1
|
Zhu Y, Lechardeur D, Bernardet JF, Kerouault B, Guérin C, Rigaudeau D, Nicolas P, Duchaud E, Rochat T. Two functionally distinct heme/iron transport systems are virulence determinants of the fish pathogen Flavobacterium psychrophilum. Virulence 2022; 13:1221-1241. [PMID: 35880611 PMCID: PMC9331221 DOI: 10.1080/21505594.2022.2101197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 10/26/2022] Open
Abstract
Bacterial pathogens have a critical impact on aquaculture, a sector that accounts for half of the human fish consumption. Flavobacterium psychrophilum (phylum Bacteroidetes) is responsible for bacterial cold-water disease in salmonids worldwide. The molecular factors involved in host invasion, colonization and haemorrhagic septicaemia are mostly unknown. In this study, we identified two new TonB-dependent receptors, HfpR and BfpR, that are required for adaptation to iron conditions encountered during infection and for virulence in rainbow trout. Transcriptional analyses revealed that their expression is tightly controlled and upregulated under specific iron sources and concentrations. Characterization of deletion mutants showed that they act without redundancy: BfpR is required for optimal growth in the presence of high haemoglobin level, while HfpR confers the capacity to acquire nutrient iron from haem or haemoglobin under iron scarcity. The gene hfpY, co-transcribed with hfpR, encodes a protein related to the HmuY family. We demonstrated that HfpY binds haem and contributes significantly to host colonization and disease severity. Overall, these results are consistent with a model in which both BfpR and Hfp systems promote haem uptake and respond to distinct signals to adapt iron acquisition to the different stages of pathogenesis. Our findings give insight into the molecular basis of pathogenicity of a serious pathogen belonging to the understudied family Flavobacteriaceae and point to the newly identified haem receptors as promising targets for antibacterial development.
Collapse
Affiliation(s)
- Yueying Zhu
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Delphine Lechardeur
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Cyprien Guérin
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Pierre Nicolas
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Eric Duchaud
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Tatiana Rochat
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
2
|
Krüger A, Keppel M, Sharma V, Frunzke J. The diversity of heme sensor systems - heme-responsive transcriptional regulation mediated by transient heme protein interactions. FEMS Microbiol Rev 2022; 46:6506450. [PMID: 35026033 DOI: 10.1093/femsre/fuac002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Heme is a versatile molecule that is vital for nearly all cellular life by serving as prosthetic group for various enzymes or as nutritional iron source for diverse microbial species. However, elevated levels of heme molecule are toxic to cells. The complexity of this stimulus has shaped the evolution of diverse heme sensor systems, which are involved in heme-dependent transcriptional regulation in eukaryotes and prokaryotes. The functions of these systems are manifold - ranging from the specific control of heme detoxification or uptake systems to the global integration of heme and iron homeostasis. This review focuses on heme sensor systems, regulating heme homeostasis by transient heme protein interaction. We provide an overview of known heme-binding motifs in prokaryotic and eukaryotic transcription factors. Besides the central ligands, the surrounding amino acid environment was shown to play a pivotal role in heme binding. The diversity of heme-regulatory systems therefore illustrates that prediction based on pure sequence information is hardly possible and requires careful experimental validation. Comprehensive understanding of heme-regulated processes is not only important for our understanding of cellular physiology, but also provides a basis for the development of novel antibacterial drugs and metabolic engineering strategies.
Collapse
Affiliation(s)
- Aileen Krüger
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Marc Keppel
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Vikas Sharma
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| |
Collapse
|
3
|
Ramezanalizadeh F, Rasooli I, Owlia P. Protective response against Acinetobacter baumannii with ferric iron receptors HemTR-BauA in a murine sepsis model. Future Microbiol 2021; 16:143-157. [PMID: 33528272 DOI: 10.2217/fmb-2020-0133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: Iron uptake and metabolism pathways are promising targets in vaccine development as an alternative strategy for antibiotics. Methods & methods: HemTR, a putative heme receptor of Acinetobacter baumannii, was expressed and its protectivity against A. baumannii was determined singly or in combination with the siderophore receptor, BauA, in mice. Results: High level of IgG was elicited. There was a delay in mice mortality with reduced bacterial loads in internal organs in the sublethal challenge. Protection was better in the HemTR-BauA group in both lethal and sublethal challenges. Passive transfer of anti-HemTR and anti-BauA partially protected mice against A. baumannii infection. Conclusion: HemTR in combination with other iron receptors could contribute to the development of protective vaccines against A. baumannii.
