1
|
Wang X, Zhang L, Chen H, Wang P, Yin Y, Jin J, Xu J, Wen J. Rational Proteomic Analysis of a New Domesticated Klebsiella pneumoniae x546 Producing 1,3-Propanediol. Front Microbiol 2021; 12:770109. [PMID: 34899654 PMCID: PMC8662357 DOI: 10.3389/fmicb.2021.770109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
In order to improve the capability of Klebsiella pneumoniae to produce an important chemical raw material, 1,3-propanediol (1,3-PDO), a new type of K. pneumoniae x546 was obtained by glycerol acclimation and subsequently was used to produce 1,3-PDO. Under the control of pH value using Na+ pH neutralizer, the 1,3-PDO yield of K. pneumoniae x546 in a 7.5-L fermenter was 69.35 g/L, which was 1.5-fold higher than the original strain (45.91 g/L). After the addition of betaine, the yield of 1,3-PDO reached up to 74.44 g/L at 24 h, which was 40% shorter than the original fermentation time of 40 h. To study the potential mechanism of the production improvement of 1,3-PDO, the Tandem Mass Tags (TMT) technology was applied to investigate the production of 1,3-PDO in K. pneumoniae. Compared with the control group, 170 up-regulated proteins and 291 down-regulated proteins were identified. Through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, it was found that some proteins [such as homoserine kinase (ThrB), phosphoribosylglycinamide formyltransferase (PurT), phosphoribosylaminoimidazolesuccinocarboxamide synthase (PurC), etc.] were involved in the fermentation process, whereas some other proteins (such as ProX, ProW, ProV, etc.) played a significant role after the addition of betaine. Moreover, combined with the metabolic network of K. pneumoniae during 1,3-PDO, the proteins in the biosynthesis of 1,3-PDO [such as DhaD, DhaK, lactate dehydrogenase (LDH), BudC, etc.] were analyzed. The process of 1,3-PDO production in K. pneumoniae was explained from the perspective of proteome for the first time, which provided a theoretical basis for genetic engineering modification to improve the yield of 1,3-PDO. Because of the use of Na+ pH neutralizer in the fermentation, the subsequent environmental pollution treatment cost was greatly reduced, showing high potential for industry application in the future.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Department of Chemistry, National University of Singapore, Singapore, Singapore.,Institute of Materials Research and Engineering, Singapore, Singapore
| | - Lin Zhang
- Dalian Petrochemical Research Institute of Sinopec, Dalian, China
| | - Hong Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jiaqi Jin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jianwei Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.,Institute of Materials Research and Engineering, Singapore, Singapore
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Vivek N, Hazeena SH, Alphy MP, Kumar V, Magdouli S, Sindhu R, Pandey A, Binod P. Recent advances in microbial biosynthesis of C3 - C5 diols: Genetics and process engineering approaches. BIORESOURCE TECHNOLOGY 2021; 322:124527. [PMID: 33340948 DOI: 10.1016/j.biortech.2020.124527] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Diols derived from renewable feedstocks have significant commercial interest in polymer, pharmaceutical, cosmetics, flavors and fragrances, food and feed industries. In C3-C5 diols biological processes of 1,3-propanediol, 1,2-propanediol and 2,3-butanediol have been commercialized as other isomers are non-natural metabolites and lack natural biosynthetic pathways. However, the developments in the field of systems and synthetic biology paved a new path to learn, build, construct, and test for efficient chassis strains. The current review addresses the recent advancements in metabolic engineering, construction of novel pathways, process developments aimed at enhancing in production of C3-C5 diols. The requisites on developing an efficient and sustainable commercial bioprocess for C3-C5 diols were also discussed.
