1
|
Cardenas AJ, Thomas KS, Broden MW, Ferraro NJ, Pires MM, John CM, Jarvis GA, Criss AK. Neisseria gonorrhoeae scavenges host sialic acid for Siglec-mediated, complement-independent suppression of neutrophil activation. mBio 2024; 15:e0011924. [PMID: 38587424 PMCID: PMC11078009 DOI: 10.1128/mbio.00119-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Gonorrhea, caused by the bacterium Neisseria gonorrhoeae (Gc), is characterized by neutrophilic influx to infection sites. Gc has developed mechanisms to resist killing by neutrophils that include modifications to its surface lipooligosaccharide (LOS). One such LOS modification is sialylation: Gc sialylates its terminal LOS sugars with cytidine-5'-monophosphate-N-acetylneuraminic acid, which is scavenged from the host using LOS sialyltransferase (Lst) since Gc cannot make its sialic acid. Sialylation enables sensitive strains of Gc to resist complement-mediated killing in a serum-dependent manner. However, little is known about the contribution of sialylation to complement-independent, direct Gc-neutrophil interactions. In the absence of complement, we found sialylated Gc expressing opacity-associated (Opa) proteins decreased the oxidative burst and granule exocytosis from primary human neutrophils. In addition, sialylated Opa+ Gc survived better than vehicle treated or Δlst Gc when challenged with neutrophils. However, Gc sialylation did not significantly affect Opa-dependent association with or internalization of Gc by neutrophils. Previous studies have implicated sialic acid-binding immunoglobulin-type lectins (Siglecs) in modulating neutrophil interactions with sialylated Gc. Blocking neutrophil Siglecs with antibodies that bind to their extracellular domains eliminated the ability of sialylated Opa+ Gc to suppress the oxidative burst and resist neutrophil killing. These findings highlight a new role for sialylation in Gc evasion of human innate immunity, with implications for the development of vaccines and therapeutics for gonorrhea. IMPORTANCE Neisseria gonorrhoeae, the bacterium that causes gonorrhea, is an urgent global health concern due to increasing infection rates, widespread antibiotic resistance, and its ability to thwart protective immune responses. The mechanisms by which Gc subverts protective immune responses remain poorly characterized. One way N. gonorrhoeae evades human immunity is by adding sialic acid that is scavenged from the host onto its lipooligosaccharide, using the sialyltransferase Lst. Here, we found that sialylation enhances N. gonorrhoeae survival from neutrophil assault and inhibits neutrophil activation, independently of the complement system. Our results implicate bacterial binding of sialic acid-binding lectins (Siglecs) on the neutrophil surface, which dampens neutrophil antimicrobial responses. This work identifies a new role for sialylation in protecting N. gonorrhoeae from cellular innate immunity, which can be targeted to enhance the human immune response in gonorrhea.
Collapse
Affiliation(s)
- Amaris J. Cardenas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Keena S. Thomas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Mary W. Broden
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Noel J. Ferraro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Constance M. John
- VA Medical Center and University of California, San Francisco, San Francisco, California, USA
| | - Gary A. Jarvis
- VA Medical Center and University of California, San Francisco, San Francisco, California, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Geslewitz WE, Cardenas A, Zhou X, Zhang Y, Criss AK, Seifert HS. Development and implementation of a Type I-C CRISPR-based programmable repression system for Neisseria gonorrhoeae. mBio 2024; 15:e0302523. [PMID: 38126782 PMCID: PMC10865793 DOI: 10.1128/mbio.03025-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) are prokaryotic adaptive immune systems regularly utilized as DNA-editing tools. While Neisseria gonorrhoeae does not have an endogenous CRISPR, the commensal species Neisseria lactamica encodes a functional Type I-C CRISPR-Cas system. We have established an isopropyl β-d-1-thiogalactopyranoside added (IPTG)-inducible, CRISPR interference (CRISPRi) platform based on the N. lactamica Type I-C CRISPR missing the Cas3 nuclease to allow locus-specific transcriptional repression. As proof of principle, we targeted a non-phase-variable version of the opaD gene. We show that CRISPRi can downregulate opaD gene and protein expression, resulting in bacterial inability to stimulate neutrophil oxidative responses and to bind to an N-terminal fragment of CEACAM1. Importantly, we used CRISPRi to effectively knockdown all the transcripts of all 11 opa genes using a five-spacer CRISPR array, allowing control of the entire phase-variable opa family in strain FA1090. We also report that repression is reversible following IPTG removal. Finally, we showed that the Type I-C CRISPRi system can conditionally reduce the expression of two essential genes. This CRISPRi system will allow the interrogation of every Gc gene, essential and non-essential, to study physiology and pathogenesis and aid in antimicrobial development.IMPORTANCEClustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have proven instrumental in genetically manipulating many eukaryotic and prokaryotic organisms. Despite its usefulness, a CRISPR system had yet to be developed for use in Neisseria gonorrhoeae (Gc), a bacterium that is the main etiological agent of gonorrhea infection. Here, we developed a programmable and IPTG-inducible Type I-C CRISPR interference (CRISPRi) system derived from the commensal species Neisseria lactamica as a gene repression system in Gc. As opposed to generating genetic knockouts, the Type I-C CRISPRi system allows us to block transcription of specific genes without generating deletions in the DNA. We explored the properties of this system and found that a minimal spacer array is sufficient for gene repression while also facilitating efficient spacer reprogramming. Importantly, we also show that we can use CRISPRi to knockdown genes that are essential to Gc that cannot normally be knocked out under laboratory settings. Gc encodes ~800 essential genes, many of which have no predicted function. We predict that this Type I-C CRISPRi system can be used to help categorize gene functions and perhaps contribute to the development of novel therapeutics for gonorrhea.
Collapse
Affiliation(s)
- Wendy E. Geslewitz
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois, USA
| | - Amaris Cardenas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Xufei Zhou
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Yan Zhang
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - H Steven Seifert
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Cardenas AJ, Thomas KS, Broden MW, Ferraro NJ, John CM, Pires MM, Jarvis GA, Criss AK. Neisseria gonorrhoeae scavenges host sialic acid for Siglec-mediated, complement-independent suppression of neutrophil activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576097. [PMID: 38293026 PMCID: PMC10827150 DOI: 10.1101/2024.01.17.576097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gonorrhea, caused by the bacterium Neisseria gonorrhoeae (Gc), is characterized by neutrophil influx to infection sites. Gc has developed mechanisms to resist killing by neutrophils that include modifications to its surface lipooligosaccharide (LOS). One such LOS modification is sialylation: Gc sialylates its terminal LOS sugars with cytidine-5'-monophosphate-N-acetylneuraminic acid (CMP-NANA) scavenged from the host using LOS sialyltransferase (Lst), since Gc cannot make its own sialic acid. Sialylation enables sensitive strains of Gc to resist complement-mediated killing in a serum-dependent manner. However, little is known about the contribution of sialylation to complement-independent, direct Gc-neutrophil interactions. In the absence of complement, we found sialylated Gc expressing opacity-associated (Opa) proteins decreased the oxidative burst and granule exocytosis from primary human neutrophils. In addition, sialylated Opa+ Gc survived better than vehicle treated or Δlst Gc when challenged with neutrophils. However, Gc sialylation did not significantly affect Opa-dependent association with or internalization of Gc by neutrophils. Previous studies have implicated sialic acid-binding immunoglobulin-type lectins (Siglecs) in modulating neutrophil interactions with sialylated Gc. Blocking neutrophil Siglecs with antibodies that bind to their extracellular domains eliminated the ability of sialylated Opa+ Gc to suppress oxidative burst and resist neutrophil killing. These findings highlight a new role for sialylation in Gc evasion of human innate immunity, with implications for the development of vaccines and therapeutics for gonorrhea.
Collapse
Affiliation(s)
- Amaris J Cardenas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Keena S. Thomas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Mary W. Broden
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Noel J. Ferraro
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Constance M. John
- VA Medical Center and University of California, San Francisco, San Francisco, CA, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Gary A. Jarvis
- VA Medical Center and University of California, San Francisco, San Francisco, CA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Potter AD, Baiocco CM, Papin JA, Criss AK. Transcriptome-guided metabolic network analysis reveals rearrangements of carbon flux distribution in Neisseria gonorrhoeae during neutrophil co-culture. mSystems 2023; 8:e0126522. [PMID: 37387581 PMCID: PMC10470122 DOI: 10.1128/msystems.01265-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/19/2023] [Indexed: 07/01/2023] Open
Abstract
The ability of bacterial pathogens to metabolically adapt to the environmental conditions of their hosts is critical to both colonization and invasive disease. Infection with Neisseria gonorrhoeae (the gonococcus, Gc) is characterized by the influx of neutrophils [polymorphonuclear leukocytes (PMNs)], which fail to clear the bacteria and make antimicrobial products that can exacerbate tissue damage. The inability of the human host to clear Gc infection is particularly concerning in light of the emergence of strains that are resistant to all clinically recommended antibiotics. Bacterial metabolism represents a promising target for the development of new therapeutics against Gc. Here, we generated a curated genome-scale metabolic network reconstruction (GENRE) of Gc strain FA1090. This GENRE links genetic information to metabolic phenotypes and predicts Gc biomass synthesis and energy consumption. We validated this model with published data and in new results reported here. Contextualization of this model using the transcriptional profile of Gc exposed to PMNs revealed substantial rearrangements of Gc central metabolism and induction of Gc nutrient acquisition strategies for alternate carbon source use. These features enhanced the growth of Gc in the presence of neutrophils. From these results, we conclude that the metabolic interplay between Gc and PMNs helps define infection outcomes. The use of transcriptional profiling and metabolic modeling to reveal new mechanisms by which Gc persists in the presence of PMNs uncovers unique aspects of metabolism in this fastidious bacterium, which could be targeted to block infection and thereby reduce the burden of gonorrhea in the human population. IMPORTANCE The World Health Organization designated Gc as a high-priority pathogen for research and development of new antimicrobials. Bacterial metabolism is a promising target for new antimicrobials, as metabolic enzymes are widely conserved among bacterial strains and are critical for nutrient acquisition and survival within the human host. Here we used genome-scale metabolic modeling to characterize the core metabolic pathways of this fastidious bacterium and to uncover the pathways used by Gc during culture with primary human immune cells. These analyses revealed that Gc relies on different metabolic pathways during co-culture with human neutrophils than in rich media. Conditionally essential genes emerging from these analyses were validated experimentally. These results show that metabolic adaptation in the context of innate immunity is important to Gc pathogenesis. Identifying the metabolic pathways used by Gc during infection can highlight new therapeutic targets for drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Aimee D. Potter
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher M. Baiocco
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Smirnov A, Daily KP, Gray MC, Ragland SA, Werner LM, Brittany Johnson M, Eby JC, Hewlett EL, Taylor RP, Criss AK. Phagocytosis via complement receptor 3 enables microbes to evade killing by neutrophils. J Leukoc Biol 2023; 114:1-20. [PMID: 36882066 PMCID: PMC10949953 DOI: 10.1093/jleuko/qiad028] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
CR3 (CD11b/CD18; αmβ2 integrin) is a conserved phagocytic receptor. The active conformation of CR3 binds the iC3b fragment of complement C3 as well as many host and microbial ligands, leading to actin-dependent phagocytosis. There are conflicting reports about how CR3 engagement affects the fate of phagocytosed substrates. Using imaging flow cytometry, we confirmed that binding and internalization of iC3b-opsonized polystyrene beads by primary human neutrophils was CR3-dependent. iC3b-opsonized beads did not stimulate neutrophil reactive oxygen species, and most beads were found in primary granule-negative phagosomes. Similarly, Neisseria gonorrhoeae that does not express phase-variable Opa proteins suppresses neutrophil reactive oxygen species and delays phagolysosome formation. Here, binding and internalization of Opa-deleted (Δopa) N. gonorrhoeae by adherent human neutrophils was inhibited using blocking antibodies against CR3 and by adding neutrophil inhibitory factor, which targets the CD11b I-domain. No detectable C3 was deposited on N. gonorrhoeae in the presence of neutrophils alone. Conversely, overexpressing CD11b in HL-60 promyelocytes enhanced Δopa N. gonorrhoeae phagocytosis, which required the CD11b I-domain. Phagocytosis of N. gonorrhoeae was also inhibited in mouse neutrophils that were CD11b-deficient or treated with anti-CD11b. Phorbol ester treatment upregulated surface CR3 on neutrophils in suspension, enabling CR3-dependent phagocytosis of Δopa N. gonorrhoeae. Neutrophils exposed to Δopa N. gonorrhoeae had limited phosphorylation of Erk1/2, p38, and JNK. Neutrophil phagocytosis of unopsonized Mycobacterium smegmatis, which also resides in immature phagosomes, was CR3-dependent and did not elicit reactive oxygen species. We suggest that CR3-mediated phagocytosis is a silent mode of entry into neutrophils, which is appropriated by diverse pathogens to subvert phagocytic killing.
