1
|
Chan YL, Liao JC, Li TL, Wu CJ, Chiu YH. Bifidobacterium lactis ameliorates AOM/DSS-induced inflammation, dysbiosis, and colonic precancerous lesions. Appl Microbiol Biotechnol 2025; 109:69. [PMID: 40116950 PMCID: PMC11928396 DOI: 10.1007/s00253-025-13445-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
Bowel cancer is the third most common malignancy of tumors and one of the major causes of cancer-related death. Bowel precancerous conditions can develop without any symptoms, which either makes it difficult for early diagnosis or poses a poor prognosis/gloomy relapse. This study aimed to investigate the effects of Bifidobacterium animalis subsp. lactis TCI604 (B. lactis) on inflammatory responses, gut microbiome, and protectiveness against azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colonic precancerous lesions. The AOM/DSS-induced colonic precancerous lesion murine model was studied with 24 female C57BL/6 J mice assigned to the control group, AOM/DSS-induced colonic precancerous lesion group (AOM/DSS), AOM/DSS treated with B. lactis probiotic group (B. lactis P), and AOM/DSS treated with B. lactis cell-free supernatant group (B. lactis S). The results showed that both B. lactis P and B. lactis S could attenuate AOM/DSS-induced body weight loss and intestine damage, reduce aberrant crypt foci (ACF) and the formation of colonic polyps, and significantly inhibit pro-inflammatory cytokines and the NF-κB signaling pathway, in which the B. lactis S group outperformed others. Further analysis using 16S rDNA sequencing suggested that both B. lactis P and B. lactis S optimize gut microbiota. Several bacteria, including Muribaculaceae, Prevotellaceae_UCG-001, Anaerostipes, Ruminococcaceae, Mucispirillum, Clostridia_UCG-014, and Clostridia_vadinBB60 that were known in close relation to colonic precancerous lesions, were sequenced at taxonomic level. Our results indicated that both B. lactis P and B. lactis S improved AOM/DSS-induced colonic precancerous lesions by regulating inflammation as well as optimizing gut microbiota, thereby establishing reciprocally cooperative net benefits between probiotics/postbiotics and mice with colonic precancerous lesions. KEY POINTS: • Prophylactic administration of probiotic and postbiotic of B. lactis is capable of alleviating the AOM/DSS-induced body weight loss and colon shortening, as well as diminishing the development of colonic precancerous lesions, such as the formation of ACF and colonic polyps, in an AOM/DSS mouse model • Either probiotic or postbiotic of B. lactis has a positive role in mediating immune imbalance and colonic inflammation via suppression of inflammatory immune cells, pro-inflammatory cytokines, and the NF-κB signaling pathway • AOM/DSS-induced dysbiosis can be reversed with the probiotic and postbiotic of B. lactis supplementation.
Collapse
Affiliation(s)
- Yi-Lin Chan
- Department of Chemistry, Chinese Culture University, Taipei, Taiwan, ROC
| | - Jun-Cheng Liao
- Department of Microbiology, Soochow University, 70, Linhsi Road, Taipei, Taiwan, ROC
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Chang-Jer Wu
- Department of Food Science and Center of Excellence for the Oceans, National Taiwan Ocean University, 2, Pei Ning Road, Keelung, Taiwan, ROC.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| | - Yi-Han Chiu
- Department of Microbiology, Soochow University, 70, Linhsi Road, Taipei, Taiwan, ROC.
| |
Collapse
|
2
|
Cong B, Zhang H, Li S, Liu S, Lin J, Deng A, Liu W, Yang Y. Taxonomic Identification of the Arctic Strain Nocardioides Arcticus Sp. Nov. and Global Transcriptomic Analysis in Response to Hydrogen Peroxide Stress. Int J Mol Sci 2023; 24:13943. [PMID: 37762246 PMCID: PMC10531085 DOI: 10.3390/ijms241813943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Microorganisms living in polar regions rely on specialized mechanisms to adapt to extreme environments. The study of their stress adaptation mechanisms is a hot topic in international microbiology research. In this study, a bacterial strain (Arc9.136) isolated from Arctic marine sediments was selected to implement polyphasic taxonomic identification based on factors such as genetic characteristics, physiological and biochemical properties, and chemical composition. The results showed that strain Arc9.136 is classified to the genus Nocardioides, for which the name Nocardioides arcticus sp. nov. is proposed. The ozone hole over the Arctic leads to increased ultraviolet (UV-B) radiation, and low temperatures lead to increased dissolved content in seawater. These extreme environmental conditions result in oxidative stress, inducing a strong response in microorganisms. Based on the functional classification of significantly differentially expressed genes under 1 mM H2O2 stress, we suspect that Arc9.136 may respond to oxidative stress through the following strategies: (1) efficient utilization of various carbon sources to improve carbohydrate transport and metabolism; (2) altering ion transport and metabolism by decreasing the uptake of divalent iron (to avoid the Fenton reaction) and increasing the utilization of trivalent iron (to maintain intracellular iron homeostasis); (3) increasing the level of cell replication, DNA repair, and defense functions, repairing DNA damage caused by H2O2; (4) and changing the composition of lipids in the cell membrane and reducing the sensitivity of lipid peroxidation. This study provides insights into the stress resistance mechanisms of microorganisms in extreme environments and highlights the potential for developing low-temperature active microbial resources.
Collapse
Affiliation(s)
- Bailin Cong
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (J.L.); (A.D.); (W.L.)
| | - Hui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China; (H.Z.); (Y.Y.)
