1
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
2
|
Janssen AB, de Bakker V, Aprianto R, Trebosc V, Kemmer C, Pieren M, Veening JW. Klebsiella pneumoniae OmpR facilitates lung infection through transcriptional regulation of key virulence factors. Microbiol Spectr 2024; 12:e0396623. [PMID: 38099618 PMCID: PMC10783089 DOI: 10.1128/spectrum.03966-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Bacteria use two-component regulatory systems (TCSs) to adapt to changes in their environment by changing their gene expression. In this study, we show that the EnvZ/OmpR TCS of the clinically relevant opportunistic pathogen Klebsiella pneumoniae plays an important role in successfully establishing lung infection and virulence. In addition, we elucidate the K. pneumoniae OmpR regulon within the host. This work suggests that K. pneumoniae OmpR might be a promising target for innovative anti-infectives.
Collapse
Affiliation(s)
- Axel B. Janssen
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vincent de Bakker
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rieza Aprianto
- Molecular Genetics Group, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, Groningen, the Netherlands
| | | | | | | | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Akshay SD, Nayak S, Deekshit VK, Rohit A, Maiti B. Differential expression of outer membrane proteins and quinolone resistance determining region mutations can lead to ciprofloxacin resistance in Salmonella Typhi. Arch Microbiol 2023; 205:136. [PMID: 36961627 DOI: 10.1007/s00203-023-03485-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/17/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023]
Abstract
Multi-drug resistance in Salmonella Typhi remains a public health concern globally. This study aimed to investigate the function of quinolone resistance determining region (QRDR) of gyrA and parC in ciprofloxacin (CIP) resistant isolates and examine the differential expression of outer membrane proteins (OMPs) on exposure to sub-lethal concentrations of CIP in S. Typhi. The CIP-resistant isolates were screened for mutations in the QRDR and analyzed for bacterial growth. Furthermore, major OMPs encoding genes such as ompF, lamB, yaeT, tolC, ompS1, and phoE were examined for differential expression under the sub-lethal concentrations of CIP by real-time PCR and SDS-PAGE. Notably, our study has shown a single-point mutation in gyrA at codon 83 (Ser83-tyrosine and Ser83-phenylalanine), also the rare amino acid substitution in parC gene at codon 80 (Glu80-glycine) in CIP-resistant isolates. Additionally, CIP-resistant isolates showed moderate growth compared to susceptible isolates. Although most of the OMP-encoding genes (tolC, ompS1, and phoE) showed some degree of upregulation, a significant level of upregulation (p < 0.05) was observed only for yaeT. However, ompF and lamB genes were down-regulated compared to CIP-susceptible isolates. Whereas OMPs profiling using SDS-PAGE did not show any changes in the banding pattern. These results provide valuable information on the QRDR mutation, and the difference in the growth, and expression of OMP-encoding genes in resistant and susceptible isolates of S. Typhi. This further provides insight into the involvement of QRDR mutation and OMPs associated with CIP resistance in S. Typhi.
Collapse
Affiliation(s)
- Sadanand Dangari Akshay
- Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Srajana Nayak
- Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Vijaya Kumar Deekshit
- Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Anusha Rohit
- Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
- Department of Microbiology, The Madras Medical Mission, 4-A, Dr, Mogappair, Chennai, Tamil Nadu, 600037, India
| | - Biswajit Maiti
- Division of Infectious Diseases, Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
4
|
Fernández-Mora M, Sánchez-Popoca D, Altamirano-Cruz G, López-Méndez G, Téllez-Galicia AT, Guadarrama C, Calva E. The S. Typhi leuO gene contains multiple functional promoters. J Med Microbiol 2021; 70. [PMID: 34590996 DOI: 10.1099/jmm.0.001418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The S. Typhi leuO gene, which codes for the LysR-type transcriptional regulator LeuO, contains five forward promoters named P3, P1, P2, P5 and P4, and two reverse promoters, P6 and P7. The activity of the forward promoters was revealed by primer extension using gene reporter fusions in an S. Typhi hns lrp mutant strain. Likewise, the activity of the reverse promoters was revealed in an hns background. Derepression of the transcription of the chromosomal gene was confirmed by RT-PCR in the hns lrp mutant. The leuOP1 transcriptional reporter fusion, which contained only the major P1 promoter, had a lower expression in a relA spoT mutant strain, indicating that the steady-state levels of the (p)ppGpp alarmone positively regulate it. In contrast, the leuOP3, leuOP5P4, leuOP6 and leuOP7 transcriptional fusions were derepressed in the relA spoT background, indicating that the alarmone has a negative effect on their expression. Thus, the search for genetic regulators and environmental cues that would differentially derepress leuO gene expression by antagonizing the action of the H-NS and Lrp nucleoid-associated proteins, or that would fine-tune the expression of the various promoters, will further our understanding of the significance that multiple promoters have in the control of LeuO expression.
Collapse
Affiliation(s)
- Marcos Fernández-Mora
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Diego Sánchez-Popoca
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Gloria Altamirano-Cruz
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Grecia López-Méndez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Andrea Teresa Téllez-Galicia
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Carmen Guadarrama
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | | |
Collapse
|
5
|
Medina-Aparicio L, Rodriguez-Gutierrez S, Rebollar-Flores JE, Martínez-Batallar ÁG, Mendoza-Mejía BD, Aguirre-Partida ED, Vázquez A, Encarnación S, Calva E, Hernández-Lucas I. The CRISPR-Cas System Is Involved in OmpR Genetic Regulation for Outer Membrane Protein Synthesis in Salmonella Typhi. Front Microbiol 2021; 12:657404. [PMID: 33854491 PMCID: PMC8039139 DOI: 10.3389/fmicb.2021.657404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
The CRISPR-Cas cluster is found in many prokaryotic genomes including those of the Enterobacteriaceae family. Salmonella enterica serovar Typhi (S. Typhi) harbors a Type I-E CRISPR-Cas locus composed of cas3, cse1, cse2, cas7, cas5, cas6e, cas1, cas2, and a CRISPR1 array. In this work, it was determined that, in the absence of cas5 or cas2, the amount of the OmpC porin decreased substantially, whereas in individual cse2, cas6e, cas1, or cas3 null mutants, the OmpF porin was not observed in an electrophoretic profile of outer membrane proteins. Furthermore, the LysR-type transcriptional regulator LeuO was unable to positively regulate the expression of the quiescent OmpS2 porin, in individual S. Typhi cse2, cas5, cas6e, cas1, cas2, and cas3 mutants. Remarkably, the expression of the master porin regulator OmpR was dependent on the Cse2, Cas5, Cas6e, Cas1, Cas2, and Cas3 proteins. Therefore, the data suggest that the CRISPR-Cas system acts hierarchically on OmpR to control the synthesis of outer membrane proteins in S. Typhi.