Collapse
Affiliation(s)
- Asya Smirnov
- Department of Microbiology, Immunology, and Cancer Biology
| | | | - Mary C. Gray
- Department of Microbiology, Immunology, and Cancer Biology
| | | | | | | | - Joshua C. Eby
- Division of Infectious Diseases and International Health, Department of Medicine
| | - Erik L. Hewlett
- Division of Infectious Diseases and International Health, Department of Medicine
| | - Ronald P. Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine
| | | |
Collapse
|
6
|
Goodarzi NN, Ajdary S, Yekaninejad MS, Fereshteh S, Pourmand MR, Badmasti F. Reverse vaccinology approaches to introduce promising immunogenic and drug targets against antibiotic-resistant Neisseria gonorrhoeae: Thinking outside the box in current prevention and treatment. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105449. [PMID: 37225067 DOI: 10.1016/j.meegid.2023.105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Gonorrhea is an urgent antimicrobial resistance threat and its therapeutic options are continuously getting restricted. Moreover, no vaccine has been approved against it so far. Hence, the present study aimed to introduce novel immunogenic and drug targets against antibiotic-resistant Neisseria gonorrhoeae strains. In the first step, the core proteins of 79 complete genomes of N. gonorrhoeae were retrieved. Next, the surface-exposed proteins were evaluated from different aspects such as antigenicity, allergenicity, conservancy, and B-cell and T-cell epitopes to introduce promising immunogenic candidates. Then, the interactions with human Toll-like receptors (TLR-1, 2, and 4), and immunoreactivity to elicit humoral and cellular immune responses were simulated. On the other hand, to identify novel broad-spectrum drug targets, the cytoplasmic and essential proteins were detected. Then, the N. gonorrhoeae metabolome-specific proteins were compared to the drug targets of the DrugBank, and novel drug targets were retrieved. Finally, the protein data bank (PDB) file availability and prevalence among the ESKAPE group and common sexually transmitted infection (STI) agents were assessed. Our analyses resulted in the recognition of ten novel and putative immunogenic targets including murein transglycosylase A, PBP1A, Opa, NlpD, Azurin, MtrE, RmpM, LptD, NspA, and TamA. Moreover, four potential and broad-spectrum drug targets were identified including UMP kinase, GlyQ, HU family DNA-binding protein, and IF-1. Some of the shortlisted immunogenic and drug targets have confirmed roles in adhesion, immune evasion, and antibiotic resistance that can induce bactericidal antibodies. Other immunogenic and drug targets might be associated with the virulence of N. gonorrhoeae as well. Thus, further experimental studies and site-directed mutations are recommended to investigate the role of potential vaccine and drug targets in the pathogenesis of N. gonorrhoeae.
Collapse
Affiliation(s)
- Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Werner LM, Alcott A, Mohlin F, Ray JC, Belcher Dufrisne M, Smirnov A, Columbus L, Blom AM, Criss AK. Neisseria gonorrhoeae co-opts C4b-binding protein to enhance complement-independent survival from neutrophils. PLoS Pathog 2023; 19:e1011055. [PMID: 36862761 PMCID: PMC10013916 DOI: 10.1371/journal.ppat.1011055] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/14/2023] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Neisseria gonorrhoeae (Gc) is a human-specific pathogen that causes the sexually transmitted infection gonorrhea. Gc survives in neutrophil-rich gonorrheal secretions, and recovered bacteria predominantly express phase-variable, surface-expressed opacity-associated (Opa) proteins (Opa+). However, expression of Opa proteins like OpaD decreases Gc survival when exposed to human neutrophils ex vivo. Here, we made the unexpected observation that incubation with normal human serum, which is found in inflamed mucosal secretions, enhances survival of Opa+ Gc from primary human neutrophils. We directly linked this phenomenon to a novel complement-independent function for C4b-binding protein (C4BP). When bound to the bacteria, C4BP was necessary and sufficient to suppress Gc-induced neutrophil reactive oxygen species production and prevent neutrophil phagocytosis of Opa+ Gc. This research identifies for the first time a complement-independent role for C4BP in enhancing the survival of a pathogenic bacterium from phagocytes, thereby revealing how Gc exploits inflammatory conditions to persist at human mucosal surfaces.
Collapse
Affiliation(s)
- Lacie M. Werner
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Allison Alcott
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Frida Mohlin
- Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Jocelyn C. Ray
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Meagan Belcher Dufrisne
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Asya Smirnov
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anna M. Blom
- Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
8
|
Disparate Regions of the Human Chemokine CXCL10 Exhibit Broad-Spectrum Antimicrobial Activity against Biodefense and Antibiotic-Resistant Bacterial Pathogens. ACS Infect Dis 2022; 9:122-139. [PMID: 36475632 PMCID: PMC9841529 DOI: 10.1021/acsinfecdis.2c00456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CXCL10 is a pro-inflammatory chemokine produced by the host in response to microbial infection. In addition to canonical, receptor-dependent actions affecting immune-cell migration and activation, CXCL10 has also been found to directly kill a broad range of pathogenic bacteria. Prior investigations suggest that the bactericidal effects of CXCL10 occur through two distinct pathways that compromise the cell envelope. These observations raise the intriguing notion that CXCL10 features a separable pair of antimicrobial domains. Herein, we affirm this possibility through peptide-based mapping and structure/function analyses, which demonstrate that discrete peptides derived from the N- and C-terminal regions of CXCL10 mediate bacterial killing. The N-terminal derivative, peptide P1, exhibited marked antimicrobial activity against Bacillus anthracis vegetative bacilli and spores, as well as antibiotic-resistant clinical isolates of Klebsiella pneumoniae, Acinetobacter baumannii, Enterococcus faecium, and Staphylococcus aureus, among others. At bactericidal concentrations, peptide P1 had a minimal degree of chemotactic activity, but did not cause red blood cell hemolysis or cytotoxic effects against primary human cells. The C-terminal derivative, peptide P9, exhibited antimicrobial effects, but only against Gram-negative bacteria in low-salt medium─conditions under which the peptide can adopt an α-helical conformation. The introduction of a hydrocarbon staple induced and stabilized α-helicity; accordingly, stapled peptide P9 displayed significantly improved bactericidal effects against both Gram-positive and Gram-negative bacteria in media containing physiologic levels of salt. Together, our findings identify and characterize the antimicrobial regions of CXCL10 and functionalize these novel determinants as discrete peptides with potential therapeutic utility against difficult-to-treat pathogens.
Collapse
|
9
|
Jones RA, Yee WX, Mader K, Tang CM, Cehovin A. Markerless gene editing in Neisseria gonorrhoeae. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35763318 DOI: 10.1099/mic.0.001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria gonorrhoeae, the gonococcus, is a pathogen of major public health concern, but sophisticated approaches to gene manipulation are limited for this species. For example, there are few methods for generating markerless mutations, which allow the generation of precise point mutations and deletions without introducing additional DNA sequence. Markerless mutations are central to studying pathogenesis, the spread of antimicrobial resistance (AMR) and for vaccine development. Here we describe the use of galK as a counter-selectable marker that can be used for markerless mutagenesis in N. gonorrhoeae. galK encodes galactokinase, an enzyme that metabolizes galactose in bacteria that can utilize it as a sole carbon source. GalK can also phosphorylate a galactose analogue, 2-deoxy-galactose (2-DOG), into a toxic, non-metabolisable intermediate, 2-deoxy-galactose-1-phosphate. We utilized this property of GalK to develop a markerless approach for mutagenesis in N. gonorrhoeae. We successfully deleted both chromosomally and plasmid-encoded genes, that are important for gonococcal vaccine development and studies of AMR spread. We designed a positive-negative selection cassette, based on an antibiotic resistance marker and galK, that efficiently rendered N. gonorrhoeae susceptible to growth on 2-DOG. We then adapted the galK-based counter-selection and the use of 2-DOG for markerless mutagenesis, and applied biochemical and phenotypic analyses to confirm the absence of target genes. We show that our markerless mutagenesis method for N. gonorrhoeae has a high success rate, and should be a valuable gene editing tool in the future.
