1
|
Jensen AA, Firdous S, Lei L, Fisher DJ, Ouellette SP. Overexpressing the ClpC AAA+ unfoldase accelerates developmental cycle progression in Chlamydia trachomatis. mBio 2025; 16:e0287024. [PMID: 39576108 PMCID: PMC11708050 DOI: 10.1128/mbio.02870-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
Chlamydia is an obligate intracellular bacterium that undergoes a complex biphasic developmental cycle, alternating between the smaller, infectious, non-dividing elementary body (EB) and the larger, non-infectious but dividing reticulate body. Due to the differences between these functionally and morphologically distinct forms, we hypothesize protein degradation is essential to chlamydial differentiation. The bacterial Clp system, consisting of an ATPase unfoldase (e.g., ClpX or ClpC) and a proteolytic component (e.g., ClpP), is critical for the physiology of bacteria through its recognition, and usually degradation, of specific substrates. We observed by transmission electron microscopy that overexpression of wild-type ClpC, but not an ATPase mutant isoform, in Chlamydia increased glycogen accumulation within the vacuolar niche of the bacteria earlier in the developmental cycle than typically observed. This suggested ClpC activity may increase the expression of EB-associated genes. Consistent with this, targeted RT-qPCR analyses demonstrated a significant increase in several EB-associated gene transcripts earlier in development. These effects were not observed with overexpression of the ATPase mutant of ClpC, providing strong evidence that the activity of ClpC drives secondary differentiation. By analyzing the global transcriptional response to ClpC overexpression using RNA sequencing, we observed a shift to earlier expression of canonical late developmental cycle genes and other EB-associated genes. Finally, we directly linked overexpression of ClpC with earlier production of infectious chlamydiae. Conversely, disrupting normal ClpC function with an ATPase mutant caused a delay in developmental cycle progression. Overall, these findings provide the first mechanistic insight for initiation of secondary differentiation in Chlamydia.IMPORTANCEChlamydia species are obligate intracellular bacteria that require a host cell in which to complete their unique developmental cycle. Chlamydia differentiates between an infectious but non-replicating form, the elementary body, and a non-infectious but replicating form, the reticulate body. The signals that drive differentiation events are not characterized. We hypothesize that proteases are essential for mediating differentiation by allowing remodeling of the proteome as the organism transitions from one functional form to another. We previously reported that the Caseinolytic protease (Clp) system is essential for chlamydial growth. Here, we reveal a surprising function for ClpC, an unfoldase, in driving production of infectious chlamydiae during the chlamydial developmental cycle.
Collapse
Affiliation(s)
- Aaron A. Jensen
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Saba Firdous
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lei Lei
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Derek J. Fisher
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Scot P. Ouellette
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Peltek S, Bannikova S, Khlebodarova TM, Uvarova Y, Mukhin AM, Vasiliev G, Scheglov M, Shipova A, Vasilieva A, Oshchepkov D, Bryanskaya A, Popik V. The Transcriptomic Response of Cells of the Thermophilic Bacterium Geobacillus icigianus to Terahertz Irradiation. Int J Mol Sci 2024; 25:12059. [PMID: 39596128 PMCID: PMC11594194 DOI: 10.3390/ijms252212059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
As areas of application of terahertz (THz) radiation expand in science and practice, evidence is accumulating that this type of radiation can affect not only biological molecules directly, but also cellular processes as a whole. In this study, the transcriptome in cells of the thermophilic bacterium Geobacillus icigianus was analyzed immediately after THz irradiation (0.23 W/cm2, 130 μm, 15 min) and at 10 min after its completion. THz irradiation does not affect the activity of heat shock protein genes and diminishes the activity of genes whose products are involved in peptidoglycan recycling, participate in redox reactions, and protect DNA and proteins from damage, including genes of chaperone protein ClpB and of DNA repair protein RadA, as well as genes of catalase and kinase McsB. Gene systems responsible for the homeostasis of transition metals (copper, iron, and zinc) proved to be the most sensitive to THz irradiation; downregulation of these systems increased significantly 10 min after the end of the irradiation. It was also hypothesized that some negative effects of THz radiation on metabolism in G. icigianus cells are related to disturbances in activities of gene systems controlled by metal-sensitive transcription factors.
Collapse
Affiliation(s)
- Sergey Peltek
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Svetlana Bannikova
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Tamara M. Khlebodarova
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Yulia Uvarova
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Aleksey M. Mukhin
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Gennady Vasiliev
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Mikhail Scheglov
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.S.); (V.P.)
| | - Aleksandra Shipova
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Asya Vasilieva
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Dmitry Oshchepkov
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Alla Bryanskaya
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Vasily Popik
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.S.); (V.P.)