Collapse
Affiliation(s)
- Liliana Medina-Aparicio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sarahí Rodriguez-Gutierrez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Javier E Rebollar-Flores
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Blanca D Mendoza-Mejía
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eira D Aguirre-Partida
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alejandra Vázquez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
6
|
Xu S, Hou X, Sun L, Zhang J, Ji X, Wang X, Li H, Li Z. An immunoproteomic approach to identify antigenic proteins in Nocardia farcinica IFM 10152. Microb Pathog 2019; 137:103705. [PMID: 31487535 DOI: 10.1016/j.micpath.2019.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/22/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023]
Abstract
Nocardia farcinica is the etiological agent of nocardiosis, leading to serious pulmonary or systemic infections. To uncover virulence factors and early diagnostic markers, secreted proteins of N. farcinica IFM 10152 were analyzed using an immunoproteome-based approach. A total of 5 proteins were identified by matrix-assisted laser desorption (MALDI-TOF-MS). Bioinformatic analyses showed that the identified proteins were involved in defense against the host innate immune system and required for pathogenesis. All proteins were expressed in E. coli and antigenicity was analyzed with Western blot. To our knowledge, these proteins with antigenicity were identified for the first time in N. farcinica and they may help elucidate the pathogenesis underlying Nocardia and provide potential future diagnostic markers.
Collapse
Affiliation(s)
- Shuai Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuexin Hou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lina Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingshan Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xingzhao Ji
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuebing Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Heqiao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhenjun Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
7
|
Kollanoor Johny A, Frye JG, Donoghue A, Donoghue DJ, Porwollik S, McClelland M, Venkitanarayanan K. Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol. Front Microbiol 2017; 8:1828. [PMID: 29018419 PMCID: PMC5623010 DOI: 10.3389/fmicb.2017.01828] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/06/2017] [Indexed: 11/13/2022] Open
Abstract
Background:Salmonella Enteritidis phage type 8 (PT8) is a major poultry-associated Salmonella strain implicated in foodborne outbreaks in the United States. We previously reported that two plant-derived compounds generally recognized as safe (GRAS), trans-cinnamaldehyde (TC), and eugenol (EG), significantly reduced S. Enteritidis colonization in broiler and layer chickens. To elucidate potential PT8 genes affected by TC and EG during colonization, a whole-genome microarray analysis of the bacterium treated with TC and EG was conducted. Results:S. Enteritidis PT8 was grown in Luria-Bertani broth at 37°C to an OD600 of ~0.5. Subinhibitory concentrations (SICs; concentration that does not inhibit bacterial growth) of TC (0.01%; 0.75 mM) or EG (0.04%; 2.46 mM) were then added to the culture. S. Enteritidis PT8 RNA was extracted before and 30 min after TC or EG addition. Labeled cDNA from three replicate experiments was subsequently hybridized to a microarray of over 99% of S. Enteritidis PT4 genes, and the hybridization signals were quantified. The plant-derived compounds down-regulated (P < 0.005) expression of S. Enteritidis PT8 genes involved in flagellar motility, regulation of the Salmonella Pathogenicity Island 1, and invasion of intestinal epithelial cells. TC and EG also suppressed transcription of genes encoding multiple transport systems and outer membrane proteins. Moreover, several metabolic and biosynthetic pathways in the pathogen were down-regulated during exposure to the plant-derived compounds. Both TC and EG stimulated the transcription of heat shock genes, such as dnaK, dnaJ, ibpB, and ibpA in S. Enteritidis PT8 (P < 0.005). The results obtained from microarray were validated using a quantitative real-time PCR. Conclusion: The plant-derived compounds TC and EG exert antimicrobial effects on S. Enteritidis PT8 by affecting multiple genes, including those associated with virulence, colonization, cell membrane composition, and transport systems.
Collapse
Affiliation(s)
- Anup Kollanoor Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN, United States
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, Richard B. Russell Research Center, Athens, GA, United States
| | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, USDA, Fayetteville, AR, United States
| | - Dan J Donoghue
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
8
|
Pérez-Toledo M, Valero-Pacheco N, Pastelin-Palacios R, Gil-Cruz C, Perez-Shibayama C, Moreno-Eutimio MA, Becker I, Pérez-Tapia SM, Arriaga-Pizano L, Cunningham AF, Isibasi A, Bonifaz LC, López-Macías C. Salmonella Typhi Porins OmpC and OmpF Are Potent Adjuvants for T-Dependent and T-Independent Antigens. Front Immunol 2017; 8:230. [PMID: 28337196 PMCID: PMC5344031 DOI: 10.3389/fimmu.2017.00230] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/17/2017] [Indexed: 02/05/2023] Open
Abstract
Several microbial components, such as bacterial DNA and flagellin, have been used as experimental vaccine adjuvants because of their inherent capacity to efficiently activate innate immune responses. Likewise, our previous work has shown that the major Salmonella Typhi (S. Typhi) outer membrane proteins OmpC and OmpF (porins) are highly immunogenic protective antigens that efficiently stimulate innate and adaptive immune responses in the absence of exogenous adjuvants. Moreover, S. Typhi porins induce the expression of costimulatory molecules on antigen-presenting cells through toll-like receptor canonical signaling pathways. However, the potential of major S. Typhi porins to be used as vaccine adjuvants remains unknown. Here, we evaluated the adjuvant properties of S. Typhi porins against a range of experimental and clinically relevant antigens. Co-immunization of S. Typhi porins with ovalbumin (OVA), an otherwise poorly immunogenic antigen, enhanced anti-OVA IgG titers, antibody class switching, and affinity maturation. This adjuvant effect was dependent on CD4+ T-cell cooperation and was associated with an increase in IFN-γ, IL-17A, and IL-2 production by OVA-specific CD4+ T cells. Furthermore, co-immunization of S. Typhi porins with an inactivated H1N1 2009 pandemic influenza virus experimental vaccine elicited higher hemagglutinating anti-influenza IgG titers, antibody class switching, and affinity maturation. Unexpectedly, co-administration of S. Typhi porins with purified, unconjugated Vi capsular polysaccharide vaccine (Vi CPS)—a T-independent antigen—induced higher IgG antibody titers and class switching. Together, our results suggest that S. Typhi porins OmpC and OmpF are versatile vaccine adjuvants, which could be used to enhance T-cell immune responses toward a Th1/Th17 profile, while improving antibody responses to otherwise poorly immunogenic T-dependent and T-independent antigens.
