1
|
Dewan A, Jain C, Das M, Tripathi A, Sharma AK, Singh H, Malhotra N, Seshasayee ASN, Chakrapani H, Singh A. Intracellular peroxynitrite perturbs redox balance, bioenergetics, and Fe-S cluster homeostasis in Mycobacterium tuberculosis. Redox Biol 2024; 75:103285. [PMID: 39128229 PMCID: PMC11369450 DOI: 10.1016/j.redox.2024.103285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to tolerate nitric oxide (•NO) and superoxide (O2•-) produced by phagocytes contributes to its success as a human pathogen. Recombination of •NO and O2•- generates peroxynitrite (ONOO-), a potent oxidant produced inside activated macrophages causing lethality in diverse organisms. While the response of Mtb toward •NO and O2•- is well established, how Mtb responds to ONOO- remains unclear. Filling this knowledge gap is important to understand the persistence mechanisms of Mtb during infection. We synthesized a series of compounds that generate both •NO and O2•-, which should combine to produce ONOO-. From this library, we identified CJ067 that permeates Mtb to reliably enhance intracellular ONOO- levels. CJ067-exposed Mtb strains, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates, exhibited dose-dependent, long-lasting oxidative stress and growth inhibition. In contrast, Mycobacterium smegmatis (Msm), a fast-growing, non-pathogenic mycobacterial species, maintained redox balance and growth in response to intracellular ONOO-. RNA-sequencing with Mtb revealed that CJ067 induces antioxidant machinery, sulphur metabolism, metal homeostasis, and a 4Fe-4S cluster repair pathway (suf operon). CJ067 impaired the activity of the 4Fe-4S cluster-containing TCA cycle enzyme, aconitase, and diminished bioenergetics of Mtb. Work with Mtb strains defective in SUF and IscS involved in Fe-S cluster biogenesis pathways showed that both systems cooperatively protect Mtb from intracellular ONOO- in vitro and inducible nitric oxide synthase (iNOS)-dependent growth inhibition during macrophage infection. Thus, Mtb is uniquely sensitive to intracellular ONOO- and targeting Fe-S cluster homeostasis is expected to promote iNOS-dependent host immunity against tuberculosis (TB).
Collapse
Affiliation(s)
- Arshiya Dewan
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, 560012, India
| | - Charu Jain
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Mayashree Das
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, 560012, India
| | - Ashutosh Tripathi
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, 560012, India
| | - Ajay Kumar Sharma
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Harshit Singh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Nitish Malhotra
- National Center for Biological Sciences, Bengaluru, 560065, India
| | | | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411008, India.
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
2
|
Wang D, Zhang X, Li H, Wang T, Ma X, Yu Z, Wang F, Zhang Y, Liu J. Iron regulatory protein from the hard tick Haemaphysalis longicornis: characterization, function and assessment as a protective antigen. PEST MANAGEMENT SCIENCE 2024; 80:3922-3934. [PMID: 38520319 DOI: 10.1002/ps.8095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/20/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Ticks are blood-feeding ectoparasites with different host specificities and are capable of pathogen transmission. Iron regulatory proteins (IRPs) play crucial roles in iron homeostasis in vertebrates. However, their functions in ticks remain poorly understood. The aim of the present study was to investigate the characteristics, functions, molecular mechanisms, and the vaccine efficacy of IRP in the hard tick Haemaphysalis longicornis. RESULTS The full-length complementary DNA of IRP from Haemaphysalis longicornis (HlIRP) was 2973 bp, including a 2772 bp open reading frame. It is expressed throughout three developmental stages (larvae, nymphs, and adult females) and in various tissues (salivary glands, ovaries, midgut, and Malpighian tubules). Recombinant Haemaphysalis longicornis IRP (rHlIRP) was obtained via a prokaryotic expression system and exhibited aconitase, iron chelation, radical-scavenging, and hemolytic activities in vitro. RNA interference-mediated IRP knockdown reduced tick engorgement weight, ovary weight, egg mass weight, egg hatching rate, and ovary vitellin content, as well as prolonging the egg incubation period. Proteomics revealed that IRP may affect tick reproduction and development through proteasome pathway-associated, ribosomal, reproduction-related, and iron metabolism-related proteins. A trial on rabbits against adult Haemaphysalis longicornis infestation demonstrated that rHlIRP vaccine could significantly decrease engorged weight (by 10%), egg mass weight (by 16%) and eggs hatching rate (by 22%) of ticks. The overall immunization efficacy using rHlIRP against adult females was 41%. CONCLUSION IRP could limit reproduction and development in Haemaphysalis longicornis, and HlIRP was confirmed as a candidate vaccine antigen to impair tick iron metabolism and protect the host against tick infestation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaojing Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hongxia Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ting Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaojin Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhijun Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Fang Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yankai Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Research Center of the Basic Discipline of Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
3
|
Kim HJ, Cho SY, Jung SJ, Cho YJ, Roe JH, Kim KD. Non-Mitochondrial Aconitase-2 Mediates the Transcription of Nuclear-Encoded Electron Transport Chain Genes in Fission Yeast. J Microbiol 2024; 62:639-648. [PMID: 38916790 DOI: 10.1007/s12275-024-00147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/26/2024]
Abstract
Aconitase-2 (Aco2) is present in the mitochondria, cytosol, and nucleus of fission yeast. To explore its function beyond the well-known role in the mitochondrial tricarboxylic acid (TCA) cycle, we conducted genome-wide profiling using the aco2ΔNLS mutant, which lacks a nuclear localization signal (NLS). The RNA sequencing (RNA-seq) data showed a general downregulation of electron transport chain (ETC) genes in the aco2ΔNLS mutant, except for those in the complex II, leading to a growth defect in respiratory-prone media. Complementation analysis with non-catalytic Aco2 [aco2ΔNLS + aco2(3CS)], where three cysteines were substituted with serine, restored normal growth and typical ETC gene expression. This suggests that Aco2's catalytic activity is not essential for its role in ETC gene regulation. Our mRNA decay assay indicated that the decrease in ETC gene expression was due to transcriptional regulation rather than changes in mRNA stability. Additionally, we investigated the Php complex's role in ETC gene regulation and found that ETC genes, except those within complex II, were downregulated in php3Δ and php5Δ strains, similar to the aco2ΔNLS mutant. These findings highlight a novel role for nuclear aconitase in ETC gene regulation and suggest a potential connection between the Php complex and Aco2.
Collapse
Affiliation(s)
- Ho-Jung Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo-Yeon Cho
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo-Jin Jung
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
| | - Yong-Jun Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jung-Hye Roe
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
4
|
Quiroz-Castañeda RE, Aguilar-Díaz H, Amaro-Estrada I. An alternative vaccine target for bovine Anaplasmosis based on enolase, a moonlighting protein. Front Vet Sci 2023; 10:1225873. [PMID: 37808115 PMCID: PMC10556744 DOI: 10.3389/fvets.2023.1225873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The discovery of new targets for preventing bovine anaplasmosis has moved away from focusing on proteins that have already been extensively studied in Anaplasma marginale, including the Major Surface Proteins, Outer Membrane Proteins, and Type IV Secretion System proteins. An alternative is moonlighting or multifunctional proteins, capable of performing various biological functions within various cellular compartments. There are several reports on the role of moonlighting proteins as virulence factors in various microorganisms. Moreover, it is known that about 25% of all moonlighting is involved in the virulence of pathogens. In this work, for the first time, we present the identification of three enolase proteins (AmEno01, AmEno15, and AmEno31) in the genome of Mexican strains of A. marginale. Using bioinformatics tools, we predicted the catalytic domains, enolase signature, and amino acids binding magnesium ion of the catalytic domain and performed a phylogenetic reconstruction. In addition, by molecular docking analysis, we found that AmEno01 would bind to erythrocyte proteins spectrin, ankyrin, and stomatin. This adhesion function has been reported for enolases from other pathogens. It is considered a promising target since blocking this function would impede the fundamental adhesion process that facilitates the infection of erythrocytes. Additionally, molecular docking predicts that AmEno01 could bind to extracellular matrix protein fibronectin, which would be significant if we consider that some proteins with fibronectin domains are localized in tick gut cells and used as an adhesion strategy to gather bacteria before traveling to salivary glands. Derived from the molecular docking analysis of AmEno01, we hypothesized that enolases could be proteins driven by the pathogen and redirected at the expense of the pathogen's needs.