| |
Collapse
|
3
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
4
|
Burroughs A, Aravind L. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. NAR Genom Bioinform 2023; 5:lqad029. [PMID: 36968430 PMCID: PMC10034599 DOI: 10.1093/nargab/lqad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
The protein-tyrosine/dual-specificity phosphatases and rhodanese domains constitute a sprawling superfamily of Rossmannoid domains that use a conserved active site with a cysteine to catalyze a range of phosphate-transfer, thiotransfer, selenotransfer and redox activities. While these enzymes have been extensively studied in the context of protein/lipid head group dephosphorylation and various thiotransfer reactions, their overall diversity and catalytic potential remain poorly understood. Using comparative genomics and sequence/structure analysis, we comprehensively investigate and develop a natural classification for this superfamily. As a result, we identified several novel clades, both those which retain the catalytic cysteine and those where a distinct active site has emerged in the same location (e.g. diphthine synthase-like methylases and RNA 2' OH ribosyl phosphate transferases). We also present evidence that the superfamily has a wider range of catalytic capabilities than previously known, including a set of parallel activities operating on various sugar/sugar alcohol groups in the context of NAD+-derivatives and RNA termini, and potential phosphate transfer activities involving sugars and nucleotides. We show that such activities are particularly expanded in the RapZ-C-DUF488-DUF4326 clade, defined here for the first time. Some enzymes from this clade are predicted to catalyze novel DNA-end processing activities as part of nucleic-acid-modifying systems that are likely to function in biological conflicts between viruses and their hosts.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
5
|
Izert MA, Klimecka MM, Górna MW. Applications of Bacterial Degrons and Degraders - Toward Targeted Protein Degradation in Bacteria. Front Mol Biosci 2021; 8:669762. [PMID: 34026843 PMCID: PMC8138137 DOI: 10.3389/fmolb.2021.669762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
A repertoire of proteolysis-targeting signals known as degrons is a necessary component of protein homeostasis in every living cell. In bacteria, degrons can be used in place of chemical genetics approaches to interrogate and control protein function. Here, we provide a comprehensive review of synthetic applications of degrons in targeted proteolysis in bacteria. We describe recent advances ranging from large screens employing tunable degradation systems and orthogonal degrons, to sophisticated tools and sensors for imaging. Based on the success of proteolysis-targeting chimeras as an emerging paradigm in cancer drug discovery, we discuss perspectives on using bacterial degraders for studying protein function and as novel antimicrobials.
Collapse
Affiliation(s)
| | | | - Maria Wiktoria Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Carere CR, Hards K, Wigley K, Carman L, Houghton KM, Cook GM, Stott MB. Growth on Formic Acid Is Dependent on Intracellular pH Homeostasis for the Thermoacidophilic Methanotroph Methylacidiphilum sp. RTK17.1. Front Microbiol 2021; 12:651744. [PMID: 33841379 PMCID: PMC8024496 DOI: 10.3389/fmicb.2021.651744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Members of the genus Methylacidiphilum, a clade of metabolically flexible thermoacidophilic methanotrophs from the phylum Verrucomicrobia, can utilize a variety of substrates including methane, methanol, and hydrogen for growth. However, despite sequentially oxidizing methane to carbon dioxide via methanol and formate intermediates, growth on formate as the only source of reducing equivalents (i.e., NADH) has not yet been demonstrated. In many acidophiles, the inability to grow on organic acids has presumed that diffusion of the protonated form (e.g., formic acid) into the cell is accompanied by deprotonation prompting cytosolic acidification, which leads to the denaturation of vital proteins and the collapse of the proton motive force. In this work, we used a combination of biochemical, physiological, chemostat, and transcriptomic approaches to demonstrate that Methylacidiphilum sp. RTK17.1 can utilize formate as a substrate when cells are able to maintain pH homeostasis. Our findings show that Methylacidiphilum sp. RTK17.1 grows optimally with a circumneutral intracellular pH (pH 6.52 ± 0.04) across an extracellular range of pH 1.5–3.0. In batch experiments, formic acid addition resulted in no observable cell growth and cell death due to acidification of the cytosol. Nevertheless, stable growth on formic acid as the only source of energy was demonstrated in continuous chemostat cultures (D = 0.0052 h−1, td = 133 h). During growth on formic acid, biomass yields remained nearly identical to methanol-grown chemostat cultures when normalized per mole electron equivalent. Transcriptome analysis revealed the key genes associated with stress response: methane, methanol, and formate metabolism were differentially expressed in response to growth on formic acid. Collectively, these results show formic acid represents a utilizable source of energy/carbon to the acidophilic methanotrophs within geothermal environments. Findings expand the known metabolic flexibility of verrucomicrobial methanotrophs to include organic acids and provide insight into potential survival strategies used by these species during methane starvation.