Collapse
Affiliation(s)
- Marisol Pérez-Toledo
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute, Mexico City, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nuriban Valero-Pacheco
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute, Mexico City, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen , St. Gallen , Switzerland
| | | | - Mario A Moreno-Eutimio
- Immunity and Inflammation Research Unit, Hospital Juárez de México, Ministry of Health , Mexico City , Mexico
| | - Ingeborg Becker
- Facultad de Medicina, Departamento de Medicina Experimental, Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Sonia Mayra Pérez-Tapia
- Unit of R&D in Bioprocesses (UDIBI), Department of Immunology, National School of Biological Sciences, National Polytechnic Institute , Mexico City , Mexico
| | - Lourdes Arriaga-Pizano
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute , Mexico City , Mexico
| | - Adam F Cunningham
- MRC Centre for Immune Regulation, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham , UK
| | - Armando Isibasi
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute , Mexico City , Mexico
| | - Laura C Bonifaz
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute , Mexico City , Mexico
| | - Constantino López-Macías
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute, Mexico City, Mexico; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis. Infect Immun 2016; 84:1603-1614. [PMID: 26975994 DOI: 10.1128/iai.01470-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/02/2016] [Indexed: 11/20/2022] Open
Abstract
The trypanosomatids Leishmania amazonensis and Trypanosoma cruzi are excellent models for the study of the cell biology of intracellular protozoan infections. After their uptake by mammalian cells, the parasitic protozoan flagellates L. amazonensis and T. cruzi lodge within acidified parasitophorous vacuoles (PVs). However, whereas L. amazonensis develops in spacious, phagolysosome-like PVs that may enclose numerous parasites, T. cruzi is transiently hosted within smaller vacuoles from which it soon escapes to the host cell cytosol. To investigate if parasite-specific vacuoles are required for the survival and differentiation of T. cruzi, we constructed chimeric vacuoles by infection of L. amazonensis amastigote-infected macrophages with T. cruzi epimastigotes (EPIs) or metacyclic trypomastigotes (MTs). These chimeric vacuoles, easily observed by microscopy, allowed the entry and fate of T. cruzi in L. amazonensis PVs to be dynamically recorded by multidimensional imaging of coinfected cells. We found that although T. cruzi EPIs remained motile and conserved their morphology in chimeric vacuoles, T. cruzi MTs differentiated into amastigote-like forms capable of multiplying. These results demonstrate that the large adaptive vacuoles of L. amazonensis are permissive to T. cruzi survival and differentiation and that noninfective EPIs are spared from destruction within the chimeric PVs. We conclude that T. cruzi differentiation can take place in Leishmania-containing vacuoles, suggesting this occurs prior to their escape into the host cell cytosol.
Collapse
|
10
|
Wiesner M, Calva JJ, Bustamante VH, Pérez-Morales D, Fernández-Mora M, Calva E, Silva C. A multi-drug resistant Salmonella Typhimurium ST213 human-invasive strain (33676) containing the bla CMY-2 gene on an IncF plasmid is attenuated for virulence in BALB/c mice. BMC Microbiol 2016; 16:18. [PMID: 26862033 PMCID: PMC4748464 DOI: 10.1186/s12866-016-0633-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Classical strains of Salmonella enterica serovar Typhimurium (Typhimurium) predominantly cause a self-limiting diarrheal illness in humans and a systemic disease in mice. In this study, we report the characterization of a strain isolated from a blood-culture taken from a 15-year old woman suffering from invasive severe salmonellosis, refractory to conventional therapy with extended-spectrum cephalosporin (ESC). Results The strain, named 33676, was characterized as multidrug-resistant Salmonella serogroup A by biochemical, antimicrobial and serological tests. Multilocus sequence typing (MLST) and XbaI macrorestrictions (PFGE) showed that strain 33676 belonged to the Typhimurium ST213 genotype, previously described for other Mexican Typhimurium strains. PCR analyses revealed the presence of IncA/C, IncFIIA and ColE1-like plasmids and the absence of the Salmonella virulence plasmid (pSTV). Conjugation assays showed that the ESC-resistance gene blaCMY-2 was carried on the conjugative IncF plasmid, instead of the IncA/C plasmid, as found in previously studied ST213 strains. Although the IncA/C plasmid conferred most of the observed antimicrobial resistances it was not self-conjugative; it was rather able to conjugate by co-integrating with the IncF plasmid. Strain 33676 was fully attenuated for virulence in BALB/c mice infections. Both type-three secretion system (T3SS), encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2), were functional in the 33676 strain and, interestingly, this strain produced the H2 FljB flagellin instead of the H1 FliC flagellin commonly expressed by S. enterica strains. Conclusions Strain 33676 showed two main features that differentiate it from the originally described ST213 strains: 1) the blaCMY-2 gene was not carried on the IncA/C plasmid, but on a conjugative IncF plasmid, which may open a new route of dissemination for this ESC-resistance gene, and 2) it expresses the H2 FljB flagella, in contrast with the other ST213 and most Typhimurium reference strains. To our knowledge this is the first report of an IncF blaCMY-2-carrying plasmid in Salmonella. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0633-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magdalena Wiesner
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico. .,Present address: Grupo de Microbiología, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia.
| | - Juan J Calva
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México City, Mexico.
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - Marcos Fernández-Mora
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - Claudia Silva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
11
|
Guadarrama C, Villaseñor T, Calva E. The Subtleties and Contrasts of the LeuO Regulator in Salmonella Typhi: Implications in the Immune Response. Front Immunol 2014; 5:581. [PMID: 25566242 PMCID: PMC4264507 DOI: 10.3389/fimmu.2014.00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/30/2014] [Indexed: 01/15/2023] Open
Abstract
Salmonella are facultative intracellular pathogens. Salmonella infection occurs mainly by expression of two Salmonella pathogenicity Islands (SPI-1 and SPI-2). SPI-1 encodes transcriptional factors that participate in the expression of virulence factors encoded in the island. However, there are transcriptional factors encoded outside the island that also participate in the expression of SPI-1-encoded genes. Upon infection, bacteria are capable of avoiding the host immune response with several strategies that involve several virulence factors under the control of transcriptional regulators. Interestingly, LeuO a transcriptional global regulator which is encoded outside of any SPI, is proposed to be part of a complex regulatory network that involves expression of several genes that help bacteria to survive stress conditions and, also, induces the expression of porins that have been shown to be immunogens and can thus be considered as antigenic candidates for acellular vaccines. Hence, the understanding of the LeuO regulon implies a role of bacterial genetic regulation in determining the host immune response.
Collapse
Affiliation(s)
- Carmen Guadarrama
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Mexico
| | - Tomás Villaseñor
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Mexico
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Mexico
| |
Collapse
|
12
|
Ipinza F, Collao B, Monsalva D, Bustamante VH, Luraschi R, Alegría-Arcos M, Almonacid DE, Aguayo D, Calderón IL, Gil F, Santiviago CA, Morales EH, Calva E, Saavedra CP. Participation of the Salmonella OmpD porin in the infection of RAW264.7 macrophages and BALB/c mice. PLoS One 2014; 9:e111062. [PMID: 25360745 PMCID: PMC4215857 DOI: 10.1371/journal.pone.0111062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/21/2014] [Indexed: 11/18/2022] Open
Abstract
Salmonella Typhimurium is the etiological agent of gastroenteritis in humans and enteric fever in mice. Inside these hosts, Salmonella must overcome hostile conditions to develop a successful infection, a process in which the levels of porins may be critical. Herein, the role of the Salmonella Typhimurium porin OmpD in the infection process was assessed for adherence, invasion and proliferation in RAW264.7 mouse macrophages and in BALB/c mice. In cultured macrophages, a ΔompD strain exhibited increased invasion and proliferation phenotypes as compared to its parental strain. In contrast, overexpression of ompD caused a reduction in bacterial proliferation but did not affect adherence or invasion. In the murine model, the ΔompD strain showed increased ability to survive and replicate in target organs of infection. The ompD transcript levels showed a down-regulation when Salmonella resided within cultured macrophages and when it colonized target organs in infected mice. Additionally, cultured macrophages infected with the ΔompD strain produced lower levels of reactive oxygen species, suggesting that down-regulation of ompD could favor replication of Salmonella inside macrophages and the subsequent systemic dissemination, by limiting the reactive oxygen species response of the host.
