1
|
Murphy BT, Wiepen JJ, Graham DE, Swanson SK, Kashipathy MM, Cooper A, Battaile KP, Johnson DK, Florens L, Blevins JS, Lovell S, Zückert WR. Borrelia burgdorferi BB0346 is an Essential, Structurally Variant LolA Homolog that is Primarily Required for Homeostatic Localization of Periplasmic Lipoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606844. [PMID: 39149330 PMCID: PMC11326224 DOI: 10.1101/2024.08.06.606844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In diderm bacteria, the Lol pathway canonically mediates the periplasmic transport of lipoproteins from the inner membrane (IM) to the outer membrane (OM) and therefore plays an essential role in bacterial envelope homeostasis. After extrusion of modified lipoproteins from the IM via the LolCDE complex, the periplasmic chaperone LolA carries lipoproteins through the periplasm and transfers them to the OM lipoprotein insertase LolB, itself a lipoprotein with a LolA-like fold. Yet, LolB homologs appear restricted to γ-proteobacteria and are missing from spirochetes like the tick-borne Lyme disease pathogen Borrelia burgdorferi, suggesting a different hand-off mechanism at the OM. Here, we solved the crystal structure of the B. burgdorferi LolA homolog BB0346 (LolABb) at 1.9 Å resolution. We identified multiple structural deviations in comparative analyses to other solved LolA structures, particularly a unique LolB-like protruding loop domain. LolABb failed to complement an Escherichia coli lolA knockout, even after codon optimization, signal I peptide adaptation, and a C-terminal chimerization which had allowed for complementation with an α-proteobacterial LolA. Analysis of a conditional B. burgdorferi lolA knockout strain indicated that LolABb was essential for growth. Intriguingly, protein localization assays indicated that initial depletion of LolABb led to an emerging mislocalization of both IM and periplasmic OM lipoproteins, but not surface lipoproteins. Together, these findings further support the presence of two separate primary secretion pathways for periplasmic and surface OM lipoproteins in B. burgdorferi and suggest that the distinct structural features of LolABb allow it to function in a unique LolB-deficient lipoprotein sorting system.
Collapse
Affiliation(s)
- Bryan T. Murphy
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics & Immunology, Kansas City, Kansas
| | - Jacob J. Wiepen
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics & Immunology, Kansas City, Kansas
| | - Danielle E. Graham
- University of Arkansas for Medical Sciences, Department of Microbiology & Immunology, Little Rock, Arkansas
| | | | - Maithri M. Kashipathy
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, 98109, USA
| | - Anne Cooper
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, 98109, USA
- University of Kansas, Protein Structure and X-ray Crystallography Laboratory, Lawrence, Kansas
| | | | - David K. Johnson
- University of Kansas, Protein Structure and X-ray Crystallography Laboratory, Lawrence, Kansas
| | | | - Jon S. Blevins
- University of Arkansas for Medical Sciences, Department of Microbiology & Immunology, Little Rock, Arkansas
| | - Scott Lovell
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, 98109, USA
- University of Kansas, Protein Structure and X-ray Crystallography Laboratory, Lawrence, Kansas
| | - Wolfram R. Zückert
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics & Immunology, Kansas City, Kansas
| |
Collapse
|
2
|
He H, Pramanik AS, Swanson SK, Johnson DK, Florens L, Zückert WR. A Borrelia burgdorferi LptD homolog is required for flipping of surface lipoproteins through the spirochetal outer membrane. Mol Microbiol 2023; 119:752-767. [PMID: 37170643 PMCID: PMC10330739 DOI: 10.1111/mmi.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Borrelia spirochetes are unique among diderm bacteria in their lack of lipopolysaccharide (LPS) in the outer membrane (OM) and their abundance of surface-exposed lipoproteins with major roles in transmission, virulence, and pathogenesis. Despite their importance, little is known about how surface lipoproteins are translocated through the periplasm and the OM. Here, we characterized Borrelia burgdorferi BB0838, a distant homolog of the OM LPS assembly protein LptD. Using a CRISPR interference approach, we showed that BB0838 is required for cell growth and envelope stability. Upon BB0838 knockdown, surface lipoprotein OspA was retained in the inner leaflet of the OM, as determined by its inaccessibility to in situ proteolysis but its presence in OM vesicles. The topology of the OM porin/adhesin P66 remained unaffected. Quantitative mass spectrometry of the B. burgdorferi membrane-associated proteome confirmed the selective periplasmic retention of surface lipoproteins under BB0838 knockdown conditions. Additional analysis identified a single in situ protease-accessible BB0838 peptide that mapped to a predicted β-barrel surface loop. Alphafold Multimer modeled a B. burgdorferi LptB2 FGCAD complex spanning the periplasm. Together, this suggests that BB0838/LptDBb facilitates the essential terminal step in spirochetal surface lipoprotein secretion, using an orthologous OM component of a pathway that secretes LPS in proteobacteria.
