1
|
Yu XA, McLean C, Hehemann JH, Angeles-Albores D, Wu F, Muszyński A, Corzett CH, Azadi P, Kujawinski EB, Alm EJ, Polz MF. Low-level resource partitioning supports coexistence among functionally redundant bacteria during successional dynamics. THE ISME JOURNAL 2024; 18:wrad013. [PMID: 38365244 PMCID: PMC10811730 DOI: 10.1093/ismejo/wrad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 02/18/2024]
Abstract
Members of microbial communities can substantially overlap in substrate use. However, what enables functionally redundant microorganisms to coassemble or even stably coexist remains poorly understood. Here, we show that during unstable successional dynamics on complex, natural organic matter, functionally redundant bacteria can coexist by partitioning low-concentration substrates even though they compete for one simple, dominant substrate. We allowed ocean microbial communities to self-assemble on leachates of the brown seaweed Fucus vesiculosus and then analyzed the competition among 10 taxonomically diverse isolates representing two distinct stages of the succession. All, but two isolates, exhibited an average of 90% ± 6% pairwise overlap in resource use, and functional redundancy of isolates from the same assembly stage was higher than that from between assembly stages, leading us to construct a simpler four-isolate community with two isolates from each of the early and late stages. We found that, although the short-term dynamics of the four-isolate communities in F. vesiculosus leachate was dependent on initial isolate ratios, in the long term, the four isolates stably coexist in F. vesiculosus leachate, albeit with some strains at low abundance. We therefore explored the potential for nonredundant substrate use by genomic content analysis and RNA expression patterns. This analysis revealed that the four isolates mainly differed in peripheral metabolic pathways, such as the ability to degrade pyrimidine, leucine, and tyrosine, as well as aromatic substrates. These results highlight the importance of fine-scale differences in metabolic strategies for supporting the frequently observed coexistence of large numbers of rare organisms in natural microbiomes.
Collapse
Affiliation(s)
- Xiaoqian Annie Yu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Division of Microbial Ecology, Department of Microbiology and Ecosystems Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Craig McLean
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
- MIT/WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Jan-Hendrik Hehemann
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - David Angeles-Albores
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Fuqing Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Christopher H Corzett
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Eric J Alm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, United States
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Martin F Polz
- Division of Microbial Ecology, Department of Microbiology and Ecosystems Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
2
|
Facimoto CT, Clements KD, White WL, Handley KM. Bacteroidia and Clostridia are equipped to degrade a cascade of polysaccharides along the hindgut of the herbivorous fish Kyphosus sydneyanus. ISME COMMUNICATIONS 2024; 4:ycae102. [PMID: 39165393 PMCID: PMC11333855 DOI: 10.1093/ismeco/ycae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
The gut microbiota of the marine herbivorous fish Kyphosus sydneyanus are thought to play an important role in host nutrition by supplying short-chain fatty acids (SCFAs) through fermentation of dietary red and brown macroalgae. Here, using 645 metagenome-assembled genomes (MAGs) from wild fish, we determined the capacity of different bacterial taxa to degrade seaweed carbohydrates along the gut. Most bacteria (99%) were unclassified at the species level. Gut communities and CAZyme-related transcriptional activity were dominated by Bacteroidia and Clostridia. Both classes possess genes CAZymes acting on internal polysaccharide bonds, suggesting their role initiating glycan depolymerization, followed by rarer Gammaproteobacteria and Verrucomicrobiae. Results indicate that Bacteroidia utilize substrates in both brown and red algae, whereas other taxa, namely, Clostridia, Bacilli, and Verrucomicrobiae, utilize mainly brown algae. Bacteroidia had the highest CAZyme gene densities overall, and Alistipes were especially enriched in CAZyme gene clusters (n = 73 versus just 62 distributed across all other taxa), pointing to an enhanced capacity for macroalgal polysaccharide utilization (e.g., alginate, laminarin, and sulfated polysaccharides). Pairwise correlations of MAG relative abundances and encoded CAZyme compositions provide evidence of potential inter-species collaborations. Co-abundant MAGs exhibited complementary degradative capacities for specific substrates, and flexibility in their capacity to source carbon (e.g., glucose- or galactose-rich glycans), possibly facilitating coexistence via niche partitioning. Results indicate the potential for collaborative microbial carbohydrate metabolism in the K. sydneyanus gut, that a greater variety of taxa contribute to the breakdown of brown versus red dietary algae, and that Bacteroidia encompass specialized macroalgae degraders.