Collapse
Affiliation(s)
| | - Iraj Rasooli
- Department of Biology, Molecular Microbiology Research Center, Shahed University, Tehran, 3319118651, Iran
| | - Parviz Owlia
- Department of Microbiology, Molecular Microbiology Research Center, School of Medicine, Shahed University, Tehran, 3319118651, Iran
| |
Collapse
|
4
|
Iron-associated protein interaction networks reveal the key functional modules related to survival and virulence of Pasteurella multocida. Microb Pathog 2018; 127:257-266. [PMID: 30550841 DOI: 10.1016/j.micpath.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022]
Abstract
Pasteurella multocida causes respiratory infectious diseases in a multitude of birds and mammals. A number of virulence-associated genes were reported across different strains of P. multocida, including those involved in the iron transport and metabolism. Comparative iron-associated genes of P. multocida among different animal hosts towards their interaction networks have not been fully revealed. Therefore, this study aimed to identify the iron-associated genes from core- and pan-genomes of fourteen P. multocida strains and to construct iron-associated protein interaction networks using genome-scale network analysis which might be associated with the virulence. Results showed that these fourteen strains had 1587 genes in the core-genome and 3400 genes constituting their pan-genome. Out of these, 2651 genes associated with iron transport and metabolism were selected to construct the protein interaction networks and 361 genes were incorporated into the iron-associated protein interaction network (iPIN) consisting of nine different iron-associated functional modules. After comparing with the virulence factor database (VFDB), 21 virulence-associated proteins were determined and 11 of these belonged to the heme biosynthesis module. From this study, the core heme biosynthesis module and the core outer membrane hemoglobin receptor HgbA were proposed as candidate targets to design novel antibiotics and vaccines for preventing pasteurellosis across the serotypes or animal hosts for enhanced precision agriculture to ensure sustainability in food security.
Collapse
|
5
|
Liu M, Huang M, Shui Y, Biville F, Zhu D, Wang M, Jia R, Chen S, Sun K, Zhao X, Yang Q, Wu Y, Chen X, Cheng A. Roles of B739_1343 in iron acquisition and pathogenesis in Riemerella anatipestifer CH-1 and evaluation of the RA-CH-1ΔB739_1343 mutant as an attenuated vaccine. PLoS One 2018; 13:e0197310. [PMID: 29847566 PMCID: PMC5976166 DOI: 10.1371/journal.pone.0197310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 04/29/2018] [Indexed: 01/09/2023] Open
Abstract
Iron is one of the most important elements for bacterial survival and pathogenicity. The iron uptake mechanism of Riemerella anatipestifer (R. anatipestifer, RA), a major pathogen that causes septicemia and polyserositis in ducks, is largely unknown. Here, the functions of the putative TonB-dependent iron transporter of RA-CH-1, B739_1343, in iron utilization and pathogenicity were investigated. Under iron-starved conditions, the mutant strain RA-CH-1ΔB739_1343 exhibited more seriously impaired growth than the wild-type strain RA-CH-1, and the expression of B739_1343 in the mutant strain restored growth. qRT-PCR results showed that the transcription of B739_1343 was not regulated by iron conditions. In an animal model, the median lethal dose (LD50) of the mutant strain RA-CH-1ΔB739_1343 increased more than 104-fold (1.6×1012 CFU) compared to that of the wild-type strain RA-CH-1 (1.43×108 CFU). In a duck co-infection model, the mutant strain RA-CH-1ΔB739_1343 was outcompeted by the wild-type RA-CH-1 in the blood, liver and brain of infected ducks, indicating that B739_1343 is a virulence factor of RA-CH-1. Finally, immunization with live bacteria of the mutant strain RA-CH-1ΔB739_1343 protected 83.33% of ducks against a high-dose (100-fold LD50) challenge with the wild-type strain RA-CH-1, suggesting that the mutant strain RA-CH-1ΔB739_1343 could be further developed as a potential live attenuated vaccine candidate for the duck industry.
