1
|
Liew-Littorin C, Davidsson S, Nilsdotter-Augustinsson Å, Hellmark B, Brüggemann H, Söderquist B. Genomic characterization and clinical evaluation of prosthetic joint infections caused by Cutibacterium acnes. Microbiol Spectr 2024:e0030324. [PMID: 39377601 DOI: 10.1128/spectrum.00303-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/16/2024] [Indexed: 10/09/2024] Open
Abstract
Cutibacterium acnes is a major skin commensal that may act as an opportunistic pathogen. It is difficult to interpret findings of C. acnes in tissue cultures obtained during arthroplasty revision surgery, since they may represent true infection or contamination. This study investigated whether C. acnes obtained from prosthetic joint infections (PJIs) were related and shared common genomic traits that might correlate with clinical courses and patient outcomes. C. acnes isolates from revision surgery of patients with PJIs of the hip, shoulder, and knee were characterized using molecular methods to determine the sequence type (ST) and the presence of possible virulence determinants (Christie-Atkins-Munch-Peterson factors, dermatan sulfate-binding adhesion 1, hyaluronidase lyase, and linear plasmid). A standardized review of the patients' medical charts was performed. The study included 37 patients with C. acnes culture-positive tissue samples where multiple isolates of C. acnes belonged to the same ST. Most of the isolates belonged to phylotype IA1. Phylogenetic analysis of virulence determinants revealed no shared pattern among PJI isolates. Seven patients had a polymicrobial infection. Exchange revision was performed in 70% of the patients, and >50% of all patients received antibiotic treatment for ≥3 months. Failure was noted in seven patients. No specific ST or any identifiable unique feature among virulence determinants were found among C. acnes isolated from PJIs of hips and shoulders. The majority of patients had low inflammatory markers and were treated successfully, even polymicrobial infections. However, failure was more common among shoulder infections compared with hip infections. IMPORTANCE Prosthetic joint infection (PJI) is a rare complication after arthroplasty surgery. The infection seldom resolves without a combination of both surgical and antibiotic treatment and can cause significant suffering among affected patients. Cutibacterium acnes is a common skin bacterium that is most often found in shoulder PJIs but can also infect other prostheses. In this study, we conducted a review of patients with previously verified PJIs involving C. acnes in hip or shoulder prostheses, along with a genomic analysis of the bacteria causing the infections. The majority of patients had successful outcomes. We did not identify any specific phylogenetic lineage or specific molecular signature of virulence factors among these PJI-associated C. acnes isolates that seemed to be associated with increased potential to cause infection among this species. This indicates that C. acnes isolated from PJIs originates from the patients' own skin microbiome and is inoculated during the arthroplasty surgery.
Collapse
Affiliation(s)
- C Liew-Littorin
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - S Davidsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Å Nilsdotter-Augustinsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Östergötland, Sweden
| | - B Hellmark
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - H Brüggemann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - B Söderquist
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
2
|
Wei P, Sun W, Hao S, Deng L, Zou W, Wu H, Lu W, He Y. Dietary Supplementation of Crossbred Pigs with Glycerol, Vitamin C, and Niacinamide Alters the Composition of Gut Flora and Gut Flora-Derived Metabolites. Animals (Basel) 2024; 14:2198. [PMID: 39123724 PMCID: PMC11311027 DOI: 10.3390/ani14152198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The addition of glycerin, vitamin C, and niacinamide to pig diets increased the redness of longissimus dorsi; however, it remains unclear how these supplements affect gut microbiota and metabolites. A total of 84 piglets (20.35 ± 2.14 kg) were randomly allotted to groups A (control), B (glycerin-supplemented), C (vitamin C and niacinamide-supplemented), and D (glycerin, vitamin C and niacinamide-supplemented) during a feeding experiment. Metagenomic and metabolomic technologies were used to analyze the fecal compositions of bile acids, metabolites, and microbiota. The results showed that compared to pigs in group A, pigs in group D had lower virulence factor expressions of lipopolysaccharide (p < 0.05), fatty acid resistance system (p < 0.05), and capsule (p < 0.01); higher fecal levels of ferric ion (p < 0.05), allolithocholic acid (p < 0.01), deoxycholic acid (p < 0.05), tauroursodeoxycholic acid dihydrate (p < 0.01), glycodeoxycholic acid (p < 0.05), L-proline (p < 0.01) and calcitriol (p < 0.01); and higher (p < 0.05) abundances of iron-acquiring microbiota (Methanobrevibacter, Clostridium, Clostridiaceae, Clostridium_sp_CAG_1000, Faecalibacterium_sp_CAG_74_58_120, Eubacteriales_Family_XIII_Incertae_Sedis, Alistipes_sp_CAG_435, Alistipes_sp_CAG_514 and Methanobrevibacter_sp_YE315). Supplementation with glycerin, vitamin C, and niacinamide to pigs significantly promoted the growth of iron-acquiring microbiota in feces, reduced the expression of some virulence factor genes of fecal pathogens, and increased the fecal levels of ferric ion, L-proline, and some secondary bile acids. The administration of glycerol, vitamin C, and niacinamide to pigs may serve as an effective measure for muscle redness improvement by altering the compositions of fecal microbiota and metabolites.
Collapse
Affiliation(s)
- Panting Wei
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wenchen Sun
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Shaobin Hao
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Linglan Deng
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wanjie Zou
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (P.W.); (W.S.); (S.H.); (L.D.); (W.Z.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| |
Collapse
|
3
|
Alexander M, Jachno K, Phillips KA, Seymour JF, Slavin MA, Cheung A, Shen V, Maarouf D, Wolfe R, Lingaratnam S. Infective complications in cancer patients treated with subcutaneous versus intravenous trastuzumab and rituximab: An individual patient data meta-analysis. J Oncol Pharm Pract 2024; 30:642-660. [PMID: 37322897 DOI: 10.1177/10781552231180875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Investigation of infection risk with subcutaneous versus intravenous trastuzumab and rituximab administration in an individual patient data (IPD) and published data meta-analysis of randomised controlled trials (RCTs). METHODS Databases were searched to September 2021. Primary outcomes were serious and high-grade infection. Relative-risk (RR) and 95% confidence intervals (95%CI) were calculated using random-effects models. RESULTS IPD meta-analysis (6 RCTs, 2971 participants, 2320 infections) demonstrated higher infection incidence with subcutaneous versus intravenous administration, without reaching statistical significance (serious: 12.2% versus 9.3%, RR 1.28, 95%CI 0.93to1.77, P = 0.13; high-grade: 12.2% versus 9.9%, RR 1.32, 95%CI 0.98to1.77, P = 0.07). With exclusion of an outlying study in post-hoc analysis, increased risks were statistically significant (serious: 13.1% versus 8.4%, RR 1.53, 95%CI 1.14to2.06, P = 0.01; high-grade: 13.2% versus 9.3%, RR 1.56, 95%CI 1.16to2.11, P < 0.01). Published data meta-analysis (8 RCTs, 3745 participants, 648 infections) demonstrated higher incidence of serious (HR 1.31, 95%CI 1.02to1.68, P = 0.04) and high-grade (HR 1.52, 95%CI 1.17to1.98, P < 0.01) infection with subcutaneous versus intravenous administration. CONCLUSIONS Results suggest increased infection risk with subcutaneous versus intravenous administration, although IPD findings are sensitive to exclusion of one trial with inconsistent results and identified risk-of-bias. Ongoing trials may confirm findings. Clinical surveillance should be considered when switching to subcutaneous administration. PROSPERO registration CRD42020221866/CRD42020125376.
Collapse
Affiliation(s)
- Marliese Alexander
- Pharmacy Department, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kim Jachno
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Kelly-Anne Phillips
- Department of Medical Oncology, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - John F Seymour
- Department of Haematology, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ada Cheung
- Pharmacy Department, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Vivian Shen
- Pharmacy Department, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Dana Maarouf
- Pharmacy Department, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rory Wolfe
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Senthil Lingaratnam
- Pharmacy Department, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Lazarkevich I, Engibarov S, Mitova S, Popova S, Vacheva E, Stanchev N, Eneva R, Gocheva Y, Lalovska I, Paunova-Krasteva T, Ilieva Y, Najdenski H. Pathogenic Potential of Opportunistic Gram-Negative Bacteria Isolated from the Cloacal Microbiota of Free-Living Reptile Hosts Originating from Bulgaria. Life (Basel) 2024; 14:566. [PMID: 38792588 PMCID: PMC11122471 DOI: 10.3390/life14050566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Reptiles are known to be asymptomatic carriers of various zoonotic pathogens. A number of Gram-negative opportunistic commensals are causative agents of bacterial infections in immunocompromised or stressed hosts and are disseminated by reptiles, whose epidemiological role should not be neglected. Since most studies have focused on exotic species, in captivity or as pet animals, the role of wild populations as a potential source of pathogens still remains understudied. In the present study, we isolated a variety of Gram-negative bacteria from the cloacal microbiota of free-living lizard and tortoise hosts (Reptilia: Sauria and Testudines) from the Bulgarian herpetofauna. We evaluated their pathogenic potential according to their antibiotic susceptibility patterns, biofilm-forming capacity, and extracellular production of some enzymes considered to play roles as virulence factors. To our knowledge, the phenotypic manifestation of virulence factors/enzymatic activity and biofilm formation in wild reptile microbiota has not yet been widely investigated. All isolates were found to be capable of forming biofilms to some extent and 29.6% of them could be categorized as strong producers. Two strains proved to be excellent producers. The majority of the isolated strains showed extracellular production of at least one exoenzyme. The most pronounced pathogenicity could be attributed to the newly isolated Pseudomonas aeruginosa strain due to its multiresistance, excellent biofilm formation, and expression of exoenzymes.