Collapse
|
5
|
Nandavaram A, Nandakumar A, Kashif GM, Sagar AL, Shailaja G, Ramesh A, Siddavattam D. Unusual Relationship between Iron Deprivation and Organophosphate Hydrolase Expression. Appl Environ Microbiol 2023; 89:e0190322. [PMID: 37074175 PMCID: PMC10231211 DOI: 10.1128/aem.01903-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 04/20/2023] Open
Abstract
Organophosphate hydrolases (OPH), hitherto known to hydrolyze the third ester bond of organophosphate (OP) insecticides and nerve agents, have recently been shown to interact with outer membrane transport components, namely, TonB and ExbB/ExbD. In an OPH negative background, Sphingopyxis wildii cells failed to transport ferric enterobactin and showed retarded growth under iron-limiting conditions. We now show the OPH-encoding organophosphate degradation (opd) gene from Sphingobium fuliginis ATCC 27551 to be part of the iron regulon. A fur-box motif found to be overlapping with the transcription start site (TSS) of the opd gene coordinates with an iron responsive element (IRE) RNA motif identified in the 5' coding region of the opd mRNA to tightly regulate opd gene expression. The fur-box motif serves as a target for the Fur repressor in the presence of iron. A decrease in iron concentration leads to the derepression of opd. IRE RNA inhibits the translation of opd mRNA and serves as a target for apo-aconitase (IRP). The IRP recruited by the IRE RNA abrogates IRE-mediated translational inhibition. Our findings establish a novel, multilayered, iron-responsive regulation that is crucial for OPH function in the transport of siderophore-mediated iron uptake. IMPORTANCE Sphingobium fuliginis, a soil-dwelling microbe isolated from agricultural soils, was shown to degrade a variety of insecticides and pesticides. These synthetic chemicals function as potent neurotoxins, and they belong to a class of chemicals termed organophosphates. S. fuliginis codes for OPH, an enzyme that has been shown to be involved in the metabolism of several organophosphates and their derivatives. Interestingly, OPH has also been shown to facilitate siderophore-mediated iron uptake in S. fuliginis and in another Sphingomonad, namely, Sphingopyxis wildii, implying that this organophosphate-metabolizing protein has a role in iron homeostasis, as well. Our research dissects the underlying molecular mechanisms linking iron to the expression of OPH, prompting a reconsideration of the role of OPH in Sphingomonads and a reevaluation of the evolutionary origins of the OPH proteins from soil bacteria.
Collapse
Affiliation(s)
- Aparna Nandavaram
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anirudh Nandakumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
- The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bengaluru, Karnataka, India
| | - G. M. Kashif
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - G. Shailaja
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Arati Ramesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| | - Dayananda Siddavattam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Department of Biochemistry, School of Sciences, GITAM University, Visakhapatnam, India
| |
Collapse
|
6
|
Iron–Sulfur Clusters toward Stresses: Implication for Understanding and Fighting Tuberculosis. INORGANICS 2022. [DOI: 10.3390/inorganics10100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) remains the leading cause of death due to a single pathogen, accounting for 1.5 million deaths annually on the global level. Mycobacterium tuberculosis, the causative agent of TB, is persistently exposed to stresses such as reactive oxygen species (ROS), reactive nitrogen species (RNS), acidic conditions, starvation, and hypoxic conditions, all contributing toward inhibiting bacterial proliferation and survival. Iron–sulfur (Fe-S) clusters, which are among the most ancient protein prosthetic groups, are good targets for ROS and RNS, and are susceptible to Fe starvation. Mtb holds Fe-S containing proteins involved in essential biological process for Mtb. Fe-S cluster assembly is achieved via complex protein machineries. Many organisms contain several Fe-S assembly systems, while the SUF system is the only one in some pathogens such as Mtb. The essentiality of the SUF machinery and its functionality under the stress conditions encountered by Mtb underlines how it constitutes an attractive target for the development of novel anti-TB.
Collapse
|
7
|
Arvizu-Rubio VJ, García-Carnero LC, Mora-Montes HM. Moonlighting proteins in medically relevant fungi. PeerJ 2022; 10:e14001. [PMID: 36117533 PMCID: PMC9480056 DOI: 10.7717/peerj.14001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/13/2022] [Indexed: 01/19/2023] Open
Abstract
Moonlighting proteins represent an intriguing area of cell biology, due to their ability to perform two or more unrelated functions in one or many cellular compartments. These proteins have been described in all kingdoms of life and are usually constitutively expressed and conserved proteins with housekeeping functions. Although widely studied in pathogenic bacteria, the information about these proteins in pathogenic fungi is scarce, but there are some reports of their functions in the etiological agents of the main human mycoses, such as Candida spp., Paracoccidioides brasiliensis, Histoplasma capsulatum, Aspergillus fumigatus, Cryptococcus neoformans, and Sporothrix schenckii. In these fungi, most of the described moonlighting proteins are metabolic enzymes, such as enolase and glyceraldehyde-3-phosphate dehydrogenase; chaperones, transcription factors, and redox response proteins, such as peroxiredoxin and catalase, which moonlight at the cell surface and perform virulence-related processes, contributing to immune evasion, adhesions, invasion, and dissemination to host cells and tissues. All moonlighting proteins and their functions described in this review highlight the limited information about this biological aspect in pathogenic fungi, representing this a relevant opportunity area that will contribute to expanding our current knowledge of these organisms' pathogenesis.
Collapse
|
8
|
Weber K, Doellinger J, Jeffries CM, Wilharm G. Recombinant AcnB, NrdR and RibD of Acinetobacter baumannii and their potential interaction with DNA adenine methyltransferase AamA. Protein Expr Purif 2022; 199:106134. [PMID: 35787944 DOI: 10.1016/j.pep.2022.106134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
Abstract
In the last decades Acinetobacter baumannii developed into an increasingly challenging nosocomial pathogen. A. baumannii ATCC 17978 harbors a DNA-(adenine N6)-methyltransferase termed AamA. Previous studies revealed a low specific activity of AamA in vitro despite proven folding, which led us to speculate about possible interaction partners assisting AamA in targeting methylation sites. Here, applying a pulldown assay with subsequent mass spectrometry we identified aconitate hydratase 2 (AcnB) as possible interaction partner. In addition, we considered the putative transcriptional regulator gene nrdR (A1S_0220) and the pyrimidine deaminase/reductase gene ribD (A1S_0221) of A. baumannii strain ATCC 17978 to encode additional potential interaction partners due to their vicinity to the aamA gene (A1S_0222). Proteins were recombinantly produced in the milligram scale, purified to near homogeneity, and interactions with AamA were studied applying blue native gel electrophoreses, electrophoretic mobility shift assay, chemical cross-linking and co-immunoprecipitation. These analyses did not provide evidence of interaction between AamA and purified proteins. Solution structures of RibD, NrdR and AcnB were studied by small-angle X-ray scattering (SAXS) alone and in combination with AamA. While in the case of RibD and AcnB no evidence of an interaction with AamA was produced, addition of AamA to NrdR resulted in dissociation of long and rod-shaped polymeric NrdR structures, implying a specific but transient interaction. Moreover, we identified a molecular crowding effect possibly impeding the DNA methyltransferase activity in vivo and a sequence-independent DNA binding activity of AamA calling for continued efforts to identify the interaction network of AamA.
Collapse
Affiliation(s)
- Kristin Weber
- Robert Koch Institute, Project Group P2 (Acinetobacter baumannii - Biology of a Nosocomial Pathogen), Burgstr. 37, 38855 Wernigerode, Germany.
| | - Joerg Doellinger
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, ZBS 6 (Proteomics and Spectroscopy); Seestr. 10, 13353, Berlin (Wedding), Germany.
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Svergun Group (Small-angle X-ray Scattering from Macromolecular Solutions), Notkestr. 85, Geb. 25a, 22607, Hamburg, Germany.
| | - Gottfried Wilharm
- Robert Koch Institute, Project Group P2 (Acinetobacter baumannii - Biology of a Nosocomial Pathogen), Burgstr. 37, 38855 Wernigerode, Germany.
| |
Collapse
|
9
|
Ahmad F, Rani A, Alam A, Zarin S, Pandey S, Singh H, Hasnain SE, Ehtesham NZ. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol 2022; 13:747799. [PMID: 35603185 PMCID: PMC9122124 DOI: 10.3389/fimmu.2022.747799] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/30/2022] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of human tuberculosis (TB) which primarily infects the macrophages. Nearly a quarter of the world's population is infected latently by Mtb. Only around 5%-10% of those infected develop active TB disease, particularly during suppressed host immune conditions or comorbidity such as HIV, hinting toward the heterogeneity of Mtb infection. The aerosolized Mtb first reaches the lungs, and the resident alveolar macrophages (AMs) are among the first cells to encounter the Mtb infection. Evidence suggests that early clearance of Mtb infection is associated with robust innate immune responses in resident macrophages. In addition to lung-resident macrophage subsets, the recruited monocytes and monocyte-derived macrophages (MDMs) have been suggested to have a protective role during Mtb infection. Mtb, by virtue of its unique cell surface lipids and secreted protein effectors, can evade killing by the innate immune cells and preferentially establish a niche within the AMs. Continuous efforts to delineate the determinants of host defense mechanisms have brought to the center stage the crucial role of macrophage phenotypical variations for functional adaptations in TB. The morphological and functional heterogeneity and plasticity of the macrophages aid in confining the dissemination of Mtb. However, during a suppressed or hyperactivated immune state, the Mtb virulence factors can affect macrophage homeostasis which may skew to favor pathogen growth, causing active TB. This mini-review is aimed at summarizing the interplay of Mtb pathomechanisms in the macrophages and the implications of macrophage heterogeneity and plasticity during Mtb infection.