Collapse
Affiliation(s)
- Rebekah A Jones
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Wearn Xin Yee
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Kahlio Mader
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Ana Cehovin
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
10
|
Cartee JC, Joseph SJ, Weston E, Pham CD, Thomas JC, Schlanger K, St Cyr SB, Farley MM, Moore AE, Tunali AK, Cloud C, Raphael BH. Phylogenomic comparison of Neisseria gonorrhoeae causing disseminated gonococcal infections and uncomplicated gonorrhea in Georgia, United States. Open Forum Infect Dis 2022; 9:ofac247. [DOI: 10.1093/ofid/ofac247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Disseminated gonococcal infection (DGI) is a rare complication caused by the systemic dissemination of Neisseria gonorrhoeae (Ng) to normally sterile anatomical sites. Little is known about the genetic diversity of DGI gonococcal strains and how they relate to other gonococcal strains causing uncomplicated mucosal infections. We used whole genome sequencing to characterize DGI isolates (n = 30) collected from a surveillance system in Georgia (GA), USA during 2017-2020 to understand phylogenetic clustering among DGI as well as uncomplicated uro-and-extragenital gonococcal (UGI) isolates (n = 110) collected in Fulton County, GA during 2017-2019. We also investigated the presence or absence of genetic markers related to antimicrobial resistance (AMR) as well as surveyed the genomes for putative virulence genetic factors associated with normal human-serum (NHS) resistance that might facilitate DGI. We found that DGI strains demonstrated significant genetic variability similar to the population structure of isolates causing UGI, with sporadic incidences of geographically clustered DGI strains. DGI isolates contained various AMR markers and genetic mechanisms associated with NHS resistance. DGI isolates had a higher frequency of the porB1A allele compared with UGI (67% vs. 9%, p < 0.0001); however, no single NHS resistance marker was found in all DGI isolates. Continued DGI surveillance with genome-based characterization of DGI isolates is necessary to better understand specific factors that promote systemic dissemination.
Collapse
Affiliation(s)
- John C. Cartee
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| | - Sandeep J. Joseph
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| | - Emily Weston
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
- Current affiliation: Division of Global Health and Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| | - Cau D. Pham
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| | - Jesse C. Thomas
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| | - Karen Schlanger
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| | - Sancta B. St Cyr
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| | - Monica M. Farley
- Emory University School of Medicine, Department of Medicine, Atlanta, GA, 30322, United States
- Atlanta VA Medical Center, Atlanta, GA, 30033, United States
| | - Ashley E. Moore
- Georgia Department of Public Health, Atlanta, GA, 30303, United States
| | - Amy K. Tunali
- Emory University School of Medicine, Department of Medicine, Atlanta, GA, 30322, United States
- Atlanta VA Medical Center, Atlanta, GA, 30033, United States
| | - Charletta Cloud
- Georgia Department of Public Health, Atlanta, GA, 30303, United States
| | - Brian H. Raphael
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| |
Collapse
|
11
|
Alcott AM, Werner LM, Baiocco CM, Belcher Dufrisne M, Columbus L, Criss AK. Variable Expression of Opa Proteins by Neisseria gonorrhoeae Influences Bacterial Association and Phagocytic Killing by Human Neutrophils. J Bacteriol 2022; 204:e0003522. [PMID: 35343795 PMCID: PMC9017356 DOI: 10.1128/jb.00035-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Neisseria gonorrhoeae infection is characterized by local and abundant recruitment of neutrophils. Despite neutrophils' antimicrobial activities, viable N. gonorrhoeae is recovered from infected individuals, leading to the question of how N. gonorrhoeae survives neutrophil attack. One feature impacting N. gonorrhoeae-neutrophil interactions is the phase-variable opacity-associated (Opa) proteins. Most Opa proteins engage human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to facilitate bacterial binding and invasion. Neutrophils express two transmembrane CEACAMs, CEACAM1 and the granulocyte-specific CEACAM3. While N. gonorrhoeae isolated from infected individuals is frequently Opa+, expression of OpaD from strain FA1090, which interacts with CEACAMs 1 and 3, is associated with reduced N. gonorrhoeae survival after exposure to human neutrophils. In this study, we hypothesized that the receptor-binding capability of individual Opa proteins impacts bacterial survival in the presence of neutrophils. To test this hypothesis, we introduced opa genes that are constitutively expressed into a derivative of strain FA1090 with all 11 opa genes deleted. The engineered genes encode Opa proteins that bind CEACAM1 and -3, CEACAM1 but not CEACAM3, or neither CEACAM1 nor -3. N. gonorrhoeae expressing CEACAM3-binding Opa proteins survived significantly less well than bacteria expressing other Opa proteins when exposed to primary human neutrophils. The CEACAM3-binding N. gonorrhoeae had significantly greater association with and internalization by neutrophils. However, once internalized, bacteria were similarly killed inside neutrophils, regardless of Opa expression. Furthermore, Opa expression did not significantly impact neutrophil granule mobilization. Our findings indicate that the extent to which Opa proteins mediate nonopsonic binding is the predominant determinant of bacterial survival from neutrophils. IMPORTANCE Neisseria gonorrhoeae, the cause of gonorrhea, is an urgent-threat pathogen due to increasing numbers of infections and increased antibiotic resistance. Many surface components of N. gonorrhoeae are phase variable, including the Opa protein family of adhesins and invasins. While Opa protein expression is selected for in vivo, bacteria expressing some Opa proteins are readily killed by neutrophils, which are recruited to sites of infection. The reason for this discrepancy has remained unresolved. Our work shows that Opa-dependent differences in bacterial survival after exposure to primary human neutrophils correlates with Opa-dependent bacterial binding and phagocytosis. These findings underscore how the ability of N. gonorrhoeae to change Opa expression through phase variation contributes to bacterial resistance to neutrophil clearance.
Collapse
Affiliation(s)
- Allison M. Alcott
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lacie M. Werner
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher M. Baiocco
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Ray JC, Smirnov A, Maurakis SA, Harrison SA, Ke E, Chazin WJ, Cornelissen CN, Criss AK. Adherence Enables Neisseria gonorrhoeae to Overcome Zinc Limitation Imposed by Nutritional Immunity Proteins. Infect Immun 2022; 90:e0000922. [PMID: 35156850 PMCID: PMC8929345 DOI: 10.1128/iai.00009-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae (Gc) must overcome the limitation of metals such as zinc to colonize mucosal surfaces in its obligate human host. While the zinc-binding nutritional immunity proteins calprotectin (S100A8/A9) and psoriasin (S100A7) are abundant in human cervicovaginal lavage fluid, Gc possesses TonB-dependent transporters TdfH and TdfJ that bind and extract zinc from the human version of these proteins, respectively. Here we investigated the contribution of zinc acquisition to Gc infection of epithelial cells of the female genital tract. We found that TdfH and TdfJ were dispensable for survival of strain FA1090 Gc that was associated with Ect1 human immortalized epithelial cells, when zinc was limited by calprotectin and psoriasin. In contrast, suspension-grown bacteria declined in viability under the same conditions. Exposure to murine calprotectin, which Gc cannot use as a zinc source, similarly reduced survival of suspension-grown Gc, but not Ect1-associated Gc. We ruled out epithelial cells as a contributor to the enhanced growth of cell-associated Gc under zinc limitation. Instead, we found that attachment to glass was sufficient to enhance bacterial growth when zinc was sequestered. We compared the transcriptional profiles of WT Gc adherent to glass coverslips or in suspension, when zinc was sequestered with murine calprotectin or provided in excess, from which we identified open reading frames that were increased by zinc sequestration in adherent Gc. One of these, ZnuA, was necessary but not sufficient for survival of Gc under zinc-limiting conditions. These results show that adherence protects Gc from zinc-dependent growth restriction by host nutritional immunity proteins.
Collapse
Affiliation(s)
| | - Asya Smirnov
- University of Virginia, Charlottesville, Virginia, USA
| | - Stavros A. Maurakis
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | | | - Eugene Ke
- University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
13
|
PlexProbes enhance qPCR multiplexing by discriminating multiple targets in each fluorescent channel. PLoS One 2022; 17:e0263329. [PMID: 35263349 PMCID: PMC8906580 DOI: 10.1371/journal.pone.0263329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
The probe technology described in this paper facilitates detection and discrimination of multiple targets in a single fluorescent channel during PCR. This provides a strategy for doubling the number of targets that can be analysed simultaneously on existing PCR instruments. These probes are referred to as PlexProbes and produce fluorescence that can be switched ‘on’ or ‘off’ in the presence of target by manipulating the temperature. During PCR, fluorescence can be measured at multiple temperatures allowing discrimination of specific targets at defined temperatures. In a single fluorescent channel, a model duplex assay allowed either real-time or endpoint detection of Chlamydia trachomatis (CT) at 52°C and end-point detection of Neisseria gonorrhoeae (GC) at 74°C. Using this model system, as few as 40 copies of each specific target could be detected as single infection or co-infection, regardless of the presence or absence of the other target. A PlexProbe prototype assay for sexually transmitted infections (PP-STI) which simultaneously enables detection and differentiation of six targets using only three fluorescent channels was then constructed and evaluated. The PP-STI assay detects GC (2 gene targets), CT, Mycoplasma genitalium (MG), Trichomonas vaginalis (TV) and an internal control (IC). To evaluate assay performance, a panel of archived clinical samples (n = 337) were analysed using PP-STI and results compared to those obtained with a commercially available diagnostic assay. The overall agreement between results obtained with the PP-STI assay and the reference test was greater than 99.5%. PlexProbes offer a method of detecting more targets from a single diagnostic test, empowering physicians to make evidence-based treatment decisions while conserving time, labour, sample volume and reagent costs.
Collapse
|
14
|
Ivanov SS, Castore R, Juarez Rodriguez MD, Circu M, Dragoi AM. Neisseria gonorrhoeae subverts formin-dependent actin polymerization to colonize human macrophages. PLoS Pathog 2021; 17:e1010184. [PMID: 34962968 PMCID: PMC8746766 DOI: 10.1371/journal.ppat.1010184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/10/2022] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Dynamic reorganization of the actin cytoskeleton dictates plasma membrane morphogenesis and is frequently subverted by bacterial pathogens for entry and colonization of host cells. The human-adapted bacterial pathogen Neisseria gonorrhoeae can colonize and replicate when cultured with human macrophages, however the basic understanding of how this process occurs is incomplete. N. gonorrhoeae is the etiological agent of the sexually transmitted disease gonorrhea and tissue resident macrophages are present in the urogenital mucosa, which is colonized by the bacteria. We uncovered that when gonococci colonize macrophages, they can establish an intracellular or a cell surface-associated niche that support bacterial replication independently. Unlike other intracellular bacterial pathogens, which enter host cells as single bacterium, establish an intracellular niche and then replicate, gonococci invade human macrophages as a colony. Individual diplococci are rapidly phagocytosed by macrophages and transported to lysosomes for degradation. However, we found that surface-associated gonococcal colonies of various sizes can invade macrophages by triggering actin skeleton rearrangement resulting in plasma membrane invaginations that slowly engulf the colony. The resulting intracellular membrane-bound organelle supports robust bacterial replication. The gonococci-occupied vacuoles evaded fusion with the endosomal compartment and were enveloped by a network of actin filaments. We demonstrate that gonococcal colonies invade macrophages via a process mechanistically distinct from phagocytosis that is regulated by the actin nucleating factor FMNL3 and is independent of the Arp2/3 complex. Our work provides insights into the gonococci life-cycle in association with human macrophages and defines key host determinants for macrophage colonization. During infection, the human-adapted bacterial pathogen Neisseria gonorrhoeae and causative agent of gonorrhea can invade the submucosa of the urogenital tract where it encounters tissue-resident innate immune sentinels, such as macrophages and neutrophils. Instead of eliminating gonococci, macrophages support robust bacterial replication. Here, we detail the life cycle of N. gonorrhoeae in association with macrophages and define key regulators that govern the colonization processes. We uncovered that N. gonorrhoeae establishes two distinct subcellular niches that support bacterial replication autonomously–one niche was on the macrophage surface and another one was intracellular. Gonococci subverted the host actin cytoskeleton through the actin nucleating factor FMNL3 to invade colonized macrophages and occupy a membrane-bound intracellular organelle. We propose that N. gonorrhoeae ability to occupy distinct subcellular niches when colonizing macrophages likely confers broad protection against multiple host defense responses.