Collapse
Affiliation(s)
- Irina Lazarkevich
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.E.); (S.M.); (R.E.); (Y.G.); (T.P.-K.); (Y.I.); (H.N.)
| | - Stephan Engibarov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.E.); (S.M.); (R.E.); (Y.G.); (T.P.-K.); (Y.I.); (H.N.)
| | - Simona Mitova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.E.); (S.M.); (R.E.); (Y.G.); (T.P.-K.); (Y.I.); (H.N.)
| | - Steliyana Popova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (S.P.); (N.S.)
| | - Emiliya Vacheva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria;
| | - Nikola Stanchev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (S.P.); (N.S.)
| | - Rumyana Eneva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.E.); (S.M.); (R.E.); (Y.G.); (T.P.-K.); (Y.I.); (H.N.)
| | - Yana Gocheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.E.); (S.M.); (R.E.); (Y.G.); (T.P.-K.); (Y.I.); (H.N.)
| | - Iva Lalovska
- Tortoise Rescue, Rehabilitation and Breeding Center, Gea Chelonia Foundation, 10 Shipka Street, Banya Village, 8239 Burgas, Bulgaria;
| | - Tsvetelina Paunova-Krasteva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.E.); (S.M.); (R.E.); (Y.G.); (T.P.-K.); (Y.I.); (H.N.)
| | - Yana Ilieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.E.); (S.M.); (R.E.); (Y.G.); (T.P.-K.); (Y.I.); (H.N.)
| | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.E.); (S.M.); (R.E.); (Y.G.); (T.P.-K.); (Y.I.); (H.N.)
| |
Collapse
|
5
|
Modarressi SM, Koolivand Z, Akbari M. Enhancing hyaluronidase enzyme activity: Insights from advancement in bovine and ovine testicular hyaluronidase purification. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124031. [PMID: 38330521 DOI: 10.1016/j.jchromb.2024.124031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
This essay investigates the use of an affinity resin named Capto lentil lectin for the purification of bovine and ovine testicular hyaluronidase. Hyaluronidase, an enzyme that degrades hyaluronic acid, is used widely in medical fields like dermatology, orthopedics, and ophthalmology. The research highlights the importance of optimizing the purification process to increase enzyme activity and purity. A new purification method is proposed, which begins with ammonium sulfate precipitation, followed by Blue Sepharose and Capto Lentil Lectin chromatography. This novel approach significantly increases the yield, purity, and activity of the enzyme. This study paves the way for further research into improving the purification process. The study further discusses challenges in identifying hyaluronidase bands using SDS-PAGE and highlights the necessity of using Western blotting for precise results.
Collapse
Affiliation(s)
| | | | - Mojdeh Akbari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Hu Y, Li S, Dong H, Weng L, Yuwen L, Xie Y, Yang J, Shao J, Song X, Yang D, Wang L. Environment-Responsive Therapeutic Platforms for the Treatment of Implant Infection. Adv Healthc Mater 2023; 12:e2300985. [PMID: 37186891 DOI: 10.1002/adhm.202300985] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Indexed: 05/17/2023]
Abstract
The application of medical implants has greatly improved the survival rate and life quality of patients. Nevertheless, in recent years, there are increasing cases of implant dysfunction or failure because of bacterial infections. Despite significant improvements in biomedicine, there are still serious challenges in the treatment of implant-related infections. With the formation of bacterial biofilms and the development of bacterial resistance, these limitations lead to a low efficacy of conventional antibiotics. To address these challenges, it is urgent to exploit innovative treatment strategies for implant-related infections. Based on these ideas, environment-responsive therapeutic platforms with high selectivity, low drug resistance, and minor dose-limiting toxicity have attracted widespread attention. By using exogenous/endogenous stimuli, the antibacterial activity of therapeutics can be activated on demand and exhibit remarkable therapeutic effects. Exogenous stimuli include photo, magnetism, microwave, and ultrasound. Endogenous stimuli mainly include the pathological characteristics of bacterial infections such as acidic pH, anomalous temperature, and abnormal enzymatic activities. In this review, the recent progress of environment-responsive therapeutic platforms with spatiotemporally controlled drug release/activation is systematically summarized. Afterward, the limitations and opportunities of these emerging platforms are highlighted. Finally, it is hoped that this review will offer novel ideas and techniques to combat implant-related infections.
Collapse
Affiliation(s)
- Yanling Hu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Nanjing Polytechnic Institute, Nanjing, 210048, P. R. China
| | - Shengke Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, P. R. China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jun Yang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
7
|
Rampratap P, Lasorsa A, Perrone B, van der Wel PCA, Walvoort MTC. Production of isotopically enriched high molecular weight hyaluronic acid and characterization by solid-state NMR. Carbohydr Polym 2023; 316:121063. [PMID: 37321744 DOI: 10.1016/j.carbpol.2023.121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide that is abundant in the extracellular matrix (ECM) of all vertebrate cells. HA-based hydrogels have attracted great interest for biomedical applications due to their high viscoelasticity and biocompatibility. In both ECM and hydrogel applications, high molecular weight (HMW)-HA can absorb a large amount of water to yield matrices with a high level of structural integrity. To understand the molecular underpinnings of structural and functional properties of HA-containing hydrogels, few techniques are available. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for such studies, e.g. 13C NMR measurements can reveal the structural and dynamical features of (HMW) HA. However, a major obstacle to 13C NMR is the low natural abundance of 13C, necessitating the generation of HMW-HA that is enriched with 13C isotopes. Here we present a convenient method to obtain 13C- and 15N-enriched HMW-HA in good yield from Streptococcus equi subsp. zooepidemicus. The labeled HMW-HA has been characterized by solution and magic angle spinning (MAS) solid-state NMR spectroscopy, as well as other methods. These results will open new ways to study the structure and dynamics of HMW-HA-based hydrogels, and interactions of HMW-HA with proteins and other ECM components, using advanced NMR techniques.
Collapse
Affiliation(s)
- Pushpa Rampratap
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, the Netherlands.
| | - Alessia Lasorsa
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, the Netherlands.
| | - Barbara Perrone
- Bruker Switzerland AG, Industriestrasse 26, CH-8117, Switzerland.
| | - Patrick C A van der Wel
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, the Netherlands.
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, the Netherlands.
| |
Collapse
|
8
|
Evseev P, Lukianova A, Tarakanov R, Tokmakova A, Popova A, Kulikov E, Shneider M, Ignatov A, Miroshnikov K. Prophage-Derived Regions in Curtobacterium Genomes: Good Things, Small Packages. Int J Mol Sci 2023; 24:1586. [PMID: 36675099 PMCID: PMC9862828 DOI: 10.3390/ijms24021586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Curtobacterium is a genus of Gram-positive bacteria within the order Actinomycetales. Some Curtobacterium species (C. flaccumfaciens, C. plantarum) are harmful pathogens of agricultural crops such as soybean, dry beans, peas, sugar beet and beetroot, which occur throughout the world. Bacteriophages (bacterial viruses) are considered to be potential curative agents to control the spread of harmful bacteria. Temperate bacteriophages integrate their genomes into bacterial chromosomes (prophages), sometimes substantially influencing bacterial lifestyle and pathogenicity. About 200 publicly available genomes of Curtobacterium species, including environmental metagenomic sequences, were inspected for the presence of sequences of possible prophage origin using bioinformatic methods. The comparison of the search results with several ubiquitous bacterial groups showed the relatively low level of the presence of prophage traces in Curtobacterium genomes. Genomic and phylogenetic analyses were undertaken for the evaluation of the evolutionary and taxonomic positioning of predicted prophages. The analyses indicated the relatedness of Curtobacterium prophage-derived sequences with temperate actinophages of siphoviral morphology. In most cases, the predicted prophages can represent novel phage taxa not described previously. One of the predicted temperate phages was induced from the Curtobacterium genome. Bioinformatic analysis of the modelled proteins encoded in prophage-derived regions led to the discovery of some 100 putative glycopolymer-degrading enzymes that contained enzymatic domains with predicted cell-wall- and cell-envelope-degrading activity; these included glycosidases and peptidases. These proteins can be considered for the experimental design of new antibacterials against Curtobacterium phytopathogens.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Anna Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Rashit Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia
| | - Anna Tokmakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology National Research University, Institutskiy Per, 9, 141701 Dolgoprudny, Russia
| | - Anastasia Popova
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Eugene Kulikov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology National Research University, Institutskiy Per, 9, 141701 Dolgoprudny, Russia
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prosp. 60-letia Oktyabrya, 7-2, 117312 Moscow, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Alexander Ignatov
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| |
Collapse
|
9
|
Zamboni F, Wong CK, Collins MN. Hyaluronic acid association with bacterial, fungal and viral infections: Can hyaluronic acid be used as an antimicrobial polymer for biomedical and pharmaceutical applications? Bioact Mater 2023; 19:458-473. [PMID: 35574061 PMCID: PMC9079116 DOI: 10.1016/j.bioactmat.2022.04.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 12/21/2022] Open
Abstract
The relationships between hyaluronic acid (HA) and pathological microorganisms incite new understandings on microbial infection, tissue penetration, disease progression and lastly, potential treatments. These understandings are important for the advancement of next generation antimicrobial therapeutical strategies for the control of healthcare-associated infections. Herein, this review will focus on the interplay between HA, bacteria, fungi, and viruses. This review will also comprehensively detail and discuss the antimicrobial activity displayed by various HA molecular weights for a variety of biomedical and pharmaceutical applications, including microbiology, pharmaceutics, and tissue engineering.
Collapse
Affiliation(s)
- Fernanda Zamboni
- Bernal Institute, School of Engineering, University of Limerick, Ireland
- Health Research Institute, University of Limerick, Ireland
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Maurice N. Collins
- Bernal Institute, School of Engineering, University of Limerick, Ireland
- Health Research Institute, University of Limerick, Ireland
| |
Collapse
|
10
|
Zheng X, Wang B, Tang X, Mao B, Zhang Q, Zhang T, Zhao J, Cui S, Chen W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr Polym 2023; 299:120153. [PMID: 36876779 DOI: 10.1016/j.carbpol.2022.120153] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Hyaluronic acid (HA) is key to the stability of the internal environment of tissues. HA content in tissues gradually decreases with age, causing age-related health problems. Exogenous HA supplements are used to prevent or treat these problems including skin dryness and wrinkles, intestinal imbalance, xerophthalmia, and arthritis after absorption. Moreover, some probiotics are able to promote endogenous HA synthesis and alleviate symptoms caused by HA loss, thus introducing potential preventative or therapeutic applications of HA and probiotics. Here, we review the oral absorption, metabolism, and biological function of HA as well as the potential role of probiotics and HA in increasing the efficacy of HA supplements.