Collapse
Affiliation(s)
- Huan He
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics and Immunology, Kansas City, Kansas, USA
| | - Ankita S. Pramanik
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics and Immunology, Kansas City, Kansas, USA
| | | | - David K. Johnson
- University of Kansas, Computational Chemical Biology Core, Lawrence, Kansas, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Wolfram R. Zückert
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics and Immunology, Kansas City, Kansas, USA
| |
Collapse
|
3
|
Yuste RA, Muenkel M, Axarlis K, Gómez Benito MJ, Reuss A, Blacker G, Tal MC, Kraiczy P, Bastounis EE. Borrelia burgdorferi modulates the physical forces and immunity signaling in endothelial cells. iScience 2022; 25:104793. [PMID: 35992087 PMCID: PMC9389243 DOI: 10.1016/j.isci.2022.104793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Borrelia burgdorferi (Bb), a vector-borne bacterial pathogen and the causative agent of Lyme disease, can spread to distant tissues in the human host by traveling in and through monolayers of endothelial cells (ECs) lining the vasculature. To examine whether Bb alters the physical forces of ECs to promote its dissemination, we exposed ECs to Bb and observed a sharp and transient increase in EC traction and intercellular forces, followed by a prolonged decrease in EC motility and physical forces. All variables returned to baseline at 24 h after exposure. RNA sequencing analysis revealed an upregulation of innate immune signaling pathways during early but not late Bb exposure. Exposure of ECs to heat-inactivated Bb recapitulated only the early weakening of EC mechanotransduction. The differential responses to live versus heat-inactivated Bb indicate a tight interplay between innate immune signaling and physical forces in host ECs and suggest their active modulation by Bb. Early exposure to Borrelia decreases endothelial cell motility and physical forces Early exposure to Borrelia also upregulates the host’s innate immune signaling pathways Host cell mechanics and signaling return to steady state at late exposure times Exposure to dead bacteria steadily reduces motility and physical forces of host cells
Collapse
|
4
|
Shoji M, Shibata S, Sueyoshi T, Naito M, Nakayama K. Biogenesis of Type V pili. Microbiol Immunol 2020; 64:643-656. [DOI: 10.1111/1348-0421.12838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Mikio Shoji
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences Nagasaki University Nagasaki Nagasaki Japan
| | - Satoshi Shibata
- Molecular Cryo‐Electron Microscopy Unit Okinawa Institute of Science and Technology Graduate University Onna Okinawa Japan
| | - Takayuki Sueyoshi
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences Nagasaki University Nagasaki Nagasaki Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences Nagasaki University Nagasaki Nagasaki Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences Nagasaki University Nagasaki Nagasaki Japan
| |
Collapse
|
5
|
Abstract
Spirochetes form a separate phylum of bacteria with two membranes but otherwise unusual morphologies and envelope structures. Distinctive common features of Borrelia, Leptospira, and Treponema include the sequestration of flagella to the periplasm and thin peptidoglycan cell walls that are more closely associated with the inner membrane. Outer membrane compositions differ significantly between the genera. Leptospira most closely track Gram-negative bacteria due to the incorporation of lipopolysaccharides. Treponema and Borrelia outer membranes lack lipopolysaccharide, with treponemes expressing only a few outer membrane proteins and Borrelia displaying a dizzying diversity of abundant surface lipoproteins instead. Phylogenetic and experimental evidence indicates that spirochetes have adapted various modules of bacterial export and secretion pathways to build and maintain their envelopes. Export and insertion pathways in the inner membrane appear conserved, while spirochetal experimentation with various envelope architectures over time has led to variations in secretion pathways in the periplasm and outer membrane. Classical type I to III secretion systems have been identified, with demonstrated roles in drug efflux and export of flagellar proteins only. Unique activities of periplasmic proteases, including a C-terminal protease, are involved in maturation of some periplasmic proteins. Proper lipoprotein sorting within the periplasm appears to be dependent on functional Lol pathways that lack the outer membrane lipoprotein insertase LolB. The abundance of surface lipoproteins in Borrelia and detailed protein sorting studies suggest a lipoprotein secretion pathway that either extends Lol through the outer membrane or bypasses it altogether. Proteins can be released from cells in outer membrane vesicles or, rarely, as soluble proteins.
Collapse
|
6
|
Tokarz R, Tagliafierro T, Caciula A, Mishra N, Thakkar R, Chauhan LV, Sameroff S, Delaney S, Wormser GP, Marques A, Lipkin WI. Identification of immunoreactive linear epitopes of Borrelia miyamotoi. Ticks Tick Borne Dis 2019; 11:101314. [PMID: 31636001 DOI: 10.1016/j.ttbdis.2019.101314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 11/19/2022]
Abstract
Borrelia miyamotoi is an emerging tick-borne spirochete transmitted by ixodid ticks. Current serologic assays for B. miyamotoi are impacted by genetic similarities to other Borrelia and limited understanding of optimal antigenic targets. In this study, we employed the TBD-Serochip, a peptide array platform, to identify new linear targets for serologic detection of B. miyamotoi. We examined a wide range of suspected B. miyamotoi antigens and identified 352 IgM and 91 IgG reactive peptides, with the majority mapping to variable membrane proteins. These included peptides within conserved fragments of variable membrane proteins that may have greater potential for differential diagnosis. We also identified reactive regions on FlaB, and demonstrate crossreactivity of B. burgdorferi s.l. C6 with a B. miyamotoi C6-like peptide. The panel of linear peptides identified in this study can be used to enhance serodiagnosis of B. miyamotoi.
Collapse
Affiliation(s)
- Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States.
| | - Teresa Tagliafierro
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Adrian Caciula
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Nischay Mishra
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Riddhi Thakkar
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Lokendra V Chauhan
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Shannon Delaney
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Gary P Wormser
- Division of Infectious Diseases, New York Medical College, Valhalla, NY, United States
| | - Adriana Marques
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
7
|
Abstract
Lipoproteins are produced by both Gram-positive and Gram-negative bacteria. Once secreted, lipoproteins are quickly acylated, anchoring them into the plasma membrane. Recent work has shown that Gram-positive bacteria are able to generate considerable diversity in the acylation of their lipoproteins, though the mechanisms involved are only just beginning to emerge. In Gram-negative organisms, most lipoproteins are subsequently trafficked to the outer membrane (OM). Lipoprotein trafficking is an essential pathway in these bacteria. At least one OM lipoprotein component is required by each of the essential machines that assemble the OM (such as the Bam and Lpt machines) and build the peptidoglycan cell wall (Lpo-penicillin-binding protein complexes). The Lol pathway has been the paradigm for OM lipoprotein trafficking: a complex of LolCDE extracts lipoproteins from the plasma membrane, LolA shuttles them through the periplasmic space, and LolB anchors them into the OM. The peptide signals responsible for OM-targeting via LolCDE have long been known for Escherichia coli. Remarkably, production of novel lipoprotein acyl forms in E. coli has reinforced the idea that lipid signals also contribute to OM targeting via LolCDE. Moreover, recent work has shown that lipoprotein trafficking can occur in E. coli without either LolA or LolB. Therefore, current evidence suggests that at least one additional, LolAB-independent route for OM lipoprotein trafficking exists. This chapter reviews the posttranslocation modifications of all lipoproteins, with a focus on the trafficking of lipoproteins to the OM of Gram-negative bacteria.