Collapse
Affiliation(s)
- Stanimir S. Ivanov
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
- * E-mail: (SSI); (AMD)
| | - Reneau Castore
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
| | - Maria Dolores Juarez Rodriguez
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
| | - Magdalena Circu
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
- * E-mail: (SSI); (AMD)
| |
Collapse
|
15
|
Werner LM, Palmer A, Smirnov A, Belcher Dufrisne M, Columbus L, Criss AK. Imaging Flow Cytometry Analysis of CEACAM Binding to Opa-Expressing Neisseria gonorrhoeae. Cytometry A 2020; 97:1081-1089. [PMID: 32484607 DOI: 10.1002/cyto.a.24037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
Human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are a family of receptors that mediate intercellular interactions. Pathogenic bacteria have ligands that bind CEACAMs on human cells. Neisseria gonorrhoeae (Gc) encodes numerous unique outer membrane opacity-associated (Opa) proteins that are ligands for one or more CEACAMs. CEACAMs that are expressed on epithelial cells facilitate Gc colonization, while those expressed on neutrophils affect phagocytosis and consequent intracellular survival of Gc. Since Opa protein expression is phase-variable, variations in receptor tropism affect how individual bacteria within a population interact with host cells. Here we report the development of a rapid, quantitative method for collecting and analyzing fluorescence intensity data from thousands of cells in a population using imaging flow cytometry to detect N-CEACAM bound to the surface of Opa-expressing Gc. We use this method to confirm previous findings regarding Opa-CEACAM interactions and to examine the receptor-ligand interactions of Gc expressing other Opa proteins, as well as for other N-CEACAM proteins. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Lacie M Werner
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, 22903, USA
| | - Allison Palmer
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, 22903, USA
| | - Asya Smirnov
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, 22903, USA
| | | | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22903, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, 22903, USA
| |
Collapse
|
16
|
Russell MW, Jerse AE, Gray-Owen SD. Progress Toward a Gonococcal Vaccine: The Way Forward. Front Immunol 2019; 10:2417. [PMID: 31681305 PMCID: PMC6803597 DOI: 10.3389/fimmu.2019.02417] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/27/2019] [Indexed: 12/26/2022] Open
Abstract
The concept of immunizing against gonorrhea has received renewed interest because of the recent emergence of strains of Neisseria gonorrhoeae that are resistant to most currently available antibiotics, an occurrence that threatens to render gonorrhea untreatable. However, despite efforts over many decades, no vaccine has yet been successfully developed for human use, leading to pessimism over whether this goal was actually attainable. Several factors have contributed to this situation, including extensive variation of the expression and specificity of many of the gonococcal surface antigens, and the ability of N. gonorrhoeae to resist destruction by complement and other innate immune defense mechanisms. The natural host restriction of N. gonorrhoeae for humans, coupled with the absence of any definable state of immunity arising from an episode of gonorrhea, have also complicated efforts to study gonococcal pathogenesis and the host's immune responses. However, recent findings have elucidated how the gonococcus exploits and manipulates the host's immune system for its own benefit, utilizing human-specific receptors for attachment to and invasion of tissues, and subverting adaptive immune responses that might otherwise be capable of eliminating it. While no single experimental model is capable of providing all the answers, experiments utilizing human cells and tissues in vitro, various in vivo animal models, including genetically modified strains of mice, and both experimental and observational human clinical studies, have combined to yield important new insight into the immuno-pathogenesis of gonococcal infection. In turn, these have now led to novel approaches for the development of a gonococcal vaccine. Ongoing investigations utilizing all available tools are now poised to make the development of an effective human vaccine against gonorrhea an achievable goal within a foreseeable time-frame.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, United States
| | - Ann E. Jerse
- Department of Microbiology and Immunology, F. Edward Herbert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Stevens JS, Gray MC, Morisseau C, Criss AK. Endocervical and Neutrophil Lipoxygenases Coordinate Neutrophil Transepithelial Migration to Neisseria gonorrhoeae. J Infect Dis 2019; 218:1663-1674. [PMID: 29905822 DOI: 10.1093/infdis/jiy347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Background Infection with Neisseria gonorrhoeae (GC) is characterized by robust neutrophil influx that is insufficient to clear the bacteria. Sustained neutrophilic inflammation contributes to serious clinical sequelae that particularly affect women, including pelvic inflammatory disease and infertility. Methods We established a 3-component system using GC, End1 polarized human endocervical cells, and primary human neutrophils to investigate neutrophil transepithelial migration following infection. Results Neutrophil migration across endocervical monolayers increased with the infectious dose and required GC-epithelial cell contact. Epithelial protein kinase C, cytosolic phospholipase A2, 12R-lipoxygenase (LOX), and eLOX3 hepoxilin synthase were required for neutrophil transmigration to GC, and migration was abrogated by blocking the MRP2 efflux pump and by adding recombinant soluble epoxide hydrolase. These results are all consistent with epithelial cell production of the neutrophil chemoattractant hepoxilin A3 (HXA3). Neutrophil transmigration was also accompanied by increasing apical concentrations of leukotriene B4 (LTB4). Neutrophil 5-lipoxygenase and active BLT1 receptor were required for apical LTB4 and neutrophil migration. Conclusions Our data support a model in which GC-endocervical cell contact infection stimulates HXA3 production, driving neutrophil migration that is amplified by neutrophil-derived LTB4. Therapeutic targeting of these pathways could limit inflammation and deleterious clinical sequelae in women with gonorrhea.
Collapse
Affiliation(s)
- Jacqueline S Stevens
- Department of Microbiology, University of Virginia, Charlottesville.,Department of Immunology, University of Virginia, Charlottesville.,Department of Cancer Biology, University of Virginia, Charlottesville
| | - Mary C Gray
- Department of Microbiology, University of Virginia, Charlottesville.,Department of Immunology, University of Virginia, Charlottesville.,Department of Cancer Biology, University of Virginia, Charlottesville
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Research Center, University of California, Davis
| | - Alison K Criss
- Department of Microbiology, University of Virginia, Charlottesville.,Department of Immunology, University of Virginia, Charlottesville.,Department of Cancer Biology, University of Virginia, Charlottesville
| |
Collapse
|
18
|
Gulati S, Beurskens FJ, de Kreuk BJ, Roza M, Zheng B, DeOliveira RB, Shaughnessy J, Nowak NA, Taylor RP, Botto M, He X, Ingalls RR, Woodruff TM, Song WC, Schuurman J, Rice PA, Ram S. Complement alone drives efficacy of a chimeric antigonococcal monoclonal antibody. PLoS Biol 2019; 17:e3000323. [PMID: 31216278 PMCID: PMC6602280 DOI: 10.1371/journal.pbio.3000323] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/01/2019] [Accepted: 05/30/2019] [Indexed: 12/25/2022] Open
Abstract
Multidrug-resistant Neisseria gonorrhoeae is a global health problem. Monoclonal antibody (mAb) 2C7 recognizes a gonococcal lipooligosaccharide epitope that is expressed by >95% of clinical isolates and hastens gonococcal vaginal clearance in mice. Chimeric mAb 2C7 (human immunoglobulin G1 [IgG1]) with an E430G Fc modification that enhances Fc:Fc interactions and hexamerization following surface-target binding and increases complement activation (HexaBody technology) showed significantly greater C1q engagement and C4 and C3 deposition compared to mAb 2C7 with wild-type Fc. Greater complement activation by 2C7-E430G Fc translated to increased bactericidal activity in vitro and, consequently, enhanced efficacy in mice, compared with “Fc-unmodified” chimeric 2C7. Gonococci bind the complement inhibitors factor H (FH) and C4b-binding protein (C4BP) in a human-specific manner, which dampens antibody (Ab)-mediated complement-dependent killing. The variant 2C7-E430G Fc overcame the barrier posed by these inhibitors in human FH/C4BP transgenic mice, for which a single 1 μg intravenous dose cleared established infection. Chlamydia frequently coexists with and exacerbates gonorrhea; 2C7-E430G Fc also proved effective against gonorrhea in gonorrhea/chlamydia-coinfected mice. Complement activation alone was necessary and sufficient for 2C7 function, evidenced by the fact that (1) “complement-inactive” Fc modifications that engaged Fc gamma receptor (FcγR) rendered 2C7 ineffective, nonetheless; (2) 2C7 was nonfunctional in C1q−/− mice, when C5 function was blocked, or in C9−/− mice; and (3) 2C7 remained effective in neutrophil-depleted mice and in mice treated with PMX205, a C5a receptor (C5aR1) inhibitor. We highlight the importance of complement activation for antigonococcal Ab function in the genital tract. Elucidating the correlates of protection against gonorrhea will inform the development of Ab-based gonococcal vaccines and immunotherapeutics. A chimeric antibody that contains a "complement-enhancing" mutation in Fc (so-called HexaBody technology) shows increased bactericidal activity compared to antibody bearing wild-type Fc and may represent a promising immunotherapeutic approach against multidrug-resistant gonorrhea.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | | | | | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rosane B. DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nancy A. Nowak
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ronald P. Taylor
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Marina Botto
- Center for Complement and Inflammation Research, Imperial College, London, United Kingdom
| | - Xianbao He
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Robin R. Ingalls
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Trent M. Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Brisbane, Australia
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Peter A. Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (SR); (FJB)
| |
Collapse
|
19
|
Protocols to Interrogate the Interactions Between Neisseria gonorrhoeae and Primary Human Neutrophils. Methods Mol Biol 2019; 1997:319-345. [PMID: 31119632 DOI: 10.1007/978-1-4939-9496-0_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neisseria gonorrhoeae (Gc) infection of its obligate human host results in a robust neutrophil-driven immune response. Despite neutrophils' intrinsic ability to neutralize microbes, Gc can survive in the presence of neutrophils. To interrogate how this pathogen evades killing by neutrophils, we employ an ex vivo model of Gc infection with Interleukin-8-primed and adhered primary human neutrophils. This chapter will describe how primary human neutrophils are purified from venous blood, how Gc is prepared for infection, how to assess Gc survival in the presence of human neutrophils by enumeration of colony forming units, and how to determine Gc internalization by human neutrophils using an immunofluorescence-based approach.