Collapse
Affiliation(s)
- Carlo R Carere
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Center for Molecular Biodiscovery, Auckland, New Zealand
| | - Kathryn Wigley
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Luke Carman
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Karen M Houghton
- Geomicrobiology Research Group, Department of Geothermal Sciences, GNS Science, Taupō, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Center for Molecular Biodiscovery, Auckland, New Zealand
| | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
7
|
Lilge L, Reder A, Tippmann F, Morgenroth F, Grohmann J, Becher D, Riedel K, Völker U, Hecker M, Gerth U. The Involvement of the McsB Arginine Kinase in Clp-Dependent Degradation of the MgsR Regulator in Bacillus subtilis. Front Microbiol 2020; 11:900. [PMID: 32477307 PMCID: PMC7235348 DOI: 10.3389/fmicb.2020.00900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/16/2020] [Indexed: 12/02/2022] Open
Abstract
Regulated ATP-dependent proteolysis is a common feature of developmental processes and plays also a crucial role during environmental perturbations such as stress and starvation. The Bacillus subtilis MgsR regulator controls a subregulon within the stress- and stationary phase σB regulon. After ethanol exposition and a short time-window of activity, MgsR is ClpXP-dependently degraded with a half-life of approximately 6 min. Surprisingly, a protein interaction analysis with MgsR revealed an association with the McsB arginine kinase and an in vivo degradation assay confirmed a strong impact of McsB on MgsR degradation. In vitro phosphorylation experiments with arginine (R) by lysine (K) substitutions in McsB and its activator McsA unraveled all R residues, which are essentially needed for the arginine kinase reaction. Subsequently, site directed mutagenesis of the MgsR substrate was used to substitute all arginine residues with glutamate (R-E) to mimic arginine phosphorylation and to test their influence on MgsR degradation in vivo. It turned out, that especially the R33E and R94/95E residues (RRPI motif), the latter are adjacently located to the two redox-sensitive cysteines in a 3D model, have the potential to accelerate MgsR degradation. These results imply that selective arginine phosphorylation may have favorable effects for Clp dependent degradation of short-living regulatory proteins. We speculate that in addition to its kinase activity and adaptor function for the ClpC ATPase, McsB might also serve as a proteolytic adaptor for the ClpX ATPase in the degradation mechanism of MgsR.
Collapse
Affiliation(s)
- Lars Lilge
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Frank Tippmann
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | - Janice Grohmann
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Michael Hecker
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Ulf Gerth
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Panasenko OO, Bezrukov F, Komarynets O, Renzoni A. YjbH Solubility Controls Spx in Staphylococcus aureus: Implication for MazEF Toxin-Antitoxin System Regulation. Front Microbiol 2020; 11:113. [PMID: 32117138 PMCID: PMC7016130 DOI: 10.3389/fmicb.2020.00113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
Bacterial cells respond to environmental stresses by modulating their gene expression and adjusting their proteome. In Staphylococcus aureus, selective degradation by ClpP protease eliminates damaged proteins and regulates the abundance of functional proteins such as many important stress-induced transcriptional regulators. Degradation by ClpP requires the unfolding activity of partner Clp ATPases, such as ClpX and ClpC, and assistance of substrate-specific adaptor proteins such as YjbH and TrfA. Herein, we demonstrated that YjbH is aggregated in response to growth stress stimuli, such as oxidative and antibiotic stresses. In consequence, its function as an adaptor protein is compromised. YjbH controls the degradation of the stress-induced transcriptional regulator, Spx. Aggregated YjbH cannot assist Spx degradation, which results in Spx accumulation. We discovered that depending on the stress stimulus, Spx can be soluble or insoluble, and, consequently, transcriptionally active or inactive. Therefore, Spx accumulation and solubility are key components governing activation of Spx-dependent genes. Spx positively regulates expression of a ClpCP adaptor protein TrfA. TrfA in turn is required for degradation of MazE antitoxin, the unstable component of the MazEF toxin-antitoxin system, that neutralizes the endoribonuclease activity of MazF toxin. Bacterial toxin-antitoxin systems are associated with dormancy and tolerance to antibiotics that are related to chronic and relapsing infections, and it is at present a key unresolved problem in medicine. MazF activity was linked to growth stasis, yet the precise environmental signals that trigger MazE degradation and MazF activation are poorly understood. Here we propose a model where YjbH serves as a sensor of environmental stresses for downstream regulation of MazEF activity. YjbH aggregation, soluble Spx, and TrfA, coordinately control MazE antitoxin levels and consequently MazF toxin activity. This model implies that certain stress conditions culminate in modulation of MazF activity resulting in growth stasis during in vivo infections.
