1
|
Han W, Wei D, Sun Z, Qu D. Investigating the mechanism of rough phenotype in a naturally attenuated Brucella strain: insights from whole genome sequencing. Front Med (Lausanne) 2024; 11:1363785. [PMID: 38711779 PMCID: PMC11073494 DOI: 10.3389/fmed.2024.1363785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/23/2024] [Indexed: 05/08/2024] Open
Abstract
Objective Brucellosis, a significant zoonotic disease, not only impacts animal health but also profoundly influences the host immune responses through gut microbiome. Our research focuses on whole genome sequencing and comparative genomic analysis of these Brucella strains to understand the mechanisms of their virulence changes that may deepen our comprehension of the host immune dysregulation. Methods The Brucella melitensis strain CMCC55210 and its naturally attenuated variant CMCC55210a were used as models. Biochemical identification tests and in vivo experiments in mice verified the characteristics of the strain. To understand the mechanism of attenuation, we then performed de novo sequencing of these two strains. Results We discovered notable genomic differences between the two strains, with a key single nucleotide polymorphism (SNP) mutation in the manB gene potentially altering lipopolysaccharide (LPS) structure and influencing host immunity to the pathogen. This mutation might contribute to the attenuated strain's altered impact on the host's macrophage immune response, overing insights into the mechanisms of immune dysregulation linked to intracellular survival. Furthermore, we explore that manipulating the Type I restriction-modification system in Brucella can significantly impact its genome stability with the DNA damage response, consequently affecting the host's immune system. Conclusion This study not only contributes to understanding the complex relationship between pathogens, and the immune system but also opens avenues for innovative therapeutic interventions in inflammatory diseases driven by microbial and immune dysregulation.
Collapse
Affiliation(s)
- Wendong Han
- BSL-3 Laboratory of Fudan University, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dong Wei
- Division of Tuberculosis Vaccines and Allergen, National Institute for Food and Drug Control, Beijing, China
| | - Zhiping Sun
- BSL-3 Laboratory of Fudan University, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Di Qu
- BSL-3 Laboratory of Fudan University, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Cabello AL, Wells K, Peng W, Feng HQ, Wang J, Meyer DF, Noroy C, Zhao ES, Zhang H, Li X, Chang H, Gomez G, Mao Y, Patrick KL, Watson RO, Russell WK, Yu A, Zhong J, Guo F, Li M, Zhou M, Qian X, Kobayashi KS, Song J, Panthee S, Mechref Y, Ficht TA, Qin QM, de Figueiredo P. Brucella-driven host N-glycome remodeling controls infection. Cell Host Microbe 2024; 32:588-605.e9. [PMID: 38531364 DOI: 10.1016/j.chom.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 08/28/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.
Collapse
Affiliation(s)
- Ana-Lucia Cabello
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kelsey Wells
- Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65211, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Hui-Qiang Feng
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Damien F Meyer
- CIRAD, UMR ASTRE, 97170 Petit-Bourg, Guadeloupe, France; ASTRE, University Montpellier, CIRAD, INRAE, Montpellier, France
| | - Christophe Noroy
- CIRAD, UMR ASTRE, 97170 Petit-Bourg, Guadeloupe, France; ASTRE, University Montpellier, CIRAD, INRAE, Montpellier, France
| | - En-Shuang Zhao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Hao Zhang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Xueqing Li
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Haowu Chang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Gabriel Gomez
- Texas A&M Veterinary Medical Diagnostic Laboratory (TVMDL), Texas A&M University, College Station, TX 77843, USA
| | - Yuxin Mao
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - William K Russell
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0635, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Fengguang Guo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Mingqian Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 78843, USA
| | - Mingyuan Zhou
- Department of Information, Risk, and Operations Management, Department of Statistics and Data Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaoning Qian
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 78843, USA; TEES-AgriLife Center for Bioinformatics & Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA; Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo 060-8638, Japan
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Suresh Panthee
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA.
| | - Qing-Ming Qin
- Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65211, USA.