Collapse
|
8
|
Abstract
The spirochetes Borrelia (Borreliella) burgdorferi and Borrelia hermsii, the etiologic agents of Lyme disease and relapsing fever, respectively, cycle in nature between an arthropod vector and a vertebrate host. They have extraordinarily unusual genomes that are highly segmented and predominantly linear. The genetic analyses of Lyme disease spirochetes have become increasingly more sophisticated, while the age of genetic investigation in the relapsing fever spirochetes is just dawning. Molecular tools available for B. burgdorferi and related species range from simple selectable markers and gene reporters to state-of-the-art inducible gene expression systems that function in the animal model and high-throughput mutagenesis methodologies, despite nearly overwhelming experimental obstacles. This armamentarium has empowered borreliologists to build a formidable genetic understanding of the cellular physiology of the spirochete and the molecular pathogenesis of Lyme disease.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| | - D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
9
|
Affiliation(s)
- Marcin Grabowicz
- Department of Microbiology and Immunology; Emory University School of Medicine; Atlanta GA 30322 USA
- Division of Infectious Disease; Department of Medicine; Emory University School of Medicine; Atlanta GA 30322 USA
| |
Collapse
|
10
|
Aslam B, Nisar MA, Khurshid M, Farooq Salamat MK. Immune escape strategies of Borrelia burgdorferi. Future Microbiol 2017; 12:1219-1237. [PMID: 28972415 DOI: 10.2217/fmb-2017-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The borrelial resurge demonstrates that Borrelia burgdorferi is a persistent health problem. This spirochete is responsible for a global public health concern called Lyme disease. B. burgdorferi faces diverse environmental conditions of its vector and host during its life cycle. To circumvent the host immune system is a prominent feature of B. burgdorferi. To date, numerous studies have reported on the various mechanisms used by this pathogen to evade the host defense mechanisms. This current review attempts to consolidate this information to describe the immunological and molecular methods used by B. burgdorferi for its survival.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan.,College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
11
|
Comprehensive Spatial Analysis of the Borrelia burgdorferi Lipoproteome Reveals a Compartmentalization Bias toward the Bacterial Surface. J Bacteriol 2017; 199:JB.00658-16. [PMID: 28069820 DOI: 10.1128/jb.00658-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi is unique among bacteria in its large number of lipoproteins that are encoded by a small, exceptionally fragmented, and predominantly linear genome. Peripherally anchored in either the inner or outer membrane and facing either the periplasm or the external environment, these lipoproteins assume varied roles. A prominent subset of lipoproteins functioning as the apparent linchpins of the enzootic tick-vertebrate infection cycle have been explored as vaccine targets. Yet, most of the B. burgdorferi lipoproteome has remained uncharacterized. Here, we comprehensively and conclusively localize the B. burgdorferi lipoproteome by applying established protein localization assays to a newly generated epitope-tagged lipoprotein expression library and by validating the obtained individual protein localization results using a sensitive global mass spectrometry approach. The derived consensus localization data indicate that 86 of the 125 analyzed lipoproteins encoded by B. burgdorferi are secreted to the bacterial surface. Thirty-one of the remaining 39 periplasmic lipoproteins are retained in the inner membrane, with only 8 lipoproteins being anchored in the periplasmic leaflet of the outer membrane. The localization of 10 lipoproteins was further defined or revised, and 52 surface and 23 periplasmic lipoproteins were newly localized. Cross-referencing prior studies revealed that the borrelial surface lipoproteome contributing to the host-pathogen interface is encoded predominantly by plasmids. Conversely, periplasmic lipoproteins are encoded mainly by chromosomal loci. These studies close a gap in our understanding of the functional lipoproteome of an important human pathogen and set the stage for more in-depth studies of thus-far-neglected spirochetal lipoproteins.IMPORTANCE The small and exceptionally fragmented genome of the Lyme disease spirochete Borrelia burgdorferi encodes over 120 lipoproteins. Studies in the field have predominantly focused on a relatively small number of surface lipoproteins that play important roles in the transmission and pathogenesis of this global human pathogen. Yet, a comprehensive spatial assessment of the entire borrelial lipoproteome has been missing. The current study newly identifies 52 surface and 23 periplasmic lipoproteins. Overall, two-thirds of the B. burgdorferi lipoproteins localize to the surface, while outer membrane lipoproteins facing the periplasm are rare. This analysis underscores the dominant contribution of lipoproteins to the spirochete's rather complex and adaptable host-pathogen interface, and it encourages further functional exploration of its lipoproteome.