Collapse
Affiliation(s)
- Cesar T Facimoto
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Kendall D Clements
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - W Lindsey White
- Department of Environmental Science, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Kim M Handley
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
3
|
Zhu S, Sun X, Li Y, Feng X, Gao B. The common origin and degenerative evolution of flagella in Actinobacteria. mBio 2023; 14:e0252623. [PMID: 38019005 PMCID: PMC10746217 DOI: 10.1128/mbio.02526-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/19/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Flagellar motility plays an important role in the environmental adaptation of bacteria and is found in more than 50% of known bacterial species. However, this important characteristic is sparsely distributed within members of the phylum Actinobacteria, which constitutes one of the largest bacterial groups. It is unclear why this important fitness organelle is absent in most actinobacterial species and the origin of flagellar genes in other species. Here, we present detailed analyses of the evolution of flagellar genes in Actinobacteria, in conjunction with the ecological distribution and cell biological features of major actinobacterial lineages, and the co-evolution of signal transduction systems. The results presented in addition to clarifying the puzzle of sporadic distribution of flagellar motility in Actinobacteria, also provide important insights into the evolution of major lineages within this phylum.
Collapse
Affiliation(s)
- Siqi Zhu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, Hainan, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xian Sun
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, Hainan, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Yuqian Li
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, Hainan, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Xueyin Feng
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, Hainan, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, Hainan, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Fine-Scale Structuring of Planktonic Vibrio spp. in the Chinese Marginal Seas. Appl Environ Microbiol 2022; 88:e0126222. [PMID: 36346224 PMCID: PMC9746320 DOI: 10.1128/aem.01262-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vibrio is ubiquitous in marine environments with high metabolism flexibility and genome plasticity. Studies have investigated the ecological distribution of Vibrio spp. in several narrow zones, but a broad scale pattern of distribution and community assembly is still lacking. Here, we elucidated the distribution of Vibrio spp. in seawater along the Chinese marginal seas with a high spatial range. Comparison of Vibrio abundance between 3- and 0.2-μm-pore-size membranes showed distinction in preferential lifestyle. Vibrio spp. in the Yellow Sea (YS) was low in abundance and adopted a particle-associated lifestyle, whereas that in the East China Sea (ECS) and South China Sea (SCS) was more abundant and was likely in a temporary free-living state as a strategy to cope with nutrient limitation. Vibrio community compositions were also separated by sampling area, with different dominant groups in YS (Vibrio chagasii and Vibrio harveyi), ECS and SCS (Vibrio japonicus and V. chagasii). The community niche breadth was significantly wider in ECS and SCS than that of YS. Among species, V. chagasii and V. harveyi had the largest niche breadths likely reflecting strong competitive positions. Stochastic processes played important roles in shaping the geographical pattern of the vibrionic community. Environmental selection (e.g., temperature, salinity, and dissolved oxygen) had a much greater impact on the community in surface than in bottom water. The large proportions of unexplained variations (78.9%) imply complex mechanisms in their community assembly. Our study provides insights into the spatial distribution patterns and underlying assembly mechanisms of Vibrio at a broad spatial scale. IMPORTANCE Vibrio spp. may exert large impacts on biogeochemical cycling in coastal habitats, and their ecological importance has drawn increasing attention. Here, we investigated the spatial distribution pattern and community assembly of Vibrio populations along the Chinese marginal seas, spanning a wide spatial scale. Our results showed that the abundances of the Vibrio population increased with decreasing latitude and their preferential lifestyle differed among adjacent coastal areas. The compositions of Vibrio spp. were also separated by geographical location, which was mainly attributable to stochastic processes. Overall, this work contributes to the understanding of the ecological distribution patterns and the community assembly mechanisms of marine vibrios at a high spatial range. The large proportion of unexplained variations indicates the existence of complex mechanisms in the assembly of vibrionic community which should be considered comprehensively in future.