| | - Paul de Figueiredo
- Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65211, USA; Department of Veterinary Pathobiology, The University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
3
|
King KA, Benton AH, Caudill MT, Stoyanof ST, Kang L, Michalak P, Lahmers KK, Dunman PM, DeHart TG, Ahmad SS, Jutras BL, Poncin K, De Bolle X, Caswell CC. Post-transcriptional control of the essential enzyme MurF by a small regulatory RNA in Brucella abortus. Mol Microbiol 2024; 121:129-141. [PMID: 38082493 DOI: 10.1111/mmi.15207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 01/15/2024]
Abstract
Brucella abortus is a facultative, intracellular, zoonotic pathogen that resides inside macrophages during infection. This is a specialized niche where B. abortus encounters various stresses as it navigates through the macrophage. In order to survive this harsh environment, B. abortus utilizes post-transcriptional regulation of gene expression through the use of small regulatory RNAs (sRNAs). Here, we characterize a Brucella sRNAs called MavR (for MurF- and virulence-regulating sRNA), and we demonstrate that MavR is required for the full virulence of B. abortus in macrophages and in a mouse model of chronic infection. Transcriptomic and proteomic studies revealed that a major regulatory target of MavR is MurF. MurF is an essential protein that catalyzes the final cytoplasmic step in peptidoglycan (PG) synthesis; however, we did not detect any differences in the amount or chemical composition of PG in the ΔmavR mutant. A 6-nucleotide regulatory seed region within MavR was identified, and mutation of this seed region resulted in dysregulation of MurF production, as well as significant attenuation of infection in a mouse model. Overall, the present study underscores the importance of sRNA regulation in the physiology and virulence of Brucella.
Collapse
Affiliation(s)
- Kellie A King
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Angela H Benton
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Mitchell T Caudill
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - S Tristan Stoyanof
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Lin Kang
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, USA
- College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
- Center for One Health Research, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Pawel Michalak
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, USA
- Center for One Health Research, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
- Institute for Evolution, University of Haifa, Haifa, Israel
| | - Kevin K Lahmers
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Paul M Dunman
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Tanner G DeHart
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Saadman S Ahmad
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Brandon L Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Katy Poncin
- URBM, Narilis, University of Namur, Namur, Belgium
| | | | - Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
4
|
Sun Y, Huang J, Wang Z, Pan N, Wan C. Identification of Microproteins in Saccharomyces cerevisiae under Different Stress Conditions. J Proteome Res 2022; 21:1939-1947. [PMID: 35838590 DOI: 10.1021/acs.jproteome.2c00212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small open reading frame-encoded peptides (SEPs) are microproteins with a length of 100 amino acids or less, which may play a critical role in maintaining cell homeostasis under stress. Therefore, we used mass spectrometry-based proteomics to explore microproteins potentially involved in cellular stress responses in Saccharomyces cerevisiae. A total of 225 microproteins with 1920 unique peptides were identified under six culture conditions: normal, oxidation, starvation, ultraviolet radiation, heat shock, and heat shock with starvation. Among these microproteins, we found 70 SEPs with 75 unique peptides. The annotated microproteins are involved in stress-related processes, such as cell redox reactions, cell wall modification, protein folding and degradation, and DNA damage repair. It suggests that SEPs may also play similar functions under stress conditions. For example, SEP IP_008057, translated from a short coding sequence of YJL159W, may play a role in heat shock. This study identified stress-responsive SEPs in S. cerevisiae and provided valuable information to determine the functions of these proteins, which enrich the genome and proteome of S. cerevisiae and show clues to improving the stress tolerance of S. cerevisiae.