Collapse
Affiliation(s)
- Francisco Ipinza
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Bernardo Collao
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Debbie Monsalva
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Victor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Roberto Luraschi
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Melissa Alegría-Arcos
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Daniel E. Almonacid
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Daniel Aguayo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Iván L. Calderón
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Fernando Gil
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Carlos A. Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Eduardo H. Morales
- Great Lakes Bioenergy Research Center and Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- * E-mail:
| |
Collapse
|
13
|
Villarreal JM, Becerra-Lobato N, Rebollar-Flores JE, Medina-Aparicio L, Carbajal-Gómez E, Zavala-García ML, Vázquez A, Gutiérrez-Ríos RM, Olvera L, Encarnación S, Martínez-Batallar AG, Calva E, Hernández-Lucas I. The Salmonella enterica serovar Typhi ltrR-ompR-ompC-ompF genes are involved in resistance to the bile salt sodium deoxycholate and in bacterial transformation. Mol Microbiol 2014; 92:1005-24. [PMID: 24720747 DOI: 10.1111/mmi.12610] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2014] [Indexed: 01/25/2023]
Abstract
A characterization of the LtrR regulator, an S. Typhi protein belonging to the LysR family is presented. Proteomics, outer membrane protein profiles and transcriptional analyses demonstrated that LtrR is required for the synthesis of OmpR, OmpC and OmpF. DNA-protein interaction analysis showed that LtrR binds to the regulatory region of ompR and then OmpR interacts with the ompC and ompF promoters inducing porin synthesis. LtrR-dependent and independent ompR promoters were identified, and both promoters are involved in the synthesis of OmpR for OmpC and OmpF production. To define the functional role of the ltrR-ompR-ompC-ompF genetic network, mutants in each gene were obtained. We found that ltrR, ompR, ompC and ompF were involved in the control of bacterial transformation, while the two regulators and ompC are necessary for the optimal growth of S. Typhi in the presence of one of the major bile salts found in the gut, sodium deoxycholate. The data presented establish the pivotal role of LtrR in the regulatory network of porin synthesis and reveal new genetic strategies of survival and cellular adaptation to the environment used by Salmonella.
Collapse
Affiliation(s)
- J M Villarreal
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, México
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Flores-Valdez MA, Fernández-Mora M, Ares MÁ, Girón JA, Calva E, De la Cruz MÁ. OmpR phosphorylation regulates ompS1 expression by differentially controlling the use of promoters. Microbiology (Reading) 2014; 160:733-741. [DOI: 10.1099/mic.0.071381-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Salmonella enterica ompS1 gene encodes a quiescent porin that belongs to the OmpC/OmpF family. In the present work we analysed the regulatory effects of OmpR phosphorylation on ompS1 expression. We found that in vivo, OmpR in its phosphorylated form (OmpR-P) was important in the regulation of the two ompS1 promoters: OmpR-P activated the P1 promoter and repressed the P2 promoter in an EnvZ-dependent manner; expression occurs from the P2 promoter in an ompR mutant. In vitro, OmpR-P had a higher DNA-binding-affinity to the ompS1 promoter region than OmpR and OmpRD55A, showing an affinity even higher than that of equivalent DNA regions in the 5′-upstream regulatory sequence of the major porin-encoding genes ompC and ompF. By analysing different environmental conditions, we found that glucose and glycerol enhanced ompS1 expression in the wild-type strain. Interestingly the stimulation by glycerol was OmpR-dependent while the effect of glucose was still observed in the absence of OmpR. Acetyl phosphate produced by the AckA-Pta pathway did not influence ompS1 regulation. These data indicate the important role of the phosphorylation in the activity of OmpR on the differential regulation of both ompS1 promoters and its impact on the pathogenesis.
Collapse
Affiliation(s)
- Mario Alberto Flores-Valdez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C., Normalistas 800, Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico
| | - Marcos Fernández-Mora
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Miguel Ángel Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico
| | - Jorge A. Girón
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Miguel Ángel De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
15
|
The Salmonella enterica serovar Typhi LeuO global regulator forms tetramers: residues involved in oligomerization, DNA binding, and transcriptional regulation. J Bacteriol 2014; 196:2143-54. [PMID: 24659766 DOI: 10.1128/jb.01484-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LeuO is a LysR-type transcriptional regulator (LTTR) that has been described to be a global regulator in Escherichia coli and Salmonella enterica, since it positively and negatively regulates the expression of genes involved in multiple biological processes. LeuO is comprised of an N-terminal DNA-binding domain (DBD) with a winged helix-turn-helix (wHTH) motif and of a long linker helix (LH) involved in dimerization that connects the DBD with the C-terminal effector-binding domain (EBD) or regulatory domain (RD; which comprises subdomains RD-I and RD-II). Here we show that the oligomeric structure of LeuO is a tetramer that binds with high affinity to DNA. A collection of single amino acid substitutions in the LeuO DBD indicated that this region is involved in oligomerization, in positive and negative regulation, as well as in DNA binding. Mutants with point mutations in the central and C-terminal regions of RD-I were affected in transcriptional activation. Deletion of the RD-II and RD-I C-terminal subdomains affected not only oligomerization but also DNA interaction, showing that they are involved in positive and negative regulation. Together, these data demonstrate that not only the C terminus but also the DBD of LeuO is involved in oligomer formation; therefore, each LeuO domain appears to act synergistically to maintain its regulatory functions in Salmonella enterica serovar Typhi.
Collapse
|
16
|
Espinosa E, Casadesús J. Regulation of Salmonella enterica pathogenicity island 1 (SPI-1) by the LysR-type regulator LeuO. Mol Microbiol 2014; 91:1057-69. [PMID: 24354910 DOI: 10.1111/mmi.12500] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2013] [Indexed: 12/11/2022]
Abstract
LeuO is a quiescent LysR-type regulator belonging to the H-NS regulon. Activation of leuO transcription represses expression of pathogenicity island 1 (SPI-1) in Salmonella enterica serovar Typhimurium and inhibits invasion of epithelial cells. Loss of HilE suppresses LeuO-mediated downregulation of SPI-1. Activation of leuO transcription reduces the level of HilD protein, and loss of HilE restores the wild type HilD level. Hence, LeuO-mediated downregulation of SPI-1 may involve inhibition of HilD activity by HilE, a view consistent with the fact that HilE is a HilD inhibitor. In vivo analyses using β-galactosidase fusions indicate that LeuO activates hilE transcription. In vitro analyses by slot blotting, electrophoretic mobility shift analysis and DNase I footprinting show that LeuO binds the hilE promoter region. Although residual SPI-1 repression by LeuO is observed in the absence of HilE, the LeuO-HilE-HilD 'pathway' appears to be the major mechanism. Because both leuO and SPI-1 are repressed by H-NS, activation of leuO transcription may provide a backup mechanism for SPI-1 repression under conditions that impair H-NS-mediated silencing.