Collapse
Affiliation(s)
- Olesya O Panasenko
- Service of Infectious Diseases, Department of Medical Specialties, University Hospital and Medical School of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fedor Bezrukov
- Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Olga Komarynets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Adriana Renzoni
- Service of Infectious Diseases, Department of Medical Specialties, University Hospital and Medical School of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
The ClpCP Complex Modulates Respiratory Metabolism in Staphylococcus aureus and Is Regulated in a SrrAB-Dependent Manner. J Bacteriol 2019; 201:JB.00188-19. [PMID: 31109995 DOI: 10.1128/jb.00188-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/17/2019] [Indexed: 01/13/2023] Open
Abstract
The staphylococcal respiratory regulator (SrrAB) modulates energy metabolism in Staphylococcus aureus Studies have suggested that regulated protein catabolism facilitates energy homeostasis. Regulated proteolysis in S. aureus is achieved through protein complexes composed of a peptidase (ClpQ or ClpP) in association with an AAA+ family ATPase (typically, ClpC or ClpX). In the present report, we tested the hypothesis that SrrAB regulates a Clp complex to facilitate energy homeostasis in S. aureus Strains deficient in one or more Clp complexes were attenuated for growth in the presence of puromycin, which causes enrichment of misfolded proteins. A ΔsrrAB strain had increased sensitivity to puromycin. Epistasis experiments suggested that the puromycin sensitivity phenotype of the ΔsrrAB strain was a result of decreased ClpC activity. Consistent with this, transcriptional activity of clpC was decreased in the ΔsrrAB mutant, and overexpression of clpC suppressed the puromycin sensitivity of the ΔsrrAB strain. We also found that ClpC positively influenced respiration and that it did so upon association with ClpP. In contrast, ClpC limited fermentative growth, while ClpP was required for optimal fermentative growth. Metabolomics studies demonstrated that intracellular metabolic profiles of the ΔclpC and ΔsrrAB mutants were distinct from those of the wild-type strain, supporting the notion that both ClpC and SrrAB affect central metabolism. We propose a model wherein SrrAB regulates energy homeostasis, in part, via modulation of regulated proteolysis.IMPORTANCE Oxygen is used as a substrate to derive energy by the bacterial pathogen Staphylococcus aureus during infection; however, S. aureus can also grow fermentatively in the absence of oxygen. To successfully cause infection, S. aureus must tailor its metabolism to take advantage of respiratory activity. Different proteins are required for growth in the presence or absence of oxygen; therefore, when cells transition between these conditions, several proteins would be expected to become unnecessary. In this report, we show that regulated proteolysis is used to modulate energy metabolism in S. aureus We report that the ClpCP protein complex is involved in specifically modulating aerobic respiratory growth but is dispensable for fermentative growth.
Collapse
|
10
|
Lassak J, Koller F, Krafczyk R, Volkwein W. Exceptionally versatile – arginine in bacterial post-translational protein modifications. Biol Chem 2019; 400:1397-1427. [DOI: 10.1515/hsz-2019-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Post-translational modifications (PTM) are the evolutionary solution to challenge and extend the boundaries of genetically predetermined proteomic diversity. As PTMs are highly dynamic, they also hold an enormous regulatory potential. It is therefore not surprising that out of the 20 proteinogenic amino acids, 15 can be post-translationally modified. Even the relatively inert guanidino group of arginine is subject to a multitude of mostly enzyme mediated chemical changes. The resulting alterations can have a major influence on protein function. In this review, we will discuss how bacteria control their cellular processes and develop pathogenicity based on post-translational protein-arginine modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Franziska Koller
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Ralph Krafczyk
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Wolfram Volkwein
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| |
Collapse
|
11
|
Rojas-Tapias DF, Helmann JD. Roles and regulation of Spx family transcription factors in Bacillus subtilis and related species. Adv Microb Physiol 2019; 75:279-323. [PMID: 31655740 DOI: 10.1016/bs.ampbs.2019.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacillus subtilis Spx is the prototype for a large family of redox-responsive transcription factors found in many bacteria, most notably those from the phylum Firmicutes. Unusually for a transcription factor, B. subtilis Spx protein modulates gene expression by binding as a monomer to the αCTD domain of RNA polymerase (RNAP), and only interacts with DNA during subsequent promoter engagement. B. subtilis Spx drives the expression of a large regulon in response to proteotoxic conditions, such as heat and disulfide stress, as well as cell wall stress. Here, we review the detailed mechanisms that control the expression, stability, and activity of Spx in response to a variety of stress conditions. We also summarize current knowledge regarding Spx homologs in other Firmicutes, the environmental conditions in which those homologs are activated, and their biological role.
Collapse
Affiliation(s)
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
Jung H, Choi Y, Lee D, Seo JK, Kee JM. Distinct phosphorylation and dephosphorylation dynamics of protein arginine kinases revealed by fluorescent activity probes. Chem Commun (Camb) 2019; 55:7482-7485. [PMID: 31184653 DOI: 10.1039/c9cc03285a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein arginine (Arg) phosphorylation regulates stress responses and virulence in bacteria. With fluorescent activity probes, we show that McsB, a protein Arg kinase, can dephosphorylate phosphoarginine (pArg) residues to produce ATP from ADP, implicating the dynamic control of protein pArg levels by the kinase even without a phosphatase.