Collapse
Affiliation(s)
- Yan Sun
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Jiangmei Huang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Zhiwei Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Ni Pan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
5
|
Tian M, Li Z, Qu J, Fang T, Yin Y, Zuo D, Abdelgawad HA, Hu H, Wang S, Qi J, Wang G, Yu S. The novel LysR-family transcriptional regulator BvtR is involved in the resistance of Brucella abortus to nitrosative stress, detergents and virulence through the genetic regulation of diverse pathways. Vet Microbiol 2022; 267:109393. [PMID: 35259600 DOI: 10.1016/j.vetmic.2022.109393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022]
Abstract
Brucella is a facultative intracellular bacterium lacking classical virulence factors; its virulence instead depends on its ability to invade and proliferate within host cells. After entering cells, Brucella rapidly modulates the expression of a series of genes involved in metabolism and immune evasion. Here, a novel LysR-family transcriptional regulator, designated Brucellavirulence-related transcriptional regulator (BvtR), was found to be associated with Brucella abortus virulence. We first successfully constructed a BvtR mutant, ΔbvtR, and a complemented strain, ΔbvtR-Com. Subsequently, we performed cell infection experiments, which indicated that the ΔbvtR strain exhibited similar adhesion, invasion and survival within HeLa cells or RAW264.7 macrophages to those of the wild-type strain. In stress resistance tests, the ΔbvtR strain showed enhanced sensitivity to sodium nitroprusside and sodium dodecyl sulfate, but not to hydrogen peroxide, cumene hydroperoxide, polymyxin B and natural serum. Mouse infection experiments indicated that the virulence of the ΔbvtR strain significantly decreased at 4 weeks post-infection. Finally, we analyzed differentially expressed genes regulated by BvtR with RNA-seq, COG classification and KEGG pathway analysis. Nitrogen metabolism, siderophore biosynthesis and oligopeptide transport were found to be the predominantly altered functions, and key metabolic and regulatory networks were delineated in the ΔbvtR mutant. Thus, we identified a novel Brucella virulence-related regulator, BvtR, and demonstrated that BvtR regulation affects Brucella resistance to killing by sodium nitroprusside and sodium dodecyl sulfate. The differentially expressed genes responding to BvtR are involved in diverse functions or pathways in Brucella, thus, suggesting the breadth of BvtR's regulatory functions. This study provides novel clues regarding Brucella pathogenesis.
Collapse
Affiliation(s)
- Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Zichen Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Jing Qu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; Songjiang District Center for Animal Disease Control and Prevention, Shanghai 201699, China
| | - Tian Fang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yi Yin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Dong Zuo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Hosny Ahmed Abdelgawad
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Hai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China.
| |
Collapse
|
6
|
Grützner J, Billenkamp F, Spanka DT, Rick T, Monzon V, Förstner KU, Klug G. The small DUF1127 protein CcaF1 from Rhodobacter sphaeroides is an RNA-binding protein involved in sRNA maturation and RNA turnover. Nucleic Acids Res 2021; 49:3003-3019. [PMID: 33706375 PMCID: PMC8034643 DOI: 10.1093/nar/gkab146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/10/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Many different protein domains are conserved among numerous species, but their function remains obscure. Proteins with DUF1127 domains number >17 000 in current databases, but a biological function has not yet been assigned to any of them. They are mostly found in alpha- and gammaproteobacteria, some of them plant and animal pathogens, symbionts or species used in industrial applications. Bioinformatic analyses revealed similarity of the DUF1127 domain of bacterial proteins to the RNA binding domain of eukaryotic Smaug proteins that are involved in RNA turnover and have a role in development from Drosophila to mammals. This study demonstrates that the 71 amino acid DUF1127 protein CcaF1 from the alphaproteobacterium Rhodobacter sphaeroides participates in maturation of the CcsR sRNAs that are processed from the 3' UTR of the ccaF mRNA and have a role in the oxidative stress defense. CcaF1 binds to many cellular RNAs of different type, several mRNAs with a function in cysteine / methionine / sulfur metabolism. It affects the stability of the CcsR RNAs and other non-coding RNAs and mRNAs. Thus, the widely distributed DUF1127 domain can mediate RNA-binding, affect stability of its binding partners and consequently modulate the bacterial transcriptome, thereby influencing different physiological processes.