Collapse
Affiliation(s)
- MaFeng Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
- * E-mail: (MF Liu); (AC Cheng)
| | - Mi Huang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - Yun Shui
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - Francis Biville
- Unité des Infections Bactériennes Invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - DeKang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - MingShu Wang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - RenYong Jia
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - KunFeng Sun
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - XiaoYue Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - AnChun Cheng
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
- * E-mail: (MF Liu); (AC Cheng)
| |
Collapse
|
6
|
Meneghini LM, Tripathi S, Woodworth MA, Majumdar S, Poulos TL, Weiss GA. Dissecting binding of a β-barrel membrane protein by phage display. MOLECULAR BIOSYSTEMS 2017; 13:1438-1447. [PMID: 28627567 PMCID: PMC5564213 DOI: 10.1039/c7mb00163k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Membrane proteins (MPs) constitute a third of all proteomes, and contribute to a myriad of cellular functions including intercellular communication, nutrient transport and energy generation. For example, TonB-dependent transporters (TBDTs) in the outer membrane of Gram-negative bacteria play an essential role transporting iron and other nutrients into the bacterial cell. The inherently hydrophobic surfaces of MPs complicates protein expression, purification, and characterization. Thus, dissecting the functional contributions of individual amino acids or structural features through mutagenesis can be a challenging ordeal. Here, we apply a new approach for the expedited protein characterization of the TBDT ShuA from Shigella dysenteriae, and elucidate the protein's initial steps during heme-uptake. ShuA variants were displayed on the surface of an M13 bacteriophage as fusions to the P8 coat protein. Each ShuA variant was analyzed for its ability to display on the bacteriophage surface, and functionally bind to hemoglobin. This technique streamlines isolation of stable MP variants for rapid characterization of binding to various ligands. Site-directed mutagenesis studies targeting each extracellular loop region of ShuA demonstrate no specific extracellular loop is required for hemoglobin binding. Instead two residues, His420 and His86 mediate this interaction. The results identify a loop susceptible to antibody binding, and also a small molecule motif capable of disrupting ShuA from S. dysenteriae. The approach is generalizable to the dissection of other phage-displayed TBDTs and MPs.
Collapse
Affiliation(s)
- Luz M Meneghini
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| | - Sarvind Tripathi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| | - Marcus A Woodworth
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| | - Sudipta Majumdar
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Thomas L Poulos
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA. and Department of Chemistry, University of California, Irvine, CA, USA
| | - Gregory A Weiss
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA. and Department of Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
7
|
Dickson CF, Kumar KK, Jacques DA, Malmirchegini GR, Spirig T, Mackay JP, Clubb RT, Guss JM, Gell DA. Structure of the hemoglobin-IsdH complex reveals the molecular basis of iron capture by Staphylococcus aureus. J Biol Chem 2014; 289:6728-6738. [PMID: 24425866 DOI: 10.1074/jbc.m113.545566] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Staphylococcus aureus causes life-threatening disease in humans. The S. aureus surface protein iron-regulated surface determinant H (IsdH) binds to mammalian hemoglobin (Hb) and extracts heme as a source of iron, which is an essential nutrient for the bacteria. However, the process of heme transfer from Hb is poorly understood. We have determined the structure of IsdH bound to human Hb by x-ray crystallography at 4.2 Å resolution, revealing the structural basis for heme transfer. One IsdH molecule is bound to each α and β Hb subunit, suggesting that the receptor acquires iron from both chains by a similar mechanism. Remarkably, two near iron transporter (NEAT) domains in IsdH perform very different functions. An N-terminal NEAT domain binds α/β globin through a site distant from the globin heme pocket and, via an intervening structural domain, positions the C-terminal heme-binding NEAT domain perfectly for heme transfer. These data, together with a 2.3 Å resolution crystal structure of the isolated N-terminal domain bound to Hb and small-angle x-ray scattering of free IsdH, reveal how multiple domains of IsdH cooperate to strip heme from Hb. Many bacterial pathogens obtain iron from human hemoglobin using proteins that contain multiple NEAT domains and other domains whose functions are poorly understood. Our results suggest that, rather than acting as isolated units, NEAT domains may be integrated into higher order architectures that employ multiple interaction interfaces to efficiently extract heme from host proteins.
Collapse
Affiliation(s)
- Claire F Dickson
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Kaavya Krishna Kumar
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia
| | - David A Jacques
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Thomas Spirig
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - J Mitchell Guss
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia
| | - David A Gell
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
8
|
Contreras H, Chim N, Credali A, Goulding CW. Heme uptake in bacterial pathogens. Curr Opin Chem Biol 2014; 19:34-41. [PMID: 24780277 DOI: 10.1016/j.cbpa.2013.12.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 11/30/2022]
Abstract
Iron is an essential nutrient for the survival of organisms. Bacterial pathogens possess specialized pathways to acquire heme from their human hosts. In this review, we present recent structural and biochemical data that provide mechanistic insights into several bacterial heme uptake pathways, encompassing the sequestration of heme from human hemoproteins to secreted or membrane-associated bacterial proteins, the transport of heme across bacterial membranes, and the degradation of heme within the bacterial cytosol to liberate iron. The pathways for heme transport into the bacterial cytosol are divergent, harboring non-homologous protein sequences, novel structures, varying numbers of proteins, and different mechanisms. Congruously, the breakdown of heme within the bacterial cytosol by sequence-divergent proteins releases iron and distinct degradation products.
Collapse
Affiliation(s)
- Heidi Contreras
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Nicholas Chim
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Alfredo Credali
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, UCI, Irvine, CA 92697, USA.
| |
Collapse
|