Collapse
Affiliation(s)
- Faraz Ahmad
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Anshu Rani
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Anwar Alam
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Sheeba Zarin
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Saurabh Pandey
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Hina Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Nasreen Zafar Ehtesham
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| |
Collapse
|
10
|
de Sousa-d'Auria C, Constantinesco F, Bayan N, Constant P, Tropis M, Daffé M, Graille M, Houssin C. Cg1246, a new player in mycolic acid biosynthesis in Corynebacterium glutamicum. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35394419 DOI: 10.1099/mic.0.001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycolic acids are key components of the complex cell envelope of Corynebacteriales. These fatty acids, conjugated to trehalose or to arabinogalactan form the backbone of the mycomembrane. While mycolic acids are essential to the survival of some species, such as Mycobacterium tuberculosis, their absence is not lethal for Corynebacterium glutamicum, which has been extensively used as a model to depict their biosynthesis. Mycolic acids are first synthesized on the cytoplasmic side of the inner membrane and transferred onto trehalose to give trehalose monomycolate (TMM). TMM is subsequently transported to the periplasm by dedicated transporters and used by mycoloyltransferase enzymes to synthesize all the other mycolate-containing compounds. Using a random transposition mutagenesis, we recently identified a new uncharacterized protein (Cg1246) involved in mycolic acid metabolism. Cg1246 belongs to the DUF402 protein family that contains some previously characterized nucleoside phosphatases. In this study, we performed a functional and structural characterization of Cg1246. We showed that absence of the protein led to a significant reduction in the pool of TMM in C. glutamicum, resulting in a decrease in all other mycolate-containing compounds. We found that, in vitro, Cg1246 has phosphatase activity on organic pyrophosphate substrates but is most likely not a nucleoside phosphatase. Using a computational approach, we identified important residues for phosphatase activity and constructed the corresponding variants in C. glutamicum. Surprisingly complementation with these non-functional proteins fully restored the defect in TMM of the Δcg1246 mutant strain, suggesting that in vivo, the phosphatase activity is not involved in mycolic acid biosynthesis.
Collapse
Affiliation(s)
- Célia de Sousa-d'Auria
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Florence Constantinesco
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Nicolas Bayan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Patricia Constant
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Maryelle Tropis
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau Cedex, Paris, France
| | - Christine Houssin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
11
|
Tripathi A, Anand K, Das M, O'Niel RA, P S S, Thakur C, R L RR, Rajmani RS, Chandra N, Laxman S, Singh A. Mycobacterium tuberculosis requires SufT for Fe-S cluster maturation, metabolism, and survival in vivo. PLoS Pathog 2022; 18:e1010475. [PMID: 35427399 PMCID: PMC9045647 DOI: 10.1371/journal.ppat.1010475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/27/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Iron-sulfur (Fe-S) cluster proteins carry out essential cellular functions in diverse organisms, including the human pathogen Mycobacterium tuberculosis (Mtb). The mechanisms underlying Fe-S cluster biogenesis are poorly defined in Mtb. Here, we show that Mtb SufT (Rv1466), a DUF59 domain-containing essential protein, is required for the Fe-S cluster maturation. Mtb SufT homodimerizes and interacts with Fe-S cluster biogenesis proteins; SufS and SufU. SufT also interacts with the 4Fe-4S cluster containing proteins; aconitase and SufR. Importantly, a hyperactive cysteine in the DUF59 domain mediates interaction of SufT with SufS, SufU, aconitase, and SufR. We efficiently repressed the expression of SufT to generate a SufT knock-down strain in Mtb (SufT-KD) using CRISPR interference. Depleting SufT reduces aconitase's enzymatic activity under standard growth conditions and in response to oxidative stress and iron limitation. The SufT-KD strain exhibited defective growth and an altered pool of tricarboxylic acid cycle intermediates, amino acids, and sulfur metabolites. Using Seahorse Extracellular Flux analyzer, we demonstrated that SufT depletion diminishes glycolytic rate and oxidative phosphorylation in Mtb. The SufT-KD strain showed defective survival upon exposure to oxidative stress and nitric oxide. Lastly, SufT depletion reduced the survival of Mtb in macrophages and attenuated the ability of Mtb to persist in mice. Altogether, SufT assists in Fe-S cluster maturation and couples this process to bioenergetics of Mtb for survival under low and high demand for Fe-S clusters.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Kushi Anand
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Mayashree Das
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Ruchika Annie O'Niel
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Sabarinath P S
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Raghunatha Reddy R L
- Regional Horticultural Research and Extension Centre (RHREK), GKVK, Bengaluru, India
| | - Raju S Rajmani
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Amit Singh
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| |
Collapse
|
12
|
Biochemical elucidation of citrate accumulation in Synechocystis sp. PCC 6803 via kinetic analysis of aconitase. Sci Rep 2021; 11:17131. [PMID: 34429477 PMCID: PMC8385029 DOI: 10.1038/s41598-021-96432-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/04/2021] [Indexed: 12/03/2022] Open
Abstract
A unicellular cyanobacterium Synechocystis sp. PCC 6803 possesses a unique tricarboxylic acid (TCA) cycle, wherein the intracellular citrate levels are approximately 1.5–10 times higher than the levels of other TCA cycle metabolite. Aconitase catalyses the reversible isomerisation of citrate and isocitrate. Herein, we biochemically analysed Synechocystis sp. PCC 6803 aconitase (SyAcnB), using citrate and isocitrate as the substrates. We observed that the activity of SyAcnB for citrate was highest at pH 7.7 and 45 °C and for isocitrate at pH 8.0 and 53 °C. The Km value of SyAcnB for citrate was higher than that for isocitrate under the same conditions. The Km value of SyAcnB for isocitrate was 3.6-fold higher than the reported Km values of isocitrate dehydrogenase for isocitrate. Therefore, we suggest that citrate accumulation depends on the enzyme kinetics of SyAcnB, and 2-oxoglutarate production depends on the chemical equilibrium in this cyanobacterium.
Collapse
|
13
|
Thomas GH. Microbial Musings – June 2021. Microbiology (Reading) 2021; 167. [DOI: 10.1099/mic.0.001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Surface-Shaving Proteomics of Mycobacterium marinum Identifies Biofilm Subtype-Specific Changes Affecting Virulence, Tolerance, and Persistence. mSystems 2021; 6:e0050021. [PMID: 34156290 PMCID: PMC8269238 DOI: 10.1128/msystems.00500-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complex cell wall and biofilm matrix (ECM) act as key barriers to antibiotics in mycobacteria. Here, the ECM and envelope proteins of Mycobacterium marinum ATCC 927, a nontuberculous mycobacterial model, were monitored over 3 months by label-free proteomics and compared with cell surface proteins on planktonic cells to uncover pathways leading to virulence, tolerance, and persistence. We show that ATCC 927 forms pellicle-type and submerged-type biofilms (PBFs and SBFs, respectively) after 2 weeks and 2 days of growth, respectively, and that the increased CelA1 synthesis in this strain prevents biofilm formation and leads to reduced rifampicin tolerance. The proteomic data suggest that specific changes in mycolic acid synthesis (cord factor), Esx1 secretion, and cell wall adhesins explain the appearance of PBFs as ribbon-like cords and SBFs as lichen-like structures. A subpopulation of cells resisting 64× MIC rifampicin (persisters) was detected in both biofilm subtypes and already in 1-week-old SBFs. The key forces boosting their development could include subtype-dependent changes in asymmetric cell division, cell wall biogenesis, tricarboxylic acid/glyoxylate cycle activities, and energy/redox/iron metabolisms. The effect of various ambient oxygen tensions on each cell type and nonclassical protein secretion are likely factors explaining the majority of the subtype-specific changes. The proteomic findings also imply that Esx1-type protein secretion is more efficient in planktonic (PL) and PBF cells, while SBF may prefer both the Esx5 and nonclassical pathways to control virulence and prolonged viability/persistence. In conclusion, this study reports the first proteomic insight into aging mycobacterial biofilm ECMs and indicates biofilm subtype-dependent mechanisms conferring increased adaptive potential and virulence of nontuberculous mycobacteria. IMPORTANCE Mycobacteria are naturally resilient, and mycobacterial infections are notoriously difficult to treat with antibiotics, with biofilm formation being the main factor complicating the successful treatment of tuberculosis (TB). The present study shows that nontuberculous Mycobacterium marinum ATCC 927 forms submerged- and pellicle-type biofilms with lichen- and ribbon-like structures, respectively, as well as persister cells under the same conditions. We show that both biofilm subtypes differ in terms of virulence-, tolerance-, and persistence-conferring activities, highlighting the fact that both subtypes should be targeted to maximize the power of antimycobacterial treatment therapies.
Collapse
|
15
|
Serafini A. Interplay between central carbon metabolism and metal homeostasis in mycobacteria and other human pathogens. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34080971 DOI: 10.1099/mic.0.001060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial nutrition is a fundamental aspect of pathogenesis. While the host environment is in principle nutrient-rich, hosts have evolved strategies to interfere with nutrient acquisition by pathogens. In turn, pathogens have developed mechanisms to circumvent these restrictions. Changing the availability of bioavailable metal ions is a common strategy used by hosts to limit bacterial replication. Macrophages and neutrophils withhold iron, manganese, and zinc ions to starve bacteria. Alternatively, they can release manganese, zinc, and copper ions to intoxicate microorganisms. Metals are essential micronutrients and participate in catalysis, macromolecular structure, and signalling. This review summarises our current understanding of how central carbon metabolism in pathogens adapts to local fluctuations in free metal ion concentrations. We focus on the transcriptomics and proteomics data produced in studies of the iron-sparing response in Mycobacterium tuberculosis, the etiological agent of tuberculosis, and consequently generate a hypothetical model linking trehalose accumulation, succinate secretion and substrate-level phosphorylation in iron-starved M. tuberculosis. This review also aims to highlight a large gap in our knowledge of pathogen physiology: the interplay between metal homeostasis and central carbon metabolism, two cellular processes which are usually studied separately. Integrating metabolism and metal biology would allow the discovery of new weaknesses in bacterial physiology, leading to the development of novel and improved antibacterial therapies.