Collapse
|
20
|
Handing JW, Ragland SA, Bharathan UV, Criss AK. The MtrCDE Efflux Pump Contributes to Survival of Neisseria gonorrhoeae From Human Neutrophils and Their Antimicrobial Components. Front Microbiol 2018; 9:2688. [PMID: 30515136 PMCID: PMC6256084 DOI: 10.3389/fmicb.2018.02688] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022] Open
Abstract
The mucosal inflammatory response to Neisseria gonorrhoeae (Gc) is characterized by recruitment of neutrophils to the site of infection. Gc survives exposure to neutrophils by limiting the ability of neutrophils to make antimicrobial products and by expressing factors that defend against these products. The multiple transferable resistance (Mtr) system is a tripartite efflux pump, comprised of the inner membrane MtrD, the periplasmic attachment protein MtrC, and the outer membrane channel MtrE. Gc MtrCDE exports a diverse array of substrates, including certain detergents, dyes, antibiotics, and host-derived antimicrobial peptides. Here we report that MtrCDE contributes to the survival of Gc after exposure to adherent, chemokine-treated primary human neutrophils, specifically in the extracellular milieu. MtrCDE enhanced survival of Gc in neutrophil extracellular traps and in the supernatant from neutrophils that had undergone degranulation (granule exocytosis), a process that releases antimicrobial proteins into the extracellular milieu. The extent of degranulation was unaltered in neutrophils exposed to parental or mtr mutant Gc. MtrCDE expression contributed to Gc defense against some neutrophil-derived antimicrobial peptides but not others. These findings demonstrate that the Mtr system contributes to Gc survival after neutrophil challenge, a key feature of the host immune response to acute gonorrhea.
Collapse
Affiliation(s)
- Jonathan W Handing
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Stephanie A Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Urmila V Bharathan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
21
|
Quillin SJ, Hockenberry AJ, Jewett MC, Seifert HS. Neisseria gonorrhoeae Exposed to Sublethal Levels of Hydrogen Peroxide Mounts a Complex Transcriptional Response. mSystems 2018; 3:e00156-18. [PMID: 30320218 PMCID: PMC6172773 DOI: 10.1128/msystems.00156-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/17/2018] [Indexed: 01/13/2023] Open
Abstract
Neisseria gonorrhoeae mounts a substantial transcriptional program in response to hydrogen peroxide (HP), a prominent reactive oxygen species (ROS) encountered during infection. We tested which strain FA1090 genes show differential transcript abundance in response to sublethal amounts of HP to differentiate HP-responsive signaling from widespread cellular death and dysregulation. RNA sequencing (RNA-Seq) revealed that 150 genes were significantly upregulated and 143 genes downregulated following HP exposure. We annotated HP-responsive operons and all transcriptional start sites (TSSs) and identified which TSSs responded to HP treatment. We compared the HP responses and other previously reported genes and found only partial overlapping of other regulatory networks, indicating that the response to HP involves multiple biological functions. Using a representative subset of responsive genes, we validated the RNA-Seq results and found that the HP transcriptome was similar to that of sublethal organic peroxide. None of the genes in the representative subset, however, responded to sublethal levels of HOCl or O2 -. These results support the idea that N. gonorrhoeae may use variations in HP levels as a signal for different stages of infection. IMPORTANCE The strict human pathogen Neisseria gonorrhoeae is the only causative agent of the sexually transmitted disease gonorrhea. This bacterium encounters hydrogen peroxide produced from host cells during infection, but the organism survives in the presence of this antimicrobial agent. This work shows that the bacterium responds to hydrogen peroxide by regulating the expression of many genes involved in multiple processes.
Collapse
Affiliation(s)
- Sarah J. Quillin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam J. Hockenberry
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Program in Biological Sciences, Northwestern University, Evanston, Illinois, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Program in Biological Sciences, Northwestern University, Evanston, Illinois, USA
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
22
|
Palmer A, Criss AK. Gonococcal Defenses against Antimicrobial Activities of Neutrophils. Trends Microbiol 2018; 26:1022-1034. [PMID: 30115561 DOI: 10.1016/j.tim.2018.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Neisseria gonorrhoeae initiates a strong local immune response that is characterized by copious recruitment of neutrophils to the site of infection. Neutrophils neutralize microbes by mechanisms that include phagocytosis, extracellular trap formation, production of reactive oxygen species, and the delivery of antimicrobial granular contents. However, neutrophils do not clear infection with N. gonorrhoeae. N. gonorrhoeae not only expresses factors that defend against neutrophil bactericidal components, but it also manipulates neutrophil production and release of these components. In this review, we highlight the numerous approaches used by N. gonorrhoeae to survive exposure to neutrophils both intracellularly and extracellularly. These approaches reflect the exquisite adaptation of N. gonorrhoeae to its obligate human host.
Collapse
Affiliation(s)
- Allison Palmer
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA.
| |
Collapse
|
23
|
Specific Binding to Differentially Expressed Human Carcinoembryonic Antigen-Related Cell Adhesion Molecules Determines the Outcome of Neisseria gonorrhoeae Infections along the Female Reproductive Tract. Infect Immun 2018; 86:IAI.00092-18. [PMID: 29760215 DOI: 10.1128/iai.00092-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/05/2018] [Indexed: 02/07/2023] Open
Abstract
The gonococcal Opa proteins are an antigenically variable family of surface adhesins that bind human carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), CEACAM3, CEACAM5, and/or CEACAM6, cell surface glycoproteins that are differentially expressed on a broad spectrum of human cells and tissues. While they are presumed to be important for infection, the significance of various Opa-CEACAM-mediated cellular interactions in the context of the genital tract has remained unclear. Here, we observed that CEACAM1 and CEACAM5 are differentially expressed on epithelia lining the upper and lower portions of the human female genital tract, respectively. Using transgenic mouse lines expressing human CEACAMs in a manner that reflects this differential pattern, we considered the impact of Opa-CEACAM interactions during uncomplicated lower genital tract infections versus during pelvic inflammatory disease. Our results demonstrate that Opa-CEACAM5 binding on vaginal epithelia facilitates the long-term colonization of the lower genital tract, while Opa protein binding to CEACAM1 on uterine epithelia enhances gonococcal association and penetration into these tissues. While these Opa-dependent interactions with CEACAM-expressing epithelial surfaces promote infection, Opa binding by neutrophil-expressed CEACAMs counterbalances this by facilitating more effective gonococcal clearance. Furthermore, during uterine infections, CEACAM-dependent tissue invasion aggravates disease pathology by increasing the acute inflammatory response. Together, these findings demonstrate that the outcome of infection is determined by both the cell type-specific expression of human CEACAMs and the CEACAM specificity of the Opa variants expressed, which combine to determine the level of gonococcal association with the genital mucosa versus the extent of CEACAM-dependent inflammation and gonococcal clearance by neutrophils.
Collapse
|
24
|
Pathogenesis of Neisseria gonorrhoeae in the female reproductive tract: neutrophilic host response, sustained infection, and clinical sequelae. Curr Opin Hematol 2018; 25:13-21. [PMID: 29016383 DOI: 10.1097/moh.0000000000000394] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Gonorrhea is a major global health concern, caused by the bacterium Neisseria gonorrhoeae. The main clinical feature of acute gonorrhea is neutrophilic influx that is unable to clear infection. Women of reproductive age are predominantly at risk for serious sequelae of gonorrhea, including pelvic inflammatory disease, ectopic pregnancy, and infertility. This review will highlight how neutrophils are recruited to the female reproductive tract (FRT) in response to N. gonorrhoeae, how N. gonorrhoeae resists killing by neutrophils, and the connection between neutrophilic inflammation and cellular damage. RECENT FINDINGS Epithelial cells and immune cells of the FRT recognize and respond to N. gonorrhoeae lipid A and heptose bisphosphate of lipooligosaccharide, porin, lipoproteins, and peptidoglycan fragments. N. gonorrhoeae skews the resulting immune response toward a neutrophilic, Th17-like response. N. gonorrhoeae has multiple, nonredundant mechanisms to survive inside neutrophils and in neutrophil extracellular traps. Infection that ascends to the upper FRT induces the further release of inflammatory cytokines and matrix metalloproteinases, which cause epithelial damage. SUMMARY N. gonorrhoeae is remarkable in its ability to recruit neutrophils, yet survive in their midst. New models being developed for FRT infection with N. gonorrhoeae will be useful to reveal the mechanisms underlying these observations.
Collapse
|
25
|
Wang LC, Litwin M, Sahiholnasab Z, Song W, Stein DC. Neisseria gonorrhoeae Aggregation Reduces Its Ceftriaxone Susceptibility. Antibiotics (Basel) 2018; 7:E48. [PMID: 29914058 PMCID: PMC6022932 DOI: 10.3390/antibiotics7020048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/25/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance in Neisseria gonorrhoeae (GC) has become an emerging threat worldwide and heightens the need for monitoring treatment failures. N. gonorrhoeae, a gram-negative bacterium responsible for gonorrhea, infects humans exclusively and can form aggregates during infection. While minimal inhibitory concentration (MIC) tests are often used for determining antibiotic resistance development and treatment, the knowledge of the true MIC in individual patients and how it relates to this laboratory measure is not known. We examined the effect of aggregation on GC antibiotic susceptibility and the relationship between bacterial aggregate size and their antibiotic susceptibility. Aggregated GC have a higher survival rate when treated with ceftriaxone than non-aggregated GC, with bacteria in the core of the aggregates surviving the treatment. GC lacking opacity-associated protein or pili, or expressing a truncated lipooligosaccharide, three surface molecules that mediate GC-GC interactions, reduce both aggregation and ceftriaxone survival. This study demonstrates that the aggregation of N. gonorrhoeae can reduce the susceptibility to antibiotics, and suggests that antibiotic utilization can select for GC surface molecules that promote aggregation which in turn drive pathogen evolution. Inhibiting aggregation may be a potential way of increasing the efficacy of ceftriaxone treatment, consequently reducing treatment failure.
Collapse
Affiliation(s)
- Liang-Chun Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20904, USA.
| | - Madeline Litwin
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20904, USA.
| | - Zahraossadat Sahiholnasab
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20904, USA.