Collapse
Affiliation(s)
- Elena Espinosa
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Sevilla, E-41080, Spain
| | | |
Collapse
|
17
|
Immunoproteomic analysis of antibody in lymphocyte supernatant in patients with typhoid fever in Bangladesh. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:280-5. [PMID: 24371257 DOI: 10.1128/cvi.00661-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have previously shown that an assay based on detection of anti-Salmonella enterica serotype Typhi antibodies in supernatant of lymphocytes harvested from patients presenting with typhoid fever (antibody in lymphocyte supernatant [ALS] assay) can identify 100% of patients with blood culture-confirmed typhoid fever in Bangladesh. In order to define immunodominant proteins within the S. Typhi membrane preparation used as antigen in these prior studies and to identify potential biomarkers unique to S. Typhi bacteremic patients, we probed microarrays containing 2,724 S. Typhi proteins with ALS collected at the time of clinical presentation from 10 Bangladeshis with acute typhoid fever. We identified 62 immunoreactive antigens when evaluating both the IgG and IgA responses. Immune responses to 10 of these antigens discriminated between individuals with acute typhoid infection and healthy control individuals from areas where typhoid infection is endemic, as well as Bangladeshi patients presenting with fever who were subsequently confirmed to have a nontyphoid illness. Using an ALS enzyme-linked immunosorbent assay (ELISA) format and purified antigen, we then confirmed that immune responses against the antigen with the highest immunoreactivity (hemolysin E [HlyE]) correctly identified individuals with acute typhoid or paratyphoid fever in Dhaka, Bangladesh. These observations suggest that purified antigens could be used with ALS and corresponding acute-phase activated B lymphocytes in diagnostic platforms to identify acutely infected patients, even in areas where enteric fever is endemic.
Collapse
|
18
|
Moreno-Eutimio MA, Tenorio-Calvo A, Pastelin-Palacios R, Perez-Shibayama C, Gil-Cruz C, López-Santiago R, Baeza I, Fernández-Mora M, Bonifaz L, Isibasi A, Calva E, López-Macías C. Salmonella Typhi OmpS1 and OmpS2 porins are potent protective immunogens with adjuvant properties. Immunology 2013; 139:459-71. [PMID: 23432484 PMCID: PMC3719063 DOI: 10.1111/imm.12093] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 12/25/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is the causal agent of typhoid fever, a disease that primarily affects developing countries. Various antigens from this bacterium have been reported to be targets of the immune response. Recently, the S. Typhi genome has been shown to encode two porins--OmpS1 and OmpS2--which are expressed at low levels under in vitro culture conditions. In this study, we demonstrate that immunizing mice with either OmpS1 or OmpS2 induced production of specific, long-term antibody titres and conferred protection against S. Typhi challenge; in particular, OmpS1 was more immunogenic and conferred greater protective effects than OmpS2. We also found that OmpS1 is a Toll-like receptor 4 (TLR4) agonist, whereas OmpS2 is a TLR2 and TLR4 agonist. Both porins induced the production of tumour necrosis factor and interleukin-6, and OmpS2 was also able to induce interleukin-10 production. Furthermore, OmpS1 induced the over-expression of MHC II molecules in dendritic cells and OmpS2 induced the over-expression of CD40 molecules in macrophages and dendritic cells. Co-immunization of OmpS1 or OmpS2 with ovalbumin (OVA) increased anti-OVA antibody titres, the duration and isotype diversity of the OVA-specific antibody response, and the proliferation of T lymphocytes. These porins also had adjuvant effects on the antibody response when co-immunized with either the Vi capsular antigen from S. Typhi or inactivated 2009 pandemic influenza A(H1N1) virus [A(H1N1)pdm09]. Taken together, the data indicate that OmpS1 and OmpS2, despite being expressed at low levels under in vitro culture conditions, are potent protective immunogens with intrinsic adjuvant properties.
Collapse
Affiliation(s)
- Mario A Moreno-Eutimio
- Medical Research Unit on Immunochemistry, National Medical Centre Siglo XXI, Mexican Social Security Institute (IMSS), Specialties Hospital, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Collao B, Morales EH, Gil F, Calderón IL, Saavedra CP. ompW is cooperatively upregulated by MarA and SoxS in response to menadione. MICROBIOLOGY-SGM 2013; 159:715-725. [PMID: 23393149 PMCID: PMC3709825 DOI: 10.1099/mic.0.066050-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OmpW is a minor porin whose biological function has not been clearly defined. Evidence obtained in our laboratory indicates that in Salmonella enterica serovar Typhimurium the expression of OmpW is activated by SoxS upon exposure to paraquat and it is required for resistance. SoxS belongs to the AraC family of transcriptional regulators, like MarA and Rob. Due to their high structural similarity, the genes under their control have been grouped in the mar/sox/rob regulon, which presents a DNA-binding consensus sequence denominated the marsox box. In this work, we evaluated the role of the transcription factors MarA, SoxS and Rob of S. enterica serovar Typhimurium in regulating ompW expression in response to menadione. We determined the transcript and protein levels of OmpW in different genetic backgrounds; in the wild-type and Δrob strains ompW was upregulated in response to menadione, while in the ΔmarA and ΔsoxS strains the induction was abolished. In a double marA soxS mutant, ompW transcript levels were lowered after exposure to menadione, and only complementation in trans with both genes restored the positive regulation. Using transcriptional fusions and electrophoretic mobility shift assays with mutant versions of the promoter region we demonstrated that two of the predicted sites were functional. Additionally, we demonstrated that MarA increases the affinity of SoxS for the ompW promoter region. In conclusion, our study shows that ompW is upregulated in response to menadione in a cooperative manner by MarA and SoxS through a direct interaction with the promoter region.
Collapse
Affiliation(s)
- B Collao
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - E H Morales
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - F Gil
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - I L Calderón
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - C P Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
20
|
|
21
|
Dillon SC, Espinosa E, Hokamp K, Ussery DW, Casadesús J, Dorman CJ. LeuO is a global regulator of gene expression inSalmonella entericaserovar Typhimurium. Mol Microbiol 2012; 85:1072-89. [DOI: 10.1111/j.1365-2958.2012.08162.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Stratmann T, Pul Ü, Wurm R, Wagner R, Schnetz K. RcsB-BglJ activates the Escherichia coli leuO gene, encoding an H-NS antagonist and pleiotropic regulator of virulence determinants. Mol Microbiol 2012; 83:1109-23. [DOI: 10.1111/j.1365-2958.2012.07993.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Enterobacterial common antigen mutants of Salmonella enterica serovar Typhimurium establish a persistent infection and provide protection against subsequent lethal challenge. Infect Immun 2011; 80:441-50. [PMID: 22025511 DOI: 10.1128/iai.05559-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with Salmonella spp. is a significant source of disease globally. A substantial proportion of these infections are caused by Salmonella enterica serovar Typhimurium. Here, we characterize the role of the enterobacterial common antigen (ECA), a surface glycolipid ubiquitous among enteric bacteria, in S. Typhimurium pathogenesis. Construction of a defined mutation in the UDP-N-acetylglucosamine-1-phosphate transferase gene, wecA, in two clinically relevant strains of S. Typhimurium, TML and SL1344, resulted in strains that were unable to produce ECA. Loss of ECA did not affect the gross cell surface ultrastructure, production of lipopolysaccharide (LPS), flagella, or motility. However, the wecA mutant strains were attenuated in both oral and intraperitoneal mouse models of infection (P<0.001 for both routes of infection; log rank test), and virulence could be restored by complementation of the wecA gene in trans. Despite the avirulence of the ECA-deficient strains, the wecA mutant strains were able to persistently colonize systemic sites (spleen and liver) at moderate levels for up to 70 days postinfection. Moreover, immunization with the wecA mutant strains provided protection against a subsequent lethal oral or intraperitoneal challenge with wild-type S. Typhimurium. Thus, wecA mutant (ECA-negative) strains of Salmonella may be useful as live attenuated vaccine strains or as vehicles for heterologous antigen expression.