Collapse
|
12
|
Abstract
Lipoproteins are lipid-modified proteins that dominate the spirochetal proteome. While found in all bacteria, spirochetal lipoproteins have unique features and play critical roles in spirochete biology. For this reason, considerable effort has been devoted to determining how the lipoproteome is generated. Essential features of the structural elements of lipoproteins are now understood with greater clarity, enabling greater confidence in identification of lipoproteins from genomic sequences. The journey from the ribosome to the outer membrane, and in some cases, to the cellular surface has been defined, including secretion, lipidation, sorting, and export across the outer membrane. Given their abundance and importance, it is not surprising that spirochetes have developed a number of strategies for regulating the spatiotemporal expression of lipoproteins. In some cases, lipoprotein expression is tied to various environmental cues, while in other cases, it is linked to growth rate. This regulation enables spirochetes to express certain lipoproteins at high levels in one phase of the spirochete lifecycle, while dramatically downregulating the same lipoproteins in other phases. The mammalian host has developed specialized mechanisms for recognizing lipoproteins and triggering an immune response. Evasion of that immune response is essential for spirochete persistence. For this reason, spirochetes have developed mechanisms for altering lipoproteins. Lipoproteins recognized by antibodies formed during infection are key serodiagnostic antigens. In addition, lipoprotein vaccines have been developed for generating an immune response to control or prevent a spirochete infection. This chapter summarizes our current understanding of lipoproteins in interactions of spirochetes with their hosts.
Collapse
|
13
|
Narita SI, Tokuda H. Bacterial lipoproteins; biogenesis, sorting and quality control. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1414-1423. [PMID: 27871940 DOI: 10.1016/j.bbalip.2016.11.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022]
Abstract
Bacterial lipoproteins are a subset of membrane proteins localized on either leaflet of the lipid bilayer. These proteins are anchored to membranes through their N-terminal lipid moiety attached to a conserved Cys. Since the protein moiety of most lipoproteins is hydrophilic, they are expected to play various roles in a hydrophilic environment outside the cytoplasmic membrane. Gram-negative bacteria such as Escherichia coli possess an outer membrane, to which most lipoproteins are sorted. The Lol pathway plays a central role in the sorting of lipoproteins to the outer membrane after lipoprotein precursors are processed to mature forms in the cytoplasmic membrane. Most lipoproteins are anchored to the inner leaflet of the outer membrane with their protein moiety in the periplasm. However, recent studies indicated that some lipoproteins further undergo topology change in the outer membrane, and play critical roles in the biogenesis and quality control of the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
| | - Hajime Tokuda
- University of Morioka, Takizawa, Iwate 020-0694, Japan.
| |
Collapse
|
14
|
Abstract
Bacteria of the phylum Bacteroidetes, including commensal organisms and opportunistic pathogens, harbor abundant surface-exposed multiprotein membrane complexes (Sus-like systems) involved in carbohydrate acquisition. These complexes have been mostly linked to commensalism, and in some instances, they have also been shown to play a role in pathogenesis. Sus-like systems are mainly composed of lipoproteins anchored to the outer membrane and facing the external milieu. This lipoprotein localization is uncommon in most studied Gram-negative bacteria, while it is widespread in Bacteroidetes. Little is known about how these complexes assemble and particularly about how lipoproteins reach the bacterial surface. Here, by bioinformatic analyses, we identify a lipoprotein export signal (LES) at the N termini of surface-exposed lipoproteins of the human pathogen Capnocytophaga canimorsus corresponding to K-(D/E)2 or Q-A-(D/E)2. We show that, when introduced in sialidase SiaC, an intracellular lipoprotein, this signal is sufficient to target the protein to the cell surface. Mutational analysis of the LES in this reporter system showed that the amino acid composition, position of the signal sequence, and global charge are critical for lipoprotein surface transport. These findings were further confirmed by the analysis of the LES of mucinase MucG, a naturally surface-exposed C. canimorsus lipoprotein. Furthermore, we identify a LES in Bacteroides fragilis and Flavobacterium johnsoniae surface lipoproteins that allow C. canimorsus surface protein exposure, thus suggesting that Bacteroidetes share a new bacterial lipoprotein export pathway that flips lipoproteins across the outer membrane. Bacteria of the phylum Bacteroidetes are important human commensals and pathogens. Understanding their biology is therefore a key question for human health. A main feature of these bacteria is the presence of abundant lipoproteins at their surface that play a role in nutrient acquisition. To date, the underlying mechanism of lipoprotein transport is unknown. We show for the first time that Bacteroidetes surface lipoproteins share an N-terminal signal that drives surface localization. The localization and overall negative charge of the lipoprotein export signal (LES) are crucial for its role. Overall, our findings provide the first evidence that Bacteroidetes are endowed with a new bacterial lipoprotein export pathway that flips lipoproteins across the outer membrane.
Collapse
|
15
|
Szewczyk J, Collet JF. The Journey of Lipoproteins Through the Cell: One Birthplace, Multiple Destinations. Adv Microb Physiol 2016; 69:1-50. [PMID: 27720009 DOI: 10.1016/bs.ampbs.2016.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial lipoproteins are a very diverse group of proteins characterized by the presence of an N-terminal lipid moiety that serves as a membrane anchor. Lipoproteins have a wide variety of crucial functions, ranging from envelope biogenesis to stress response. In Gram-negative bacteria, lipoproteins can be targeted to various destinations in the cell, including the periplasmic side of the cytoplasmic or outer membrane, the cell surface or the external milieu. The sorting mechanisms have been studied in detail in Escherichia coli, but exceptions to the rules established in this model bacterium exist in other bacteria. In this chapter, we will present the current knowledge on lipoprotein sorting in the cell. Our particular focus will be on the surface-exposed lipoproteins that appear to be much more common than previously assumed. We will discuss the different targeting strategies, provide numerous examples of surface-exposed lipoproteins and discuss the techniques used to assess their surface exposure.