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20904, USA.
| | - Daniel C Stein
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20904, USA.
| |
Collapse
|
26
|
Rice PA, Shafer WM, Ram S, Jerse AE. Neisseria gonorrhoeae: Drug Resistance, Mouse Models, and Vaccine Development. Annu Rev Microbiol 2018; 71:665-686. [PMID: 28886683 DOI: 10.1146/annurev-micro-090816-093530] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gonorrhea, an obligate human infection, is on the rise worldwide and gonococcal strains resistant to many antibiotics are emerging. Appropriate antimicrobial treatment and prevention, including effective vaccines, are urgently needed. To guide investigation, an experimental model of genital tract infection has been developed in female mice to study mechanisms by which Neisseria gonorrhoeae evades host-derived antimicrobial factors and to identify protective and immunosuppressive pathways. Refinements of the animal model have also improved its use as a surrogate host of human infection and accelerated the testing of novel therapeutic and prophylactic compounds against gonococcal infection. Reviewed herein are the (a) history of antibiotic usage and resistance against gonorrhea and the consequences of resistance mechanisms that may increase gonococcal fitness and therefore the potential for spread, (b) use of gonococcal infection in the animal model system to study mechanisms of pathogenesis and host defenses, and
Collapse
Affiliation(s)
- Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321; ,
| | - William M Shafer
- Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322.,Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia 30033;
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321; ,
| | - Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland 20814-4799;
| |
Collapse
|
27
|
Sintsova A, Guo CX, Sarantis H, Mak TW, Glogauer M, Gray-Owen SD. Bcl10 synergistically links CEACAM3 and TLR-dependent inflammatory signalling. Cell Microbiol 2018; 20:e12788. [PMID: 28886618 DOI: 10.1111/cmi.12788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 01/27/2023]
Abstract
The neutrophil-specific innate immune receptor CEACAM3 functions as a decoy to capture Gram-negative pathogens, such as Neisseria gonorrhoeae, that exploit CEACAM family members to adhere to the epithelium. Bacterial binding to CEACAM3 results in their efficient engulfment and triggers activation of an nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-dependent inflammatory response by human neutrophils. Herein, we report that CEACAM3 cross-linking is not sufficient for induction of cytokine production and show that the inflammatory response induced by Neisseria gonorrhoeae infection is elicited by an integration of signals from CEACAM3 and toll-like receptors. Using neutrophils from a human CEACAM-expressing mouse line (CEABAC), we use a genetic approach to reveal a molecular bifurcation of the CEACAM3-mediated antimicrobial and inflammatory responses. Ex vivo experiments with CEABAC-Rac2-/- , CEABAC-Bcl10-/- , and CEABAC-Malt1-/- neutrophils indicate that these effectors are not necessary for gonococcal engulfment, yet all 3 effectors contribute to CEACAM3-mediated cytokine production. Interestingly, although Bcl10 and Malt1 are often inextricably linked, Bcl10 enabled synergy between toll-like receptor 4 and CEACAM3, whereas Malt1 did not. Together, these findings reveal an integration of the specific innate immune receptor CEACAM3 into the network of more conventional pattern recognition receptors, providing a mechanism by which the innate immune system can unleash its response to a relentless pathogen.
Collapse
Affiliation(s)
- Anna Sintsova
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia X Guo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Helen Sarantis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Moreau MR, Massari P, Genco CA. The ironclad truth: how in vivo transcriptomics and in vitro mechanistic studies shape our understanding of Neisseria gonorrhoeae gene regulation during mucosal infection. Pathog Dis 2017; 75:3829888. [PMID: 28520925 PMCID: PMC5808646 DOI: 10.1093/femspd/ftx057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/16/2017] [Indexed: 11/12/2022] Open
Abstract
Neisseria gonorrhoeae is one of the most prevalent sexually transmitted infections worldwide. This obligate human pathogen has been extensively studied in vitro, where bacterial factors that are known to contribute to gonococcal disease and their regulation are relatively well defined. However, these in vitro experimental conditions only loosely replicate the host specific environment encountered by the bacteria in vivo. We recently reported on the complete gonococcal transcriptome expressed during natural human mucosal infection using RNA-seq analysis. Gene transcripts expressed in vivo (in vivo expressed factors) included genes encoding antibiotic resistance determinants, and a large number of hypothetical genes. A comparison of the gonococcal transcriptome expressed in vivo with the corresponding strain grown in vitro identified sets of genes regulated by infection, including those regulated by iron and the transcriptional regulatory protein Fur. We highlight here the role of Fur and gonococcal-specific regulatory processes important for infection and pathogenicity. We have determined that the genes controlled by Fur follow the same expression pattern in vivo as described previously in vitro, confirming Fur's regulatory role during infection. Collectively, these studies provide new insights into how bacterial fitness and pathogenicity are modulated during human mucosal infection.
Collapse
Affiliation(s)
- Matthew R. Moreau
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Paola Massari
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Caroline A. Genco
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
29
|
Edwards JL, Jennings MP, Apicella MA, Seib KL. Is gonococcal disease preventable? The importance of understanding immunity and pathogenesis in vaccine development. Crit Rev Microbiol 2016; 42:928-41. [PMID: 26805040 PMCID: PMC4958600 DOI: 10.3109/1040841x.2015.1105782] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022]
Abstract
Gonorrhea is a major, global public health problem for which there is no vaccine. The continuing emergence of antibiotic-resistant strains raises concerns that untreatable Neisseria gonorrhoeae may become widespread in the near future. Consequently, there is an urgent need for increased efforts towards the development of new anti-gonococcal therapeutics and vaccines, as well as suitable models for potential pre-clinical vaccine trials. Several current issues regarding gonorrhea are discussed herein, including the global burden of disease, the emergence of antibiotic-resistance, the status of vaccine development and, in particular, a focus on the model systems available to evaluate drug and vaccine candidates. Finally, alternative approaches to evaluate vaccine candidates are presented. Such approaches may provide valuable insights into the protective mechanisms, and correlates of protection, required to prevent gonococcal transmission, local infection and disease sequelae.
Collapse
Affiliation(s)
- Jennifer L. Edwards
- Department of Pediatrics, The Research Institute at Nationwide Children's Hospital and The Ohio State UniversityColumbus,
OH,
USA
| | | | | | - Kate L. Seib
- Institute for Glycomics, Griffith University,
Gold Coast,
Australia
| |
Collapse
|
30
|
Neisseria gonorrhoeae Evades Calprotectin-Mediated Nutritional Immunity and Survives Neutrophil Extracellular Traps by Production of TdfH. Infect Immun 2016; 84:2982-94. [PMID: 27481245 DOI: 10.1128/iai.00319-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/25/2016] [Indexed: 12/19/2022] Open
Abstract
Neisseria gonorrhoeae successfully overcomes host strategies to limit essential nutrients, termed nutritional immunity, by production of TonB-dependent transporters (TdTs)-outer membrane proteins that facilitate nutrient transport in an energy-dependent manner. Four gonococcal TdTs facilitate utilization of iron or iron chelates from host-derived proteins, including transferrin (TbpA), lactoferrin (LbpA), and hemoglobin (HpuB), in addition to xenosiderophores from other bacteria (FetA). The roles of the remaining four uncharacterized TdTs (TdfF, TdfG, TdfH, and TdfJ) remain elusive. Regulatory data demonstrating that production of gonococcal TdfH and TdfJ are unresponsive to or upregulated under iron-replete conditions led us to evaluate the role of these TdTs in the acquisition of nutrients other than iron. In this study, we found that production of gonococcal TdfH is both Zn and Zur repressed. We also found that TdfH confers resistance to calprotectin, an immune effector protein highly produced in neutrophils that has antimicrobial activity due to its ability to sequester Zn and Mn. We found that TdfH directly binds calprotectin, which enables gonococcal Zn accumulation in a TdfH-dependent manner and enhances bacterial survival after exposure to neutrophil extracellular traps (NETs). These studies highlight Zn sequestration by calprotectin as a key functional arm of NET-mediated killing of gonococci. We demonstrate for the first time that N. gonorrhoeae exploits this host strategy in a novel defense mechanism, in which TdfH production hijacks and directly utilizes the host protein calprotectin as a zinc source and thereby evades nutritional immunity.
Collapse
|
31
|
Martin JN, Ball LM, Solomon TL, Dewald AH, Criss AK, Columbus L. Neisserial Opa Protein-CEACAM Interactions: Competition for Receptors as a Means of Bacterial Invasion and Pathogenesis. Biochemistry 2016; 55:4286-94. [PMID: 27442026 DOI: 10.1021/acs.biochem.6b00124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carcino-embryonic antigen-like cellular adhesion molecules (CEACAMs), members of the immunoglobulin superfamily, are responsible for cell-cell interactions and cellular signaling events. Extracellular interactions with CEACAMs have the potential to induce phagocytosis, as is the case with pathogenic Neisseria bacteria. Pathogenic Neisseria species express opacity-associated (Opa) proteins, which interact with a subset of CEACAMs on human cells, and initiate the engulfment of the bacterium. We demonstrate that recombinant Opa proteins reconstituted into liposomes retain the ability to recognize and interact with CEACAMs in vitro but do not maintain receptor specificity compared to that of Opa proteins natively expressed by Neisseria gonorrhoeae. We report that two Opa proteins interact with CEACAMs with nanomolar affinity, and we hypothesize that this high affinity is necessary to compete with the native CEACAM homo- and heterotypic interactions in the host. Understanding the mechanisms of Opa protein-receptor recognition and engulfment enhances our understanding of Neisserial pathogenesis. Additionally, these mechanisms provide insight into how human cells that are typically nonphagocytic can utilize CEACAM receptors to internalize exogenous matter, with implications for the targeted delivery of therapeutics and development of imaging agents.
Collapse
Affiliation(s)
- Jennifer N Martin
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Louise M Ball
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Tsega L Solomon
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Alison H Dewald
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Alison K Criss
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Linda Columbus
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| |
Collapse
|
32
|
Seminal Plasma Promotes Neisseria gonorrhoeae Aggregation and Biofilm Formation. J Bacteriol 2016; 198:2228-35. [PMID: 27274027 DOI: 10.1128/jb.00165-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/26/2016] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Neisseria gonorrhoeae causes the human-specific disease gonorrhea and is transmitted from person to person primarily via sexual contact. During transmission, N. gonorrhoeae is often exposed to seminal fluid and must adapt to this change in environment. Previous work demonstrated that seminal fluid facilitates N. gonorrhoeae motility and alters epithelial cell interactions. In this study, exposure to seminal fluid was found to decrease surface adherence of gonococci in a manner that was independent of Opa adhesin proteins or type IV pilus retraction. Semen was also shown to cause dispersal of bacteria that had previously established surface adherence. Although surface adherence decreased, interbacterial interactions were increased by seminal plasma both in long-term static culture and on a cell-to-cell basis over shorter time periods. The result of increased bacterium-bacterium interactions resulted in the formation of microcolonies, an important step in the N. gonorrhoeae infectious process. Seminal fluid also facilitated increased bacterial aggregation in the form of shear-resistant three-dimensional biofilms. These results emphasize the importance of the gonococcal response to the influx of seminal fluid within the genital niche. Further characterization of the N. gonorrhoeae response to semen will advance our understanding of the mechanisms behind the establishment of infection in naive hosts and the process of transmission. IMPORTANCE N. gonorrhoeae is the causative agent of the globally prevalent sexually transmitted infection gonorrhea. An understudied aspect of this human-adapted pathogen is the change in bacterial physiology that occurs during sexual transmission. N. gonorrhoeae encounters semen when transmitted from host to host, and it is known that, when N. gonorrhoeae is exposed to seminal fluid, alterations in bacterial motility and type IV pilus arrangement occur. This work extends our previous observations on this modulation of gonococcal physiology by seminal fluid and demonstrates that seminal plasma decreases surface adherence, promotes interbacterial interactions, and enhances biofilm formation.