Collapse
|
5
|
Silva SG, Paula P, da Silva JP, Mil-Homens D, Teixeira MC, Fialho AM, Costa R, Keller-Costa T. Insights into the Antimicrobial Activities and Metabolomes of Aquimarina ( Flavobacteriaceae, Bacteroidetes) Species from the Rare Marine Biosphere. Mar Drugs 2022; 20:423. [PMID: 35877716 PMCID: PMC9323603 DOI: 10.3390/md20070423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Two novel natural products, the polyketide cuniculene and the peptide antibiotic aquimarin, were recently discovered from the marine bacterial genus Aquimarina. However, the diversity of the secondary metabolite biosynthetic gene clusters (SM-BGCs) in Aquimarina genomes indicates a far greater biosynthetic potential. In this study, nine representative Aquimarina strains were tested for antimicrobial activity against diverse human-pathogenic and marine microorganisms and subjected to metabolomic and genomic profiling. We found an inhibitory activity of most Aquimarina strains against Candida glabrata and marine Vibrio and Alphaproteobacteria species. Aquimarina sp. Aq135 and Aquimarina muelleri crude extracts showed particularly promising antimicrobial activities, amongst others against methicillin-resistant Staphylococcus aureus. The metabolomic and functional genomic profiles of Aquimarina spp. followed similar patterns and were shaped by phylogeny. SM-BGC and metabolomics networks suggest the presence of novel polyketides and peptides, including cyclic depsipeptide-related compounds. Moreover, exploration of the ‘Sponge Microbiome Project’ dataset revealed that Aquimarina spp. possess low-abundance distributions worldwide across multiple marine biotopes. Our study emphasizes the relevance of this member of the microbial rare biosphere as a promising source of novel natural products. We predict that future metabologenomics studies of Aquimarina species will expand the spectrum of known secondary metabolites and bioactivities from marine ecosystems.
Collapse
Affiliation(s)
- Sandra Godinho Silva
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Patrícia Paula
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - José Paulo da Silva
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Dalila Mil-Homens
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Miguel Cacho Teixeira
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Arsénio Mendes Fialho
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Rodrigo Costa
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Tina Keller-Costa
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
6
|
Kauffman KM, Chang WK, Brown JM, Hussain FA, Yang J, Polz MF, Kelly L. Resolving the structure of phage-bacteria interactions in the context of natural diversity. Nat Commun 2022; 13:372. [PMID: 35042853 PMCID: PMC8766483 DOI: 10.1038/s41467-021-27583-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial communities are shaped by viral predators. Yet, resolving which viruses (phages) and bacteria are interacting is a major challenge in the context of natural levels of microbial diversity. Thus, fundamental features of how phage-bacteria interactions are structured and evolve in the wild remain poorly resolved. Here we use large-scale isolation of environmental marine Vibrio bacteria and their phages to obtain estimates of strain-level phage predator loads, and use all-by-all host range assays to discover how phage and host genomic diversity shape interactions. We show that lytic interactions in environmental interaction networks (as observed in agar overlay) are sparse-with phage predator loads being low for most bacterial strains, and phages being host-strain-specific. Paradoxically, we also find that although overlap in killing is generally rare between tailed phages, recombination is common. Together, these results suggest that recombination during cryptic co-infections is an important mode of phage evolution in microbial communities. In the development of phages for bioengineering and therapeutics it is important to consider that nucleic acids of introduced phages may spread into local phage populations through recombination, and that the likelihood of transfer is not predictable based on lytic host range.