Collapse
Affiliation(s)
- Xueli Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Bloomage Biotechnology Co., Ltd, Jinan 250000, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Muacevic A, Adler JR, Toor D, Lyngdoh V, Nongrum G, Kapoor M, Chakraborti A. Group A Streptococcus Infections: Their Mechanisms, Epidemiology, and Current Scope of Vaccines. Cureus 2022; 14:e33146. [PMID: 36721580 PMCID: PMC9884514 DOI: 10.7759/cureus.33146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 01/01/2023] Open
Abstract
Group A streptococci (GAS) are gram-positive, cocci-shaped bacteria that cause a wide variety of infections and are a cause of significant health burden, particularly in lower- and middle-income nations. The GAS genome contains a number of virulence factors such as the M-protein, hyaluronic acid, C5a peptidase, etc. Despite its significant health burden across the globe, a proper vaccine against GAS infections is not yet available. Various candidates for an effective GAS vaccine are currently being researched. These are based on various parts of the streptococcal genome. These include candidates based on the N-terminal region of the M protein, the conserved C-terminal region of the M protein, and other parts of the streptococcal genome. The development of a vaccine against GAS infections is hampered by certain challenges, such as extensive genetic heterogeneity and high protein sequence variation. This review paper sheds light on the various virulence factors of GAS, their epidemiology, the different vaccine candidates currently being researched, and the challenges associated with M-protein and non-M-protein-based vaccines. This review also sheds light on the current scenario regarding the status of vaccine development against GAS-related infections.
Collapse
|
12
|
Characterization of a Hyaluronidase-Producing Bacillus sp. CQMU-D Isolated from Soil. Curr Microbiol 2022; 79:328. [DOI: 10.1007/s00284-022-03035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
|
13
|
Kuryłek A, Stasiak M, Kern-Zdanowicz I. Virulence factors of Streptococcus anginosus - a molecular perspective. Front Microbiol 2022; 13:1025136. [PMID: 36386673 PMCID: PMC9643698 DOI: 10.3389/fmicb.2022.1025136] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/21/2023] Open
Abstract
Streptococcus anginosus together with S. constellatus and S. intermedius constitute the Streptococcus anginosus group (SAG), until recently considered to be benign commensals of the human mucosa isolated predominantly from oral cavity, but also from upper respiratory, intestinal, and urogenital tracts. For years the virulence potential of SAG was underestimated, mainly due to complications in correct species identification and their assignment to the physiological microbiota. Still, SAG representatives have been associated with purulent infections at oral and non-oral sites resulting in abscesses formation and empyema. Also, life threatening blood infections caused by SAG have been reported. However, the understanding of SAG as potential pathogen is only fragmentary, albeit certain aspects of SAG infection seem sufficiently well described to deserve a systematic overview. In this review we summarize the current state of knowledge of the S. anginosus pathogenicity factors and their mechanisms of action.
Collapse
|
14
|
Li X, Montague EC, Pollinzi A, Lofts A, Hoare T. Design of Smart Size-, Surface-, and Shape-Switching Nanoparticles to Improve Therapeutic Efficacy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104632. [PMID: 34936204 DOI: 10.1002/smll.202104632] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/04/2021] [Indexed: 05/21/2023]
Abstract
Multiple biological barriers must be considered in the design of nanomedicines, including prolonged blood circulation, efficient accumulation at the target site, effective penetration into the target tissue, selective uptake of the nanoparticles into target cells, and successful endosomal escape. However, different particle sizes, surface chemistries, and sometimes shapes are required to achieve the desired transport properties at each step of the delivery process. In response, this review highlights recent developments in the design of switchable nanoparticles whose size, surface chemistry, shape, or a combination thereof can be altered as a function of time, a disease-specific microenvironment, and/or via an externally applied stimulus to enable improved optimization of nanoparticle properties in each step of the delivery process. The practical use of such nanoparticles in chemotherapy, bioimaging, photothermal therapy, and other applications is also discussed.
Collapse
Affiliation(s)
- Xiaoyun Li
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong, 510640, China
| | - E Coulter Montague
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada
| | - Angela Pollinzi
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada
| | - Andrew Lofts
- School of Biomedical Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
15
|
Salabi F, Jafari H. New insights about scorpion venom hyaluronidase; isoforms, expression and phylogeny. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2018613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fatemeh Salabi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Hedieh Jafari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| |
Collapse
|
16
|
Indraratna AD, Everest-Dass A, Skropeta D, Sanderson-Smith M. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6519265. [PMID: 35104861 PMCID: PMC9075583 DOI: 10.1093/femsre/fuac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
Host carbohydrates, or glycans, have been implicated in the pathogenesis of many bacterial infections. Group A Streptococcus (GAS) is a Gram-positive bacterium that readily colonises the skin and oropharynx, and is a significant cause of mortality in humans. While the glycointeractions orchestrated by many other pathogens are increasingly well-described, the understanding of the role of human glycans in GAS disease remains incomplete. Although basic investigation into the mechanisms of GAS disease is ongoing, several glycointeractions have been identified and are examined herein. The majority of research in this context has focussed on bacterial adherence, however, glycointeractions have also been implicated in carbohydrate metabolism; evasion of host immunity; biofilm adaptations; and toxin-mediated haemolysis. The involvement of human glycans in these diverse avenues of pathogenesis highlights the clinical value of understanding glycointeractions in combatting GAS disease.
Collapse
Affiliation(s)
- Anuk D Indraratna
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Arun Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland, 4215, Australia
| | - Danielle Skropeta
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Martina Sanderson-Smith
- Corresponding author: Illawarra Health and Medical Research Institute, Bld 32, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia. Tel: +61 2 42981935; E-mail:
| |
Collapse
|
17
|
Endothelial glycocalyx degradation during sepsis: Causes and consequences. Matrix Biol Plus 2021; 12:100094. [PMID: 34917925 PMCID: PMC8668992 DOI: 10.1016/j.mbplus.2021.100094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
The endothelial glycocalyx is a ubiquitous intravascular structure essential for vascular homeostasis. During sepsis, the glycocalyx is degraded via the collective action of a variety of redundant sheddases, the regulation of which remains the focus of active investigation. Septic loss of the glycocalyx imparts both local vascular injury (leading to acute respiratory distress syndrome and acute kidney injury) as well as the systemic consequences of circulating glycosaminoglycan fragments (leading to cognitive dysfunction). Glycocalyx degradation during sepsis is potentially shaped by clinically-modifiable factors, suggesting opportunities for therapeutic intervention to mitigate the end-organ consequences of sepsis.
The glycocalyx is a ubiquitous structure found on endothelial cells that extends into the vascular lumen. It is enriched in proteoglycans, which are proteins attached to the glycosaminoglycans heparan sulfate, chondroitin sulfate, dermatan sulfate, keratan sulfate, and hyaluronic acid. In health and disease, the endothelial glycocalyx is a central regulator of vascular permeability, inflammation, coagulation, and circulatory tonicity. During sepsis, a life-threatening syndrome seen commonly in hospitalized patients, the endothelial glycocalyx is degraded, significantly contributing to its many clinical manifestations. In this review we discuss the intrinsically linked mechanisms responsible for septic endothelial glycocalyx destruction: glycosaminoglycan degradation and proteoglycan cleavage. We then examine the consequences of local endothelial glycocalyx loss to several organ systems and the systemic consequences of shed glycocalyx constituents. Last, we explore clinically relevant non-modifiable and modifiable factors that exacerbate or protect against endothelial glycocalyx shedding during sepsis.
Collapse
Key Words
- ADAM, A Disintegrin and Metalloproteinase
- ANP, Atrial Natriuretic Peptide
- ARDS, Acute respiratory distress syndrome
- Ang2, Angiopoietin-2
- DAMP, Damage-associated Molecular Pattern
- Endothelial glycocalyx
- FFP, Fresh Frozen Plasma
- GAG, Glycosaminoglycan
- Glycosaminoglycans
- HPSE-1/2, Heparanase-1/2
- LPS, Lipopolysaccharide
- MMP, Matrix Metalloproteinase
- PG, Proteoglycan
- Proteoglycans
- Sepsis
- TIMP, Tissue inhibitors of matrix metalloproteinase
Collapse
|
18
|
Samadi M, Khodabandeh Shahraky M, Tabandeh F, Aminzadeh S, Dina M. Enhanced hyaluronic acid production in Streptococcus zooepidemicus by an optimized culture medium containing hyaluronidase inhibitor. Prep Biochem Biotechnol 2021; 52:413-423. [PMID: 34612172 DOI: 10.1080/10826068.2021.1955710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study describes the hyaluronic acid (HA) production by S. zooepidemicus ATCC 43079, and the effect of the hyaluronidase enzyme on HA levels. The hyaluronidase production, glucose consumption, and lactate formation were recorded during fermentation. The HA production, and productivity at different amounts of glucose, yeast extract and pH were evaluated by response surface statistical approach in presence of 6-O-palmytoil-l-ascorbic acid as a chemical inhibitor for biocatalyst hyaluronidase. Under optimum conditions, HA production was increased two-fold from 190 ± 17 mg L-1 in basal medium to 384.6 ± 7.5 mg L-1 in the optimized medium containing enzyme inhibitor. Furthermore, the results indicated that the chemical inhibitor could suppress the biocatalyst activity and prevent the HA loss at the end of the exponential phase of S. zooepidemicus ATCC 43079.