Collapse
|
33
|
Juneau RA, Stevens JS, Apicella MA, Criss AK. A thermonuclease of Neisseria gonorrhoeae enhances bacterial escape from killing by neutrophil extracellular traps. J Infect Dis 2015; 212:316-24. [PMID: 25605868 PMCID: PMC4490236 DOI: 10.1093/infdis/jiv031] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/08/2015] [Indexed: 12/24/2022] Open
Abstract
Acute gonorrhea is characterized by neutrophilic inflammation that is insufficient to clear Neisseria gonorrhoeae. Activated neutrophils release extracellular traps (NETs), which are composed of chromatin and decorated with antimicrobial proteins. The N. gonorrhoeae NG0969 open reading frame contains a gene (nuc) that encodes a putatively secreted thermonuclease (Nuc) that contributes to biofilm remodeling. Here, we report that Nuc degrades NETs to help N. gonorrhoeae resist killing by neutrophils. Primary human neutrophils released NETs after exposure to N. gonorrhoeae, but NET integrity declined over time with Nuc-containing bacteria. Recombinant Nuc and conditioned medium from Nuc-containing N. gonorrhoeae degraded human neutrophil DNA and NETs. NETs were found to have antimicrobial activity against N. gonorrhoeae, and Nuc expression enhanced N. gonorrhoeae survival in the presence of neutrophils that released NETs. We propose that Nuc enables N. gonorrhoeae to escape trapping and killing by NETs during symptomatic infection, highlighting Nuc as a multifunctional virulence factor for N. gonorrhoeae.
Collapse
Affiliation(s)
- Richard A. Juneau
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville
| | - Jacqueline S. Stevens
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville
| | | | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville
| |
Collapse
|
34
|
Smirnov A, Solga MD, Lannigan J, Criss AK. An improved method for differentiating cell-bound from internalized particles by imaging flow cytometry. J Immunol Methods 2015; 423:60-9. [PMID: 25967947 DOI: 10.1016/j.jim.2015.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/04/2015] [Accepted: 04/30/2015] [Indexed: 11/24/2022]
Abstract
Recognition, binding, internalization, and elimination of pathogens and cell debris are important functions of professional as well as non-professional phagocytes. However, high-throughput methods for quantifying cell-associated particles and discriminating bound from internalized particles have been lacking. Here we describe a protocol for using imaging flow cytometry to quantify the attached and phagocytosed particles that are associated with a population of cells. Cells were exposed to fluorescent particles, fixed, and exposed to an antibody of a different fluorophore that recognizes the particles. The antibody is added without cell permeabilization, such that the antibody only binds extracellular particles. Cells with and without associated particles were identified by imaging flow cytometry. For each cell with associated particles, a spot count algorithm was employed to quantify the number of extracellular (double fluorescent) and intracellular (single fluorescent) particles per cell, from which the percent particle internalization was determined. The spot count algorithm was empirically validated by examining the fluorescence and phase contrast images acquired by the flow cytometer. We used this protocol to measure binding and internalization of the bacterium Neisseria gonorrhoeae by primary human neutrophils, using different bacterial variants and under different cellular conditions. The results acquired using imaging flow cytometry agreed with findings that were previously obtained using conventional immunofluorescence microscopy. This protocol provides a rapid, powerful method for measuring the association and internalization of any particle by any cell type.
Collapse
Affiliation(s)
- Asya Smirnov
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Michael D Solga
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Joanne Lannigan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
35
|
Neisseria gonorrhoeae elicits extracellular traps in primary neutrophil culture while suppressing the oxidative burst. mBio 2015; 6:mBio.02452-14. [PMID: 25670773 PMCID: PMC4337578 DOI: 10.1128/mbio.02452-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neisseria gonorrhoeae (the gonococcus) causes gonorrhea and is uniquely adapted to survive within the human reproductive tract. Gonococci evade host immune surveillance in part by varying their pili and opacity-associated proteins. These variable surface antigens influence interactions with host epithelial and immune cells. A potent polymorphonuclear leukocyte (PMN) response is a hallmark of symptomatic gonococcal infection, with vast numbers of PMNs recruited to the site of infection. A large body of literature describes gonococcus-PMN interactions, but the factors driving the outcome of infection are not fully understood. Gonococci have been described to both induce and suppress the PMN oxidative burst, but we determined that gonococci differentially affect induction of the PMN oxidative burst depending on the multiplicity of infection (MOI). Infecting PMN at an MOI of <20 gonococci elicits an oxidative burst, while an MOI of >20 suppresses the burst. Oxidative burst in response to gonococci is enhanced by, but does not require, expression of pili or opacity proteins. Neutrophil extracellular traps (NETs) were observed in gonococcus-infected PMNs, a process which requires an oxidative burst, yet gonococci induced NETs under suppressing conditions. The NETs were unable to kill gonococci despite killing the common vaginal bacterium Lactobacillus crispatus. Thus, gonococci influence PMN biology to promote their own survival by suppressing the oxidative burst of PMNs and stimulating the formation of NETs, which do not effectively kill gonococci, illustrating how N. gonorrhoeae has evolved to modulate PMN responses to promote infection. Neisseria gonorrhoeae, the gonococcus, is the only causative agent of gonorrhea and is exclusively found within the human host. Gonococci stochastically vary the composition of antigens on their surface to evade immune surveillance. We used gonococcal mutants which stably express different surface antigens to dissect interactions between gonococci and primary human polymorphonuclear leukocytes (PMNs). We found that gonococci, depending on the number of bacteria present, either induce or suppress the oxidative burst of PMNs regardless of other stimuli. Gonococci also cause PMNs to release DNA, forming neutrophil extracellular traps (NETs) independently of the oxidative burst. The NETs were unable to kill gonococci but were able to kill commensal bacteria, suggesting that NET production can help gonococci outcompete other bacterial species. We propose that gonococci have evolved to manipulate PMN responses to promote their own survival during infection.
Collapse
|
36
|
Handing JW, Criss AK. The lipooligosaccharide-modifying enzyme LptA enhances gonococcal defence against human neutrophils. Cell Microbiol 2015; 17:910-21. [PMID: 25537831 DOI: 10.1111/cmi.12411] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/20/2014] [Accepted: 12/17/2014] [Indexed: 01/27/2023]
Abstract
Infection with Neisseria gonorrhoeae (Gc) is marked by an influx of neutrophils to the site of infection. Despite a robust immune response, viable Gc can be recovered from neutrophil-rich gonorrhoeal secretions. Gc enzymatically modifies the lipid A portion of lipooligosaccharide by the addition of phosphoethanolamine to the phosphate group at the 4' position. Loss of lipooligosaccharide phosphoethanolamine transferase A (LptA), the enzyme catalysing this reaction, increases bacterial sensitivity to killing by human complement and cationic antimicrobial peptides. Here, we investigated the importance of LptA for interactions between Gc and human neutrophils. We found that lptA mutant Gc was significantly more sensitive to killing by human neutrophils. Three mechanisms underlie the increased sensitivity of lptA mutant Gc to neutrophils. (i) lptA mutant Gc is more likely to reside in mature phagolysosomes than LptA-expressing bacteria. (ii) lptA mutant Gc is more sensitive to killing by components found in neutrophil granules, including CAP37/azurocidin, human neutrophil peptide 1 and the serine protease cathepsin G. (iii) lptA mutant Gc is more susceptible to killing by antimicrobial components that are exocytosed from neutrophils, including those decorating neutrophil extracellular traps. By increasing the resistance of Gc to the bactericidal activity of neutrophils, LptA-catalysed modification of lipooligosaccharide enhances survival of Gc from the human inflammatory response during acute gonorrhoea.
Collapse
Affiliation(s)
- Jonathan W Handing
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
37
|
Selection for a CEACAM receptor-specific binding phenotype during Neisseria gonorrhoeae infection of the human genital tract. Infect Immun 2015; 83:1372-83. [PMID: 25605771 DOI: 10.1128/iai.03123-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections by Neisseria gonorrhoeae are increasingly common, are often caused by antibiotic-resistant strains, and can result in serious and lasting sequelae, prompting the reemergence of gonococcal disease as a leading global health concern. N. gonorrhoeae is a human-restricted pathogen that primarily colonizes urogenital mucosal surfaces. Disease progression varies greatly between the sexes: men usually present with symptomatic infection characterized by a painful purulent urethral discharge, while in women, the infection is often asymptomatic, with the most severe pathology occurring when the bacteria ascend from the lower genital tract into the uterus and fallopian tubes. Classical clinical studies demonstrated that clinically infectious strains uniformly express Opa adhesins; however, their specificities were unknown at the time. While in vitro studies have since identified CEACAM proteins as the primary target of Opa proteins, the gonococcal specificity for this human family of receptors has not been addressed in the context of natural infection. In this study, we characterize a collection of low-passage-number clinical-specimen-derived N. gonorrhoeae isolates for Opa expression and assess their CEACAM-binding profiles. We report marked in vivo selection for expression of phase-variable Opa proteins that bind CEACAM1 and CEACAM5 but selection against expression of Opa variants that bind to the neutrophil-restricted decoy receptor CEACAM3. This is the first study showing phenotypic selection for distinct CEACAM-binding phenotypes in vivo, and it supports the opposing functions of CEACAMs that facilitate infection versus driving inflammation within the genital tract.
