced vaccine-elicited cellular immune responses. Surprisingly, the prfA(G155S) mutation was found to enhance vaccine-elicited humoral immune responses as well. The highly immunogenic recombinant L. monocytogenes DeltaactA prfA* vaccine strains were as attenuated as the recombinant parent L. monocytogenes DeltaactA vaccine vector. Thus, recombinant attenuated L. monocytogenes DeltaactA prfA* vaccine vectors potentially are better antimicrobial and anticancer vaccines.
Collapse
|
17
|
Abstract
We describe the development of genetic tools for regulated gene expression, the introduction of chromosomal mutations, and improved plasmid transfer by electroporation in the food-borne pathogen Listeria monocytogenes. pIMK, a kanamycin-resistant, site-specific, integrative listeriophage vector was constructed and then modified for overexpression (pIMK2) or for isopropyl-beta-d-thiogalactopyranoside (IPTG)-regulated expression (pIMK3 and pIMK4). The dynamic range of promoters was assessed by determining luciferase activity, P60 secretion, and internalin A-mediated invasion. These analyses demonstrated that pIMK4 and pIMK3 have a stringently controlled dynamic range of 540-fold. Stable gene overexpression was achieved with pIMK2, giving a range of expression for the three vectors of 1,350-fold. The lactococcal pORI280 system was optimized for the generation of chromosomal mutations and used to create five new prfA star mutants. The combination of pIMK4 and pORI280 allowed streamlined creation of "IPTG-dependent" mutants. This was exemplified by creation of a clean deletion mutant with deletion of the universally essential secA gene, and this mutant exhibited a rapid loss of viability upon withdrawal of IPTG. We also improved plasmid transfer by electroporation into three commonly used laboratory strains of L. monocytogenes. A 125-fold increase in transformation efficiency for EGDe compared with the widely used protocol of Park and Stewart (S. F. Park and G. S. Stewart, Gene 94:129-132, 1990) was observed. Maximal transformation efficiencies of 5.7 x 10(6) and 6.7 x 10(6) CFU per mug were achieved for EGDe and 10403S, respectively, with a replicating plasmid. An efficiency of 2 x 10(7) CFU per mug is the highest efficiency reported thus far for L. monocytogenes F2365.
Collapse
|
18
|
Schoen C, Loeffler DI, Frentzen A, Pilgrim S, Goebel W, Stritzker J. Listeria monocytogenes as novel carrier system for the development of live vaccines. Int J Med Microbiol 2008; 298:45-58. [DOI: 10.1016/j.ijmm.2007.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Abstract
The immunostimulatory characteristics and intracellular niche of Listeria monocytogenes make it uniquely suitable for use as a live bacterial vaccine vector. Preclinical results supporting this idea, and current strategies to induce beneficial cell-mediated immunity to both infectious diseases and cancer with this vector, are discussed in this review.
Collapse
Affiliation(s)
- Kevin W Bruhn
- Department of Medicine, Division of Dermatology, Los Angeles Biomedical Research Institute at Harbor/UCLA Medical Center, 1124 W. Carson St., Torrance, CA 90502, USA.
| | | | | |
Collapse
|
20
|
Sleator RD, Hill C. 'Bioengineered Bugs' - a patho-biotechnology approach to probiotic research and applications. Med Hypotheses 2007; 70:167-9. [PMID: 17452084 DOI: 10.1016/j.mehy.2007.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 03/08/2007] [Indexed: 12/23/2022]
Abstract
Given the increasing commercial and clinical relevance of probiotic cultures, improving their stress tolerance profile and ability to overcome the physiochemical defences of the host is an important biological goal. Pathogenic bacteria have evolved sophisticated strategies to overcome host defences, interact with the immune system and modulate essential host systems. The 'Patho-biotechnology' concept promotes the exploitation of these valuable traits for the design of more technologically robust and effective probiotic cultures with potentially improved biotechnological and clinical applications, as well as the development of novel vaccine and drug delivery platforms.