Collapse
Affiliation(s)
- Mohaddeseh Samadi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahvash Khodabandeh Shahraky
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Tabandeh
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Morshedi Dina
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
19
|
Zhou Y, Deng W, Mo M, Luo D, Liu H, Jiang Y, Chen W, Xu C. Stimuli-Responsive Nanoplatform-Assisted Photodynamic Therapy Against Bacterial Infections. Front Med (Lausanne) 2021; 8:729300. [PMID: 34604266 PMCID: PMC8482315 DOI: 10.3389/fmed.2021.729300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial infections are common diseases causing tremendous deaths in clinical settings. It has been a big challenge to human beings because of the antibiotics abuse and the newly emerging microbes. Photodynamic therapy (PDT) is a reactive oxygen species-based therapeutic technique through light-activated photosensitizer (PS). Recent studies have highlighted the potential of PDT as an alternative method of antibacterial treatment for its broad applicability and high efficiency. However, there are some shortcomings due to the low selectivity and specificity of PS. Growing evidence has shown that drug delivery nanoplatforms have unique advantages in enhancing therapeutic efficacy of drugs. Particularly, stimuli-responsive nanoplatforms, as a promising delivery system, provide great opportunities for the effective delivery of PS. In the present mini-review, we briefly introduced the unique microenvironment in bacterial infection tissues and the application of PDT on bacterial infections. Then we review the stimuli-responsive nanoplatforms (including pH-, enzymes-, redox-, magnetic-, and electric-) used in PDT against bacterial infections. Lastly, some perspectives have also been proposed to further promote the future developments of antibacterial PDT.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenmin Deng
- Department of Clinical Pharmacy, The People's Hospital of Dianbai District, Maoming, China
| | - Mulan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dexu Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Houhe Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuan Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenjie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangdong-Hongkong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou, China.,Sydney Vital Translational Cancer Research Centre, Sydney, NSW, Australia
| | - Chuanshan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Özkan ER, Öztürk Hİ, Demirci T, Akın N. Detection of biofilm formation, virulence factor genes, antibiotic-resistance, adherence properties, and some beneficial properties of cheese origin S. infantarius, S. gallolyticus, and S. lutetiensis strains belonging to the S. bovis/S. equinus complex. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Hu H, Liu H, Kweon O, Hart ME. A naturally occurring point mutation in the hyaluronidase gene ( hysA1) of Staphylococcus aureus UAMS-1 results in reduced enzymatic activity. Can J Microbiol 2021; 68:1-13. [PMID: 34520677 DOI: 10.1139/cjm-2021-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronic acid is a high-molecular-weight polysaccharide that is widely distributed in animal tissues. Bacterial hyaluronidases degrade hyaluronic acid as secreted enzymes and have been shown to contribute to infection. Staphylococcus aureus UAMS-1 is a clinical isolate that codes for two hyaluronidases (hysA1 and hysA2). Previous research has shown the presence of a full-length HysA1 protein from the S. aureus UAMS-1 strain with no evidence of enzymatic activity. In this study, the coding and upstream promoter regions of hysA1 from the S. aureus UAMS-1 strain were cloned, sequenced, and compared to the hysA1 gene from the S. aureus Sanger 252 strain. A single base change resulting in an E480G amino acid change was identified in the hysA1 gene from the S. aureus UAMS-1 strain when compared to the hysA1 gene from S. aureus Sanger 252. A plasmid copy of hysA1 from S. aureus Sanger 252 transduced into an S. aureus UAMS-1 hysA2 deletion mutant strain restored near wild-type levels of enzymatic activity. Homology modeling of the HysA1 hyaluronidase was performed with SWISS-MODEL using hyaluronidase from Streptococcus pneumoniae as the template, followed by a series of structural analyses using PyMOL, PLIP, PDBsum, and HOPE servers. This glutamic acid is highly conserved among hyaluronidases from Staphylococcus and other gram-positive bacteria. A series of structural analyses suggested that Glu-480 in HysA1 is critically responsible for maintaining the structural and functional ensemble of the catalytic and tunnel-forming residues, which are essential for enzyme activity. The missense mutation of Glu-480 to Gly introduces a loss of side chain hydrogen bond interactions with key residues Arg-360 and Arg-364, which are responsible for the tunnel topology, resulting in displacement of the substrate from an ideal position for catalysis through a localized conformational change of the active site. There is a high degree of relatedness among several gram-positive bacterial hyaluronidases; the loss of enzymatic activity of HysA1 in the S. aureus UAMS-1 strain is most likely caused by the mutation identified in our study. The role of hyaluronidase in staphylococcal infection and the redundancy of this gene are yet to be determined.
Collapse
Affiliation(s)
- Haijing Hu
- Office of Dietary Supplement Programs, Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Huanli Liu
- Branch of Microbiology, Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Mark E Hart
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
22
|
Jiang L, Loo SCJ. Intelligent Nanoparticle-Based Dressings for Bacterial Wound Infections. ACS APPLIED BIO MATERIALS 2021; 4:3849-3862. [PMID: 34056562 PMCID: PMC8155196 DOI: 10.1021/acsabm.0c01168] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Conventional wound dressing materials containing free antibiotics for bacterial wound infections are presented with several limitations, that is, lack of controlled and triggered release capabilities, and may often not be adequate to address the complex bacteria microenvironment of such infections. Additionally, the improper usage of antibiotics may also result in the emergence of drug resistant strains. While delivery systems (i.e., nanoparticles) that encapsulate antibiotics may potentially overcome some of these limitations, their therapeutic outcomes are still less than desirable. For example, premature drug release or unintended drug activation may occur, which would greatly reduce treatment efficacy. To address this, responsive nanoparticle-based antimicrobial therapies could be a promising strategy. Such nanoparticles can be functionalized to react to a single stimulus or multi stimulus within the bacteria microenvironment and subsequently elicit a therapeutic response. Such "intelligent" nanoparticles can be designed to respond to the microenvironment, that is, an acidic pH, the presence of specific enzymes, bacterial toxins, etc. or to an external stimulus, for example, light, thermal, etc. These responsive nanoparticles can be further incorporated into wound dressings to better promote wound healing. This review summarizes and highlights the recent progress on such intelligent nanoparticle-based dressings as potential wound dressings for bacteria-infected wounds, along with the current challenges and prospects for these technologies to be successfully translated into the clinic.
Collapse
Affiliation(s)
- Lai Jiang
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Say Chye Joachim Loo
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Harvard
T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
23
|
Ni H, Li M, Wang Q, Wang J, Liu X, Zheng F, Hu D, Yu X, Han Y, Zhang Q, Zhou T, Wang Y, Wang C, Gao J, Shao ZQ, Pan X. Inactivation of the htpsA gene affects capsule development and pathogenicity of Streptococcus suis. Virulence 2020; 11:927-940. [PMID: 32815473 PMCID: PMC7567435 DOI: 10.1080/21505594.2020.1792080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Streptococcus suis serotype 2 (S. suis 2) is an important swine pathogen and also an emerging zoonotic agent. HtpsA has been reported as an immunogenic cell surface protein on the bacterium. In the present study, we constructed an isogenic mutant strain of htpsA, namely ΔhtpsA, to study its role in the development and virulence of S. suis 2. Our results showed that the mutant strain lost its typical encapsulated structure with decreased concentrations of sialic acid. Furthermore, the survival rate in whole blood, the anti-phagocytosis by RAW264.7 murine macrophage, and the adherence ability to HEp-2 cells were all significantly affected in the ΔhtpsA. In addition, the deletion of htpsA sharply attenuated the virulence of S. suis 2 in an infection model of mouse. RNA-seq analysis revealed that 126 genes were differentially expressed between the ΔhtpsA and the wild-type strains, including 28 upregulated and 98 downregulated genes. Among the downregulated genes, many were involved in carbohydrate metabolism and synthesis of virulence-associated factors. Taken together, htpsA was demonstrated to play a role in the morphological development and pathogenesis of the highly virulent S. suis 2 05ZYH33 strain.
Collapse
Affiliation(s)
- Hua Ni
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University , Kashi, China
| | - Min Li
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,Clinical Laboratory Department of Changzhi, People's Hospital , Changzhi, China
| | - Qiaoqiao Wang
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,School of Life Sciences, Nanjing Normal University , Nanjing, China
| | - Jing Wang
- Department of Laboratory Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University , Wuxi, China
| | - Xumiao Liu
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,School of Life Sciences, Nanjing Normal University , Nanjing, China
| | - Feng Zheng
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Dan Hu
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Xu Yu
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Yifang Han
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Qi Zhang
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Tingting Zhou
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Yiwen Wang
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Chunhui Wang
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Jimin Gao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou, China
| | - Zhu-Qing Shao
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , Nanjing, China
| | - Xiuzhen Pan
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,School of Life Sciences, Nanjing Normal University , Nanjing, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou, China
| |
Collapse
|
24
|
Salvà-Serra F, Jaén-Luchoro D, Jakobsson HE, Gonzales-Siles L, Karlsson R, Busquets A, Gomila M, Bennasar-Figueras A, Russell JE, Fazal MA, Alexander S, Moore ERB. Complete genome sequences of Streptococcus pyogenes type strain reveal 100%-match between PacBio-solo and Illumina-Oxford Nanopore hybrid assemblies. Sci Rep 2020; 10:11656. [PMID: 32669560 PMCID: PMC7363880 DOI: 10.1038/s41598-020-68249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/16/2020] [Indexed: 01/23/2023] Open
Abstract
We present the first complete, closed genome sequences of Streptococcus pyogenes strains NCTC 8198T and CCUG 4207T, the type strain of the type species of the genus Streptococcus and an important human pathogen that causes a wide range of infectious diseases. S. pyogenes NCTC 8198T and CCUG 4207T are derived from deposit of the same strain at two different culture collections. NCTC 8198T was sequenced, using a PacBio platform; the genome sequence was assembled de novo, using HGAP. CCUG 4207T was sequenced and a de novo hybrid assembly was generated, using SPAdes, combining Illumina and Oxford Nanopore sequence reads. Both strategies yielded closed genome sequences of 1,914,862 bp, identical in length and sequence identity. Combining short-read Illumina and long-read Oxford Nanopore sequence data circumvented the expected error rate of the nanopore sequencing technology, producing a genome sequence indistinguishable to the one determined with PacBio. Sequence analyses revealed five prophage regions, a CRISPR-Cas system, numerous virulence factors and no relevant antibiotic resistance genes. These two complete genome sequences of the type strain of S. pyogenes will effectively serve as valuable taxonomic and genomic references for infectious disease diagnostics, as well as references for future studies and applications within the genus Streptococcus.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden.
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden.
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden.
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden.
- Microbiology, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain.
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Hedvig E Jakobsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
- Nanoxis Consulting AB, 400 16, Gothenburg, Sweden
| | - Antonio Busquets
- Microbiology, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| | - Margarita Gomila
- Microbiology, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| | | | - Julie E Russell
- National Collection of Type Cultures (NCTC), Public Health England, London, NW9 5EQ, UK
| | - Mohammed Abbas Fazal
- National Collection of Type Cultures (NCTC), Public Health England, London, NW9 5EQ, UK
| | - Sarah Alexander
- National Collection of Type Cultures (NCTC), Public Health England, London, NW9 5EQ, UK
| | - Edward R B Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| |
Collapse
|
25
|
Wright WS, Eshaq RS, Lee M, Kaur G, Harris NR. Retinal Physiology and Circulation: Effect of Diabetes. Compr Physiol 2020; 10:933-974. [PMID: 32941691 PMCID: PMC10088460 DOI: 10.1002/cphy.c190021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this article, we present a discussion of diabetes and its complications, including the macrovascular and microvascular effects, with the latter of consequence to the retina. We will discuss the anatomy and physiology of the retina, including aspects of metabolism and mechanisms of oxygenation, with the latter accomplished via a combination of the retinal and choroidal blood circulations. Both of these vasculatures are altered in diabetes, with the retinal circulation intimately involved in the pathology of diabetic retinopathy. The later stages of diabetic retinopathy involve poorly controlled angiogenesis that is of great concern, but in our discussion, we will focus more on several alterations in the retinal circulation occurring earlier in the progression of disease, including reductions in blood flow and a possible redistribution of perfusion that may leave some areas of the retina ischemic and hypoxic. Finally, we include in this article a more recent area of investigation regarding the diabetic retinal vasculature, that is, the alterations to the endothelial surface layer that normally plays a vital role in maintaining physiological functions. © 2020 American Physiological Society. Compr Physiol 10:933-974, 2020.