Collapse
Affiliation(s)
- Julian Grützner
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Heinrich-Buff-Ring 26–32, D-35292 Giessen, Germany
| | - Fabian Billenkamp
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Heinrich-Buff-Ring 26–32, D-35292 Giessen, Germany
- Institute of Animal Nutrition, Friedrich Loeffler Institute, Bundesalle 37, D-38116 Braunschweig, Germany
| | - Daniel-Timon Spanka
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Heinrich-Buff-Ring 26–32, D-35292 Giessen, Germany
| | - Tim Rick
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Heinrich-Buff-Ring 26–32, D-35292 Giessen, Germany
| | | | - Konrad U Förstner
- ZB MED-Information Center of Life Science, Germany
- Institute of Information Science, TH Köln, University of Applied Science, Gustav-Heinemann-Ufer 54, D-50968 Köln, Cologne, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Heinrich-Buff-Ring 26–32, D-35292 Giessen, Germany
| |
Collapse
|
7
|
Galeev A, Suwandi A, Cepic A, Basu M, Baines JF, Grassl GA. The role of the blood group-related glycosyltransferases FUT2 and B4GALNT2 in susceptibility to infectious disease. Int J Med Microbiol 2021; 311:151487. [PMID: 33662872 DOI: 10.1016/j.ijmm.2021.151487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The glycosylation profile of the gastrointestinal tract is an important factor mediating host-microbe interactions. Variation in these glycan structures is often mediated by blood group-related glycosyltransferases, and can lead to wide-ranging differences in susceptibility to both infectious- as well as chronic disease. In this review, we focus on the interplay between host glycosylation, the intestinal microbiota and susceptibility to gastrointestinal pathogens based on studies of two exemplary blood group-related glycosyltransferases that are conserved between mice and humans, namely FUT2 and B4GALNT2. We highlight that differences in susceptibility can arise due to both changes in direct interactions, such as bacterial adhesion, as well as indirect effects mediated by the intestinal microbiota. Although a large body of experimental work exists for direct interactions between host and pathogen, determining the more complex and variable mechanisms underlying three-way interactions involving the intestinal microbiota will be the subject of much-needed future research.
Collapse
Affiliation(s)
- Alibek Galeev
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Aleksa Cepic
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Meghna Basu
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany.
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany.
| |
Collapse
|
8
|
Short, Rich, and Powerful: a New Family of Arginine-Rich Small Proteins Have Outsized Impact in Agrobacterium tumefaciens. J Bacteriol 2020; 202:JB.00450-20. [PMID: 32839178 DOI: 10.1128/jb.00450-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Due to minute size and limited sequence complexity, small proteins can be challenging to identify but are emerging as important regulators of diverse processes in bacteria. In this issue of the Journal of Bacteriology, Kraus and coworkers (A. Kraus, M. Weskamp, J. Zierles, M. Balzer, et al., J Bacteriol 202:e00309-20, 2020, https://doi.org/10.1128/JB.00309-20) report a comprehensive analysis of a fascinating subfamily of arginine-rich small proteins in Agrobacterium tumefaciens, conserved among Alphaproteobacteria Their findings reveal that these small proteins are under complex regulation and have a disproportionately large impact on metabolism and behavior.
Collapse
|
9
|
Arginine-Rich Small Proteins with a Domain of Unknown Function, DUF1127, Play a Role in Phosphate and Carbon Metabolism of Agrobacterium tumefaciens. J Bacteriol 2020; 202:JB.00309-20. [PMID: 33093235 DOI: 10.1128/jb.00309-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
In any given organism, approximately one-third of all proteins have a yet-unknown function. A widely distributed domain of unknown function is DUF1127. Approximately 17,000 proteins with such an arginine-rich domain are found in 4,000 bacteria. Most of them are single-domain proteins, and a large fraction qualifies as small proteins with fewer than 50 amino acids. We systematically identified and characterized the seven DUF1127 members of the plant pathogen Agrobacterium tumefaciens They all give rise to authentic proteins and are differentially expressed as shown at the RNA and protein levels. The seven proteins fall into two subclasses on the basis of their length, sequence, and reciprocal regulation by the LysR-type transcription factor LsrB. The absence of all three short DUF1127 proteins caused a striking phenotype in later growth phases and increased cell aggregation and biofilm formation. Protein profiling and transcriptome sequencing (RNA-seq) analysis of the wild type and triple mutant revealed a large number of differentially regulated genes in late exponential and stationary growth. The most affected genes are involved in phosphate uptake, glycine/serine homeostasis, and nitrate respiration. The results suggest a redundant function of the small DUF1127 paralogs in nutrient acquisition and central carbon metabolism of A. tumefaciens They may be required for diauxic switching between carbon sources when sugar from the medium is depleted. We end by discussing how DUF1127 might confer such a global impact on cell physiology and gene expression.IMPORTANCE Despite being prevalent in numerous ecologically and clinically relevant bacterial species, the biological role of proteins with a domain of unknown function, DUF1127, is unclear. Experimental models are needed to approach their elusive function. We used the phytopathogen Agrobacterium tumefaciens, a natural genetic engineer that causes crown gall disease, and focused on its three small DUF1127 proteins. They have redundant and pervasive roles in nutrient acquisition, cellular metabolism, and biofilm formation. The study shows that small proteins have important previously missed biological functions. How small basic proteins can have such a broad impact is a fascinating prospect of future research.