Collapse
Affiliation(s)
- Roy D Sleator
- Alimentary Pharmabiotic Centre, University College Cork, College Road, Cork, Ireland.
| | | |
Collapse
|
21
|
Li Z, Zhao X, Zhou C, Gu B, Frankel FR. A truncated Bacillus subtilis dal gene with a 3' ssrA gene tag regulates the growth and virulence of racemase-deficient Listeria monocytogenes. MICROBIOLOGY-SGM 2007; 152:3091-3102. [PMID: 17005988 DOI: 10.1099/mic.0.28994-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Listeria monocytogenes (Lm) is a Gram-positive intracellular pathogen that can elicit strong cellular immunity. An attenuated strain (Lmdd) with deletions in two genes (dal and dat) required for d-alanine synthesis and viability has been shown to induce long-lived protective systemic and mucosal immune responses in mice when administered in the presence of the required amino acid. To bypass the necessity for exogenous d-alanine without compromising the safety of the original strain, the defect of Lmdd was complemented with a heterologous Bacillus subtilis dal gene, and the effects of truncating the upstream region of the gene on its transcription efficiency and of modifying its protein product with an ssrA tag at the 3'-terminus were examined. The strains with 551 bp and 80 bp upstream regions showed high levels of transcription and grew without d-alanine. The strains with the shortest upstream regions, 48 bp and 18 bp, showed greatly decreased levels of transcription and failed to grow in the absence of d-alanine. Addition of an ssrA tag to the longer genes resulted in a somewhat altered growth pattern in media and a reduced plaque size on L2 fibroblasts. These bacteria contained low levels of racemase protein and reduced free pools of d-alanine. One of the strains tested further, Lmdd/pA80S, was rapidly cleared from the spleens of infected mice but nevertheless induced a strong immune response that protected mice against challenge by wild-type L. monocytogenes. These bacteria can thus induce immune responses in mice comparable to the original Lmdd strain, but without the need for exogenous d-alanine, and may have use as a live vaccine vector against infectious diseases and cancers.
Collapse
Affiliation(s)
- Zhongxia Li
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xinyan Zhao
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chenghui Zhou
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Baiyan Gu
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fred R Frankel
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Abstract
Given the increasing commercial and clinical relevance of probiotic cultures, improving their stress tolerance profile and ability to overcome the physiochemical defences of the host is an important biological goal. Pathogenic bacteria have evolved sophisticated strategies to overcome host defences, interact with the immune system and interfere with essential host systems. We coin the term 'patho-biotechnology' to describe the exploitation of these valuable traits in biotechnology and biomedicine. This approach shows promise for the design of more technologically robust and effective probiotic cultures with improved biotechnological and clinical applications as well as the development of novel vaccine and drug delivery platforms.
Collapse
|
23
|
Zhao X, Zhang M, Li Z, Frankel FR. Vaginal protection and immunity after oral immunization of mice with a novel vaccine strain of Listeria monocytogenes expressing human immunodeficiency virus type 1 gag. J Virol 2006; 80:8880-90. [PMID: 16940500 PMCID: PMC1563909 DOI: 10.1128/jvi.00894-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural transmission of human immunodeficiency virus (HIV) occurs at mucosal surfaces. During acute infection, intestinal and other mucosae are preferential sites of virus replication and rapidly become depleted of CD4(+) T cells. Therefore, mucosal immunity may be critical to control both initial infection and the massive early spread of virus. An attenuated D-alanine-requiring strain of the oral intracellular microorganism Listeria monocytogenes expressing HIV type 1 gag was shown to induce protective cell-mediated immunity in mice against viruses that express HIV gag when immunization occurs in the presence of a transient supply of D-alanine. In this study, we examined the efficacy of new attenuated strains that are able to synthesize d-alanine from a heterologous dal gene tightly regulated by an actA-promoted resolvase recombination system. In the absence of d-alanine, Gag-specific cytotoxic T lymphocytes (CTLs) were induced systemically after intravenous immunization, and one strain, Lmdd-gag/pARS, induced strong dose-dependent Gag-specific CTLs after oral immunization. A significant level of Gag-specific CD8(+) T cells was induced in the mucosal-associated lymphoid tissues (MALTs). Upon intravaginal challenge of these orally immunized mice with recombinant vaccinia virus (rVV) expressing HIV gag, gamma interferon- and tumor necrosis factor alpha-secreting Gag-specific CD8(+) T cells were dramatically increased in the spleen and MALTs. Oral immunization with Lmdd-gag/pARS led to complete protection against vaginal challenge by a homologous clade B gag-expressing rVV. In addition, strong cross-clade protection was seen against clades A and C and partial protection against clade G gag-expressing rVV. These results suggest that Lmdd-gag/pARS may be considered as a novel vaccine candidate for use against HIV/AIDS.