Collapse
Affiliation(s)
- Agnese Serafini
- Independent researcher 00012 Guidonia Montecelio, Rome, Italy
| |
Collapse
|
16
|
Bancroft PJ, Turapov O, Jagatia H, Arnvig KB, Mukamolova GV, Green J. Coupling of Peptidoglycan Synthesis to Central Metabolism in Mycobacteria: Post-transcriptional Control of CwlM by Aconitase. Cell Rep 2020; 32:108209. [PMID: 32997986 PMCID: PMC7527780 DOI: 10.1016/j.celrep.2020.108209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/18/2020] [Accepted: 09/09/2020] [Indexed: 10/25/2022] Open
Abstract
Mycobacterium tuberculosis causes human tuberculosis, and a better understanding of its biology is required to identify vulnerabilities that might be exploited in developing new therapeutics. The iron-sulfur cluster of the essential M. tuberculosis central metabolic enzyme, aconitase (AcnA), disassembles when exposed to oxidative/nitrosative stress or iron chelators. The catalytically inactive apo-AcnA interacts with a sequence resembling an iron-responsive element (IRE) located within the transcript of another essential protein, CwlM, a regulator of peptidoglycan synthesis. A Mycobacterium smegmatis cwlM conditional mutant complemented with M. tuberculosis cwlM with a disrupted IRE is unable to recover from combinations of oxidative, nitrosative, and iron starvation stresses. An equivalent M. tuberculosis cwlM conditional mutant complemented with the cwlM gene lacking a functional IRE exhibits a growth defect in THP-1 macrophages. It appears that AcnA acts to couple peptidoglycan synthesis and central metabolism, and disruption of this coupling potentially leaves mycobacteria vulnerable to attack by macrophages.
Collapse
Affiliation(s)
- Peter J Bancroft
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Obolbek Turapov
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, UK
| | - Heena Jagatia
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, UK
| | - Kristine B Arnvig
- Institute for Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Galina V Mukamolova
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, UK.
| | - Jeffrey Green
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
17
|
Liu H, Jeffery CJ. Moonlighting Proteins in the Fuzzy Logic of Cellular Metabolism. Molecules 2020; 25:molecules25153440. [PMID: 32751110 PMCID: PMC7435893 DOI: 10.3390/molecules25153440] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
The numerous interconnected biochemical pathways that make up the metabolism of a living cell comprise a fuzzy logic system because of its high level of complexity and our inability to fully understand, predict, and model the many activities, how they interact, and their regulation. Each cell contains thousands of proteins with changing levels of expression, levels of activity, and patterns of interactions. Adding more layers of complexity is the number of proteins that have multiple functions. Moonlighting proteins include a wide variety of proteins where two or more functions are performed by one polypeptide chain. In this article, we discuss examples of proteins with variable functions that contribute to the fuzziness of cellular metabolism.
Collapse
Affiliation(s)
- Haipeng Liu
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA;
| | - Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
- Correspondence: ; Tel.: +1-312-996-3168
| |
Collapse
|
18
|
Dineshkumar K, Aparna V, Wu L, Wan J, Abdelaziz MH, Su Z, Wang S, Xu H. Bacterial bug-out bags: outer membrane vesicles and their proteins and functions. J Microbiol 2020; 58:531-542. [DOI: 10.1007/s12275-020-0026-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023]
|
19
|
Shahbaaz M, Potemkin V, Bisetty K, Hassan MI, Hussien MA. Classification and functional analyses of putative virulence factors of Mycobacterium tuberculosis: A combined sequence and structure based study. Comput Biol Chem 2020; 87:107270. [PMID: 32438116 DOI: 10.1016/j.compbiolchem.2020.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 11/17/2022]
Abstract
The emergence of the drug-resistant mechanisms in Mycobacterium tuberculosis poses the biggest challenges to the current therapeutic measures, which necessitates the identification of new drug targets. The Hypothetical Proteins (HPs), a class of functionally uncharacterized proteins, may provide a new class of undiscovered therapeutic targets. The genome of M. tuberculosis contains 1000 HPs with their sequences were analyzed using a variety of bioinformatics tools and the functional annotations were performed. The functions of 662 HPs were successfully predicted and further classified 483 HPs as enzymes, 141 HPs were predicted to be involved in the diverse cellular mechanisms and 38 HPs may function as transporters and carriers proteins. Furthermore, 28 HPs were predicted to be virulent in nature. Amongst them, the HP P95201, HP P9WM79, HP I6WZ30, HP I6 × 9T8, HP P9WKP3, and HP P9WK89 showed the highest virulence scores. Therefore, these proteins were subjected to extensive structure analyses and dynamics of their conformations were investigated using the principles of molecular dynamics simulations, each for a 150 ns time scale. This study provides a deeper understanding of the undiscovered drug targets and the generated outputs will facilitate the process of drug design and discovery against the infection of M. tuberculosis.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X17, Bellville 7535, Cape Town, South Africa; Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin prospekt, 454080 Chelyabinsk, Russia
| | - Vladimir Potemkin
- Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin prospekt, 454080 Chelyabinsk, Russia
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, Durban, 4000, South Africa
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mostafa A Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203 Jeddah 21589, Saudi Arabia; Department of Chemistry, Faculty of Science, Port Said University, Port Said, 42521, Egypt
| |
Collapse
|
20
|
Abstract
Moonlighting refers to a protein with at least two unrelated, mechanistically different functions. As a concept, moonlighting describes a large and diverse group of proteins which have been discovered in a multitude of organisms. As of today, a systematized view on these proteins is missing. Here, we propose a classification of moonlighting proteins by two classifiers. We use the function of the protein as a first classifier: activating - activating (Type I), activating - inhibiting (Type II), inhibiting - activating (Type III) and inhibiting - inhibiting (Type IV). To further specify the type of moonlighting protein, we used a second classifier based on the character of the factor that switches the function of the protein: external factor affecting the protein (Type A), change in the first pathway (Type B), change in the second pathway (Type C), equal competition between both pathways (Type D). Using a small two-pathway model we simulated these types of moonlighting proteins to elucidate possible behaviors of the types of moonlighting proteins. We find that, using the results of our simulations, we can classify the behavior of the moonlighting types into Blinker, Splitter andSwitch.
Collapse
Affiliation(s)
- Maria Krantz
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
21
|
Gupta MN, Pandey S, Ehtesham NZ, Hasnain SE. Medical implications of protein moonlighting. Indian J Med Res 2020; 149:322-325. [PMID: 31249195 PMCID: PMC6607823 DOI: 10.4103/ijmr.ijmr_2192_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- M N Gupta
- Former Professor, Department of Chemistry, Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110 016, India
| | - Saurabh Pandey
- Department of Biochemistry, JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110 062, India
| | | | - Seyed E Hasnain
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110 016; JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110 062; Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500 007, Telangana, India
| |
Collapse
|
22
|
Jeffery CJ. An enzyme in the test tube, and a transcription factor in the cell: Moonlighting proteins and cellular factors that affect their behavior. Protein Sci 2019; 28:1233-1238. [PMID: 31087733 PMCID: PMC6566513 DOI: 10.1002/pro.3645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/10/2019] [Indexed: 01/05/2023]
Abstract
In the cell, expression levels, allosteric modulators, post-translational modifications, sequestration, and other factors can affect the level of protein function. For moonlighting proteins, cellular factors like these can also affect the kind of protein function. This minireview discusses examples of moonlighting proteins that illustrate how a single protein can have different functions in different cell types, in different intracellular locations, or under varying cellular conditions. This variability in the kind of protein activity, added to the variability in the amount of protein activity, contributes to the difficulty in predicting the behavior of proteins in the cell.
Collapse
Affiliation(s)
- Constance J. Jeffery
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIllinois60607
| |
Collapse
|
23
|
Pagani TD, Guimarães ACR, Waghabi MC, Corrêa PR, Kalume DE, Berrêdo-Pinho M, Degrave WM, Mendonça-Lima L. Exploring the Potential Role of Moonlighting Function of the Surface-Associated Proteins From Mycobacterium bovis BCG Moreau and Pasteur by Comparative Proteomic. Front Immunol 2019; 10:716. [PMID: 31080447 PMCID: PMC6497762 DOI: 10.3389/fimmu.2019.00716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
Surface-associated proteins from Mycobacterium bovis BCG Moreau RDJ are important components of the live Brazilian vaccine against tuberculosis. They are important targets during initial BCG vaccine stimulation and modulation of the host's immune response, especially in the bacterial-host interaction. These proteins might also be involved in cellular communication, chemical response to the environment, pathogenesis processes through mobility, colonization, and adherence to the host cell, therefore performing multiple functions. In this study, the proteomic profile of the surface-associated proteins from M. bovis BCG Moreau was compared to the BCG Pasteur reference strain. The methodology used was 2DE gel electrophoresis combined with mass spectrometry techniques (MALDI-TOF/TOF), leading to the identification of 115 proteins. Of these, 24 proteins showed differential expression between the two BCG strains. Furthermore, 27 proteins previously described as displaying moonlighting function were identified, 8 of these proteins showed variation in abundance comparing BCG Moreau to Pasteur and 2 of them presented two different domain hits. Moonlighting proteins are multifunctional proteins in which two or more biological functions are fulfilled by a single polypeptide chain. Therefore, the identification of such proteins with moonlighting predicted functions can contribute to a better understanding of the molecular mechanisms unleashed by live BCG Moreau RDJ vaccine components.