Collapse
|
10
|
Budnick JA, Sheehan LM, Ginder MJ, Failor KC, Perkowski JM, Pinto JF, Kohl KA, Kang L, Michalak P, Luo L, Heindl JE, Caswell CC. A central role for the transcriptional regulator VtlR in small RNA-mediated gene regulation in Agrobacterium tumefaciens. Sci Rep 2020; 10:14968. [PMID: 32917931 PMCID: PMC7486931 DOI: 10.1038/s41598-020-72117-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022] Open
Abstract
LysR-type transcriptional regulators (LTTRs) are the most common type of transcriptional regulators in prokaryotes and function by altering gene expression in response to environmental stimuli. In the class Alphaproteobacteria, a conserved LTTR named VtlR is critical to the establishment of host-microbe interactions. In the mammalian pathogen Brucella abortus, VtlR is required for full virulence in a mouse model of infection, and VtlR activates the expression of abcR2, which encodes a small regulatory RNA (sRNA). In the plant symbiont Sinorhizobium meliloti, the ortholog of VtlR, named LsrB, is involved in the symbiosis of the bacterium with alfalfa. Agrobacterium tumefaciens is a close relative of both B. abortus and S. meliloti, and this bacterium is the causative agent of crown gall disease in plants. In the present study, we demonstrate that VtlR is involved in the ability of A. tumefaciens to grow appropriately in artificial medium, and an A. tumefaciens vtlR deletion strain is defective in motility, biofilm formation, and tumorigenesis of potato discs. RNA-sequencing analyses revealed that more than 250 genes are dysregulated in the ∆vtlR strain, and importantly, VtlR directly controls the expression of three sRNAs in A. tumefaciens. Taken together, these data support a model in which VtlR indirectly regulates hundreds of genes via manipulation of sRNA pathways in A. tumefaciens, and moreover, while the VtlR/LsrB protein is present and structurally conserved in many members of the Alphaproteobacteria, the VtlR/LsrB regulatory circuitry has diverged in order to accommodate the unique environmental niche of each organism.
Collapse
Affiliation(s)
- James A Budnick
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Lauren M Sheehan
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Miranda J Ginder
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA
| | - Kevin C Failor
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA
| | - Julia M Perkowski
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA
| | - John F Pinto
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA
| | - Kirsten A Kohl
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Lin Kang
- Edward via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Pawel Michalak
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
- Edward via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
- Institute of Evolution, Haifa University, 3498838, Haifa, Israel
| | - Li Luo
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Plant Science Center, Shanghai University, Shanghai, 200444, China
| | - Jason E Heindl
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, 19104, USA.