Collapse
|
38
|
|
39
|
Johnson MB, Ball LM, Daily KP, Martin JN, Columbus L, Criss AK. Opa+ Neisseria gonorrhoeae exhibits reduced survival in human neutrophils via Src family kinase-mediated bacterial trafficking into mature phagolysosomes. Cell Microbiol 2014; 17:648-65. [PMID: 25346239 DOI: 10.1111/cmi.12389] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/01/2014] [Accepted: 10/22/2014] [Indexed: 01/05/2023]
Abstract
During gonorrhoeal infection, there is a heterogeneous population of Neisseria gonorrhoeae (Gc) varied in their expression of opacity-associated (Opa) proteins. While Opa proteins are important for bacterial attachment and invasion of epithelial cells, Opa+ Gc has a survival defect after exposure to neutrophils. Here, we use constitutively Opa- and OpaD+ Gc in strain background FA1090 to show that Opa+ Gc is more sensitive to killing inside adherent, chemokine-treated primary human neutrophils due to increased bacterial residence in mature, degradative phagolysosomes that contain primary and secondary granule antimicrobial contents. Although Opa+ Gc stimulates a potent oxidative burst, neutrophil killing of Opa+ Gc was instead attributable to non-oxidative components, particularly neutrophil proteases and the bactericidal/permeability-increasing protein. Blocking interaction of Opa+ Gc with carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) or inhibiting Src family kinase signalling, which is downstream of CEACAM activation, enhanced the survival of Opa+ Gc in neutrophils. Src family kinase signalling was required for fusion of Gc phagosomes with primary granules to generate mature phagolysosomes. Conversely, ectopic activation of Src family kinases or coinfection with Opa+ Gc resulted in decreased survival of Opa- Gc in neutrophils. From these results, we conclude that Opa protein expression is an important modulator of Gc survival characteristics in neutrophils by influencing phagosome dynamics and thus bacterial exposure to neutrophils' full antimicrobial arsenal.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are closely related organisms that cause the sexually transmitted infection gonorrhea and serious bacterial meningitis and septicemia, respectively. Both species possess multiple mechanisms to alter the expression of surface-exposed proteins through the processes of phase and antigenic variation. This potential for wide variability in surface-exposed structures allows the organisms to always have subpopulations of divergent antigenic types to avoid immune surveillance and to contribute to functional variation. Additionally, the Neisseria are naturally competent for DNA transformation, which is their main means of genetic exchange. Although bacteriophages and plasmids are present in this genus, they are not as effective as DNA transformation for horizontal genetic exchange. There are barriers to genetic transfer, such as restriction-modification systems and CRISPR loci, that limit particular types of exchange. These host-restricted pathogens illustrate the rich complexity of genetics that can help define the similarities and differences of closely related organisms.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| | | |
Collapse
|
41
|
Global analysis of neutrophil responses to Neisseria gonorrhoeae reveals a self-propagating inflammatory program. PLoS Pathog 2014; 10:e1004341. [PMID: 25188454 PMCID: PMC4154863 DOI: 10.1371/journal.ppat.1004341] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/15/2014] [Indexed: 11/19/2022] Open
Abstract
An overwhelming neutrophil-driven response causes both acute symptoms and the lasting sequelae that result from infection with Neisseria gonorrhoeae. Neutrophils undergo an aggressive opsonin-independent response to N. gonorrhoeae, driven by the innate decoy receptor CEACAM3. CEACAM3 is exclusively expressed by human neutrophils, and drives a potent binding, phagocytic engulfment and oxidative killing of Opa-expressing bacteria. In this study, we sought to explore the contribution of neutrophils to the pathogenic inflammatory process that typifies gonorrhea. Genome-wide microarray and biochemical profiling of gonococcal-infected neutrophils revealed that CEACAM3 engagement triggers a Syk-, PKCδ- and Tak1-dependent signaling cascade that results in the activation of an NF-κB-dependent transcriptional response, with consequent production of pro-inflammatory cytokines. Using an in vivo model of N. gonorrhoeae infection, we show that human CEACAM-expressing neutrophils have heightened migration toward the site of the infection where they may be further activated upon Opa-dependent binding. Together, this study establishes that the role of CEACAM3 is not restricted to the direct opsonin-independent killing by neutrophils, since it also drives the vigorous inflammatory response that typifies gonorrhea. By carrying the potential to mobilize increasing numbers of neutrophils, CEACAM3 thereby represents the tipping point between protective and pathogenic outcomes of N. gonorrhoeae infection. Gonorrhea is a sexually transmitted infection caused by the bacteria Neisseria gonorrhoeae. These bacteria have re-emerged as a public health priority due to its acquisition of resistance to multiple antibiotics, leading to fears of untreatable infection. The symptoms of gonorrhea include an intense inflammatory response that may lead to pus discharged from the infected genital tract and scarring of the reproductive tract caused by neutrophils recruited to the site of infection. Past studies have detailed molecular interactions that lead to neutrophil binding and engulfment of N. gonorrhoeae, yet it remains unclear why N. gonorrhoeae elicits such a pathogenic inflammatory response. In this study, we reveal that N. gonorrhoeae binding to the human innate decoy receptor, CEACAM3, elicits a potent intracellular signaling cascade that leads to neutrophil expression of cytokines that actively recruit other neutrophils to the infected tissues. As they encounter the gonococci, the next wave of neutrophils becomes similarly activated, leading to the progressive expansion in phagocytic cell numbers until they overwhelm the infected tissues. While this process promotes a rapid response to a troubling pathogen early during infection, the unrestrained recruitment of neutrophils and their toxic antimicrobial arsenal also lead to the pathogenic consequences associated with gonorrhea.
Collapse
|
42
|
Abstract
Niche-restricted pathogens are evolutionarily linked with the specific biological fluids that are encountered during infection. Neisseria gonorrhoeae causes the genital infection gonorrhea and is exposed to seminal fluid during sexual transmission. Treatment of N. gonorrhoeae with seminal plasma or purified semen proteins lactoferrin, serum albumin, and prostate-specific antigen each facilitated type IV pilus-mediated twitching motility of the bacterium. Motility in the presence of seminal plasma was characterized by high velocity and low directional persistence. In addition, infection of epithelial cells with N. gonorrhoeae in the presence of seminal plasma resulted in enhanced microcolony formation. Close association of multiple pili in the form of bundles was also disrupted after seminal plasma treatment leading to an increase in the number of single pilus filaments on the bacterial surface. Thus, exposure of N. gonorrhoeae to seminal plasma is proposed to alter bacterial motility and aggregation characteristics to influence the processes of transmission and colonization. There are greater than 100 million estimated new cases of gonorrhea annually worldwide. Research characterizing the mechanisms of pathogenesis and transmission of Neisseria gonorrhoeae is important for developing new prevention strategies, since antibiotic resistance of the organism is becoming increasingly prevalent. Our work identifies seminal plasma as a mediator of N. gonorrhoeae twitching motility and microcolony formation through functional modification of the type IV pilus. These findings provide insight into motility dynamics and epithelial cell colonization under conditions that are relevant to sexual transmission. Type IV pili are common virulence factors with diverse functions among bacterial pathogens, and this work identifies interactions between type IV pili and the host environment. Finally, this work illustrates the importance of the host environment and niche-specific fluids on microbial pathogenesis.
Collapse
|
43
|
Assembly of NADPH oxidase in human neutrophils is modulated by the opacity-associated protein expression State of Neisseria gonorrhoeae. Infect Immun 2013; 82:1036-44. [PMID: 24343654 DOI: 10.1128/iai.00881-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae (the gonococcus, Gc) triggers a potent inflammatory response and recruitment of neutrophils to the site of infection. Gc survives exposure to neutrophils despite these cells' antimicrobial products, such as reactive oxygen species (ROS). ROS production in neutrophils is initiated by NADPH oxidase, which converts oxygen into superoxide. The subunits of NADPH oxidase are spatially separated between granules (gp91(phox)/p22(phox)) and the cytoplasm (p47(phox), p67(phox), and p40(phox)). Activation of neutrophils promotes the coassembly of NADPH oxidase subunits at phagosome and/or plasma membranes. While Gc-expressing opacity-associated (Opa) proteins can induce neutrophils to produce ROS, Opa-negative (Opa-) Gc does not stimulate neutrophil ROS production. Using constitutively Opa- and OpaD-positive (OpaD+) Gc bacteria in strain FA1090, we now show that the difference in ROS production levels in primary human neutrophils between these backgrounds can be attributed to differential assembly of NADPH oxidase. Neutrophils infected with Opa- Gc showed limited translocation of NADPH oxidase cytoplasmic subunits to cellular membranes, including the bacterial phagosome. In contrast, these subunits rapidly translocated to neutrophil membranes following infection with OpaD+ Gc. gp91(phox) and p22(phox) were recruited to Gc phagosomes regardless of bacterial Opa expression. These results suggest that Opa- Gc interferes with the recruitment of neutrophil NADPH oxidase cytoplasmic subunits to membranes, in particular, the p47(phox) "organizing" subunit, to prevent assembly of the holoenzyme, resulting in an absence of the oxidative burst.
Collapse
|
44
|
Anderson MT, Seifert HS. Phase variation leads to the misidentification of a Neisseria gonorrhoeae virulence gene. PLoS One 2013; 8:e72183. [PMID: 23977246 PMCID: PMC3745409 DOI: 10.1371/journal.pone.0072183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/05/2013] [Indexed: 11/18/2022] Open
Abstract
Neisseria gonorrhoeae is the causative agent of gonorrhea and an obligate pathogen of humans. The Opa proteins of these bacteria are known to mediate attachment and internalization by host cells, including neutrophils. The Opa protein repertoire of a typical N. gonorrhoeae isolate is encoded on ~11 genes distributed throughout the chromosome and is subject to stochastic changes in expression through phase variation. Together, these characteristics make Opa proteins a critical yet unpredictable aspect of any experimental investigation into the interaction of N. gonorrhoeae with host cells. The goal of this study was to identify novel virulence factors of N. gonorrhoeae by assessing the contribution of a set of uncharacterized hydrogen peroxide-induced genes to bacterial survival against neutrophil-mediated killing. To this end, a strain harboring an engineered mutation in the NGO0322 gene was identified that exhibited increased sensitivity to neutrophil-mediated killing, enhanced internalization by neutrophils, and the ability to induce high levels of neutrophil-generated reactive oxygen species. Each of these phenotypes reverted to near wild-type levels following genetic complementation of the NGO0322 mutation. However, after immunoblot analysis of Opa proteins expressed by the isogenic parent, mutant, and genetically complemented strains, it was determined that phase variation had resulted in a disparity between the Opa profiles of these strains. To determine whether Opa phase variation, rather than NGO0322 mutation, was the cause of the observed neutrophil-related phenotypes, NGO0322 function was investigated in N. gonorrhoeae strains lacking all Opa proteins or constitutively expressing the OpaD variant. In both cases, mutation of NGO0322 did not alter survival of gonococci in the presence of neutrophils. These results demonstrate the importance of controlling for the frequent and random variation in Opa protein production by N. gonorrhoeae when investigating host cell interactions.
Collapse
Affiliation(s)
- Mark T. Anderson
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|