Collapse
Affiliation(s)
- Talita Duarte Pagani
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Carolina R Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Mariana C Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paloma Rezende Corrêa
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Dário Eluan Kalume
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil.,Unidade de Espectrometria de Massas e Proteômica, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Wim Maurits Degrave
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leila Mendonça-Lima
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Jain A, Gali H, Kihara D. Identification of Moonlighting Proteins in Genomes Using Text Mining Techniques. Proteomics 2018; 18:e1800083. [PMID: 30260564 PMCID: PMC6404977 DOI: 10.1002/pmic.201800083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/13/2018] [Indexed: 12/31/2022]
Abstract
Moonlighting proteins is an emerging concept for considering protein functions, which indicate proteins with two or more independent and distinct functions. An increasing number of moonlighting proteins have been reported in the past years; however, a systematic study of the topic has been hindered because the secondary functions of proteins are usually found serendipitously by experiments. Toward systematic identification and study of moonlighting proteins, computational methods for identifying moonlighting proteins from several different information sources, database entries, literature, and large-scale omics data have been developed. In this study, an overview for finding moonlighting proteins is discussed. Then, the literature-mining method, DextMP, is applied to find new moonlighting proteins in three genomes, Arabidopsis thaliana, Caenorhabditis elegans, and Drosophila melanogaster. Potential moonlighting proteins identified by DextMP are further examined by a two-step manual literature checking procedure, which finally yielded 13 new moonlighting proteins. Identified moonlighting proteins are categorized into two classes based on the clarity of the distinctness of two functions of the proteins. A few cases of the identified moonlighting proteins are described in detail. Further direction for improving the DextMP algorithm is also discussed.
Collapse
Affiliation(s)
- Aashish Jain
- Department of Biological Science, Purdue University, West Lafayette, IN, 47907, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Hareesh Gali
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Daisuke Kihara
- Department of Biological Science, Purdue University, West Lafayette, IN, 47907, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA
| |
Collapse
|
25
|
Jeffery CJ. Protein moonlighting: what is it, and why is it important? Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0523. [PMID: 29203708 DOI: 10.1098/rstb.2016.0523] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 12/23/2022] Open
Abstract
Members of the GroEL/HSP60 protein family have been studied for many years because of their critical roles as ATP-dependent molecular chaperones, so it might come as a surprise that some have important functions in ATP-poor conditions, for example, when secreted outside the cell. At least some members of each of the HSP10, HSP70, HSP90, HSP100 and HSP110 heat shock protein families are also 'moonlighting proteins'. Moonlighting proteins exhibit more than one physiologically relevant biochemical or biophysical function within one polypeptide chain. In this class of multifunctional proteins, the multiple functions are not due to gene fusions or multiple proteolytic fragments. Several hundred moonlighting proteins have been identified, and they include a diverse set of proteins with a large variety of functions. Some participate in multiple biochemical processes by using an active site pocket for catalysis and a different part of the protein's surface to interact with other proteins. Moonlighting proteins play a central role in many diseases, and the development of novel treatments would be aided by more information addressing current questions, for example, how some are targeted to multiple cellular locations and how a single function can be targeted by therapeutics without targeting a function not involved in disease.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Constance J Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
26
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
27
|
Kumar A, Rani M, Ehtesham NZ, Hasnain SE. Commentary: Modification of Host Responses by Mycobacteria. Front Immunol 2017; 8:466. [PMID: 28503174 PMCID: PMC5408012 DOI: 10.3389/fimmu.2017.00466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/05/2017] [Indexed: 01/26/2023] Open
Affiliation(s)
- Ashutosh Kumar
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Mamta Rani
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nasreen Z Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India
| | - Seyed E Hasnain
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India.,Jamia Hamdard, Institute of Molecular Medicine, New Delhi, India.,Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
| |
Collapse
|
28
|
Pandey S, Tripathi D, Khubaib M, Kumar A, Sheikh JA, Sumanlatha G, Ehtesham NZ, Hasnain SE. Mycobacterium tuberculosis Peptidyl-Prolyl Isomerases Are Immunogenic, Alter Cytokine Profile and Aid in Intracellular Survival. Front Cell Infect Microbiol 2017; 7:38. [PMID: 28261567 PMCID: PMC5310130 DOI: 10.3389/fcimb.2017.00038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/31/2017] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) has two peptidyl-prolyl isomerases (Ppiases) PpiA and PpiB, popularly known as cyclophilin A and cyclophilin B. The role of cyclophilins in processes such as signaling, cell surface recognition, chaperoning, and heat shock response has been well-documented. We present evidence that M. tb Ppiases modulate the host immune response. ELISA results revealed significant presence of antibodies to M. tb Ppiases in patient sera as compared to sera from healthy individuals. Treatment of THP-1 cells with increasing concentrations of rPpiA, induced secretion of pro-inflammatory cytokines TNF-α and IL-6. Alternatively, treatment with rPpiB inhibited secretion of TNF-α and induced secretion of IL-10. Furthermore, heterologous expression of M. tb PpiA and PpiB in Mycobacterium smegmatis increased bacterial survival in THP-1 cells as compared to those transformed with the vector control. Our results demonstrate that M. tb Ppiases are immunogenic proteins that can possibly modulate host immune response and enhance persistence of the pathogen within the host by subverting host cell generated stresses.
Collapse
Affiliation(s)
- Saurabh Pandey
- Inflammation Biology and Cell Signaling Laboratory, National Institute of PathologyNew Delhi, India; Department of Biology, Dr. Reddy's Institute of Life Sciences, University of HyderabadHyderabad, India
| | - Deeksha Tripathi
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology New Delhi, India
| | - Mohd Khubaib
- Inflammation Biology and Cell Signaling Laboratory, National Institute of PathologyNew Delhi, India; Department of Biology, Dr. Reddy's Institute of Life Sciences, University of HyderabadHyderabad, India
| | - Ashutosh Kumar
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology New Delhi, India
| | - Javaid A Sheikh
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology New Delhi, India
| | | | - Nasreen Z Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology New Delhi, India
| | - Seyed E Hasnain
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of TechnologyNew Delhi, India; Bhagwan Mahavir Medical Research CentreHyderabad, India; Jamia Hamdard, Institute of Molecular MedicineNew Delhi, India
| |
Collapse
|
29
|
Mycobacterium tuberculosis Rv1474c is a TetR-like transcriptional repressor that regulates aconitase, an essential enzyme and RNA-binding protein, in an iron-responsive manner. Tuberculosis (Edinb) 2017; 103:71-82. [PMID: 28237036 DOI: 10.1016/j.tube.2017.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/04/2017] [Accepted: 01/15/2017] [Indexed: 11/21/2022]
Abstract
Mycobacterium tuberculosis (M.tb), tuberculosis (TB) causing bacteria, employs several mechanisms to maintain iron homeostasis which is critical for its survival and pathogenesis. M.tb aconitase (Acn), a [4Fe-4S] cluster-containing essential protein, apart from participating in energy cycle, also binds to predicted iron-responsive RNA elements. In this study, we identified Rv1474c as a regulator of its operonic partner acn and carried out its biochemical and functional characterization. The binding motif for Rv1474c in the upstream region of acn (Rv1475c)-Rv1474c operon was verified by gel-shift assays. Reporter assays in E. coli followed by over-expression studies in mycobacteria, using both wild type and a DNA-binding defective mutant, demonstrated Rv1474c as a Tet-R like repressor of acn. Rv1474c, besides binding tetracycline, could also bind iron which negatively influenced its DNA binding activity. Further, a consistent decrease in the relative transcript levels of acn when M.tb was grown in iron-deficient conditions as compared to either normal or other stress conditions, indicated regulation of acn by Rv1474c in an iron-responsive manner in vivo. The absence of homologs in the human host and its association with indispensable iron homeostasis makes Rv1474c an attractive target for designing novel anti-mycobacterials.
Collapse
|
30
|
Khan I, McGraw J, Kihara D. MPFit: Computational Tool for Predicting Moonlighting Proteins. Methods Mol Biol 2017; 1611:45-57. [PMID: 28451971 DOI: 10.1007/978-1-4939-7015-5_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An increasing number of proteins have been found which are capable of performing two or more distinct functions. These proteins, known as moonlighting proteins, have drawn much attention recently as they may play critical roles in disease pathways and development. However, because moonlighting proteins are often found serendipitously, our understanding of moonlighting proteins is still quite limited. In order to lay the foundation for systematic moonlighting proteins studies, we developed MPFit, a software package for predicting moonlighting proteins from their omics features including protein-protein and gene interaction networks. Here, we describe and demonstrate the algorithm of MPFit, the idea behind it, and provide instruction for using the software.
Collapse
Affiliation(s)
- Ishita Khan
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Joshua McGraw
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA. .,Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
31
|
Abstract
Virulence gene expression serves two main functions, growth in/on the host, and the acquisition of nutrients. Therefore, it is obvious that nutrient availability is important to control expression of virulence genes. In any cell, enzymes are the components that are best informed about the availability of their respective substrates and products. It is thus not surprising that bacteria have evolved a variety of strategies to employ this information in the control of gene expression. Enzymes that have a second (so-called moonlighting) function in the regulation of gene expression are collectively referred to as trigger enzymes. Trigger enzymes may have a second activity as a direct regulatory protein that can bind specific DNA or RNA targets under particular conditions or they may affect the activity of transcription factors by covalent modification or direct protein-protein interaction. In this chapter, we provide an overview on these mechanisms and discuss the relevance of trigger enzymes for virulence gene expression in bacterial pathogens.