Collapse
Affiliation(s)
- Kathryn M Kauffman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Oral Biology, The University at Buffalo, Buffalo, NY, 14214, USA
| | - William K Chang
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Julia M Brown
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Fatima A Hussain
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Joy Yang
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Libusha Kelly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
7
|
Coons AK, Busch K, Lenz M, Hentschel U, Borchert E. Biogeography rather than substrate type determines bacterial colonization dynamics of marine plastics. PeerJ 2021; 9:e12135. [PMID: 34603853 PMCID: PMC8445087 DOI: 10.7717/peerj.12135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/18/2021] [Indexed: 01/04/2023] Open
Abstract
Since the middle of the 20th century, plastics have been incorporated into our everyday lives at an exponential rate. In recent years, the negative impacts of plastics, especially as environmental pollutants, have become evident. Marine plastic debris represents a relatively new and increasingly abundant substrate for colonization by microbial organisms, although the full functional potential of these organisms is yet to be uncovered. In the present study, we investigated plastic type and incubation location as drivers of marine bacterial community structure development on plastics, i.e., the Plastisphere, via 16S rRNA amplicon analysis. Four distinct plastic types: high-density polyethylene (HDPE), linear low-density polyethylene (LDPE), polyamide (PA), polymethyl methacrylate (PMMA), and glass-slide controls were incubated for five weeks in the coastal waters of four different biogeographic locations (Cape Verde, Chile, Japan, South Africa) during July and August of 2019. The primary driver of the coastal Plastisphere composition was identified as incubation location, i.e., biogeography, while substrate type did not have a significant effect on bacterial community composition. The bacterial communities were consistently dominated by the classes Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia, irrespective of sampling location or substrate type, however a core bacterial Plastisphere community was not observable at lower taxonomic levels. Overall, this study sheds light on the question of whether bacterial communities on plastic debris are shaped by the physicochemical properties of the substrate they grow on or by the marine environment in which the plastics are immersed. This study enhances the current understanding of biogeographic variability in the Plastisphere by including biofilms from plastics incubated in the previously uncharted Southern Hemisphere.
Collapse
Affiliation(s)
- Ashley K Coons
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Kathrin Busch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Mark Lenz
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany.,Christian-Albrechts-University Kiel, Kiel, Schleswig-Holstein, Germany
| | - Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
8
|
Genomic and molecular evolutionary dynamics of transcriptional response regulator genes in bacterial species of the Harveyi clade of Vibrio. Gene 2021; 783:145577. [PMID: 33737123 DOI: 10.1016/j.gene.2021.145577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022]
Abstract
Transcriptional response regulators (TRR) are the most abundant signal transducers in prokaryotic systems that mediate intracellular changes in response to environmental signals. They are involved in a wide range of biological processes that allow bacteria to persist in particular habitats. There is strong evidence that the bacterial habitat and their lifestyle influence the size of their TRR genetic repertoire. Therefore, it would be expected that the evolution of bacterial genomes could be linked to natural selection processes. To test this hypothesis, we explored the evolutionary dynamics of TRR genes of the widely studied Harveyi clade of the genus Vibrio at the molecular and genomic levels. Our results suggest that the TRR genetic repertoire of the species belonging to the Harveyi clade is a product of genomic reduction and expansion. The gene loss and gains that drive their genomic reduction and expansion could be attributed to natural selection and random genetic drift. It seems that natural selection acts to maintain the ancestral state of core TRR genes (shared by all species) by purifying processes and could be driving the loss of some accessory (found in certain species) genes through the diversification of sequences. The neutrality observed in gene gain could be attributed to spontaneous events as horizontal gene transfer driven by stochastic events as occurs in random genetic drift.
Collapse
|
9
|
Chen Y, Zhang Z, Zhang H, Luo H, Li Z. Characteristics of soil bacterial and fungal communities on interval seawater covering Linchang Island, China. Arch Microbiol 2021; 203:2453-2461. [PMID: 33666689 DOI: 10.1007/s00203-021-02268-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/03/2020] [Accepted: 02/26/2021] [Indexed: 11/30/2022]
Abstract
Characterization of microbial communities is important for understanding the soil biodiversity distribution affected by environmental factors. Here, we combined high-throughput sequencing of 16S rDNA and ITS to investigate the composition of bacterial and fungal communities in interval seawater covering Linchang Island, China. We compared the microbial communities in the soil of three sample points from the southern part to the northern part. No difference was observed in microbial abundance, richness and diversity in those three different locations. In addition, weighted and unweighted UniFrac distances revealed that three soil samples could not be separated from each other, even if the LCNS sample had significantly lower organic matter (OM), sodium and sulfate contents than the LCSS and LCMS samples. This result indicated that the microbial community of the soil may be influenced more strongly by interval seawater than by soil chemical characteristics. The bacterial phyla Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes were the four most abundant phyla in all samples, accounting for 83.22% of the microbial community. Escherichia-Shigella and Vibrio were abundant in the samples and accounted for 1.17% and 0.27%, respectively. Fungal structure, phylogenetic diversity, richness, and bacterial structure had a significant negative relationship with Vibrio abundance. In addition, Vibrio showed negative correlations with the genera Simiduia, Microbulbifer and Haliangium. The results reveal that the re-shaped microbiome and introduced typical microbes could be strategies for inhibiting Vibrio in the soil of Linchang Island.