Collapse
Affiliation(s)
- Hoyoung Jung
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Yigun Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Donghee Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| |
Collapse
|
13
|
Identification of Novel Spx Regulatory Pathways in Bacillus subtilis Uncovers a Close Relationship between the CtsR and Spx Regulons. J Bacteriol 2019; 201:JB.00151-19. [PMID: 30962353 DOI: 10.1128/jb.00151-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
In Bacillus subtilis, the Spx transcription factor controls a large regulon in response to disulfide, heat, and cell wall stresses. The regulatory mechanisms that activate the Spx regulon are remarkably complex and involve changes in transcription, proteolysis, and posttranslational modifications. To identify genes involved in Spx regulation, we performed a transposon screen for mutations affecting expression of trxB, an Spx-dependent gene. Inactivation of ctsR, encoding the regulator of the Clp proteases, reduced trxB expression and lowered Spx levels. This effect required ClpP, but involved ClpC rather than the ClpX unfoldase. Moreover, cells lacking McsB, a dual function arginine kinase and ClpCP adaptor, largely reverted the ctsR phenotype and increased trxB expression. The role of McsB appears to involve its kinase activity, since loss of the YwlE phosphoarginine phosphatase also led to reduced trxB expression. Finally, we show that Spx is itself a regulator of the ctsR operon. Altogether, this work provides evidence for a role of CtsR regulon members ClpC, ClpP, and McsB in Spx regulation and identifies a new feedback pathway associated with Spx activity in B. subtilis IMPORTANCE In Bacillus subtilis, the Spx transcription factor is proteolytically unstable, and protein stabilization figures prominently in the induction of the Spx regulon in response to oxidative and cell envelope stresses. ClpXP is largely, but not entirely, responsible for Spx instability. Here, we identify ClpCP as the protease that degrades Spx under conditions that antagonize the ClpXP pathway. Spx itself contributes to activation of the ctsR operon, which encodes ClpC as well as the McsB arginine kinase and protease adaptor, thereby providing a negative feedback mechanism. Genetic studies reveal that dysregulation of the CtsR regulon or inactivation of the YwlE phosphoarginine phosphatase decreases Spx activity through mechanisms involving both protein degradation and posttranslational modification.
Collapse
|
14
|
Darsonval M, Julliat F, Msadek T, Alexandre H, Grandvalet C. CtsR, the Master Regulator of Stress-Response in Oenococcus oeni, Is a Heat Sensor Interacting With ClpL1. Front Microbiol 2018; 9:3135. [PMID: 30619203 PMCID: PMC6305308 DOI: 10.3389/fmicb.2018.03135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
Oenococcus oeni is a lactic acid bacterium responsible for malolactic fermentation of wine. While many stress response mechanisms implemented by O. oeni during wine adaptation have been described, little is known about their regulation. CtsR is the only regulator of stress response genes identified to date in O. oeni. Extensively characterized in Bacillus subtilis, the CtsR repressor is active as a dimer at 37°C and degraded at higher temperatures by a proteolytic mechanism involving two adapter proteins, McsA and McsB, together with the ClpCP complex. The O. oeni genome does not encode orthologs of these adapter proteins and the regulation of CtsR activity remains unknown. In this study, we investigate CtsR function in O. oeni by using antisense RNA silencing in vivo to modulate ctsR gene expression. Inhibition of ctsR gene expression by asRNA leads to a significant loss in cultivability after heat shock (58%) and acid shock (59%) highlighting the key role of CtsR in the O. oeni stress response. Regulation of CtsR activity was studied using a heterologous expression system to demonstrate that O. oeni CtsR controls expression and stress induction of the O. oeni hsp18 gene when produced in a ctsR-deficient B. subtilis strain. Under heat stress conditions, O. oeni CtsR acts as a temperature sensor and is inactivated at growth temperatures above 33°C. Finally, using an E. coli bacterial two-hybrid system, we showed that CtsR and ClpL1 interact, suggesting a key role for ClpL1 in controlling CtsR activity in O. oeni.
Collapse
Affiliation(s)
- Maud Darsonval
- UMR A. 02.102 Procédés Alimentaires et Microbiologique, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Frédérique Julliat
- UMR A. 02.102 Procédés Alimentaires et Microbiologique, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Tarek Msadek
- Unité de Biologie des Bactéries Pathogènes à Gram Positif, Institut Pasteur, Paris, France.,CNRS ERL 6002, Paris, France
| | - Hervé Alexandre
- UMR A. 02.102 Procédés Alimentaires et Microbiologique, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France.,Institut Universitaire de la Vigne et du Vin - Jules Guyot, Dijon, France
| | - Cosette Grandvalet
- UMR A. 02.102 Procédés Alimentaires et Microbiologique, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France.,Institut National Supérieur des Sciences Agronomiques, de L'Alimentation et de L'Environnement, AgroSup Dijon, Dijon, France
| |
Collapse
|
15
|
Elsholz AKW, Birk MS, Charpentier E, Turgay K. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis. Front Mol Biosci 2017; 4:44. [PMID: 28748186 PMCID: PMC5506225 DOI: 10.3389/fmolb.2017.00044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/15/2017] [Indexed: 12/20/2022] Open
Abstract
Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.