Collapse
Affiliation(s)
- William S Wright
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Minsup Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
26
|
Muñoz M, Restrepo-Montoya D, Kumar N, Iraola G, Herrera G, Ríos-Chaparro DI, Díaz-Arévalo D, Patarroyo MA, Lawley TD, Ramírez JD. Comparative genomics identifies potential virulence factors in Clostridium tertium and C. paraputrificum. Virulence 2019; 10:657-676. [PMID: 31304854 PMCID: PMC6629180 DOI: 10.1080/21505594.2019.1637699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/23/2019] [Accepted: 06/25/2019] [Indexed: 01/23/2023] Open
Abstract
Some well-known Clostridiales species such as Clostridium difficile and C. perfringens are agents of high impact diseases worldwide. Nevertheless, other foreseen Clostridiales species have recently emerged such as Clostridium tertium and C. paraputrificum. Three fecal isolates were identified as Clostridium tertium (Gcol.A2 and Gcol.A43) and C. paraputrificum (Gcol.A11) during public health screening for C. difficile infections in Colombia. C. paraputrificum genomes were highly diverse and contained large numbers of accessory genes. Genetic diversity and accessory gene percentage were lower among the C. tertium genomes than in the C. paraputrificum genomes. C. difficile tcdA and tcdB toxins encoding homologous sequences and other potential virulence factors were also identified. EndoA interferase, a toxic component of the type II toxin-antitoxin system, was found among the C. tertium genomes. toxA was the only toxin encoding gene detected in Gcol.A43, the Colombian isolate with an experimentally-determined high cytotoxic effect. Gcol.A2 and Gcol.A43 had higher sporulation efficiencies than Gcol.A11 (84.5%, 83.8% and 57.0%, respectively), as supported by the greater number of proteins associated with sporulation pathways in the C. tertium genomes compared with the C. paraputrificum genomes (33.3 and 28.4 on average, respectively). This work allowed complete genome description of two clostridiales species revealing high levels of intra-taxa diversity, accessory genomes containing virulence-factors encoding genes (especially in C. paraputrificum), with proteins involved in sporulation processes more highly represented in C. tertium. These finding suggest the need to advance in the study of those species with potential importance at public health level.
Collapse
Affiliation(s)
- Marina Muñoz
- Grupo de Investigaciones Microbiológicas – UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
- Posgrado Interfacultades, Doctorado en Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Daniel Restrepo-Montoya
- Grupo de Investigaciones Microbiológicas – UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| | - Nitin Kumar
- Host–Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Gregorio Iraola
- Microbial Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay
- Center for Integrative Biology, Universidad Mayor, Santiago de Chile, Chile
| | - Giovanny Herrera
- Grupo de Investigaciones Microbiológicas – UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Dora I. Ríos-Chaparro
- Grupo de Investigaciones Microbiológicas – UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Faculty of Animal Sciences, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Manuel A. Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Trevor D. Lawley
- Host–Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas – UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
27
|
Montanari E, Zoratto N, Mosca L, Cervoni L, Lallana E, Angelini R, Matassa R, Coviello T, Di Meo C, Matricardi P. Halting hyaluronidase activity with hyaluronan-based nanohydrogels: development of versatile injectable formulations. Carbohydr Polym 2019; 221:209-220. [PMID: 31227160 DOI: 10.1016/j.carbpol.2019.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/17/2019] [Accepted: 06/05/2019] [Indexed: 12/31/2022]
Abstract
Hyaluronan (HA) is among the most used biopolymers for viscosupplementation and dermocosmetics. However, the current injectable HA-based formulations present relevant limitations: I) unmodified HA is quickly degraded by endogenous hyaluronidases (HAase), resulting in short lasting properties; II) cross-linked HA, although shows enhanced stability against HAase, often contains toxic chemical cross-linkers. As such, herein, we present biocompatible self-assembled hyaluronan-cholesterol nanohydrogels (HA-CH NHs) able to bind to HAase and inhibit the enzyme activity in vitro, more efficiently than currently marketed HA-based cross-linked formulations (e.g. Jonexa™). HA-CH NHs inhibit HAase through a mixed mechanism, by which NHs bind to HAase with an affinity constant 7-fold higher than that of native HA. Similar NHs, based on gellan-CH, evidenced no binding to HAase, neither inhibition of the enzyme activity, suggesting this effect might be due to the specific binding of HA-CH to the active site of the enzyme. Therefore, HA-CH NHs were engineered into injectable hybrid HA mixtures or physical hydrogels, able to halt the enzymatic degradation of HA.
Collapse
Affiliation(s)
- E Montanari
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - N Zoratto
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - L Mosca
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - L Cervoni
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - E Lallana
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford road, M13 9PT Manchester, UK
| | - R Angelini
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), P.le Aldo Moro 5, Rome I-00185, Italy; Department of Physics, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - R Matassa
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Via A. Borelli, Rome 00161, Italy
| | - T Coviello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - C Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy.
| | - P Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
28
|
Escosura-Muñiz ADL, Ivanova K, Tzanov T. Electrical Evaluation of Bacterial Virulence Factors Using Nanopores. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13140-13146. [PMID: 30888786 DOI: 10.1021/acsami.9b02382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this work, we propose a novel methodology for electrical monitoring using nanoporous alumina membranes of virulence factors secreted by bacterial pathogens. Bacterial hyaluronidase (HYAL), which is produced by a number of invasive Gram-positive bacteria, is selected as a model compound to prove the concept. Our electrochemical setup takes advantage of the flat surface of indium tin oxide/poly(ethylene terephthalate) (ITO/PET) electrodes for their assembly with the nanoporous membrane. The proposed analytical method, based on the electrical monitoring of the steric/electrostatic nanochannels blocked upon formation of an antibody-HYAL immunocomplex, reached detection limits as low as 64 UI/mL (17.3 U/mg) HYAL. The inert surface of the ITO/PET electrodes together with the anti-biofilm properties of the 20 nm pore-sized alumina membranes allows for culturing the bacteria, capturing the secreted enzymes inside the nanochannels, and removing the cells before the electrochemical measurement. Secreted HYAL at levels of 1000 UI/mL (270 U/mg) are estimated in Gram-positive Staphylococcus aureus cultures, whereas low levels are detected for Gram-negative Pseudomonas aeruginosa (used as a negative control). Finally, HYAL secretion inhibition by RNAIII-inhibiting peptide (YSPWTNF-NH2) is also monitored, opening the way for further applications of the developed monitoring system for evaluation of the antivirulence potential of different compounds. This label-free method is rapid and cheap, avoiding the use of the time-consuming sandwich assays. We envisage future applications for monitoring of bacterial virulence/invasion as well as for testing of novel antimicrobial/antivirulence agents.
Collapse
Affiliation(s)
- Alfredo de la Escosura-Muñiz
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering , Universitat Politècnica de Catalunya , Terrassa 08227 , Spain
| | - Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering , Universitat Politècnica de Catalunya , Terrassa 08227 , Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering , Universitat Politècnica de Catalunya , Terrassa 08227 , Spain
| |
Collapse
|
29
|
Patil S, Bhadane B, Shirsath L, Patil R, Chaudhari B. Steroidal fraction ofCarissa carandasL. inhibits microbial hyaluronidase activity by mixed inhibition mechanism. Prep Biochem Biotechnol 2019; 49:298-306. [DOI: 10.1080/10826068.2018.1541811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sandip Patil
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, India
| | - Bhushan Bhadane
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, India
| | - Leena Shirsath
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, India
| | - Ravindra Patil
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, India
| | - Bhushan Chaudhari
- Department of Microbiology, School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, India
| |
Collapse
|
30
|
Alkekhia D, Shukla A. Influence of poly‐
l
‐lysine molecular weight on antibacterial efficacy in polymer multilayer films. J Biomed Mater Res A 2019; 107:1324-1339. [DOI: 10.1002/jbm.a.36645] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Dahlia Alkekhia
- School of Engineering Brown University Providence Rhode Island
- Center for Biomedical Engineering Brown University Providence Rhode Island
- Institute for Molecular and Nanoscale Innovation Brown University Providence Rhode Island
| | - Anita Shukla
- School of Engineering Brown University Providence Rhode Island
- Center for Biomedical Engineering Brown University Providence Rhode Island
- Institute for Molecular and Nanoscale Innovation Brown University Providence Rhode Island
| |
Collapse
|
31
|
Johnson TR, Gómez BI, McIntyre MK, Dubick MA, Christy RJ, Nicholson SE, Burmeister DM. The Cutaneous Microbiome and Wounds: New Molecular Targets to Promote Wound Healing. Int J Mol Sci 2018; 19:ijms19092699. [PMID: 30208569 PMCID: PMC6164292 DOI: 10.3390/ijms19092699] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022] Open
Abstract
The ecological community of microorganisms in/on humans, termed the microbiome, is vital for sustaining homeostasis. While culture-independent techniques have revealed the role of the gut microbiome in human health and disease, the role of the cutaneous microbiome in wound healing is less defined. Skin commensals are essential in the maintenance of the epithelial barrier function, regulation of the host immune system, and protection from invading pathogenic microorganisms. In this review, we summarize the literature derived from pre-clinical and clinical studies on how changes in the microbiome of various acute and chronic skin wounds impact wound healing tissue regeneration. Furthermore, we review the mechanistic insights garnered from model wound healing systems. Finally, in the face of growing concern about antibiotic-resistance, we will discuss alternative strategies for the treatment of infected wounds to improve wound healing and outcomes. Taken together, it has become apparent that commensals, symbionts, and pathogens on human skin have an intimate role in the inflammatory response that highlights several potential strategies to treat infected, non-healing wounds. Despite these promising results, there are some contradictory and controversial findings from existing studies and more research is needed to define the role of the human skin microbiome in acute and chronic wound healing.