Collapse
|
32
|
Khan IK, Kihara D. Genome-scale prediction of moonlighting proteins using diverse protein association information. ACTA ACUST UNITED AC 2016; 32:2281-8. [PMID: 27153604 DOI: 10.1093/bioinformatics/btw166] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022]
Abstract
MOTIVATION Moonlighting proteins (MPs) show multiple cellular functions within a single polypeptide chain. To understand the overall landscape of their functional diversity, it is important to establish a computational method that can identify MPs on a genome scale. Previously, we have systematically characterized MPs using functional and omics-scale information. In this work, we develop a computational prediction model for automatic identification of MPs using a diverse range of protein association information. RESULTS We incorporated a diverse range of protein association information to extract characteristic features of MPs, which range from gene ontology (GO), protein-protein interactions, gene expression, phylogenetic profiles, genetic interactions and network-based graph properties to protein structural properties, i.e. intrinsically disordered regions in the protein chain. Then, we used machine learning classifiers using the broad feature space for predicting MPs. Because many known MPs lack some proteomic features, we developed an imputation technique to fill such missing features. Results on the control dataset show that MPs can be predicted with over 98% accuracy when GO terms are available. Furthermore, using only the omics-based features the method can still identify MPs with over 75% accuracy. Last, we applied the method on three genomes: Saccharomyces cerevisiae, Caenorhabditis elegans and Homo sapiens, and found that about 2-10% of proteins in the genomes are potential MPs. AVAILABILITY AND IMPLEMENTATION Code available at http://kiharalab.org/MPprediction CONTACT dkihara@purdue.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Daisuke Kihara
- Department of Computer Science Department of Biological Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
33
|
Mycobacterium tuberculosis Peptidyl-Prolyl Isomerases Also Exhibit Chaperone like Activity In-Vitro and In-Vivo. PLoS One 2016; 11:e0150288. [PMID: 26981873 PMCID: PMC4794191 DOI: 10.1371/journal.pone.0150288] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/11/2016] [Indexed: 12/22/2022] Open
Abstract
Peptidyl-prolyl cis-trans isomerases (Ppiases), also known as cyclophilins, are ubiquitously expressed enzymes that assist in protein folding by isomerization of peptide bonds preceding prolyl residues. Mycobacterium tuberculosis (M.tb) is known to possess two Ppiases, PpiA and PpiB. However, our understanding about the biological significance of mycobacterial Ppiases with respect to their pleiotropic roles in responding to stress conditions inside the macrophages is restricted. This study describes chaperone-like activity of mycobacterial Ppiases. We show that recombinant rPpiA and rPpiB can bind to non-native proteins in vitro and can prevent their aggregation. Purified rPpiA and rPpiB exist in oligomeric form as evident from gel filtration chromatography.E. coli cells overexpressing PpiA and PpiB of M.tb could survive thermal stress as compared to plasmid vector control. HEK293T cells transiently expressing M.tb PpiA and PpiB proteins show increased survival as compared to control cells in response to oxidative stress and hypoxic conditions generated after treatment with H2O2 and CoCl2 thereby pointing to their likely role in adaption under host generated oxidative stress and conditions of hypoxia. The chaperone-like function of these M.tuberculosis cyclophilins may possibly function as a stress responder and consequently contribute to virulence.
Collapse
|
34
|
Abstract
Metabolism is a biochemical activity of all cells, thought to fuel the physiologic needs of a given cell in a quantitative, rather than qualitatively specific, manner. Mycobacterium tuberculosis is a chronic facultative intracellular pathogen that resides in humans as its only known host and reservoir. Within humans, M. tuberculosis resides chiefly in the macrophage phagosome, the cell type and compartment most committed to its eradication. M. tuberculosis thus occupies the majority of its decades-long life cycle in a state of slowed or arrested replication. At the same time, M. tuberculosis remains poised to reenter the cell cycle to ensure its propagation as a species. M. tuberculosis has thus evolved its metabolic network to both maintain and propagate its survival as a species within a single host. Knowledge of the specific ways in which its metabolic network serves these distinct though interdependent functions, however, remains highly incomplete. In this article we review existing knowledge of M. tuberculosis's central carbon metabolism as reported by studies of its basic genetic and biochemical composition, regulation, and organization, with the hope that such knowledge will inform our understanding of M. tuberculosis's ability to traverse the stringent and heterogeneous niches encountered in the host.
Collapse
|
35
|
Parsa K, Hasnain SE. Proteomics of multidrug resistant Mycobacterium tuberculosis clinical isolates: a peep show on mechanism of drug resistance & perhaps more. Indian J Med Res 2016; 141:8-9. [PMID: 25857490 PMCID: PMC4405945 DOI: 10.4103/0971-5916.154485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Seyed E Hasnain
- Kusuma School of Biological Sciences, Indian Institute of Technology Hauz Khas, New Delhi 110 016, India
| |
Collapse
|
36
|
Loots DT. New insights into the survival mechanisms of rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother 2015; 71:655-60. [PMID: 26679254 DOI: 10.1093/jac/dkv406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Rifampicin is considered the most important antibiotic for treating TB, but unfortunately Mycobacterium tuberculosis is rapidly developing resistance to this drug. Despite the fervent research efforts to date, TB is still a major global problem, and hence new approaches are necessary to better characterize this disease, especially the mechanisms relating to drug resistance. METHODS Using a two-dimensional GC-coupled time-of-flight MS metabolomics approach, the most important metabolite markers characterizing rifampicin-resistant M. tuberculosis were identified. RESULTS The metabolite markers identified indicate instability in rifampicin-resistant M. tuberculosis mRNA, induced by the rpoB mutation. This results in a total depletion of aconitic acid, due to a shift in aconitase functionality towards mRNA binding and stability, and away from energy production and growth, and a subsequent increased dependency on alternative energy sources, fatty acids in particular. A number of other metabolic changes were observed, confirming an additional survival response for maintaining/remodelling the cell wall. CONCLUSIONS This study shows the value of a metabolomics approach to biological investigations in a quest to better understand disease-causing organisms and their tolerance to existing medications, which would in the future undoubtedly assist in the development of alternative treatment approaches.
Collapse
Affiliation(s)
- Du Toit Loots
- Human Metabolomics, School for Physical and Chemical Sciences, North-West University, Potchefstroom, Private Bag X6001, Box 269, Postal code 2531, South Africa
| |
Collapse
|
37
|
Lata M, Sharma D, Deo N, Tiwari PK, Bisht D, Venkatesan K. Proteomic analysis of ofloxacin-mono resistant Mycobacterium tuberculosis isolates. J Proteomics 2015; 127:114-21. [PMID: 26238929 DOI: 10.1016/j.jprot.2015.07.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 01/22/2023]
Abstract
Drug resistance particularly, multi drug resistance tuberculosis (MDR-TB) has emerged as a major problem in the chemotherapy of tuberculosis. Ofloxacin (OFX) has been used as second-line drug against MDR-TB. The principal target of the OFX is DNA gyrase encoded by gyrA and gyrB genes. Many explanations have been proposed for drug resistance to OFX but still some mechanisms are unknown. As proteins manifest most of the biological processes, these are attractive targets for developing drugs and diagnostics/therapeutics. We examined the OFX resistant Mycobacterium tuberculosis isolates by proteomic approach (2DE-MALDI-TOF-MS) and bioinformatic tools under OFX induced conditions. Our study showed fourteen proteins (Rv0685, Rv0363c, Rv2744c, Rv3803c, Rv2534c, Rv2140c, Rv1475c, Rv0440, Rv2245, Rv1436, Rv3551, Rv0148, Rv2882c and Rv0733) with increased intensities in OFX resistant and OFX induced as compared to susceptible isolates. Bioinformatic analysis of hypothetical proteins (Rv2744c, Rv2140c, Rv3551 and Rv0148) revealed the presence of conserved motifs and domains. Molecular docking showed proper interaction of OFX with residues of conserved motifs. These proteins might be involved in the OFX modulation/neutralization and act as novel resistance mechanisms as well as potential for diagnostics and drug targets against OFX resistance. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Manju Lata
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India..
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India..
| | - Nirmala Deo
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India..
| | | | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India..
| | - Krishnamurthy Venkatesan
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India..
| |
Collapse
|
38
|
Aconitase Functions as a Pleiotropic Posttranscriptional Regulator in Helicobacter pylori. J Bacteriol 2015; 197:3076-86. [PMID: 26170414 DOI: 10.1128/jb.00529-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Posttranscriptional regulation in bacteria has increasingly become recognized as playing a major role in response to environmental stimuli. Aconitase is a bifunctional protein that not only acts enzymatically but also can be a posttranscriptional regulator. To investigate protein expression regulated by Helicobacter pylori AcnB in response to oxidative stress, a global proteomics study was conducted wherein the ΔacnB strain was compared to the parent strain when both strains were O2 stressed. Many proteins, including some involved in urease activity, in combating oxidative stress, and in motility, were expressed at a significantly lower level in the ΔacnB strain. A bioinformatics prediction tool was used to identify putative targets for aconitase-mediated regulation, and electrophoretic mobility shift assays demonstrated that apo-AcnB is able to bind to RNA transcripts of hpn (encoding a nickel-sequestering protein), ahpC (encoding alkyl hydroperoxide reductase), and flgR (encoding flagellum response regulator). Compared to the wild type (WT), the ΔacnB strain had decreased activities of the nickel-containing enzymes urease and hydrogenase, and this could be correlated with lower total nickel levels within ΔacnB cells. Binding of apo-AcnB to the hpn 5' untranslated region (UTR) may inhibit the expression of Hpn. In agreement with the finding that AcnB regulates the expression of antioxidant proteins such as AhpC, ΔacnB cells displayed oxidative-stress-sensitive phenotypes. The ΔacnB strain has a lesser motility ability than the WT strain, which can likely be explained by the functions of AcnB on the FlgRS-RpoN-FlgE regulatory cascade. Collectively, our results suggest a global role for aconitase as a posttranscriptional regulator in this gastric pathogen. IMPORTANCE Bacterial survival depends on the ability of the cell to sense and respond to a variety of environmental changes. For Helicobacter pylori, responding to environmental stimuli within the gastric niche is essential for persistence and host colonization. However, there is much to be learned about the regulatory mechanisms that H. pylori employs to orchestrate its response to different stimuli. In this study, we explore the role of aconitase, a bifunctional protein that has been found to act as a posttranscriptional regulator in several other bacteria. Our results shed light on the magnitude of aconitase-mediated regulation in H. pylori, and we propose that aconitase acts as a global regulator of key genes involved in virulence.