Collapse
|
24
|
Shimada T, Bridier A, Briandet R, Ishihama A. Novel roles of LeuO in transcription regulation of E. coli genome: antagonistic interplay with the universal silencer H-NS. Mol Microbiol 2011; 82:378-97. [DOI: 10.1111/j.1365-2958.2011.07818.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Yuan J, Wei B, Shi M, Gao H. Functional assessment of EnvZ/OmpR two-component system in Shewanella oneidensis. PLoS One 2011; 6:e23701. [PMID: 21886811 PMCID: PMC3160321 DOI: 10.1371/journal.pone.0023701] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 07/22/2011] [Indexed: 11/23/2022] Open
Abstract
EnvZ and OmpR constitute the bacterial two-component signal transduction system known to mediate osmotic stress response in a number of Gram-negative bacteria. In an effort to understand the mechanism through which Shewanella oneidensis senses and responds to environmental osmolarity changes, structure of the ompR-envZ operon was determined with Northern blotting assay and roles of the EnvZ/OmpR two-component system in response to various stresses were investigated with mutational analysis, quantitative reverse transcriptase PCR (qRT-PCR), and phenotype microarrays. Results from the mutational analysis and qRT-PCR suggested that the EnvZ/OmpR system contributed to osmotic stress response of S. oneidensis and very likely engaged a similar strategy employed by E. coli, which involved reciprocal regulation of two major porin coding genes. Additionally, the ompR-envZ system was also found related to cell motility. We further showed that the ompR-envZ dependent regulation of porin genes and motility resided almost completely on ompR and only partially on envZ, indicating additional mechanisms for OmpR phosphorylation. In contrast to E. coli lacking ompR-envZ, however, growth of S. oneidensis did not show a significant dependence on ompR-envZ even under osmotic stress. Further analysis with phenotype microarrays revealed that the S. oneidensis strains lacking a complete ompR-envZ system displayed hypersensitivities to a number of agents, especially in alkaline environment. Taken together, our results suggest that the function of the ompR-envZ system in S. oneidensis, although still connected with osmoregulation, has diverged considerably from that of E. coli. Additional mechanism must exist to support growth of S. oneidensis under osmotic stress.
Collapse
Affiliation(s)
- Jie Yuan
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Buyun Wei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Miaomiao Shi
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
26
|
Carrica MC, Craig PO, García-Angulo VA, Aguirre A, García-Véscovi E, Goldbaum FA, Cravero SL. YqiC of Salmonella enterica serovar Typhimurium is a membrane fusogenic protein required for mice colonization. BMC Microbiol 2011; 11:95. [PMID: 21554724 PMCID: PMC3107778 DOI: 10.1186/1471-2180-11-95] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/09/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Salmonella enterica serovar Typhimurium is an intracellular bacterial pathogen which can colonize a variety of hosts, including human, causing syndromes that vary from gastroenteritis and diarrhea to systemic disease. RESULTS In this work we present structural information as well as insights into the in vivo function of YqiC, a 99-residue protein of S. Typhimurium, which belongs to the cluster of the orthologous group 2960 (COG2960). We found that YqiC shares biophysical and biochemical properties with Brucella abortus BMFP, the only previously characterized member of this group, such as a high alpha helix content, a coiled-coil domain involved in trimerization and a membrane fusogenic activity in vitro. In addition, we demonstrated that YqiC localizes at cytoplasmic and membrane subcellular fractions, that a S. Typhimurium yqiC deficient strain had a severe attenuation in virulence in the murine model when inoculated both orally and intraperitoneally, and was impaired to replicate at physiological and high temperatures in vitro, although it was still able to invade and replicate inside epithelial and macrophages cell lines. CONCLUSION This work firstly demonstrates the importance of a COG2960 member for pathogen-host interaction, and suggests a common function conserved among members of this group.
Collapse
Affiliation(s)
- Mariela C Carrica
- Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas s/n, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
27
|
OpnS, an outer membrane porin of Xenorhabdus nematophila, confers a competitive advantage for growth in the insect host. J Bacteriol 2009; 191:5471-9. [PMID: 19465651 DOI: 10.1128/jb.00148-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The gammaproteobacterium Xenorhabdus nematophila engages in a mutualistic association with an entomopathogenic nematode and also functions as a pathogen toward different insect hosts. We studied the role of the growth-phase-regulated outer membrane protein OpnS in host interactions. OpnS was shown to be a 16-stranded beta-barrel porin. opnS was expressed during growth in insect hemolymph and expression was elevated as the cell density increased. When wild-type and opnS deletion strains were coinjected into insects, the wild-type strain was predominantly recovered from the insect cadaver. Similarly, an opnS-complemented strain outcompeted the DeltaopnS strain. Coinjection of the wild-type and DeltaopnS strains together with uncolonized nematodes into insects resulted in nematode progeny that were almost exclusively colonized with the wild-type strain. Likewise, nematode progeny recovered after coinjection of a mixture of nematodes carrying either the wild-type or DeltaopnS strain were colonized by the wild-type strain. In addition, the DeltaopnS strain displayed a competitive growth defect when grown together with the wild-type strain in insect hemolymph but not in defined culture medium. The DeltaopnS strain displayed increased sensitivity to antimicrobial compounds, suggesting that deletion of OpnS affected the integrity of the outer membrane. These findings show that the OpnS porin confers a competitive advantage for the growth and/or the survival of X. nematophila in the insect host and provides a new model for studying the biological relevance of differential regulation of porins in a natural host environment.
Collapse
|
28
|
Gil F, Hernández-Lucas I, Polanco R, Pacheco N, Collao B, Villarreal JM, Nardocci G, Calva E, Saavedra CP. SoxS regulates the expression of the Salmonella enterica serovar Typhimurium ompW gene. MICROBIOLOGY-SGM 2009; 155:2490-2497. [PMID: 19460824 DOI: 10.1099/mic.0.027433-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OmpW of Salmonella enterica serovar Typhimurium has been described as a minor porin involved in osmoregulation, and is also affected by environmental conditions. Biochemical and genetic evidence from our laboratory indicates that OmpW is involved in efflux of and resistance towards paraquat (PQ), and its expression has been shown to be activated in response to oxidative stress. In this study we have explored ompW expression in response to PQ. Primer extension and transcriptional fusions showed that its expression was induced in the presence of PQ. In silico analyses suggested a putative binding site for the SoxS transcriptional factor at the ompW regulatory region. Electrophoretic mobility shift assays (EMSAs) and footprinting experiments showed that SoxS binds at a region that starts close to -54 and ends at about -197 upstream of the transcription start site. Transcriptional fusions support the relevance of this region in ompW activation. The SoxS site is in the forward orientation and its location suggests that the ompW gene has a class I SoxS-dependent promoter.