| | - Clayton C Caswell
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
11
|
González Plaza JJ. Small RNAs as Fundamental Players in the Transference of Information During Bacterial Infectious Diseases. Front Mol Biosci 2020; 7:101. [PMID: 32613006 PMCID: PMC7308464 DOI: 10.3389/fmolb.2020.00101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Communication shapes life on Earth. Transference of information has played a paramount role on the evolution of all living or extinct organisms since the appearance of life. Success or failure in this process will determine the prevalence or disappearance of a certain set of genes, the basis of Darwinian paradigm. Among different molecules used for transmission or reception of information, RNA plays a key role. For instance, the early precursors of life were information molecules based in primitive RNA forms. A growing field of research has focused on the contribution of small non-coding RNA forms due to its role on infectious diseases. These are short RNA species that carry out regulatory tasks in cis or trans. Small RNAs have shown their relevance in fine tuning the expression and activity of important regulators of essential genes for bacteria. Regulation of targets occurs through a plethora of mechanisms, including mRNA stabilization/destabilization, driving target mRNAs to degradation, or direct binding to regulatory proteins. Different studies have been conducted during the interplay of pathogenic bacteria with several hosts, including humans, animals, or plants. The sRNAs help the invader to quickly adapt to the change in environmental conditions when it enters in the host, or passes to a free state. The adaptation is achieved by direct targeting of the pathogen genes, or subversion of the host immune system. Pathogens trigger also an immune response in the host, which has been shown as well to be regulated by a wide range of sRNAs. This review focuses on the most recent host-pathogen interaction studies during bacterial infectious diseases, providing the perspective of the pathogen.
Collapse
Affiliation(s)
- Juan José González Plaza
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
12
|
Borriello G, Russo V, Paradiso R, Riccardi MG, Criscuolo D, Verde G, Marasco R, Pedone PV, Galiero G, Baglivo I. Different Impacts of MucR Binding to the babR and virB Promoters on Gene Expression in Brucella abortus 2308. Biomolecules 2020; 10:biom10050788. [PMID: 32438765 PMCID: PMC7277663 DOI: 10.3390/biom10050788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/27/2022] Open
Abstract
The protein MucR from Brucella abortus has been described as a transcriptional regulator of many virulence genes. It is a member of the Ros/MucR family comprising proteins that control the expression of genes important for the successful interaction of α-proteobacteria with their eukaryotic hosts. Despite clear evidence of the role of MucR in repressing virulence genes, no study has been carried out so far demonstrating the direct interaction of this protein with the promoter of its target gene babR encoding a LuxR-like regulator repressing virB genes. In this study, we show for the first time the ability of MucR to bind the promoter of babR in electrophoretic mobility shift assays demonstrating a direct role of MucR in repressing this gene. Furthermore, we demonstrate that MucR can bind the virB gene promoter. Analyses by RT-qPCR showed no significant differences in the expression level of virB genes in Brucella abortus CC092 lacking MucR compared to the wild-type Brucella abortus strain, indicating that MucR binding to the virB promoter has little impact on virB gene expression in B. abortus 2308. The MucR modality to bind the two promoters analyzed supports our previous hypothesis that this is a histone-like protein never found before in Brucella.
Collapse
Affiliation(s)
- Giorgia Borriello
- Experimental Zooprophylactic Institute of Southern Italy, via Salute, 2, 80055 Portici, Italy; (G.B.); (R.P.); (M.G.R.); (D.C.)
| | - Veronica Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, via Vivaldi—43, 81100 Caserta, Italy; (V.R.); (R.M.); (P.V.P.)
| | - Rubina Paradiso
- Experimental Zooprophylactic Institute of Southern Italy, via Salute, 2, 80055 Portici, Italy; (G.B.); (R.P.); (M.G.R.); (D.C.)
| | - Marita Georgia Riccardi
- Experimental Zooprophylactic Institute of Southern Italy, via Salute, 2, 80055 Portici, Italy; (G.B.); (R.P.); (M.G.R.); (D.C.)
| | - Daniela Criscuolo
- Experimental Zooprophylactic Institute of Southern Italy, via Salute, 2, 80055 Portici, Italy; (G.B.); (R.P.); (M.G.R.); (D.C.)
| | - Gaetano Verde
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80134 Naples, Italy;
- Flomics Biotech, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Rosangela Marasco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, via Vivaldi—43, 81100 Caserta, Italy; (V.R.); (R.M.); (P.V.P.)
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, via Vivaldi—43, 81100 Caserta, Italy; (V.R.); (R.M.); (P.V.P.)
| | - Giorgio Galiero
- Experimental Zooprophylactic Institute of Southern Italy, via Salute, 2, 80055 Portici, Italy; (G.B.); (R.P.); (M.G.R.); (D.C.)