Collapse
Affiliation(s)
- Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sulfath Hakkim Hazeena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sara Magdouli
- Centre technologique des résidus industriels, University of Quebec in Abitibi Témiscamingue, Quebec, Canada
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
3
|
Kumar V, Park S. Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnol Adv 2018; 36:150-167. [DOI: 10.1016/j.biotechadv.2017.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022]
|
4
|
Liu JZ, Xu W, Chistoserdov A, Bajpai RK. Glycerol Dehydratases: Biochemical Structures, Catalytic Mechanisms, and Industrial Applications in 1,3-Propanediol Production by Naturally Occurring and Genetically Engineered Bacterial Strains. Appl Biochem Biotechnol 2016; 179:1073-100. [DOI: 10.1007/s12010-016-2051-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
|
5
|
Bruce T, Leite FG, Miranda M, Thompson CC, Pereira N, Faber M, Thompson FL. Insights from genome of Clostridium butyricum INCQS635 reveal mechanisms to convert complex sugars for biofuel production. Arch Microbiol 2015; 198:115-27. [PMID: 26525220 DOI: 10.1007/s00203-015-1166-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/09/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Clostridium butyricum is widely used to produce organic solvents such as ethanol, butanol and acetone. We sequenced the entire genome of C. butyricum INCQS635 by using Ion Torrent technology. We found a high contribution of sequences assigned for carbohydrate subsystems (15-20 % of known sequences). Annotation based on protein-conserved domains revealed a higher diversity of glycoside hydrolases than previously found in C. acetobutylicum ATCC824 strain. More than 30 glycoside hydrolases (GH) families were found; families of GH involved in degradation of galactan, cellulose, starch and chitin were identified as most abundant (close to 50 % of all sequences assigned as GH) in C. butyricum INCQS635. KEGG metabolic pathways reconstruction allowed us to verify possible routes in the C. butyricum INCQS635 and C. acetobutylicum ATCC824 genomes. Metabolic pathways for ethanol synthesis are similar for both species, but alcohol dehydrogenase of C. butyricum INCQS635 and C. acetobutylicum ATCC824 was different. The genomic repertoire of C. butyricum is an important resource to underpin future studies towards improved solvents production.
Collapse
Affiliation(s)
- Thiago Bruce
- Faculdade de Tecnologia e Ciências, Laboratory of Environmental Biotechnology, Salvador, Brazil. .,Department of Biotechnology, Federal University of Bahia, Salvador, Brazil.
| | - Fernanda Gomes Leite
- Faculdade de Tecnologia e Ciências, Laboratory of Environmental Biotechnology, Salvador, Brazil
| | - Milene Miranda
- Laboratory of Microbiology and SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology and SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Nei Pereira
- Laboratory of Bioprocesses Development, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Mariana Faber
- Laboratory of Bioprocesses Development, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology and SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Wei D, Wang M, Jiang B, Shi J, Hao J. Role of dihydroxyacetone kinases I and II in the dha regulon of Klebsiella pneumoniae. J Biotechnol 2014; 177:13-9. [DOI: 10.1016/j.jbiotec.2014.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/11/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|
7
|
Wang Y, Tao F, Xu P. Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. J Biol Chem 2014; 289:6080-90. [PMID: 24429283 DOI: 10.1074/jbc.m113.525535] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycerol dehydrogenase (GDH) is an important polyol dehydrogenase for glycerol metabolism in diverse microorganisms and for value-added utilization of glycerol in the industry. Two GDHs from Klebsiella pneumoniae, DhaD and GldA, were expressed in Escherichia coli, purified and characterized for substrate specificity and kinetic parameters. Both DhaD and GldA could catalyze the interconversion of (3R)-acetoin/(2R,3R)-2,3-butanediol or (3S)-acetoin/meso-2,3-butanediol, in addition to glycerol oxidation. Although purified GldA appeared more active than DhaD, in vivo inactivation and quantitation of their respective mRNAs indicate that dhaD is highly induced by glycerol and plays a dual role in glycerol metabolism and 2,3-butanediol formation. Complementation in K. pneumoniae further confirmed the dual role of DhaD. Promiscuity of DhaD may have vital physiological consequences for K. pneumoniae growing on glycerol, which include balancing the intracellular NADH/NAD(+) ratio, preventing acidification, and storing carbon and energy. According to the kinetic response of DhaD to modified NADH concentrations, DhaD appears to show positive homotropic interaction with NADH, suggesting that the physiological role could be regulated by intracellular NADH levels. The co-existence of two functional GDH enzymes might be due to a gene duplication event. We propose that whereas DhaD is specialized for glycerol utilization, GldA plays a role in backup compensation and can turn into a more proficient catalyst to promote a survival advantage to the organism. Revelation of the dual role of DhaD could further the understanding of mechanisms responsible for enzyme evolution through promiscuity, and guide metabolic engineering methods of glycerol metabolism.