Collapse
|
39
|
Affiliation(s)
- Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at ChicagoChicago, IL, USA
| |
Collapse
|
40
|
Abstract
Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics.
Collapse
Affiliation(s)
- Günter Weiss
- Department of Internal Medicine VI, Infectious Disease, Immunology, Rheumatology, Pneumology, Medical University of InnsbruckInnsbruck, Austria
| | - Ulrich E Schaible
- Cellular Microbiology, Priority Area Infections, Research Center BorstelBorstel, Germany
- Department of Immunology, London School of Hygiene and Tropical MedicineLondon, UK
- German Centre of Infection Research, TTU-TBBorstel, Germany
| |
Collapse
|
41
|
Kushwaha AK, Deochand DK, Grove A. A moonlighting function of Mycobacterium smegmatis Ku in zinc homeostasis? Protein Sci 2014; 24:253-63. [PMID: 25450225 DOI: 10.1002/pro.2612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/25/2014] [Indexed: 01/14/2023]
Abstract
Ku protein participates in DNA double-strand break repair via the nonhomologous end-joining pathway. The three-dimensional structure of eukaryotic Ku reveals a central core consisting of a β-barrel domain and pillar and bridge regions that combine to form a ring-like structure that encircles DNA. Homologs of Ku are encoded by a subset of bacterial species, and they are predicted to conserve this core domain. In addition, the bridge region of Ku from some bacteria is predicted from homology modeling and sequence analyses to contain a conventional HxxC and CxxC (where x is any residue) zinc-binding motif. These potential zinc-binding sites have either deteriorated or been entirely lost in Ku from other organisms. Using an in vitro metal binding assay, we show that Mycobacterium smegmatis Ku binds two zinc ions. Zinc binding modestly stabilizes the Ku protein (by ∼3°C) and prevents cysteine oxidation, but it has little effect on DNA binding. In vivo, zinc induces significant upregulation of the gene encoding Ku (∼sixfold) as well as a divergently oriented gene encoding a predicted zinc-dependent MarR family transcription factor. Notably, overexpression of Ku confers zinc tolerance on Escherichia coli. We speculate that zinc-binding sites in Ku proteins from M. smegmatis and other mycobacterial species have been evolutionarily retained to provide protection against zinc toxicity without compromising the function of Ku in DNA double-strand break repair.
Collapse
Affiliation(s)
- Ambuj K Kushwaha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | | | | |
Collapse
|
42
|
Khan I, Chen Y, Dong T, Hong X, Takeuchi R, Mori H, Kihara D. Genome-scale identification and characterization of moonlighting proteins. Biol Direct 2014; 9:30. [PMID: 25497125 PMCID: PMC4307903 DOI: 10.1186/s13062-014-0030-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/02/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Moonlighting proteins perform two or more cellular functions, which are selected based on various contexts including the cell type they are expressed, their oligomerization status, and the binding of different ligands at different sites. To understand overall landscape of their functional diversity, it is important to establish methods that can identify moonlighting proteins in a systematic fashion. Here, we have developed a computational framework to find moonlighting proteins on a genome scale and identified multiple proteomic characteristics of these proteins. RESULTS First, we analyzed Gene Ontology (GO) annotations of known moonlighting proteins. We found that the GO annotations of moonlighting proteins can be clustered into multiple groups reflecting their diverse functions. Then, by considering the observed GO term separations, we identified 33 novel moonlighting proteins in Escherichia coli and confirmed them by literature review. Next, we analyzed moonlighting proteins in terms of protein-protein interaction, gene expression, phylogenetic profile, and genetic interaction networks. We found that moonlighting proteins physically interact with a higher number of distinct functional classes of proteins than non-moonlighting ones and also found that most of the physically interacting partners of moonlighting proteins share the latter's primary functions. Interestingly, we also found that moonlighting proteins tend to interact with other moonlighting proteins. In terms of gene expression and phylogenetically related proteins, a weak trend was observed that moonlighting proteins interact with more functionally diverse proteins. Structural characteristics of moonlighting proteins, i.e. intrinsic disordered regions and ligand binding sites were also investigated. CONCLUSION Additional functions of moonlighting proteins are difficult to identify by experiments and these proteins also pose a significant challenge for computational function annotation. Our method enables identification of novel moonlighting proteins from current functional annotations in public databases. Moreover, we showed that potential moonlighting proteins without sufficient functional annotations can be identified by analyzing available omics-scale data. Our findings open up new possibilities for investigating the multi-functional nature of proteins at the systems level and for exploring the complex functional interplay of proteins in a cell. REVIEWERS This article was reviewed by Michael Galperin, Eugine Koonin, and Nick Grishin.
Collapse
Affiliation(s)
- Ishita Khan
- />Department of Computer Science, Purdue University, 305 North University Street, West Lafayette, IN 47907 USA
| | - Yuqian Chen
- />Department of Biological Sciences, Purdue University, 240 Martin Jischke Drive, West Lafayette, IN 47907 USA
| | - Tiange Dong
- />Department of Biological Sciences, Purdue University, 240 Martin Jischke Drive, West Lafayette, IN 47907 USA
| | - Xioawei Hong
- />Department of Biological Sciences, Purdue University, 240 Martin Jischke Drive, West Lafayette, IN 47907 USA
| | - Rikiya Takeuchi
- />Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192 Japan
| | - Hirotada Mori
- />Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192 Japan
| | - Daisuke Kihara
- />Department of Computer Science, Purdue University, 305 North University Street, West Lafayette, IN 47907 USA
- />Department of Biological Sciences, Purdue University, 240 Martin Jischke Drive, West Lafayette, IN 47907 USA
| |
Collapse
|
43
|
Abstract
Moonlighting proteins comprise a class of multifunctional proteins in which a single polypeptide chain performs multiple physiologically relevant biochemical or biophysical functions. Almost 300 proteins have been found to moonlight. The known examples of moonlighting proteins include diverse types of proteins, including receptors, enzymes, transcription factors, adhesins and scaffolds, and different combinations of functions are observed. Moonlighting proteins are expressed throughout the evolutionary tree and function in many different biochemical pathways. Some moonlighting proteins can perform both functions simultaneously, but for others, the protein's function changes in response to changes in the environment. The diverse examples of moonlighting proteins already identified, and the potential benefits moonlighting proteins might provide to the organism, such as through coordinating cellular activities, suggest that many more moonlighting proteins are likely to be found. Continuing studies of the structures and functions of moonlighting proteins will aid in predicting the functions of proteins identified through genome sequencing projects, in interpreting results from proteomics experiments, in understanding how different biochemical pathways interact in systems biology, in annotating protein sequence and structure databases, in studies of protein evolution and in the design of proteins with novel functions.
Collapse
|
44
|
α -Actinin TvACTN3 of Trichomonas vaginalis is an RNA-binding protein that could participate in its posttranscriptional iron regulatory mechanism. BIOMED RESEARCH INTERNATIONAL 2014; 2014:424767. [PMID: 24719864 PMCID: PMC3955661 DOI: 10.1155/2014/424767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/24/2013] [Indexed: 01/09/2023]
Abstract
Trichomonas vaginalis is a sexually transmitted flagellated protist parasite responsible for trichomoniasis. This parasite is dependent on high levels of iron, favoring its growth and multiplication. Iron also differentially regulates some trichomonad virulence properties by unknown mechanisms. However, there is evidence to support the existence of gene regulatory mechanisms at the transcriptional and posttranscriptional levels that are mediated by iron concentration in T. vaginalis. Thus, the goal of this study was to identify an RNA-binding protein in T. vaginalis that interacts with the tvcp4 RNA stem-loop structure, which may participate in a posttranscriptional iron regulatory mechanism mediated by RNA-protein interactions. We performed RNA electrophoretic mobility shift assay (REMSA) and supershift, UV cross-linking, Northwestern blot, and western blot (WB) assays using cytoplasmic protein extracts from T. vaginalis with the tvcp4 RNA hairpin structure as a probe. We identified a 135-kDa protein isolated by the UV cross-linking assays as α-actinin 3 (TvACTN3) by MALDI-TOF-MS that was confirmed by LS-MS/MS and de novo sequencing. TvACTN3 is a cytoplasmic protein that specifically binds to hairpin RNA structures from trichomonads and humans when the parasites are grown under iron-depleted conditions. Thus, TvACTN3 could participate in the regulation of gene expression by iron in T. vaginalis through a parallel posttranscriptional mechanism similar to that of the IRE/IRP system.