Collapse
Affiliation(s)
- Taylor R Johnson
- Department of Surgery, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA.
| | - Belinda I Gómez
- United States Army Institute of Surgical Research, 3650 Chambers Pass, JBSA Fort Sam Houston, TX 78234, USA.
| | - Matthew K McIntyre
- United States Army Institute of Surgical Research, 3650 Chambers Pass, JBSA Fort Sam Houston, TX 78234, USA.
- School of Medicine, New York Medical College, Valhalla, New York, NY 10595, USA.
| | - Michael A Dubick
- Department of Surgery, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA.
- United States Army Institute of Surgical Research, 3650 Chambers Pass, JBSA Fort Sam Houston, TX 78234, USA.
| | - Robert J Christy
- United States Army Institute of Surgical Research, 3650 Chambers Pass, JBSA Fort Sam Houston, TX 78234, USA.
| | - Susannah E Nicholson
- Department of Surgery, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA.
| | - David M Burmeister
- United States Army Institute of Surgical Research, 3650 Chambers Pass, JBSA Fort Sam Houston, TX 78234, USA.
| |
Collapse
|
32
|
Affinity adsorption of bovine hyaluronidase with ligands targeting to active site. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:422-431. [PMID: 29945106 DOI: 10.1016/j.jchromb.2018.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 01/10/2023]
Abstract
Four affinity ligands were designed from 6-chloromethyluracil and 2-aminobenzimidazole and simulated for the interaction with bovine hyaluronidase-1. Regarding sequence alignment, bovine hyaluronidase-1 precursor showed circa 83.6% similarity with human hyaluronidase-1. Regarding structural modeling and molecular docking, bovine hyaluronidase-1 interacted with ligands in the active site. Using epichlorohydrin, 1,3-propanediamine and cyanuric chloride as spacers, 6-chloromethyluracil and 2-aminobenzimidazole were composed to Sepharose beads. The modified Sepharose beads were then subjected to adsorption analysis with bovine hyaluronidase. After one step of affinity adsorption, the samples extracted from bovine testes were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis and activity assay. As calculated, the densities of four ligands on sorbents (entitled as L-1, L-2, L-3 and L-4) were 37.7 ± 2.3, 36.4 ± 3.2, 42.4 ± 4.2 and 33.7 ± 2.3 μmol/g wet gel; the theoretical maximum adsorption (Qmax) of bovine hyaluronidase on the four sorbents were 63.6 ± 1.6, 72.0 ± 0.7, 111.0 ± 4.1 and 121.7 ± 2.3 mg/g wet gel, respectively; the dissociation constants (Kd) of the four sorbents were 18.5 ± 0.8, 48.1 ± 4.3, 35.0 ± 3.0, 40.6 ± 2.7 μg/g wet gel, respectively. After optimization, the proteins captured by sorbents attaching 2-aminobenzimidazole based ligands (L-3 and L-4) revealed the main single band at approximately 50 kDa, and the purities were about 85.2 and 96.4%; the bioactivity recoveries were 83.5 and 89.4%. In addition, the bands on SDS-PAGE gel were also extracted and confirmed with linear trap quadropole mass spectrometry (LTQ-MS) analysis.
Collapse
|
33
|
Ebner F, Kuhring M, Radonić A, Midha A, Renard BY, Hartmann S. Silent Witness: Dual-Species Transcriptomics Reveals Epithelial Immunological Quiescence to Helminth Larval Encounter and Fostered Larval Development. Front Immunol 2018; 9:1868. [PMID: 30158930 PMCID: PMC6104121 DOI: 10.3389/fimmu.2018.01868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/30/2018] [Indexed: 11/17/2022] Open
Abstract
Gastrointestinal nematodes are among the most prevalent parasites infecting humans and livestock worldwide. Infective larvae of the soil-transmitted nematode Ascaris spp. enter the host and start tissue migration by crossing the intestinal epithelial barrier. The initial interaction of the intestinal epithelium with the parasite, however, has received little attention. In a time-resolved interaction model of porcine intestinal epithelial cells (IPEC-J2) and infective Ascaris suum larvae, we addressed the early transcriptional changes occurring simultaneously in both organisms using dual-species RNA-Seq. Functional analysis of the host response revealed an overall induction of metabolic activity, without induction of immune responsive genes or immune signaling pathways and showing suppression of chemotactic genes like CXCL8/IL-8 or CHI3L1. Ascaris larvae, when getting in contact with the epithelium, showed induction of genes that orchestrate motor activity and larval development, such as myosin, troponin, myoglobin, and protein disulfide isomerase 2 (PDI-2). In addition, excretory-secretory products that likely facilitate parasite invasion were increased, among them, aspartic protease 6 or hyaluronidase. Integration of host and pathogen data in an interspecies gene co-expression network indicated links between nematode fatty acid biosynthesis and host ribosome assembly/protein synthesis. In summary, our study provides new molecular insights into the early factors of parasite invasion, while at the same time revealing host immunological unresponsiveness. Reproducible software for dual RNA-Seq analysis of non-model organisms is available at https://gitlab.com/mkuhring/project_asuum and can be applied to similar studies.
Collapse
Affiliation(s)
- Friederike Ebner
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Mathias Kuhring
- Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, Berlin, Germany.,Core Unit Bioinformatics, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health Metabolomics Platform, Berlin Institute of Health (BIH), Berlin, Germany.,Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Aleksandar Radonić
- Center for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, Berlin, Germany
| | - Ankur Midha
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Bernhard Y Renard
- Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
34
|
Fernandes GR, Barbosa AEAD, Almeida RN, Castro FFDS, da Ponte MDCP, Faria-Junior C, Müller FMP, Viana AAB, Grattapaglia D, Franco OL, Alencar SA, Dias SC. Genomic Comparison among Lethal Invasive Strains of Streptococcus pyogenes Serotype M1. Front Microbiol 2017; 8:1993. [PMID: 29109702 PMCID: PMC5660057 DOI: 10.3389/fmicb.2017.01993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 09/28/2017] [Indexed: 11/27/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is a human pathogen that causes diverse human diseases including streptococcal toxic shock syndrome (STSS). A GAS outbreak occurred in Brasilia, Brazil, during the second half of the year 2011, causing 26 deaths. Whole genome sequencing was performed using Illumina platform. The sequences were assembled and genes were predicted for comparative analysis with emm type 1 strains: MGAS5005 and M1 GAS. Genomics comparison revealed one of the invasive strains that differ from others isolates and from emm 1 reference genomes. Also, the new invasive strain showed differences in the content of virulence factors compared to other isolated in the same outbreak. The evolution of contemporary GAS strains is strongly associated with horizontal gene transfer. This is the first genomic study of a Streptococcal emm 1 outbreak in Brazil, and revealed the rapid bacterial evolution leading to new clones. The emergence of new invasive strains can be a consequence of the injudicious use of antibiotics in Brazil during the past decades.
Collapse
Affiliation(s)
- Gabriel R Fernandes
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Aulus E A D Barbosa
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Renan N Almeida
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Fabíola F Dos S Castro
- Hospital Santa Luzia, Brasília, Brazil.,Centro Universitário de Brasília-UniCEUB, Brasília, Brazil
| | | | | | | | - Antônio A B Viana
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Dario Grattapaglia
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Empresa Brasileira de Pesquisa Agropecuária, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Octavio L Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Sérgio A Alencar
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Simoni C Dias
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
35
|
Nazipi S, Stødkilde-Jørgensen K, Scavenius C, Brüggemann H. The Skin Bacterium Propionibacterium acnes Employs Two Variants of Hyaluronate Lyase with Distinct Properties. Microorganisms 2017; 5:microorganisms5030057. [PMID: 28895889 PMCID: PMC5620648 DOI: 10.3390/microorganisms5030057] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/31/2022] Open
Abstract
Hyaluronic acid (HA) and other glycosaminoglycans are extracellular matrix components in the human epidermis and dermis. One of the most prevalent skin microorganisms, Propionibacterium acnes, possesses HA-degrading activity, possibly conferred by the enzyme hyaluronate lyase (HYL). In this study, we identified the HYL of P. acnes and investigated the genotypic and phenotypic characteristics. Investigations include the generation of a P. acneshyl knockout mutant and HYL activity assays to determine the substrate range and formed products. We found that P. acnes employs two distinct variants of HYL. One variant, HYL-IB/II, is highly active, resulting in complete HA degradation; it is present in strains of the phylotypes IB and II. The other variant, HYL-IA, has low activity, resulting in incomplete HA degradation; it is present in type IA strains. Our findings could explain some of the observed differences between P. acnes phylotype IA and IB/II strains. Whereas type IA strains are primarily found on the skin surface and associated with acne vulgaris, type IB/II strains are more often associated with soft and deep tissue infections, which would require elaborate tissue invasion strategies, possibly accomplished by a highly active HYL-IB/II.
Collapse
Affiliation(s)
- Seven Nazipi
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | | | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
| | - Holger Brüggemann
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
36
|
Recent advances in therapeutic delivery systems of bacteriophage and bacteriophage-encoded endolysins. Ther Deliv 2017. [DOI: 10.4155/tde-2017-0040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antibiotics have been the cornerstone of clinical management of bacterial infection since their discovery in the early 20th century. However, their widespread and often indiscriminate use has now led to reports of multidrug resistance becoming globally commonplace. Bacteriophage therapy has undergone a recent revival in battle against pathogenic bacteria, as the self-replicating and co-evolutionary features of these predatory virions offer several advantages over conventional therapeutic agents. In particular, the use of targeted bacteriophage therapy from specialized delivery platforms has shown particular promise owing to the control of delivery location, administration conditions and dosage of the therapeutic cargo. This review presents an overview of the recent formulations and applications of such delivery vehicles as an innovative and elegant tool for bacterial control.