Collapse
Affiliation(s)
- Yonggan Chen
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean UniversityMinistry of Education, Sanya, 572022, China.,Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, 572022, China.,College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Zhenhua Zhang
- Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China.
| | - Haonan Zhang
- Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Hongwei Luo
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Zhen Li
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, China
| |
Collapse
|
10
|
Antibiotic Susceptibility Testing (AST) Reports: A Basis for Environmental/Epidemiological Surveillance and Infection Control Amongst Environmental Vibrio cholerae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165685. [PMID: 32781601 PMCID: PMC7460427 DOI: 10.3390/ijerph17165685] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
Distribution, investigation, surveillance and control (DISC) of cholera outbreaks in endemic/non-endemic regions has been a concerted approach towards the management of the causal pathogen. Relevant organization, government, health systems and the public have implemented several steps towards controlling the menace, yet pathogen continues to occur with diverse phenotypes/genotypes of high clinical and epidemiological relevance. The study determines antibiotic susceptibility/resistance pattern of Vibrio cholerae isolates retrieved from six domestic water sources between March and August 2018. Serological and molecular typing methods (polymerase chain reaction or PCR) were used to confirm the isolates identity. Antibiotic susceptibility testing was conducted using six commonly employed antibiotics of V. cholerae according to the recommendation of Clinical Laboratory Standard and European Committee for Antimicrobial Susceptibility Testing with other relevant antibiotics of investigative epidemiology and infection control, employing both disc diffusion test and PCR gene detection. Samples presumptive counts ranged between 1.10 to 7.91 log10 CFU/mL. Amongst the 759 presumptive isolates retrieved, sixty-one were confirmed as V. cholerae which were further serogrouped as Non-O1/Non-O139 V. cholerae. Various V. cholerae resistant phenotypes/genoytypes were detected vis: carbapenemase (CR-Vc; 31.1%/5.3%). New Delhi Metallobetalactamase (NDM-1-Vc; 23.0%/42.5%), extended spectrum betalactamase (ESBL-Vc; 42.6%/blaTEM:86,7%), chloramphenicol resistance (62.3%/Flor: 46.2%}, tetracycline resistance (70.5%/46.7%), AmpC resistance (21.0 (34.4%/56.7%)) and various other resistant genotypes/phenotypes. It was observed that more than 50% of the confirmed V. cholerae isolates possess resistance to two or more antibiotic classes/groups with multiple antibiotic resistance index (MARI) ranging from 0.031 to 0.5. This observation provides necessary information and updates for surveillance, planning and implementation of control strategies for cholera. It would also encourage decision making, formulation of policy by the government and cholera control authorities.
Collapse
|
11
|
Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, Fernandez-Guerra A, Liebeke M, Schweder T, Polz MF, Hehemann JH. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol 2020; 5:1026-1039. [PMID: 32451471 DOI: 10.1038/s41564-020-0720-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Brown algae are important players in the global carbon cycle by fixing carbon dioxide into 1 Gt of biomass annually, yet the fate of fucoidan-their major cell wall polysaccharide-remains poorly understood. Microbial degradation of fucoidans is slower than that of other polysaccharides, suggesting that fucoidans are more recalcitrant and may sequester carbon in the ocean. This may be due to the complex, branched and highly sulfated structure of fucoidans, which also varies among species of brown algae. Here, we show that 'Lentimonas' sp. CC4, belonging to the Verrucomicrobia, acquired a remarkably complex machinery for the degradation of six different fucoidans. The strain accumulated 284 putative fucoidanases, including glycoside hydrolases, sulfatases and carbohydrate esterases, which are primarily located on a 0.89-megabase pair plasmid. Proteomics reveals that these enzymes assemble into substrate-specific pathways requiring about 100 enzymes per fucoidan from different species of brown algae. These enzymes depolymerize fucoidan into fucose, which is metabolized in a proteome-costly bacterial microcompartment that spatially constrains the metabolism of the toxic intermediate lactaldehyde. Marine metagenomes and microbial genomes show that Verrucomicrobia including 'Lentimonas' are abundant and highly specialized degraders of fucoidans and other complex polysaccharides. Overall, the complexity of the pathways underscores why fucoidans are probably recalcitrant and more slowly degraded, since only highly specialized organisms can effectively degrade them in the ocean.