Collapse
Affiliation(s)
- J Szewczyk
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - J-F Collet
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
16
|
Becker K, Sander P. Mycobacterium tuberculosis lipoproteins in virulence and immunity - fighting with a double-edged sword. FEBS Lett 2016; 590:3800-3819. [PMID: 27350117 DOI: 10.1002/1873-3468.12273] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/06/2016] [Accepted: 06/26/2016] [Indexed: 02/06/2023]
Abstract
Bacterial lipoproteins are secreted membrane-anchored proteins characterized by a lipobox motif. This lipobox motif directs post-translational modifications at the conserved cysteine through the consecutive action of three enzymes: Lgt, LspA and Lnt, which results in di- or triacylated forms. Lipoproteins are abundant in all bacteria including Mycobacterium tuberculosis and often involved in virulence and immunoregulatory processes. On the one hand, disruption of the biosynthesis pathway of lipoproteins leads to attenuation of M. tuberculosis in vivo, and mycobacteria deficient for certain lipoproteins have been assessed as attenuated live vaccine candidates. On the other hand, several mycobacterial lipoproteins form immunodominant antigens which promote an immune response. Some of these have been explored in DNA or subunit vaccination approaches against tuberculosis. The immune recognition of specific lipoproteins, however, might also benefit long-term survival of M. tuberculosis through immune modulation, while others induce protective responses. Exploiting lipoproteins as vaccines is thus a complex matter which requires deliberative investigation. The dual role of lipoproteins in the immunity to and pathogenicity of mycobacteria is discussed here.
Collapse
Affiliation(s)
- Katja Becker
- Institute of Medical Microbiology, University of Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Switzerland
| |
Collapse
|
17
|
Wilson MM, Bernstein HD. Surface-Exposed Lipoproteins: An Emerging Secretion Phenomenon in Gram-Negative Bacteria. Trends Microbiol 2015; 24:198-208. [PMID: 26711681 DOI: 10.1016/j.tim.2015.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 01/07/2023]
Abstract
Bacterial lipoproteins are hydrophilic proteins that are anchored to a cell membrane by N-terminally linked fatty acids. It is widely believed that nearly all lipoproteins produced by Gram-negative bacteria are either retained in the inner membrane (IM) or transferred to the inner leaflet of the outer membrane (OM). Lipoproteins that are exposed on the cell surface have also been reported but are generally considered to be rare. Results from a variety of recent studies, however, now suggest that the prevalence of surface-exposed lipoproteins has been underestimated. In this review we describe the evidence that the surface exposure of lipoproteins in Gram-negative bacteria is a widespread phenomenon and discuss possible mechanisms by which these proteins might be transported across the OM.
Collapse
Affiliation(s)
- Marlena M Wilson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Goolab S, Roth RL, van Heerden H, Crampton MC. Analyzing the molecular mechanism of lipoprotein localization in Brucella. Front Microbiol 2015; 6:1189. [PMID: 26579096 PMCID: PMC4623201 DOI: 10.3389/fmicb.2015.01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 01/18/2023] Open
Abstract
Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria are well characterized and may be useful to infer a solution to better understand the translocation process in Brucella.
Collapse
Affiliation(s)
- Shivani Goolab
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Robyn L. Roth
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Michael C. Crampton
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| |
Collapse
|
19
|
Lemgruber L, Sant'Anna C, Griffths C, Abud Y, Mhlanga M, Wallich R, Frischknecht F. Nanoscopic Localization of Surface-Exposed Antigens of Borrelia burgdorferi. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:680-688. [PMID: 25739645 DOI: 10.1017/s1431927615000318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Borrelia burgdorferi sensu lato, the causative agent of Lyme disease, is transmitted to humans through the bite of infected Ixodes spp. ticks. Successful infection of vertebrate hosts necessitates sophisticated means of the pathogen to escape the vertebrates' immune system. One strategy employed by Lyme disease spirochetes to evade adaptive immunity involves a highly coordinated regulation of the expression of outer surface proteins that is vital for infection, dissemination, and persistence. Here we characterized the expression pattern of bacterial surface antigens using different microscopy techniques, from fluorescent wide field to super-resolution and immunogold-scanning electron microscopy. A fluorescent strain of B. burgdorferi spirochetes was labeled with monoclonal antibodies directed against various bacterial surface antigens. Our results indicate that OspA is more evenly distributed over the surface than OspB and OspC that were present as punctate areas.
Collapse
Affiliation(s)
- Leandro Lemgruber
- 1Department of Infectious Diseases - Parasitology,Im Neuenheimer Feld 324,University of Heidelberg Medical School,69120, Heidelberg,Germany
| | - Celso Sant'Anna
- 2Laboratory of Microscopy for Life Sciences,Diretoria de Metrologia Aplicada às Ciências da Vida - Dimav,Instituto Nacional de Metrologia,Qualidade e Tecnologia - Inmetro,25250-020,Duque de Caxias,Rio de Janeiro,Brazil
| | - Caron Griffths
- 4Gene Expression and Biophysics Group,Synthetic Biology Emerging Research Area,Council for Scientific and Industrial Research,Box 395,Pretoria 0001S,South Africa
| | - Yuri Abud
- 2Laboratory of Microscopy for Life Sciences,Diretoria de Metrologia Aplicada às Ciências da Vida - Dimav,Instituto Nacional de Metrologia,Qualidade e Tecnologia - Inmetro,25250-020,Duque de Caxias,Rio de Janeiro,Brazil
| | - Musa Mhlanga
- 4Gene Expression and Biophysics Group,Synthetic Biology Emerging Research Area,Council for Scientific and Industrial Research,Box 395,Pretoria 0001S,South Africa
| | - Reinhard Wallich
- 5Institute for Immunology,Im Neuenheimer Feld 305,University of Heidelberg Medical School,69120,Heidelberg,Germany
| | - Friedrich Frischknecht
- 1Department of Infectious Diseases - Parasitology,Im Neuenheimer Feld 324,University of Heidelberg Medical School,69120, Heidelberg,Germany
| |
Collapse
|
20
|
Abstract
The outer membrane (OM) is the front line of leptospiral interactions with their environment and the mammalian host. Unlike most invasive spirochetes, pathogenic leptospires must be able to survive in both free-living and host-adapted states. As organisms move from one set of environmental conditions to another, the OM must cope with a series of conflicting challenges. For example, the OM must be porous enough to allow nutrient uptake, yet robust enough to defend the cell against noxious substances. In the host, the OM presents a surface decorated with adhesins and receptors for attaching to, and acquiring, desirable host molecules such as the complement regulator, Factor H.Factor H. On the other hand, the OM must enable leptospires to evade detection by the host's immune system on their way from sites of invasion through the bloodstream to the protected niche of the proximal tubule. The picture that is emerging of the leptospiral OM is that, while it shares many of the characteristics of the OMs of spirochetes and Gram-negative bacteria, it is also unique and different in ways that make it of general interest to microbiologists. For example, unlike most other pathogenic spirochetes, the leptospiral OM is rich in lipopolysaccharide (LPS). Leptospiral LPS is similar to that of Gram-negative bacteria but has a number of unique structural features that may explain why it is not recognized by the LPS-specific Toll-like receptor 4 of humans. As in other spirochetes, lipoproteins are major components of the leptospiral OM, though their roles are poorly understood. The functions of transmembrane outer membrane proteins (OMPs) in many cases are better understood, thanks to homologies with their Gram-negative counterparts and the emergence of improved genetic techniques. This chapter will review recent discoveries involving the leptospiral OM and its role in leptospiral physiology and pathogenesis.