Collapse
Affiliation(s)
- Alexander K W Elsholz
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Marlene S Birk
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany.,The Laboratory for Molecular Infection Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden.,Humboldt UniversityBerlin, Germany
| | - Kürşad Turgay
- Faculty of Natural Sciences, Institute of Microbiology, Leibniz UniversitätHannover, Germany
| |
Collapse
|
16
|
Fuhrmann J, Subramanian V, Kojetin DJ, Thompson PR. Activity-Based Profiling Reveals a Regulatory Link between Oxidative Stress and Protein Arginine Phosphorylation. Cell Chem Biol 2016; 23:967-977. [PMID: 27524296 DOI: 10.1016/j.chembiol.2016.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
Abstract
Protein arginine phosphorylation is a recently discovered modification that affects multiple cellular pathways in Gram-positive bacteria. In particular, the phosphorylation of arginine residues by McsB is critical for regulating the cellular stress response. Given that the highly efficient protein arginine phosphatase YwlE prevents arginine phosphorylation under non-stress conditions, we hypothesized that this enzyme negatively regulates arginine phosphorylation and acts as a sensor of cell stress. To evaluate this hypothesis, we developed the first suite of highly potent and specific SO3-amidine-based YwlE inhibitors. With these protein arginine phosphatase-specific probes, we demonstrated that YwlE activity is suppressed by oxidative stress, which consequently increases arginine phosphorylation, thereby inducing the expression of stress-response genes, which is critical for bacterial virulence. Overall, we predict that these novel chemical tools will be widely used to study the regulation of protein arginine phosphorylation in multiple organisms.
Collapse
Affiliation(s)
- Jakob Fuhrmann
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Venkataraman Subramanian
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, MA 01605, USA; Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Douglas J Kojetin
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, MA 01605, USA; Program in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
17
|
Mijakovic I, Grangeasse C, Turgay K. Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiol Rev 2016; 40:398-417. [PMID: 26926353 DOI: 10.1093/femsre/fuw003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/02/2016] [Indexed: 12/31/2022] Open
Abstract
Protein modifications not only affect protein homeostasis but can also establish new cellular protein functions and are important components of complex cellular signal sensing and transduction networks. Among these post-translational modifications, protein phosphorylation represents the one that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein modification and homeostasis in all cellular life.
Collapse
Affiliation(s)
- Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Christophe Grangeasse
- Unité Microbiologie Moléculaire et Biochimie Structurale, UMR 5086-CNRS/ Université Lyon 1, Lyon 69367, France
| | - Kürşad Turgay
- Institut für Mikrobiologie, Leibniz Universität Hannover, D-30419 Hannover, Germany
| |
Collapse
|
18
|
Ouyang H, Fu C, Fu S, Ji Z, Sun Y, Deng P, Zhao Y. Development of a stable phosphoarginine analog for producing phosphoarginine antibodies. Org Biomol Chem 2016; 14:1925-9. [DOI: 10.1039/c5ob02603b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
pAIE is designed and synthesized as a stable analog and bioisostere of acid-labile pArg, to produce pArg specific antibodies, facilitating the detection of protein arginine phosphorylation.
Collapse
Affiliation(s)
- Han Ouyang
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Chuan Fu
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Songsen Fu
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Zhe Ji
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Ying Sun
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Peiran Deng
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Yufen Zhao
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| |
Collapse
|
19
|
Role of adaptor TrfA and ClpPC in controlling levels of SsrA-tagged proteins and antitoxins in Staphylococcus aureus. J Bacteriol 2014; 196:4140-51. [PMID: 25225270 DOI: 10.1128/jb.02222-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus responds to changing extracellular environments in part by adjusting its proteome through alterations of transcriptional priorities and selective degradation of the preexisting pool of proteins. In Bacillus subtilis, the proteolytic adaptor protein MecA has been shown to play a role in assisting with the proteolytic degradation of proteins involved in competence and the oxidative stress response. However, the targets of TrfA, the MecA homolog in S. aureus, have not been well characterized. In this work, we investigated how TrfA assists chaperones and proteases to regulate the proteolysis of several classes of proteins in S. aureus. By fusing the last 3 amino acids of the SsrA degradation tag to Venus, a rapidly folding yellow fluorescent protein, we obtained both fluorescence-based and Western blot assay-based evidence that TrfA and ClpCP are the adaptor and protease, respectively, responsible for the degradation of the SsrA-tagged protein in S. aureus. Notably, the impact of TrfA on degradation was most prominent during late log phase and early stationary phase, due in part to a combination of transcriptional regulation and proteolytic degradation of TrfA by ClpCP. We also characterized the temporal transcriptional regulation governing TrfA activity, wherein Spx, a redox-sensitive transcriptional regulator degraded by ClpXP, activates trfA transcription while repressing its own promoter. Finally, the scope of TrfA-mediated proteolysis was expanded by identifying TrfA as the adaptor that works with ClpCP to degrade antitoxins in S. aureus. Together, these results indicate that the adaptor TrfA adds temporal nuance to protein degradation by ClpCP in S. aureus.