Collapse
Affiliation(s)
- Andreas Sichert
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Center for Marine Environmental Sciences, MARUM, University of Bremen, Bremen, Germany
| | - Christopher H Corzett
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Frank Unfried
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Antonio Fernandez-Guerra
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Center for Marine Environmental Sciences, MARUM, University of Bremen, Bremen, Germany
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Center for Marine Environmental Sciences, MARUM, University of Bremen, Bremen, Germany.
| |
Collapse
|
12
|
Abstract
The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth’s most threatened marine ecosystems. Despite rapid growth in research on host-associated microbes, from individual microbial symbionts to host-associated consortia of significantly relevant taxa, little is known about their interactions with the vast majority of marine host species. We outline research priorities to strengthen our current knowledge of host–microbiome interactions and how they shape marine ecosystems. We argue that such advances in research will help predict responses of species, communities, and ecosystems to stressors driven by human activity and inform future management strategies. The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth’s most threatened marine ecosystems. This Perspective article outlines research priorities to strengthen our current knowledge of host-microbiome interactions, to help predict responses to anthropogenic stressors and to inform future management strategies.
Collapse
|
13
|
Koch H, Freese HM, Hahnke RL, Simon M, Wietz M. Adaptations of Alteromonas sp. 76-1 to Polysaccharide Degradation: A CAZyme Plasmid for Ulvan Degradation and Two Alginolytic Systems. Front Microbiol 2019; 10:504. [PMID: 30936857 PMCID: PMC6431674 DOI: 10.3389/fmicb.2019.00504] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/27/2019] [Indexed: 11/16/2022] Open
Abstract
Studying the physiology and genomics of cultured hydrolytic bacteria is a valuable approach to decipher the biogeochemical cycling of marine polysaccharides, major nutrients derived from phytoplankton and macroalgae. We herein describe the profound potential of Alteromonas sp. 76-1, isolated from alginate-enriched seawater at the Patagonian continental shelf, to degrade the algal polysaccharides alginate and ulvan. Phylogenetic analyses indicated that strain 76-1 might represent a novel species, distinguished from its closest relative (Alteromonas naphthalenivorans) by adaptations to their contrasting habitats (productive open ocean vs. coastal sediments). Ecological distinction of 76-1 was particularly manifested in the abundance of carbohydrate-active enzymes (CAZymes), consistent with its isolation from alginate-enriched seawater and elevated abundance of a related OTU in the original microcosm. Strain 76-1 encodes multiple alginate lyases from families PL6, PL7, PL17, and PL18 largely contained in two polysaccharide utilization loci (PUL), which may facilitate the utilization of different alginate structures in nature. Notably, ulvan degradation relates to a 126 Kb plasmid dedicated to polysaccharide utilization, encoding several PL24 and PL25 ulvan lyases and monomer-processing genes. This extensive and versatile CAZyme repertoire allowed substantial growth on polysaccharides, showing comparable doubling times with alginate (2 h) and ulvan (3 h) in relation to glucose (3 h). The finding of homologous ulvanolytic systems in distantly related Alteromonas spp. suggests CAZyme plasmids as effective vehicles for PUL transfer that mediate niche gain. Overall, the demonstrated CAZyme repertoire substantiates the role of Alteromonas in marine polysaccharide degradation and how PUL exchange influences the ecophysiology of this ubiquitous marine taxon.
Collapse
Affiliation(s)
- Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Heike M. Freese
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Richard L. Hahnke
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|