Collapse
|
37
|
Park JH, Park EJ, Yi HS. Wound Healing and Anti-inflammatory Effects of Topical Hyaluronic Acid Injection in Surgical-Site Infection Caused by Staphylococcus aureus. INT J LOW EXTR WOUND 2017; 16:202-207. [PMID: 28915775 DOI: 10.1177/1534734617714142] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Surgical-site infection (SSI) is a common postoperative complication, primarily caused by Staphylococcus aureus. S aureus produces hyaluronidase which degrades hyaluronic acid (HA). HA prevents bacterial proliferation and has anti-inflammatory effects to promote wound healing. We evaluated the effect of HA injection with systemic antibiotics for prevention and treatment of SSIs caused by S aureus. An open wound was created on the dorsum of 40 rats. The wound bed was sutured with S aureus inoculated thread. The test group was injected with HA (HA group), and the control group received a subcutaneous injection of normal saline (NS group). All groups were then treated with intraperitoneal cefazolin injection. The sutures were removed 2 days after the procedure. Gross pathology, bacterial count, and wound histology were assessed at days 2, 4, 6, and 8 postprocedure. The HA group showed a significant reduction in the wound area compared with the control group on gross pathology (at days 8 postprocedure, 36.54% ± 6.12% vs 50.59% ± 5.50%, P < .001). The HA group showed significantly better wound healing than the control group on histological analysis, including assessment of abscess, neutrophilic infiltration, and necrosis (4.2 ± 1.2 vs 11.5 ± 2.1, P < .001). The HA group showed a lower bacterial count compared with the NS group, but the result was not significant statistically (at days 6 postprocedure, 5.11 ± 0.31 vs 5.91 ± 0.35 logCFU/mL, P = .706). In conclusion, immediate local injection of HA in wounds can reduce SSI occurrence and promote wound healing in an animal model.
Collapse
Affiliation(s)
- Jin Hyung Park
- 1 Kosin University College of Medicine, Busan, Republic of Korea
| | - Eon Ju Park
- 1 Kosin University College of Medicine, Busan, Republic of Korea
| | - Hyung Suk Yi
- 1 Kosin University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
38
|
Improved Yield of High Molecular Weight Hyaluronic Acid Production in a Stable Strain of Streptococcus zooepidemicus via the Elimination of the Hyaluronidase-Encoding Gene. Mol Biotechnol 2017; 59:192-199. [DOI: 10.1007/s12033-017-0005-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Oiki S, Mikami B, Maruyama Y, Murata K, Hashimoto W. A bacterial ABC transporter enables import of mammalian host glycosaminoglycans. Sci Rep 2017; 7:1069. [PMID: 28432302 PMCID: PMC5430744 DOI: 10.1038/s41598-017-00917-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/16/2017] [Indexed: 01/08/2023] Open
Abstract
Glycosaminoglycans (GAGs), such as hyaluronan, chondroitin sulfate, and heparin, constitute mammalian extracellular matrices. The uronate and amino sugar residues in hyaluronan and chondroitin sulfate are linked by 1,3-glycoside bond, while heparin contains 1,4-glycoside bond. Some bacteria target GAGs as means of establishing colonization and/or infection, and bacterial degradation mechanisms of GAGs have been well characterized. However, little is known about the bacterial import of GAGs. Here, we show a GAG import system, comprised of a solute-binding protein (Smon0123)-dependent ATP-binding cassette (ABC) transporter, in the pathogenic Streptobacillus moniliformis. A genetic cluster responsible for depolymerization, degradation, and metabolism of GAGs as well as the ABC transporter system was found in the S. moniliformis genome. This bacterium degraded hyaluronan and chondroitin sulfate with an expression of the genetic cluster, while heparin repressed the bacterial growth. The purified recombinant Smon0123 exhibited an affinity with disaccharides generated from hyaluronan and chondroitin sulfate. X-ray crystallography indicated binding mode of Smon0123 to GAG disaccharides. The purified recombinant ABC transporter as a tetramer (Smon0121-Smon0122/Smon0120-Smon0120) reconstructed in liposomes enhanced its ATPase activity in the presence of Smon0123 and GAG disaccharides. This is the first report that has molecularly depicted a bacterial import system of both sulfated and non-sulfated GAGs.
Collapse
Affiliation(s)
- Sayoko Oiki
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yukie Maruyama
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, 572-8508, Japan
| | - Kousaku Murata
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, 572-8508, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
40
|
Epidemiological and Molecular Characterization of an Invasive Group A Streptococcus emm32.2 Outbreak. J Clin Microbiol 2017; 55:1837-1846. [PMID: 28356413 PMCID: PMC5442540 DOI: 10.1128/jcm.00191-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/21/2017] [Indexed: 01/11/2023] Open
Abstract
An emm32.2 invasive group A streptococcus (iGAS) outbreak occurred in Liverpool from January 2010 to September 2012. This genotype had not previously been identified in Liverpool, but was responsible for 32% (14/44) of all iGAS cases reported during this time period. We performed a case-case comparison of emm32.2 iGAS cases with non-emm32.2 control iGAS cases identified in the Liverpool population over the same time period to assess patient risk factors for emm32.2 iGAS infection. The emm32.2 iGAS cases were confined to the adult population. We show that homelessness, intravenous drug use, and alcohol abuse predisposed patients to emm32.2 iGAS disease; however, no obvious epidemiological linkage between the patients with emm32.2 iGAS could be identified. Comparative whole-genome sequencing analysis of emm32.2 iGAS and non-emm32.2 control isolates was also performed to identify pathogen factors which might have driven the outbreak. We identified 19 genes, five of which had previously been implicated in virulence, which were present in all of the emm32.2 iGAS isolates but not present in any of the non-emm32.2 control isolates. We report that a novel emm32.2 genotype emerged in Liverpool in 2010 and identified a specific subset of genes, which could have allowed this novel emm32.2 genotype to persist in a disadvantaged population in the region over a 3-year period.
Collapse
|
41
|
Bethke J, Avendaño-Herrera R. Comparative genome analysis of two Streptococcus phocae subspecies provides novel insights into pathogenicity. Mar Genomics 2017; 31:53-61. [DOI: 10.1016/j.margen.2016.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
|
42
|
Isolation, biological evaluation and validated HPTLC-quantification of the marker constituent of the edible Saudi plant Sisymbrium irio L. Saudi Pharm J 2016; 25:750-759. [PMID: 28725148 PMCID: PMC5506741 DOI: 10.1016/j.jsps.2016.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022] Open
Abstract
Phytochemical investigation and chromatographic purification of the n-hexane fraction of the aerial parts of the edible Saudi plant Sisymbrium irio led to the isolation of β-sitosterol (1), stigmasterol (2) and β-sitosterol-β-d-glucoside (3). The cytotoxic effects of the n-hexane, dichloromethane, ethyl acetate and n-butanol fractions were tested against three cancer cell lines viz., MCF-7, HCT-116 and HepG2, using the crystal violet staining (CVS) method, while the antibacterial activity against a number of pathogenic bacterial strains, was also estimated using the broth microdilution assay. The n-hexane fraction showed potent cytotoxic activities against all tested human cancer cell lines (IC50: 11.7–13.4 μg/mL), while the dichloromethane fraction was particularly potent against HCT-116 cells (IC50: 5.42 μg/mL). On the other hand, the n-hexane and EtOAc fractions demonstrated significant inhibitory activities against the Gram positive bacteria S. pyogenes and C. perfringens; and the Gram negative bacterium S. enteritidis. Our results warrant the therapeutic potential of S. irio as nutritional supplement to reduce the risk of contemporary diseases. Additionally, a validated high performance thin-layer chromatography (HPTLC) method was developed for the quantitative analysis of biomarker β-sitosterol glucoside (isolated in high quantity) from the n-hexane fraction. The system was found to furnish a compact, sharp, symmetrical and high resolution band for β-sitosterol glucoside (Rf = 0.43 ± 0.002). The limit of detection (LOD) and limit of quantification (LOQ) for β-sitosterol glucoside was found to be 21.84 and 66.18 ng band−1, respectively. β-sitosterol glucoside was found to be present only in n-hexane fraction (2.10 μg/mg of dried fraction) while it was absent in the other fractions of S. irio which validated the high cytotoxic and antibacterial activity of n-hexane fraction of S. irio.
Collapse
|
43
|
Resilience in the Face of Uncertainty: Sigma Factor B Fine-Tunes Gene Expression To Support Homeostasis in Gram-Positive Bacteria. Appl Environ Microbiol 2016; 82:4456-4469. [PMID: 27208112 DOI: 10.1128/aem.00714-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gram-positive bacteria are ubiquitous and diverse microorganisms that can survive and sometimes even thrive in continuously changing environments. The key to such resilience is the ability of members of a population to respond and adjust to dynamic conditions in the environment. In bacteria, such responses and adjustments are mediated, at least in part, through appropriate changes in the bacterial transcriptome in response to the conditions encountered. Resilience is important for bacterial survival in diverse, complex, and rapidly changing environments and requires coordinated networks that integrate individual, mechanistic responses to environmental cues to enable overall metabolic homeostasis. In many Gram-positive bacteria, a key transcriptional regulator of the response to changing environmental conditions is the alternative sigma factor σ(B) σ(B) has been characterized in a subset of Gram-positive bacteria, including the genera Bacillus, Listeria, and Staphylococcus Recent insight from next-generation-sequencing results indicates that σ(B)-dependent regulation of gene expression contributes to resilience, i.e., the coordination of complex networks responsive to environmental changes. This review explores contributions of σ(B) to resilience in Bacillus, Listeria, and Staphylococcus and illustrates recently described regulatory functions of σ(B).
Collapse
|
44
|
Nakamichi Y, Oiki S, Mikami B, Murata K, Hashimoto W. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115. Protein J 2016; 35:300-9. [PMID: 27402448 DOI: 10.1007/s10930-016-9673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bacterial unsaturated glucuronyl hydrolase (UGL) degrades unsaturated disaccharides generated from mammalian extracellular matrices, glycosaminoglycans, by polysaccharide lyases. Two Asp residues, Asp-115 and Asp-175 of Streptococcus agalactiae UGL (SagUGL), are completely conserved in other bacterial UGLs, one of which (Asp-175 of SagUGL) acts as a general acid and base catalyst. The other Asp (Asp-115 of SagUGL) also affects the enzyme activity, although its role in the enzyme reaction has not been well understood. Here, we show substitution of Asp-115 in SagUGL with Asn caused a conformational change in the active site. Tertiary structures of SagUGL mutants D115N and D115N/K370S with negligible enzyme activity were determined at 2.00 and 1.79 Å resolution, respectively, by X-ray crystallography. The side chain of Asn-115 is drastically shifted in both mutants owing to the interaction with several residues, including Asp-175, by formation of hydrogen bonds. This interaction between Asn-115 and Asp-175 probably prevents the mutants from triggering the enzyme reaction using Asp-175 as an acid catalyst.