Collapse
Affiliation(s)
- Xinyan Zhao
- Department of Microbiology, University of Pennsylvania School of Medicine, 203C Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
24
|
Sleator RD, Hill C. Patho-biotechnology: using bad bugs to do good things. Curr Opin Biotechnol 2006; 17:211-6. [PMID: 16459072 DOI: 10.1016/j.copbio.2006.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/16/2005] [Accepted: 01/20/2006] [Indexed: 12/27/2022]
Abstract
Pathogenic bacteria have evolved sophisticated strategies to overcome host defences, to interact with the immune system and to interfere with essential host systems. We coin the term 'patho-biotechnology' to describe the exploitation of these valuable traits in biotechnology, medicine and food. This approach shows promise for the development of novel vaccine and drug delivery systems, as well as for the design of more technologically robust and effective probiotic cultures with improved biotechnological and clinical applications. The genetic tractability of Listeria monocytogenes, the availability of the complete genome sequence of this intracellular pathogen, its ability to cope with stress, and its ability to traverse the gastrointestinal tract and induce a strong cellular immune response make L. monocytogenes an ideal model organism for demonstrating the patho-biotechnology concept.
Collapse
Affiliation(s)
- Roy D Sleator
- Department of Microbiology & Alimentary Pharmabiotic Centre, University College, Cork, Ireland
| | | |
Collapse
|
25
|
Zhao X, Li Z, Gu B, Frankel FR. Pathogenicity and immunogenicity of a vaccine strain of Listeria monocytogenes that relies on a suicide plasmid to supply an essential gene product. Infect Immun 2005; 73:5789-98. [PMID: 16113297 PMCID: PMC1231070 DOI: 10.1128/iai.73.9.5789-5798.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a bacterial pathogen that elicits a strong cellular immune response and thus has potential use as a vaccine vector. An attenuated strain, L. monocytogenes dal dat, produced by deletion of two genes (dal and dat) used for d-alanine synthesis, induces cytotoxic T lymphocytes and protective immunity in mice following infection in the presence of d-alanine. In order to obviate the dependence of L. monocytogenes dal dat on supplemental d-alanine yet retain its attenuation and immunogenicity, we explored mechanisms to allow transient endogenous synthesis of the amino acid. Here, we report on a derivative strain, L. monocytogenes dal dat/pRRR, that expresses a dal gene and synthesizes d-alanine under highly selective conditions. We constructed the suicide plasmid pRRR carrying a dal gene surrounded by two res1 sites and a resolvase gene, tnpR, which acts at the res1 sites. The resolvase gene is regulated by a promoter activated upon exposure to host cell cytosol. L. monocytogenes dal dat/pRRR was thus able to grow in liquid culture and to infect host cells without d-alanine supplementation. However, after infection of these cells, resolvase-mediated excision of the dal gene resulted in strong down-regulation of racemase expression. As a result, this system allowed only transient growth of L. monocytogenes dal dat/pRRR in infected cells and survival in animals for only 2 to 3 days. Nevertheless, mice immunized with L. monocytogenes dal dat/pRRR generated listeriolysin O-specific effector and memory CD8(+) T cells and were protected against lethal challenge by wild-type Listeria. This vector may be an attractive vaccine candidate for the induction of protective cellular immune responses.
Collapse
Affiliation(s)
- Xinyan Zhao
- 203C Johnson Pavilion, 3610 Hamilton Walk, Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|