Collapse
|
45
|
Proteomic approach to reveal the regulatory function of aconitase AcnA in oxidative stress response in the antibiotic producer Streptomyces viridochromogenes Tü494. PLoS One 2014; 9:e87905. [PMID: 24498397 PMCID: PMC3912134 DOI: 10.1371/journal.pone.0087905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/30/2013] [Indexed: 01/16/2023] Open
Abstract
The aconitase AcnA from the phosphinothricin tripeptide producing strain Streptomyces viridochromogenes Tü494 is a bifunctional protein: under iron-sufficiency conditions AcnA functions as an enzyme of the tricarboxylic acid cycle, whereas under iron depletion it is a regulator of iron metabolism and oxidative stress response. As a member of the family of iron regulatory proteins (IRP), AcnA binds to characteristic iron responsive element (IRE) binding motifs and post-transcriptionally controls the expression of respective target genes. A S. viridochromogenes aconitase mutant (MacnA) has previously been shown to be highly sensitive to oxidative stress. In the present paper, we performed a comparative proteomic approach with the S. viridochromogenes wild-type and the MacnA mutant strain under oxidative stress conditions to identify proteins that are under control of the AcnA-mediated regulation. We identified up to 90 differentially expressed proteins in both strains. In silico analysis of the corresponding gene sequences revealed the presence of IRE motifs on some of the respective target mRNAs. From this proteome study we have in vivo evidences for a direct AcnA-mediated regulation upon oxidative stress.
Collapse
|
46
|
Devi S, Ansari SA, Vadivelu J, Mégraud F, Tenguria S, Ahmed N. Helicobacter pylori antigen HP0986 (TieA) interacts with cultured gastric epithelial cells and induces IL8 secretion via NF-κB mediated pathway. Helicobacter 2014; 19:26-36. [PMID: 24205801 DOI: 10.1111/hel.12100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The envisaged roles and partly understood functional properties of Helicobacter pylori protein HP0986 are significant in the context of proinflammatory and or proapoptotic activities, the two important facilitators of pathogen survival and persistence. In addition, sequence analysis of this gene predicts a restriction endonuclease function which remained unknown thus far. To evaluate the role of HP0986 in gastric inflammation, we studied its expression profile using a large number of clinical isolates but a limited number of biopsies and patient sera. Also, we studied antigenic role of HP0986 in altering cytokine responses of human gastric epithelial (AGS) cells including its interaction with and localization within the AGS cells. MATERIALS AND METHODS For in vitro expression study of HP0986, 110 H. pylori clinical isolates were cultured from patients with functional dyspepsia. For expression analysis by qRT PCR of HP0986, 10 gastric biopsy specimens were studied. HP0986 was also used to detect antibodies in patient sera. AGS cells were incubated with recombinant HP0986 to determine cytokine response and NF-κB activation. Transient transfection with HP0986 cloned in pEGFPN1 was used to study its subcellular localization or homing in AGS cells. RESULTS Out of 110 cultured H. pylori strains, 34 (31%) were positive for HP0986 and this observation was correlated with in vitro expression profiles. HP0986 mRNA was detected in 7 of the 10 biopsy specimens. Further, HP0986 induced IL-8 secretion in gastric epithelial cells in a dose and time-dependent manner via NF-κB pathway. Serum antibodies against HP0986 were positively associated with H. pylori positive patients. Transient transfection of AGS cells revealed both cytoplasmic and nuclear localization of HP0986. CONCLUSION HP0986 was moderately prevalent in clinical isolates and its expression profile in cultures and gastric biopsies points to its being naturally expressed. Collective observations including the induction of IL-8 via TNFR1 and NF-κB, subcellular localization, and seropositivity data point to a significant role of HP0986 in gastroduodenal inflammation. We propose to name the HP0986 gene/protein as 'TNFR1 interacting endonuclease A (TieA or tieA)'.
Collapse
Affiliation(s)
- Savita Devi
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, India
| | | | | | | | | | | |
Collapse
|
47
|
Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2013; 71:1799-828. [PMID: 24064983 PMCID: PMC3997798 DOI: 10.1007/s00018-013-1472-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022]
Abstract
The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.
Collapse
|
48
|
Gallium nitrate is efficacious in murine models of tuberculosis and inhibits key bacterial Fe-dependent enzymes. Antimicrob Agents Chemother 2013; 57:6074-80. [PMID: 24060870 DOI: 10.1128/aac.01543-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Acquiring iron (Fe) is critical to the metabolism and growth of Mycobacterium tuberculosis. Disruption of Fe metabolism is a potential approach for novel antituberculous therapy. Gallium (Ga) has many similarities to Fe. Biological systems are often unable to distinguish Ga(3+) from Fe(3+). Unlike Fe(3+), Ga(3+) cannot be physiologically reduced to Ga(2+). Thus, substituting Ga for Fe in the active site of enzymes may render them nonfunctional. We previously showed that Ga inhibits growth of M. tuberculosis in broth and within cultured human macrophages. We now report that Ga(NO3)3 shows efficacy in murine tuberculosis models. BALB/c SCID mice were infected intratracheally with M. tuberculosis, following which they received daily intraperitoneal saline, Ga(NO3)3, or NaNO3. All mice receiving saline or NaNO3 died. All Ga(NO3)3-treated mice survived. M. tuberculosis CFU in the lungs, liver, and spleen of the NaNO3-treated or saline-treated mice were significantly higher than those in Ga-treated mice. When BALB/c mice were substituted for BALB/c SCID mice as a chronic (nonlethal) infection model, Ga(NO3)3 treatment significantly decreased lung CFU. To assess the mechanism(s) whereby Ga inhibits bacterial growth, the effect of Ga on M. tuberculosis ribonucleotide reductase (RR) (a key enzyme in DNA replication) and aconitase activities was assessed. Ga decreased M. tuberculosis RR activity by 50 to 60%, but no additional decrease in RR activity was seen at Ga concentrations that completely inhibited mycobacterial growth. Ga decreased aconitase activity by 90%. Ga(NO3)3 shows efficacy in murine M. tuberculosis infection and leads to a decrease in activity of Fe-dependent enzymes. Additional work is warranted to further define Ga's mechanism of action and to optimize delivery forms for possible therapeutic uses in humans.
Collapse
|
49
|
Aconitase-mediated posttranscriptional regulation of Helicobacter pylori peptidoglycan deacetylase. J Bacteriol 2013; 195:5316-22. [PMID: 24056106 DOI: 10.1128/jb.00720-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Some bacterial aconitases are bifunctional proteins that function in the citric acid cycle and act as posttranscriptional regulators in response to iron levels and oxidative stress. We explore the role of aconitase (AcnB) in Helicobacter pylori as a posttranscriptional regulator of the cell wall-modifying enzyme peptidoglycan deacetylase, PgdA. Under oxidative stress, PgdA is highly expressed and confers resistance to lysozyme in wild-type cells. PgdA protein expression as well as transcript abundance is significantly decreased in an acnB mutant. In the wild type, pgdA mRNA half-life was 13 min, whereas the half-life for the acnB strain was 7 min. Based on electrophoretic mobility shift assays and RNA footprinting, the H. pylori apo-AcnB binds to the 3'-untranslated region of the pgdA RNA transcript. Some of the protected bases (from footprinting) were localized in proposed stem-loop structures. AcnB-pgdA transcript binding was abolished by the addition of iron. The acnB strain is more susceptible to lysozyme-mediated killing and was attenuated in its ability to colonize mice. The results support a model whereby apo-AcnB directly interacts with the pgdA transcript to enhance stability and increase deacetylase enzyme expression, which impacts in vivo survival.
Collapse
|
50
|
Baothman OAS, Rolfe MD, Green J. Characterization of Salmonella enterica serovar Typhimurium aconitase A. MICROBIOLOGY-SGM 2013; 159:1209-1216. [PMID: 23637460 DOI: 10.1099/mic.0.067934-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aconitases (Acn) are iron-sulfur proteins that catalyse the reversible isomerization of citrate and isocitrate via the intermediate cis-aconitate in the Krebs cycle. Some Acn proteins are bi-functional and under conditions of iron starvation and oxidative stress lose their iron-sulfur clusters and become post-transcriptional regulators by binding specific mRNA targets. Many bacterial species possess two genetically distinct aconitase proteins, AcnA and AcnB. Current understanding of the regulation and functions of AcnA and AcnB in dual Acn bacteria is based on a model developed in Escherichia coli. Thus, AcnB is the major Krebs cycle enzyme expressed during exponential growth, whereas AcnA is a more stable, stationary phase and stress-induced enzyme, and both E. coli Acns are bi-functional. Here a second dual Acn bacterium, Salmonella enterica serovar Typhimurium (S. Typhimurium), has been analysed. Phenotypic traits of S. Typhimurium acn mutants were consistent with AcnB acting as the major Acn protein. Promoter fusion experiments indicated that acnB transcription was ~10-fold greater than that of acnA and that acnA expression was regulated by the cyclic-AMP receptor protein (CRP, glucose starvation), the fumarate nitrate reduction regulator (FNR, oxygen starvation), the ferric uptake regulator (Fur, iron starvation) and the superoxide response protein (SoxR, oxidative stress). In contrast to E. coli, S. Typhimurium acnA was not induced in the stationary phase. Furthermore, acnA expression was enhanced in an acnB mutant, presumably to partially compensate for the lack of AcnB activity. Isolated S. Typhimurium AcnA protein had kinetic and mRNA-binding properties similar to those described for E. coli AcnA. Thus, the work reported here provides a second example of the regulation and function of AcnA and AcnB proteins in a dual Acn bacterium.
Collapse
Affiliation(s)
- Othman A S Baothman
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew D Rolfe
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Jeffrey Green
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|