Collapse
Affiliation(s)
- F Gil
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - R Polanco
- Laboratorio de Bioquímica, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - N Pacheco
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - B Collao
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - J M Villarreal
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - G Nardocci
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - E Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - C P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
29
|
Lahiri A, Das P, Chakravortty D. Salmonella Typhimurium: insight into the multi-faceted role of the LysR-type transcriptional regulators in Salmonella. Int J Biochem Cell Biol 2009; 41:2129-33. [PMID: 19447191 DOI: 10.1016/j.biocel.2009.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/27/2009] [Accepted: 05/08/2009] [Indexed: 12/30/2022]
Abstract
The LysR-type transcriptional regulators (LTTRs) are widely distributed in various genera of prokaryotes. LTTRs are DNA binding proteins that can positively or negatively regulate target gene expression and can also repress their own transcription. Salmonella enterica comprises a group of Gram-negative bacteria capable of causing clinical syndromes that range from self-limiting diarrhoea to severe fibrinopurulent necrotizing enteritis and life threatening systemic disease. The survival and replication of Salmonella in macrophages and in infected host is brought about by the means of various two component regulatory systems, transporters and other virulence islands. In Salmonella genome the existence of 44 LTTRs has been documented. These LTTRs regulate bacterial stress response, systemic virulence in mice and also many virulence determinants in vitro. Here we focus on the findings that elucidate the structure and function of the LTTRs in Salmonella and discuss the importance of these LTTRs in making Salmonella a successful pathogen.
Collapse
Affiliation(s)
- Amit Lahiri
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
30
|
Involvement of the leucine response transcription factor LeuO in regulation of the genes for sulfa drug efflux. J Bacteriol 2009; 191:4562-71. [PMID: 19429622 DOI: 10.1128/jb.00108-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LeuO, a LysR family transcription factor, exists in a wide variety of bacteria of the family Enterobacteriaceae and is involved in the regulation of as yet unidentified genes affecting the stress response and pathogenesis expression. Using genomic screening by systematic evolution of ligands by exponential enrichment (SELEX) in vitro, a total of 106 DNA sequences were isolated from 12 different regions of the Escherichia coli genome. All of the SELEX fragments formed complexes in vitro with purified LeuO. After Northern blot analysis of the putative target genes located downstream of the respective LeuO-binding sequence, a total of nine genes were found to be activated by LeuO, while three genes were repressed by LeuO. The LeuO target gene collection included several multidrug resistance genes. A phenotype microarray assay was conducted to identify the gene(s) responsible for drug resistance and the drug species that are under the control of the LeuO target gene(s). The results described herein indicate that the yjcRQP operon, one of the LeuO targets, is involved in sensitivity control against sulfa drugs. We propose to rename the yjcRQP genes the sdsRQP genes (sulfa drug sensitivity determinant).
Collapse
|
31
|
De la Cruz MÁ, Merino E, Oropeza R, Téllez J, Calva E. The DNA static curvature has a role in the regulation of the ompS1 porin gene in Salmonella enterica serovar Typhi. MICROBIOLOGY-SGM 2009; 155:2127-2136. [PMID: 19406898 DOI: 10.1099/mic.0.028597-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The DNA static curvature has been described to play a key role as a regulatory element in the transcription process of several bacterial genes. Here, the role of DNA curvature in the expression of the ompS1 porin gene in Salmonella enterica serovar Typhi is described. The web server mutacurve was used to predict mutations that diminished or restored the extent of DNA curvature in the 5' regulatory region of ompS1. Using these predictions, curvature was diminished by site-directed mutagenesis of only two residues, and curvature was restored by further mutagenesis of the same two residues. Lowering the extent of DNA curvature resulted in an increase in ompS1 expression and in the diminution of the affinity of the silencer proteins H-NS and StpA for the ompS1 5' regulatory region. These mutations were in a region shown not to contain the H-NS nucleation site, consistent with the notion that the effect on expression was due to changes in DNA structural topology.
Collapse
Affiliation(s)
- Miguel Ángel De la Cruz
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62260, Mexico
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62260, Mexico
| | - Ricardo Oropeza
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62260, Mexico
| | - Juan Téllez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62260, Mexico
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62260, Mexico
| |
Collapse
|
32
|
Sankar TS, Neelakanta G, Sangal V, Plum G, Achtman M, Schnetz K. Fate of the H-NS-repressed bgl operon in evolution of Escherichia coli. PLoS Genet 2009; 5:e1000405. [PMID: 19266030 PMCID: PMC2646131 DOI: 10.1371/journal.pgen.1000405] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 02/05/2009] [Indexed: 11/18/2022] Open
Abstract
In the enterobacterial species Escherichia coli and Salmonella enterica, expression of horizontally acquired genes with a higher than average AT content is repressed by the nucleoid-associated protein H-NS. A classical example of an H-NS–repressed locus is the bgl (aryl-β,D-glucoside) operon of E. coli. This locus is “cryptic,” as no laboratory growth conditions are known to relieve repression of bgl by H-NS in E. coli K12. However, repression can be relieved by spontaneous mutations. Here, we investigated the phylogeny of the bgl operon. Typing of bgl in a representative collection of E. coli demonstrated that it evolved clonally and that it is present in strains of the phylogenetic groups A, B1, and B2, while it is presumably replaced by a cluster of ORFans in the phylogenetic group D. Interestingly, the bgl operon is mutated in 20% of the strains of phylogenetic groups A and B1, suggesting erosion of bgl in these groups. However, bgl is functional in almost all B2 isolates and, in approximately 50% of them, it is weakly expressed at laboratory growth conditions. Homologs of bgl genes exist in Klebsiella, Enterobacter, and Erwinia species and also in low GC-content Gram-positive bacteria, while absent in E. albertii and Salmonella sp. This suggests horizontal transfer of bgl genes to an ancestral Enterobacterium. Conservation and weak expression of bgl in isolates of phylogenetic group B2 may indicate a functional role of bgl in extraintestinal pathogenic E. coli. Horizontal gene transfer, an important mechanism in bacterial adaptation and evolution, requires mechanisms to avoid uncontrolled and possibly disadvantageous expression of the transferred genes. Recently, it was shown that the protein H-NS selectively silences genes gained by horizontal transfer in enteric bacteria. Regulated expression of these genes can then evolve and be integrated into the regulatory network of the new host. Our analysis of the catabolic bgl (aryl-β,D-glucoside) operon, which is silenced by H-NS in E. coli, provides a snapshot on the evolution of such a locus. Genes of the bgl operon were presumably gained by horizontal transfer from Gram-positive bacteria to ancestral enteric bacteria. In E. coli, the bgl operon co-evolved with the diversification of the species into four phylogenetic groups. In one phylogenetic group the bgl operon is functional. However, in two other phylogenetic groups, bgl accumulates disrupting mutations, and it is absent in the fourth group. This indicates that the H-NS–silenced bgl operon evolved differently in E. coli and is presumably positively selected in one phylogenetic group, while it is neutrally or negatively selected in the other groups.