Collapse
Affiliation(s)
- Yusuke Nakamichi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Sayoko Oiki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Bunzo Mikami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kousaku Murata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, 572-8508, Japan
| | - Wataru Hashimoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
45
|
ICESpy009, a Conjugative Genetic Element Carrying mef(E) in Streptococcus pyogenes. Antimicrob Agents Chemother 2016; 60:3906-12. [PMID: 27067338 DOI: 10.1128/aac.03082-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/01/2016] [Indexed: 01/19/2023] Open
Abstract
Efflux-mediated macrolide resistance due to mef(E) and mel, carried by the mega element, is common in Streptococcus pneumoniae, for which it was originally characterized, but it is rare in Streptococcus pyogenes In S. pyogenes, mega was previously found to be enclosed in Tn2009, a composite genetic element of the Tn916 family containing tet(M) and conferring erythromycin and tetracycline resistance. In this study, S. pyogenes isolates containing mef(E), apparently not associated with other resistance determinants, were examined to characterize the genetic context of mega. By whole-genome sequencing of one isolate, MB56Spyo009, we identified a novel composite integrative and conjugative element (ICE) carrying mega, designated ICESpy009, belonging to the ICESa2603 family. ICESpy009 was 55 kb long, contained 61 putative open reading frames (ORFs), and was found to be integrated into hylA, a novel integration site for the ICESa2603 family. The modular organization of the ICE was similar to that of members of the ICESa2603 family carried by different streptococcal species. In addition, a novel cluster of accessory resistance genes was found inside a region that encloses mega. PCR mapping targeting ICESpy009 revealed the presence of a similar ICE in five other isolates under study. While in three isolates the integration site was the same as that of ICESpy009, in two isolates the ICE was integrated into rplL, the typical integration site of the ICESa2603 family. ICESpy009 was able to transfer macrolide resistance by conjugation to both S. pyogenes and S. pneumoniae, showing the first evidence of the transferability of mega from S. pyogenes.
Collapse
|
46
|
Csoka AB. Innovation in medicine: Ignaz the reviled and Egas the regaled. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2016; 19:163-168. [PMID: 26666438 DOI: 10.1007/s11019-015-9678-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In our current climate of rapid technological progress, it seems counterintuitive to think that modern science can learn anything of ethical value from the dark recesses of the nineteenth century or earlier. However, this happens to be quite true, with plenty of knowledge and wisdom to be gleaned by studying our scientific predecessors. Presently, our journals are flooded with original concepts and potential breakthroughs, a continuous stream of ideas pushing the frontiers of knowledge ever forward. Some ideas flourish while others flounder; but what sets the two apart? The distinguishing feature between success and failure within this context is the ability to discern the appropriate time to accept an innovation with open arms, versus when to take a more cautious approach. And the primary arbiters for whether an idea will catch on or not are the professional audience. I illustrate this concept by comparing the initial reception of two innovative ideas from Medicine's past: sterile technique, and prefrontal lobotomy. Sterile technique was first introduced by Dr. Ignaz Semmelweis and was initially ridiculed and rejected, with Semmelweis eventually dying in exile. Conversely, lobotomy was accepted and lauded and its inventor, Dr. Egas Moniz, won the Nobel Prize for his "discovery". This begs the question: why was a technique with the potential to save millions of lives initially rejected, whereas paradoxically, one that compromised and sometimes destroyed lives, accepted? Here I explore and analyze the potential reasons why, suggest how we can learn from these mistakes of the past and apply new insight to some current ethical dilemmas.
Collapse
Affiliation(s)
- Antonei Benjamin Csoka
- Epigenetics Laboratory, Department of Anatomy, Howard University, 520 W St. NW, 431 Mudd Building, Washington, DC, 20059, USA.
| |
Collapse
|
47
|
Hyaluronan Modulation Impacts Staphylococcus aureus Biofilm Infection. Infect Immun 2016; 84:1917-1929. [PMID: 27068096 DOI: 10.1128/iai.01418-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/06/2016] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a leading cause of chronic biofilm infections. Hyaluronic acid (HA) is a large glycosaminoglycan abundant in mammalian tissues that has been shown to enhance biofilm formation in multiple Gram-positive pathogens. We observed that HA accumulated in an S. aureus biofilm infection using a murine implant-associated infection model and that HA levels increased in a mutant strain lacking hyaluronidase (HysA). S. aureus secretes HysA in order to cleave HA during infection. Through in vitro biofilm studies with HA, the hysA mutant was found to accumulate increased biofilm biomass compared to the wild type, and confocal microscopy showed that HA is incorporated into the biofilm matrix. Exogenous addition of purified HysA enzyme dispersed HA-containing biofilms, while catalytically inactive enzyme had no impact. Additionally, induction of hysA expression prevented biofilm formation and also dispersed an established biofilm in the presence of HA. These observations were corroborated in the implant model, where there was decreased dissemination from an hysA mutant biofilm infection compared to the S. aureus wild type. Histopathology demonstrated that infection with an hysA mutant caused significantly reduced distribution of tissue inflammation compared to wild-type infection. To extend these studies, the impact of HA and S. aureus HysA on biofilm-like aggregates found in joint infections was examined. We found that HA contributes to the formation of synovial fluid aggregates, and HysA can disrupt aggregate formation. Taken together, these studies demonstrate that HA is a relevant component of the S. aureus biofilm matrix and HysA is important for dissemination from a biofilm infection.
Collapse
|
48
|
Takase R, Maruyama Y, Oiki S, Mikami B, Murata K, Hashimoto W. Structural determinants in bacterial 2-keto-3-deoxy-D-gluconate dehydrogenase KduD for dual-coenzyme specificity. Proteins 2016; 84:934-47. [PMID: 27028675 DOI: 10.1002/prot.25042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/08/2016] [Accepted: 03/17/2016] [Indexed: 11/11/2022]
Abstract
Short-chain dehydrogenase/reductase (SDR) is distributed in many organisms, from bacteria to humans, and has significant roles in metabolism of carbohydrates, lipids, amino acids, and other biomolecules. An important intermediate in acidic polysaccharide metabolism is 2-keto-3-deoxy-d-gluconate (KDG). Recently, two short and long loops in Sphingomonas KDG-producing SDR enzymes (NADPH-dependent A1-R and NADH-dependent A1-R') involved in alginate metabolism were shown to be crucial for NADPH or NADH coenzyme specificity. Two SDR family enzymes-KduD from Pectobacterium carotovorum (PcaKduD) and DhuD from Streptococcus pyogenes (SpyDhuD)-prefer NADH as coenzyme, although only PcaKduD can utilize both NADPH and NADH. Both enzymes reduce 2,5-diketo-3-deoxy-d-gluconate to produce KDG. Tertiary and quaternary structures of SpyDhuD and PcaKduD and its complex with NADH were determined at high resolution (approximately 1.6 Å) by X-ray crystallography. Both PcaKduD and SpyDhuD consist of a three-layered structure, α/β/α, with a coenzyme-binding site in the Rossmann fold; similar to enzymes A1-R and A1-R', both arrange the two short and long loops close to the coenzyme-binding site. The primary structures of the two loops in PcaKduD and SpyDhuD were similar to those in A1-R' but not A1-R. Charge neutrality and moderate space at the binding site of the nucleoside ribose 2' coenzyme region were determined to be structurally crucial for dual-coenzyme specificity in PcaKduD by structural comparison of the NADH- and NADPH-specific SDR enzymes. The corresponding site in SpyDhuD was negatively charged and spatially shallow. This is the first reported study on structural determinants in SDR family KduD related to dual-coenzyme specificity. Proteins 2016; 84:934-947. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryuichi Takase
- Laboratory of Basic and Applied Molecular Biotechnology Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Yukie Maruyama
- Laboratory of Basic and Applied Molecular Biotechnology Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Sayoko Oiki
- Laboratory of Basic and Applied Molecular Biotechnology Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Kousaku Murata
- Laboratory of Basic and Applied Molecular Biotechnology Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
49
|
Abachi S, Lee S, Rupasinghe HPV. Molecular Mechanisms of Inhibition of Streptococcus Species by Phytochemicals. Molecules 2016; 21:E215. [PMID: 26901172 PMCID: PMC6273676 DOI: 10.3390/molecules21020215] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 12/11/2022] Open
Abstract
This review paper summarizes the antibacterial effects of phytochemicals of various medicinal plants against pathogenic and cariogenic streptococcal species. The information suggests that these phytochemicals have potential as alternatives to the classical antibiotics currently used for the treatment of streptococcal infections. The phytochemicals demonstrate direct bactericidal or bacteriostatic effects, such as: (i) prevention of bacterial adherence to mucosal surfaces of the pharynx, skin, and teeth surface; (ii) inhibition of glycolytic enzymes and pH drop; (iii) reduction of biofilm and plaque formation; and (iv) cell surface hydrophobicity. Collectively, findings from numerous studies suggest that phytochemicals could be used as drugs for elimination of infections with minimal side effects.
Collapse
Affiliation(s)
- Soheila Abachi
- Faculty of Agriculture, Dalhousie University, Truro, NS PO Box 550, Canada.
| | - Song Lee
- Faculty of Dentistry, Dalhousie University, Halifax, NS PO Box 15000, Canada.
| | | |
Collapse
|
50
|
Watanabe S, Takemoto N, Ogura K, Miyoshi-Akiyama T. Severe invasive streptococcal infection by Streptococcus pyogenes
and Streptococcus dysgalactiae
subsp. equisimilis. Microbiol Immunol 2016; 60:1-9. [DOI: 10.1111/1348-0421.12334] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/15/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Shinya Watanabe
- Division of Bacteriology; Department of Infection and Immunity; School of Medicine; Jichi Medical University; 3311-1 Yakushiji Shimotsuke-shi Tochigi 329-0498
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory; Research Institute; National Center for Global Health and Medicine; 1-21-1 Toyama Shinjuku Tokyo 162-8655, Japan
| | - Kohei Ogura
- Pathogenic Microbe Laboratory; Research Institute; National Center for Global Health and Medicine; 1-21-1 Toyama Shinjuku Tokyo 162-8655, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory; Research Institute; National Center for Global Health and Medicine; 1-21-1 Toyama Shinjuku Tokyo 162-8655, Japan
| |
Collapse
|