Collapse
Affiliation(s)
- Yu Wang
- From the State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | |
Collapse
|
8
|
Heinrich D, Andreessen B, Madkour MH, Al-Ghamdi MA, Shabbaj II, Steinbüchel A. From waste to plastic: synthesis of poly(3-hydroxypropionate) in Shimwellia blattae. Appl Environ Microbiol 2013; 79:3582-9. [PMID: 23542629 PMCID: PMC3675910 DOI: 10.1128/aem.00161-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/27/2013] [Indexed: 11/20/2022] Open
Abstract
In recent years, glycerol has become an attractive carbon source for microbial processes, as it accumulates massively as a by-product of biodiesel production, also resulting in a decline of its price. A potential use of glycerol in biotechnology is the synthesis of poly(3-hydroxypropionate) [poly(3HP)], a biopolymer with promising properties which is not synthesized by any known wild-type organism. In this study, the genes for 1,3-propanediol dehydrogenase (dhaT) and aldehyde dehydrogenase (aldD) of Pseudomonas putida KT2442, propionate-coenzyme A (propionate-CoA) transferase (pct) of Clostridium propionicum X2, and polyhydroxyalkanoate (PHA) synthase (phaC1) of Ralstonia eutropha H16 were cloned and expressed in the 1,3-propanediol producer Shimwellia blattae. In a two-step cultivation process, recombinant S. blattae cells accumulated up to 9.8% ± 0.4% (wt/wt [cell dry weight]) poly(3HP) with glycerol as the sole carbon source. Furthermore, the engineered strain tolerated the application of crude glycerol derived from biodiesel production, yielding a cell density of 4.05 g cell dry weight/liter in a 2-liter fed-batch fermentation process.
Collapse
Affiliation(s)
- Daniel Heinrich
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
| | - Björn Andreessen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
| | - Mohamed H. Madkour
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mansour A. Al-Ghamdi
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim I. Shabbaj
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Kubiak P, Leja K, Myszka K, Celińska E, Spychała M, Szymanowska-Powałowska D, Czaczyk K, Grajek W. Physiological predisposition of various Clostridium species to synthetize 1,3-propanediol from glycerol. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Novel listerial glycerol dehydrogenase- and phosphoenolpyruvate-dependent dihydroxyacetone kinase system connected to the pentose phosphate pathway. J Bacteriol 2012; 194:4972-82. [PMID: 22773791 DOI: 10.1128/jb.00801-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several bacteria use glycerol dehydrogenase to transform glycerol into dihydroxyacetone (Dha). Dha is subsequently converted into Dha phosphate (Dha-P) by an ATP- or phosphoenolpyruvate (PEP)-dependent Dha kinase. Listeria innocua possesses two potential PEP-dependent Dha kinases. One is encoded by 3 of the 11 genes forming the glycerol (gol) operon. This operon also contains golD (lin0362), which codes for a new type of Dha-forming NAD(+)-dependent glycerol dehydrogenase. The subsequent metabolism of Dha requires its phosphorylation via the PEP:sugar phosphotransferase system components enzyme I, HPr, and EIIA(Dha)-2 (Lin0369). P∼EIIA(Dha)-2 transfers its phosphoryl group to DhaL-2, which phosphorylates Dha bound to DhaK-2. The resulting Dha-P is probably metabolized mainly via the pentose phosphate pathway, because two genes of the gol operon encode proteins resembling transketolases and transaldolases. In addition, purified Lin0363 and Lin0364 exhibit ribose-5-P isomerase (RipB) and triosephosphate isomerase activities, respectively. The latter enzyme converts part of the Dha-P into glyceraldehyde-3-P, which, together with Dha-P, is metabolized via gluconeogenesis to form fructose-6-P. Together with another glyceraldehyde-3-P molecule, the transketolase transforms fructose-6-P into intermediates of the pentose phosphate pathway. The gol operon is preceded by golR, transcribed in the opposite orientation and encoding a DeoR-type repressor. Its inactivation causes the constitutive but glucose-repressible expression of the entire gol operon, including the last gene, encoding a pediocin immunity-like (PedB-like) protein. Its elevated level of synthesis in the golR mutant causes slightly increased immunity against pediocin PA-1 compared to the wild-type strain or a pedB-like deletion mutant.
Collapse
|