Collapse
|
20
|
Hou XH, Zhang JQ, Song XY, Ma XB, Zhang SY. Contribution of ClpP to stress tolerance and virulence properties of Streptococcus mutans. J Basic Microbiol 2014; 54:1222-32. [PMID: 24979467 DOI: 10.1002/jobm.201300747] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/18/2014] [Indexed: 11/06/2022]
Abstract
Abilities to tolerate environmental stresses and to form biofilms on teeth surface are key virulence attributes of Streptococcus mutans, the primary causative agent of human dental caries. ClpP, the chief intracellular protease of S. mutans, along with ATPases degrades altered proteins that might be toxic for bacteria, and thus plays important roles in stress response. To further understand the roles of ClpP in stress response of S. mutans, a ClpP deficient strain was constructed and used for general stress tolerance, autolysis, mutacins production, and virulence assays. Here, we demonstrated that inactivation of ClpP in S. mutans resulted in a sensitive phenotype to several environmental stresses, including acid, cold, thermal, and oxidative stresses. The ClpP deficient strain displayed slow growth rates, poor growth yields, formation of long chains, increased clumping in broth, and reduced capacity to form biofilms in presence of glucose. Mutacins production and autolysis of S. mutans were also impaired by mutation of clpP. Animals study showed that clpP mutation increased virulence of S. mutans but not significant. However, enhanced abilities to survive lethal acid and to form biofilm in sucrose were observed in ClpP deficient strain. Our findings revealed a broad impact of ClpP on several virulence properties of S. mutans and highlighted the relevance of ClpP proteolysis with progression of diseases caused by S. mutans.
Collapse
Affiliation(s)
- Xiang-Hua Hou
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | | | | | | | | |
Collapse
|
21
|
Slade DJ, Subramanian V, Fuhrmann J, Thompson PR. Chemical and biological methods to detect post-translational modifications of arginine. Biopolymers 2014; 101:133-43. [PMID: 23576281 PMCID: PMC3900596 DOI: 10.1002/bip.22256] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/01/2013] [Indexed: 12/11/2022]
Abstract
Post-translational modifications (PTMs) of protein embedded arginines are increasingly being recognized as playing an important role in both prokaryotic and eukaryotic biology, and it is now clear that these PTMs modulate a number of cellular processes including DNA binding, gene transcription, protein-protein interactions, immune system activation, and proteolysis. There are currently four known enzymatic PTMs of arginine (i.e., citrullination, methylation, phosphorylation, and ADP-ribosylation), and two non-enzymatic PTMs [i.e., carbonylation, advanced glycation end-products (AGEs)]. Enzymatic modification of arginine is tightly controlled during normal cellular function, and can be drastically altered in response to various second messengers and in different disease states. Non-enzymatic arginine modifications are associated with a loss of metabolite regulation during normal human aging. This abnormally large number of modifications to a single amino acid creates a diverse set of structural perturbations that can lead to altered biological responses. While the biological role of methylation has been the most extensively characterized of the arginine PTMs, recent advances have shown that the once obscure modification known as citrullination is involved in the onset and progression of inflammatory diseases and cancer. This review will highlight the reported arginine PTMs and their methods of detection, with a focus on new chemical methods to detect protein citrullination.
Collapse
Affiliation(s)
- Daniel J. Slade
- Department of Chemistry, The Kellogg School of Graduate Studies, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Venkataraman Subramanian
- Department of Chemistry, The Kellogg School of Graduate Studies, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jakob Fuhrmann
- Department of Chemistry, The Kellogg School of Graduate Studies, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Paul R. Thompson
- Department of Chemistry, The Kellogg School of Graduate Studies, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
22
|
Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. Int J Med Microbiol 2013; 304:142-9. [PMID: 24457183 DOI: 10.1016/j.ijmm.2013.11.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Intracellular proteolysis carried out by energy-dependent proteases is one of the most conserved biological processes. In all cells proteolysis maintains and shapes the cellular proteome by ridding the cell of damaged proteins and by regulating abundance of functional proteins such as regulatory proteins. The ATP-dependent ClpP protease is highly conserved among eubacteria and in the chloroplasts and mitochondria of eukaryotic cells. In the serious human pathogen, Staphylococcus aureus inactivation of clpP rendered the bacterium avirulent emphasizing the central role of proteolysis in virulence. The contribution of the Clp proteins to virulence is likely to occur at multiple levels. First of all, both Clp ATPases and the Clp protease are central players in stress responses required to cope with the adverse conditions met in the host. The ClpP protease has a dual role herein, as it both eliminates stress-damaged proteins as well as ensures the timely degradation of major stress regulators such as Spx, LexA and CtsR. Additionally, as we will summarize in this review, Clp proteases and Clp chaperones impact on such central processes as virulence gene expression, cell wall metabolism, survival in stationary phase, and cell division. These observations together with recent findings that Clp proteins contribute to adaptation to antibiotics highlights the importance of this interesting proteolytic machinery both for understanding pathogenicity of the organism and for treating staphylococcal infections.