Collapse
Affiliation(s)
- David A Haake
- Division of Infectious Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA,
| | | |
Collapse
|
21
|
Konovalova A, Perlman DH, Cowles CE, Silhavy TJ. Transmembrane domain of surface-exposed outer membrane lipoprotein RcsF is threaded through the lumen of β-barrel proteins. Proc Natl Acad Sci U S A 2014; 111:E4350-8. [PMID: 25267629 PMCID: PMC4205638 DOI: 10.1073/pnas.1417138111] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RcsF (regulator of capsule synthesis) is an outer membrane (OM) lipoprotein that functions to sense defects such as changes in LPS. However, LPS is found in the outer leaflet, and RcsF was thought to be tethered to the inner leaflet by its lipidated N terminus, raising the question of how it monitors LPS. We show that RcsF has a transmembrane topology with the lipidated N terminus on the cell surface and the C-terminal signaling domain in the periplasm. Strikingly, the short, unstructured, charged transmembrane domain is threaded through the lumen of β-barrel OM proteins where it is protected from the hydrophobic membrane interior. We present evidence that these unusual complexes, which contain one protein inside another, are formed by the Bam complex that assembles all β-barrel proteins in the OM. The ability of the Bam complex to expose lipoproteins at the cell surface underscores the mechanistic versatility of the β-barrel assembly machine.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544
| | - David H Perlman
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544
| | - Charles E Cowles
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544
| | - Thomas J Silhavy
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544
| |
Collapse
|
22
|
Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1509-16. [PMID: 24780125 DOI: 10.1016/j.bbamcr.2014.04.022] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 11/20/2022]
Abstract
Bacterial lipoproteins are peripherally anchored membrane proteins that play a variety of roles in bacterial physiology and virulence in monoderm (single membrane-enveloped, e.g., gram-positive) and diderm (double membrane-enveloped, e.g., gram-negative) bacteria. After export of prolipoproteins through the cytoplasmic membrane, which occurs predominantly but not exclusively via the general secretory or Sec pathway, the proteins are lipid-modified at the cytoplasmic membrane in a multistep process that involves sequential modification of a cysteine residue and cleavage of the signal peptide by the signal II peptidase Lsp. In both monoderms and diderms, signal peptide processing is preceded by acylation with a diacylglycerol through preprolipoprotein diacylglycerol transferase (Lgt). In diderms but also some monoderms, lipoproteins are further modified with a third acyl chain through lipoprotein N-acyl transferase (Lnt). Fully modified lipoproteins that are destined to be anchored in the inner leaflet of the outer membrane (OM) are selected, transported and inserted by the Lol (lipoprotein outer membrane localization) pathway machinery, which consists of the inner-membrane (IM) ABC transporter-like LolCDE complex, the periplasmic LolA chaperone and the OM LolB lipoprotein receptor. Retention of lipoproteins in the cytoplasmic membrane results from Lol avoidance signals that were originally described as the "+2 rule". Surface localization of lipoproteins in diderms is rare in most bacteria, with the exception of several spirochetal species. Type 2 (T2SS) and type 5 (T5SS) secretion systems are involved in secretion of specific surface lipoproteins of γ-proteobacteria. In the model spirochete Borrelia burgdorferi, surface lipoprotein secretion does not follow established sorting rules, but remains dependent on N-terminal peptide sequences. Secretion through the outer membrane requires maintenance of lipoproteins in a translocation-competent unfolded conformation, likely through interaction with a periplasmic holding chaperone, which delivers the proteins to an outer membrane lipoprotein flippase. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
|
23
|
Brangulis K, Petrovskis I, Kazaks A, Tars K, Ranka R. Crystal structure of the infectious phenotype-associated outer surface protein BBA66 from the Lyme disease agent Borrelia burgdorferi. Ticks Tick Borne Dis 2013; 5:63-8. [PMID: 24246708 DOI: 10.1016/j.ttbdis.2013.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 11/16/2022]
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease is transmitted to the mammalian host organisms by infected Ixodes ticks. Transfer of the spirochaetal bacteria from Ixodes ticks to the warm-blooded mammalian organism provides a challenge for the bacteria to adapt and survive in the different environmental conditions. B. burgdorferi has managed to differentially express genes in response to the encountered changes such as temperature and pH variance or metabolic rate to survive in both environments. In recent years, much interest has been turned on genes that are upregulated during the borrelial transfer to mammalian organisms as this could reveal the proteins important in the pathogenesis of Lyme disease. BBA66 is one of the upregulated outer surface proteins thought to be important in the pathogenesis of B. burgdorferi as it has been found out that BBA66 is necessary during the transmission and propagation phase to initiate Lyme disease. As there is still little known about the pathogenesis of B. burgdorferi, we have solved the crystal structure of the outer surface protein BBA66 at 2.25Å resolution. A monomer of BBA66 consists of 6 α-helices packed in a globular domain, and the overall folding is similar to the homologous proteins BBA64, BBA73, and CspA. Structure-based sequence alignment with the homologous protein BBA64 revealed that the conserved residues are mainly located inwards the core region of the protein and thus may be required to maintain the overall fold of the protein. Unlike the other homologous proteins, BBA66 has an atypically long disordered region at the N terminus thought to act as a "tether" between the structural domain and the cell surface.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Ratsupites 1, LV-1067 Riga, Latvia; Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia.
| | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Life Sciences Laboratory 240 Thatcher Way Amherst, MA 01003, USA.
| |
Collapse
|
25
|
Brisson D, Zhou W, Jutras BL, Casjens S, Stevenson B. Distribution of cp32 prophages among Lyme disease-causing spirochetes and natural diversity of their lipoprotein-encoding erp loci. Appl Environ Microbiol 2013; 79:4115-28. [PMID: 23624478 PMCID: PMC3697573 DOI: 10.1128/aem.00817-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/25/2013] [Indexed: 12/19/2022] Open
Abstract
Lyme disease spirochetes possess complex genomes, consisting of a main chromosome and 20 or more smaller replicons. Among those small DNAs are the cp32 elements, a family of prophages that replicate as circular episomes. All complete cp32s contain an erp locus, which encodes surface-exposed proteins. Sequences were compared for all 193 erp alleles carried by 22 different strains of Lyme disease-causing spirochete to investigate their natural diversity and evolutionary histories. These included multiple isolates from a focus where Lyme disease is endemic in the northeastern United States and isolates from across North America and Europe. Bacteria were derived from diseased humans and from vector ticks and included members of 5 different Borrelia genospecies. All erp operon 5'-noncoding regions were found to be highly conserved, as were the initial 70 to 80 bp of all erp open reading frames, traits indicative of a common evolutionary origin. However, the majority of the protein-coding regions are highly diverse, due to numerous intra- and intergenic recombination events. Most erp alleles are chimeras derived from sequences of closely related and distantly related erp sequences and from unknown origins. Since known functions of Erp surface proteins involve interactions with various host tissue components, this diversity may reflect both their multiple functions and the abilities of Lyme disease-causing spirochetes to successfully infect a wide variety of vertebrate host species.
Collapse
Affiliation(s)
- Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Zhou
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brandon L. Jutras
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sherwood Casjens
- Department of Pathology, Division of Microbiology and Immunology, University of Utah Medical School, Salt Lake City, Utah, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
26
|
Zückert WR. A call to order at the spirochaetal host-pathogen interface. Mol Microbiol 2013; 89:207-11. [PMID: 23750784 DOI: 10.1111/mmi.12286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 12/28/2022]
Abstract
As the Lyme disease spirochaete Borrelia burgdorferi shuttles back and forth between arthropod vector and vertebrate host, it encounters vastly different and hostile environments. Major mechanisms contributing to the success of this pathogen throughout this complex transmission cycle are phase and antigenic variation of abundant and serotype-defining surface lipoproteins. These peripherally membrane-anchored virulence factors mediate niche-specific interactions with vector/host factors and protect the spirochaete from the perils of the mammalian immune response. In this issue of Molecular Microbiology, Tilly, Bestor and Rosa redefine the roles of two lipoproteins, OspC and VlsE, during mammalian infection. Using a variety of promoter fusions in combination with a sensitive in vivo 'use it or lose it' gene complementation assay, the authors demonstrate that proper sequential expression of OspC followed by VlsE indeed matters. A previously suggested general functional redundancy between these and other lipoproteins is shown to be limited and dependent on an immunodeficient experimental setting that is arguably of diminished ecological relevance. These data reinforce the notion that OspC plays a unique role during initial infection while the antigenically variant VlsE proteins allow for persistence in the mammalian host.
Collapse
Affiliation(s)
- Wolfram R Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas School of Medicine, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
27
|
Nakayama H, Kurokawa K, Lee BL. Lipoproteins in bacteria: structures and biosynthetic pathways. FEBS J 2012; 279:4247-68. [PMID: 23094979 DOI: 10.1111/febs.12041] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/02/2012] [Accepted: 10/19/2012] [Indexed: 11/29/2022]
Abstract
Bacterial lipoproteins are characterized by the presence of a conserved N-terminal lipid-modified cysteine residue that allows the hydrophilic protein to anchor onto bacterial cell membranes. These proteins play important roles in a wide variety of bacterial physiological processes, including virulence, and induce innate immune reactions by functioning as ligands of the mammalian Toll-like receptor 2. We review recent advances in our understanding of bacterial lipoprotein structure, biosynthesis and structure-function relationships between bacterial lipoproteins and Toll-like receptor 2. Notably, 40 years after the first report of the triacyl structure of Braun's lipoprotein in Escherichia coli, recent intensive MS-based analyses have led to the discovery of three new lipidated structures of lipoproteins in monoderm bacteria: the lyso, N-acetyl and peptidyl forms. Moreover, the bacterial lipoprotein structure is considered to be constant in each bacterium; however, lipoprotein structures in Staphylococcus aureus vary between the diacyl and triacyl forms depending on the environmental conditions. Thus, the lipidation state of bacterial lipoproteins, particularly in monoderm bacteria, is more complex than previously assumed.