- Correspondence: (G.G.); (I.B.); Tel.: +39-081-7865201 (G.G.); +39-0823-274598 (I.B.)
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, via Vivaldi—43, 81100 Caserta, Italy; (V.R.); (R.M.); (P.V.P.)
- Correspondence: (G.G.); (I.B.); Tel.: +39-081-7865201 (G.G.); +39-0823-274598 (I.B.)
| |
Collapse
|
13
|
Varesio LM, Willett JW, Fiebig A, Crosson S. A Carbonic Anhydrase Pseudogene Sensitizes Select Brucella Lineages to Low CO 2 Tension. J Bacteriol 2019; 201:e00509-19. [PMID: 31481543 PMCID: PMC6805109 DOI: 10.1128/jb.00509-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
Brucella spp. are intracellular pathogens that cause a disease known as brucellosis. Though the genus is highly monomorphic at the genetic level, species have animal host preferences and some defining physiologic characteristics. Of note is the requirement for CO2 supplementation to cultivate particular species, which confounded early efforts to isolate B. abortus from diseased cattle. Differences in the capacity of Brucella species to assimilate CO2 are determined by mutations in the carbonic anhydrase gene, bcaA Ancestral single-nucleotide insertions in bcaA have resulted in frameshifted pseudogenes in B. abortus and B. ovis lineages, which underlie their inability to grow under the low CO2 tension of a standard atmosphere. Incubation of wild-type B. ovis in air selects for mutations that "rescue" a functional bcaA reading frame, which enables growth under low CO2 and enhances the growth rate under high CO2 Accordingly, we show that heterologous expression of functional Escherichia coli carbonic anhydrases enables B. ovis growth in air. Growth of B. ovis is acutely sensitive to a reduction in CO2 tension, while frame-rescued B. ovis mutants are insensitive to CO2 shifts. B. ovis initiates a gene expression program upon CO2 downshift that resembles the stringent response and results in transcriptional activation of its type IV secretion system. Our study provides evidence that loss-of-function insertion mutations in bcaA sensitize the response of B. ovis and B. abortus to reduced CO2 tension relative to that of other Brucella lineages. CO2-dependent starvation and virulence gene expression programs in these species may influence persistence or transmission in natural hosts.IMPORTANCEBrucella spp. are highly related, but they exhibit differences in animal host preference that must be determined by genome sequence differences. B. ovis and the majority of B. abortus strains require high CO2 tension to be cultivated in vitro and harbor conserved insertional mutations in the carbonic anhydrase gene, bcaA, which underlie this trait. Mutants that grow in a standard atmosphere, first reported nearly a century ago, are easily selected in the laboratory. These mutants harbor varied indel polymorphisms in bcaA that restore its consensus reading frame and rescue its function. Loss of bcaA function has evolved independently in the B. ovis and B. abortus lineages and results in a dramatically increased sensitivity to CO2 limitation.
Collapse
Affiliation(s)
- Lydia M Varesio
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Jonathan W Willett
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
14
|
Khitun A, Ness TJ, Slavoff SA. Small open reading frames and cellular stress responses. Mol Omics 2019; 15:108-116. [PMID: 30810554 DOI: 10.1039/c8mo00283e] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small open reading frames (smORFs) encoding polypeptides of less than 100 amino acids in eukaryotes (50 amino acids in prokaryotes) were historically excluded from genome annotation. However, recent advances in genomics, ribosome footprinting, and proteomics have revealed thousands of translated smORFs in genomes spanning evolutionary space. These smORFs can encode functional polypeptides, or act as cis-translational regulators. Herein we review evidence that some smORF-encoded polypeptides (SEPs) participate in stress responses in both prokaryotes and eukaryotes, and that some upstream ORFs (uORFs) regulate stress-responsive translation of downstream cistrons in eukaryotic cells. These studies provide insight into a regulated subclass of smORFs and suggest that at least some SEPs may participate in maintenance of cellular homeostasis under stress.
Collapse
Affiliation(s)
- Alexandra Khitun
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA. and Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Travis J Ness
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA. and Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Sarah A Slavoff
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA. and Department of Chemistry, Yale University, New Haven, CT 06520, USA and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|