Collapse
|
23
|
Cousin C, Derouiche A, Shi L, Pagot Y, Poncet S, Mijakovic I. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol Lett 2013; 346:11-9. [PMID: 23731382 DOI: 10.1111/1574-6968.12189] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 01/05/2023] Open
Abstract
In this review, we address some recent developments in the field of bacterial protein phosphorylation, focusing specifically on serine/threonine and tyrosine kinases. We present an overview of recent studies outlining the scope of physiological processes that are regulated by phosphorylation, ranging from cell cycle, growth, cell morphology, to metabolism, developmental phenomena, and virulence. Specific emphasis is placed on Mycobacterium tuberculosis as a showcase organism for serine/threonine kinases, and Bacillus subtilis to illustrate the importance of protein phosphorylation in developmental processes. We argue that bacterial serine/threonine and tyrosine kinases have a distinctive feature of phosphorylating multiple substrates and might thus represent integration nodes in the signaling network. Some open questions regarding the evolutionary benefits of relaxed substrate selectivity of these kinases are treated, as well as the notion of nonfunctional 'background' phosphorylation of cellular proteins. We also argue that phosphorylation events for which an immediate regulatory effect is not clearly established should not be dismissed as unimportant, as they may have a role in cross-talk with other post-translational modifications. Finally, recently developed methods for studying protein phosphorylation networks in bacteria are briefly discussed.
Collapse
|
24
|
Fuhrmann J, Mierzwa B, Trentini D, Spiess S, Lehner A, Charpentier E, Clausen T. Structural Basis for Recognizing Phosphoarginine and Evolving Residue-Specific Protein Phosphatases in Gram-Positive Bacteria. Cell Rep 2013; 3:1832-9. [DOI: 10.1016/j.celrep.2013.05.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 12/31/2022] Open
|
25
|
Battesti A, Gottesman S. Roles of adaptor proteins in regulation of bacterial proteolysis. Curr Opin Microbiol 2013; 16:140-7. [PMID: 23375660 DOI: 10.1016/j.mib.2013.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 12/28/2012] [Accepted: 01/04/2013] [Indexed: 12/31/2022]
Abstract
Elimination of non-functional or unwanted proteins is critical for cell growth and regulation. In bacteria, ATP-dependent proteases target cytoplasmic proteins for degradation, contributing to both protein quality control and regulation of specific proteins, thus playing roles parallel to that of the proteasome in eukaryotic cells. Adaptor proteins provide a way to modulate the substrate specificity of the proteases and allow regulated proteolysis. Advances over the past few years have provided new insight into how adaptor proteins interact with both substrates and proteases and how adaptor functions are regulated. An important advance has come with the recognition of the critical roles of anti-adaptor proteins in regulating adaptor availability.
Collapse
Affiliation(s)
- Aurelia Battesti
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892, United States
| | | |
Collapse
|
26
|
Abstract
The soil-dwelling bacterium Bacillus subtilis is widely used as a model organism to study the Gram-positive branch of Bacteria. A variety of different developmental pathways, such as endospore formation, genetic competence, motility, swarming and biofilm formation, have been studied in this organism. These processes are intricately connected and regulated by networks containing e.g. alternative sigma factors, two-component systems and other regulators. Importantly, in some of these regulatory networks the activity of important regulatory factors is controlled by proteases. Furthermore, together with chaperones, the same proteases constitute the cellular protein quality control (PQC) network, which plays a crucial role in protein homeostasis and stress tolerance of this organism. In this review, we will present the current knowledge on regulatory and general proteolysis in B. subtilis and discuss its involvement in developmental pathways and cellular stress management.
Collapse
Affiliation(s)
- Noël Molière
- Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany,
| | | |
Collapse
|
27
|
Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis. Proc Natl Acad Sci U S A 2012; 109:7451-6. [PMID: 22517742 DOI: 10.1073/pnas.1117483109] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reversible protein phosphorylation is an important and ubiquitous protein modification in all living cells. Here we report that protein phosphorylation on arginine residues plays a physiologically significant role. We detected 121 arginine phosphorylation sites in 87 proteins in the gram-positive model organism Bacillus subtilis in vivo. Moreover, we provide evidence that protein arginine phosphorylation has a functional role and is involved in the regulation of many critical cellular processes, such as protein degradation, motility, competence, and stringent and stress responses. Our results suggest that in B. subtilis the combined activity of a protein arginine kinase and phosphatase allows a rapid and reversible regulation of protein activity and that protein arginine phosphorylation can play a physiologically important and regulatory role in bacteria.
Collapse
|
28
|
Abstract
CtsR is an important repressor that modulates the transcription of class III stress genes in Gram-positive bacteria. In Bacillus subtilis, a model Gram-positive organism, the DNA binding activity of CtsR is regulated by McsAB-mediated phosphorylation of the protein where phosphorylated CtsR is a substrate for degradation by the ClpCP complex. Surprisingly, the mcsAB genes are absent from many Gram-positive bacteria, including streptococci; therefore, how CtsR activity is modulated in those bacteria remains unknown. Here we show that the posttranslational modulation of CtsR activity is different in Streptococcus mutans, a dental pathogen. We observed that of all of the Clp-related proteins, only ClpL is involved in the degradation of CtsR. Neither ClpP nor ClpC had any effect on the degradation of CtsR. We also found that phosphorylation of CtsR on a conserved arginine residue within the winged helix-turn-helix domain is necessary for modulation of the repressor activity of CtsR, as demonstrated by both in vitro and in vivo assays. We speculate that CtsR is regulated posttranslationally by a different mechanism in S. mutans and possibly in other streptococci.
Collapse
|