Collapse
Affiliation(s)
| | | | - Vartul Sangal
- Department of Molecular Biology, Max-Planck Institute for Infection Biology, Berlin, Germany
- Department of Microbiology and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Georg Plum
- Institute for Medical Microbiology, Immunology, and Hygiene, University of Cologne, Cologne, Germany
| | - Mark Achtman
- Department of Microbiology and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Karin Schnetz
- Institute for Genetics, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
33
|
Oropeza R, Calva E. The cysteine 354 and 277 residues ofSalmonella entericaserovar Typhi EnvZ are determinants of autophosphorylation and OmpR phosphorylation. FEMS Microbiol Lett 2009; 292:282-90. [DOI: 10.1111/j.1574-6968.2009.01502.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
34
|
The LysR-type transcriptional regulator LeuO controls expression of several genes in Salmonella enterica serovar Typhi. J Bacteriol 2007; 190:1658-70. [PMID: 18156266 DOI: 10.1128/jb.01649-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LeuO is a LysR-type transcriptional regulator that has been implicated in the bacterial stringent response and in the virulence of Salmonella. A genomic analysis with Salmonella enterica serovar Typhi revealed that LeuO is a positive regulator of OmpS1, OmpS2, AssT, and STY3070. In contrast, LeuO down-regulated the expression of OmpX, Tpx, and STY1978. Transcriptional fusions supported the positive and negative LeuO regulation. Expression of ompS1, assT, and STY3070 was induced in an hns mutant, consistent with the notion that H-NS represses these genes; transcriptional activity was lower for tpx and STY1978 in an hns background, suggesting that this global regulatory protein has a positive effect. In contrast, ompS2 and ompX expression appeared to be H-NS independent. LeuO specifically bound to the 5' intergenic regions of ompS2, assT, STY3070, ompX, and tpx, while it was not observed to bind to the promoter region of STY1978, suggesting that LeuO regulates in direct and indirect ways. In this work, a novel set of genes belonging to the LeuO regulon are described; interestingly, these genes are involved in a variety of biological processes, suggesting that LeuO is a global regulator in Salmonella.
Collapse
|
35
|
Regulation of the yjjQ-bglJ operon, encoding LuxR-type transcription factors, and the divergent yjjP gene by H-NS and LeuO. J Bacteriol 2007; 190:926-35. [PMID: 18055596 DOI: 10.1128/jb.01447-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yjjQ and bglJ genes encode LuxR-type transcription factors conserved in several enterobacterial species. YjjQ is a potential virulence factor in avian pathogenic Escherichia coli. BglJ counteracts the silencing of the bgl (beta-glucoside) operon by H-NS in E. coli K-12. Here we show that yjjQ and bglJ form an operon carried by E. coli K-12, whose expression is repressed by the histone-like nucleoid structuring (H-NS) protein. The LysR-type transcription factor LeuO counteracts this repression. Furthermore, the yjjP gene, encoding a membrane protein of unknown function and located upstream in divergent orientation to the yjjQ-bglJ operon, is likewise repressed by H-NS. Mapping of the promoters as well as the H-NS and LeuO binding sites within the 555-bp intergenic region revealed that H-NS binds to the center of the AT-rich regulatory region and distal to the divergent promoters. LeuO sites map to the center and to positions distal to the yjjQ promoters, while one LeuO binding site overlaps with the divergent yjjP promoter. This latter LeuO site is required for full derepression of the yjjQ promoters. The arrangement of regulatory sites suggests that LeuO restructures the nucleoprotein complex formed by H-NS. Furthermore, the data support the conclusion that LeuO, whose expression is likewise repressed by H-NS and which is a virulence factor in Salmonella enterica, is a master regulator that among other loci, also controls the yjjQ-bglJ operon and thus indirectly the presumptive targets of YjjQ and BglJ.
Collapse
|
36
|
De la Cruz MA, Fernández-Mora M, Guadarrama C, Flores-Valdez MA, Bustamante VH, Vázquez A, Calva E. LeuO antagonizes H-NS and StpA-dependent repression in Salmonella enterica ompS1. Mol Microbiol 2007; 66:727-43. [PMID: 17908208 DOI: 10.1111/j.1365-2958.2007.05958.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ompS1 gene encodes a quiescent porin in Salmonella enterica. We analysed the effects of H-NS and StpA, a paralogue of H-NS, on ompS1 expression. In an hns single mutant expression was derepressed but did not reach the maximum level. Expression in an stpA single mutant showed the same low repressed level as the wild type. In contrast, in an hns stpA background, OmpS1 became abundant in the outer membrane. The expression of ompS1 was positively regulated by LeuO, a LysR-type quiescent regulator that has been involved in pathogenesis. Upon induction of the cloned leuO gene into the wild type, ompS1 was completely derepressed and the OmpS1 porin was detected in the outer membrane. LeuO activated the P1 promoter in an OmpR-dependent manner and P2 in the absence of OmpR. LeuO bound upstream of the regulatory region of ompS1 overlapping with one nucleation site of H-NS and StpA. Our results are thus consistent with a model where H-NS binds at a nucleation site and LeuO displaces H-NS and StpA.
Collapse
Affiliation(s)
- Miguel Angel De la Cruz
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62260 México
| | | | | | | | | | | | | |
Collapse
|
37
|
Li C, Edwards MD, Jeong H, Roth J, Booth IR. Identification of mutations that alter the gating of the Escherichia coli mechanosensitive channel protein, MscK. Mol Microbiol 2007; 64:560-74. [PMID: 17493135 PMCID: PMC1890815 DOI: 10.1111/j.1365-2958.2007.05672.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanosensitive channels allow bacteria to survive rapid increases in turgor pressure. Substantial questions remain as to how these channels sense and respond to mechanical stress. Here we describe a set of mutants with alterations in their MscK channel protein. The mutants were detected fortuitously by their enhanced ability to modify the accumulation of quinolinic acid. Some amino acid changes lie in the putative pore region of MscK, but others affect sequences that lie amino-terminal to the domain aligning with MscS. We demonstrate that the alterations in MscK cause the channel to open more frequently in the absence of excessive mechanical stress. This is manifested in changes in sensitivity to external K+ by cells expressing the mutant proteins. Single-channel analysis highlighted a range of gating behaviours: activation at lower pressures than the wild type, inability to achieve the fully open state or a modified requirement for K+. Thus, the dominant uptake phenotype of these mutants may result from a defect in their ability to regulate the gating of MscK. The locations of the substituted residues suggest that the overall gating mechanism of MscK is comparable to that of MscS, but with subtleties introduced by the additional protein sequences in MscK.
Collapse
Affiliation(s)
- Chan Li
- School of Medical Sciences, University of Aberdeen, Institute of Medical SciencesForesterhill, Aberdeen AB25 2ZD, UK.
| | - Michelle D Edwards
- School of Medical Sciences, University of Aberdeen, Institute of Medical SciencesForesterhill, Aberdeen AB25 2ZD, UK.
- * For correspondence. E-mail ; Tel. (+44) 1224 555761; Fax (+44) 1224 555844
| | - Hochterl Jeong
- College of Biological Sciences, Section of Microbiology, University of CaliforniaDavis, CA 95616-5270, USA.
| | - John Roth
- College of Biological Sciences, Section of Microbiology, University of CaliforniaDavis, CA 95616-5270, USA.
| | - Ian R Booth
- School of Medical Sciences, University of Aberdeen, Institute of Medical SciencesForesterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|