Collapse
Affiliation(s)
- Hiroshi Nakayama
- Biomolecular Characterization Team, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
| | | | | |
Collapse
|
28
|
A phylum level analysis reveals lipoprotein biosynthesis to be a fundamental property of bacteria. Protein Cell 2012; 3:163-70. [PMID: 22410786 DOI: 10.1007/s13238-012-2023-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bacterial lipoproteins are proteins that are post-translationally modified with a diacylglyceride at an N-terminal cysteine, which serves to tether these proteins to the outer face of the plasma membrane or to the outer membrane. This paper reviews recent insights into the enzymology of bacterial lipoprotein biosynthesis and localization. Moreover, we use bioinformatic analyses of bacterial lipoprotein signal peptide features and of the key biosynthetic enzymes to consider the distribution of lipoprotein biosynthesis at the phylum level. These analyses support the important conclusion that lipoprotein biosynthesis is a fundamental pathway utilized across the domain bacteria. Moreover, with the exception of a small number of sequences likely to derive from endosymbiont genomes, the enzymes of bacterial lipoprotein biosynthesis appear unique to bacteria, making this pathway an attractive target for the development of novel antimicrobials. Whilst lipoproteins with comparable signal peptide features are encoded in the genomes of Archaea, it is clear that these lipoproteins have a distinctive biosynthetic pathway that has yet to be characterized.
Collapse
|
29
|
Phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt) of Escherichia coli has seven transmembrane segments, and its essential residues are embedded in the membrane. J Bacteriol 2012; 194:2142-51. [PMID: 22287519 DOI: 10.1128/jb.06641-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lgt of Escherichia coli catalyzes the transfer of an sn-1,2-diacylglyceryl group from phosphatidylglycerol to prolipoproteins. The enzyme is essential for growth, as demonstrated here by the analysis of an lgt depletion strain. Cell fractionation demonstrated that Lgt is an inner membrane protein. Its membrane topology was determined by fusing Lgt to β-galactosidase and alkaline phosphatase and by substituted cysteine accessibility method (SCAM) studies. The data show that Lgt is embedded in the membrane by seven transmembrane segments, that its N terminus faces the periplasm, and that its C terminus faces the cytoplasm. Highly conserved amino acids in Lgt of both Gram-negative and Gram-positive bacteria were identified. Lgt enzymes are characterized by a so-called Lgt signature motif in which four residues are invariant. Ten conserved residues were replaced with alanine, and the activity of these Lgt variants was analyzed by their ability to complement the lgt depletion strain. Residues Y26, N146, and G154 are absolutely required for Lgt function, and R143, E151, R239, and E243 are important. The results demonstrate that the majority of the essential residues of Lgt are located in the membrane and that the Lgt signature motif faces the periplasm.
Collapse
|
30
|
Probing the Borrelia burgdorferi surface lipoprotein secretion pathway using a conditionally folding protein domain. J Bacteriol 2011; 193:6724-32. [PMID: 21965569 DOI: 10.1128/jb.06042-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Surface lipoproteins of Borrelia spirochetes are important virulence determinants in the transmission and pathogenesis of Lyme disease and relapsing fever. To further define the conformational secretion requirements and to identify potential lipoprotein translocation intermediates associated with the bacterial outer membrane (OM), we generated constructs in which Borrelia burgdorferi outer surface lipoprotein A (OspA) was fused to calmodulin (CaM), a conserved eukaryotic protein undergoing calcium-dependent folding. Protein localization assays showed that constructs in which CaM was fused to full-length wild-type (wt) OspA or to an intact OspA N-terminal "tether" peptide retained their competence for OM translocation even in the presence of calcium. In contrast, constructs in which CaM was fused to truncated or mutant OspA N-terminal tether peptides were targeted to the periplasmic leaflet of the OM in the presence of calcium but could be flipped to the bacterial surface upon calcium chelation. This indicated that in the absence of an intact tether peptide, unfolding of the CaM moiety was required in order to facilitate OM traversal. Together, these data further support a periplasmic tether peptide-mediated mechanism to prevent premature folding of B. burgdorferi surface lipoproteins. The specific shift in the OM topology of sequence-identical lipopeptides due to a single-variable change in environmental conditions also indicates that surface-bound Borrelia lipoproteins can localize transiently to the periplasmic leaflet of the OM.
Collapse
|
31
|
Determination of Borrelia surface lipoprotein anchor topology by surface proteolysis. J Bacteriol 2011; 193:6379-83. [PMID: 21908659 DOI: 10.1128/jb.05849-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used a surface trypsinolysis assay to probe accessibility of the membrane-proximal N-terminal tether peptides of Borrelia surface lipoproteins OspA and Vsp1. Our findings with both wild-type and mutant proteins are only compatible with the anchoring of these surface lipoproteins in the outer leaflet of the outer spirochetal membrane.
Collapse
|
32
|
Specificity and role of the Borrelia burgdorferi CtpA protease in outer membrane protein processing. J Bacteriol 2011; 193:5759-65. [PMID: 21856844 DOI: 10.1128/jb.05622-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To further characterize the function of the Borrelia burgdorferi C-terminal protease CtpA, we used site-directed mutagenesis to alter the putative CtpA cleavage site of one of its known substrates, the outer membrane (OM) porin P13. These mutations resulted in only partial blockage of P13 processing. Ectopic expression of a C-terminally truncated P13 in B. burgdorferi indicated that the C-terminal peptide functions as a safeguard against misfolding or mislocalization prior to its proteolytic removal by CtpA. In a parallel study of Borrelia burgdorferi lipoprotein sorting mechanisms, we observed a lower-molecular-weight variant of surface lipoprotein OspC that was particularly prominent with OspC mutants that mislocalized to the periplasm or contained C-terminal epitope tags. Further investigation revealed that the variant resulted from C-terminal proteolysis by CtpA. Together, these findings indicate that CtpA rather promiscuously targets polypeptides that lack structurally constrained C termini, as proteolysis appears to occur independently of a specific peptide recognition sequence. Low-level processing of surface lipoproteins such as OspC suggests the presence of a CtpA-dependent quality control mechanism that may sense proper translocation of integral outer membrane proteins and surface lipoproteins by detecting the release of C-terminal peptides.
Collapse
|