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China;
| | - Shenghao Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (J.L.); (A.D.); (W.L.)
| | - Jing Lin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (J.L.); (A.D.); (W.L.)
| | - Aifang Deng
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (J.L.); (A.D.); (W.L.)
| | - Wenqi Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (J.L.); (A.D.); (W.L.)
| | - Yan Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China; (H.Z.); (Y.Y.)
| |
Collapse
|
3
|
Kathiriya MR, Vekariya YV, Hati S. Understanding the Probiotic Bacterial Responses Against Various Stresses in Food Matrix and Gastrointestinal Tract: A Review. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10104-3. [PMID: 37347421 DOI: 10.1007/s12602-023-10104-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
Probiotic bacteria are known to have ability to tolerate inhospitable conditions experienced during food preparation, food storage, and gastrointestinal tract of consumer. As probiotics are living cells, they are adversely affected by the harsh environment of the carrier matrix as well as low pH, bile salts, oxidative stress, osmotic pressure, and commensal microflora of the host. To overcome the unfavorable environments, many probiotics switch on the cell-mediated protection mechanisms, which helps them to survive, acclimatize and remain operational in the harsh circumstances. In this review, we provide comprehensive understanding on the different stresses experienced by the probiotic when added in carrier food as well as during human gastrointestinal tract transit. Under such situation how these health beneficial bacteria protect themselves by activation of several defense systems and get adapted to the lethal environments.
Collapse
Affiliation(s)
- Mital R Kathiriya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India
| | - Yogesh V Vekariya
- Department. of Dairy Engineering, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India.
| |
Collapse
|
4
|
Novel Insights into the Molecular Mechanisms Underlying Robustness and Stability in Probiotic Bifidobacteria. Appl Environ Microbiol 2023; 89:e0008223. [PMID: 36802222 PMCID: PMC10057886 DOI: 10.1128/aem.00082-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Some probiotic bifidobacteria are highly robust and shelf-stable, whereas others are difficult to produce, due to their sensitivity to stressors. This limits their potential use as probiotics. Here, we investigate the molecular mechanisms underlying the variability in stress physiologies of Bifidobacterium animalis subsp. lactis BB-12 and Bifidobacterium longum subsp. longum BB-46, by applying a combination of classical physiological characterization and transcriptome profiling. The growth behavior, metabolite production, and global gene expression profiles differed considerably between the strains. BB-12 consistently showed higher expression levels of multiple stress-associated genes, compared to BB-46. This difference, besides higher cell surface hydrophobicity and a lower ratio of unsaturated to saturated fatty acids in the cell membrane of BB-12, should contribute to its higher robustness and stability. In BB-46, the expression of genes related to DNA repair and fatty acid biosynthesis was higher in the stationary than in the exponential phase, which was associated with enhanced stability of BB-46 cells harvested in the stationary phase. The results presented herein highlight important genomic and physiological features contributing to the stability and robustness of the studied Bifidobacterium strains. IMPORTANCE Probiotics are industrially and clinically important microorganisms. To exert their health-promoting effects, probiotic microorganisms must be administered at high counts, while maintaining their viability at the time of consumption. In addition, intestinal survival and bioactivity are important criteria for probiotics. Although bifidobacteria are among the most well-documented probiotics, the industrial-scale production and commercialization of some Bifidobacterium strains is challenged by their high sensitivity to environmental stressors encountered during manufacturing and storage. Through a comprehensive comparison of the metabolic and physiological characteristics of 2 Bifidobacterium strains, we identify key biological markers that can serve as indicators for robustness and stability in bifidobacteria.
Collapse
|
5
|
Abstract
Bifidobacteria naturally inhabit diverse environments, including the gastrointestinal tracts of humans and animals. Members of the genus are of considerable scientific interest due to their beneficial effects on health and, hence, their potential to be used as probiotics. By definition, probiotic cells need to be viable despite being exposed to several stressors in the course of their production, storage, and administration. Examples of common stressors encountered by probiotic bifidobacteria include oxygen, acid, and bile salts. As bifidobacteria are highly heterogenous in terms of their tolerance to these stressors, poor stability and/or robustness can hamper the industrial-scale production and commercialization of many strains. Therefore, interest in the stress physiology of bifidobacteria has intensified in recent decades, and many studies have been established to obtain insights into the molecular mechanisms underlying their stability and robustness. By complementing traditional methodologies, omics technologies have opened new avenues for enhancing the understanding of the defense mechanisms of bifidobacteria against stress. In this review, we summarize and evaluate the current knowledge on the multilayered responses of bifidobacteria to stressors, including the most recent insights and hypotheses. We address the prevailing stressors that may affect the cell viability during production and use as probiotics. Besides phenotypic effects, molecular mechanisms that have been found to underlie the stress response are described. We further discuss strategies that can be applied to improve the stability of probiotic bifidobacteria and highlight knowledge gaps that should be addressed in future studies.
Collapse
Affiliation(s)
- Marie Schöpping
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ahmad A. Zeidan
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
6
|
Xiao T, Zhang D, Tun HM, Shah NP. Cysteine protected cells from H 2O 2-induced damage and promoted long-chain fatty acids synthesis in vivo to improve γ-aminobutyric acid production in Levilactobacillus brevis. World J Microbiol Biotechnol 2022; 38:185. [PMID: 35972565 DOI: 10.1007/s11274-022-03379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Levilactobacillus brevis NPS-QW-145 isolated from kimchi is deficient in glutamate dehydrogenase-encoding gene (gdhA) to form glutamate, hence it required exogenous supplementation of glutamate/monosodium glutamate (MSG) for decarboxylation reaction to produce γ-aminobutyric acid (GABA). However, GABA conversion rate from MSG was relatively low. The individual effect of 20 amino acids on regulating GABA biosynthesis was investigated. Cysteine was selected to significantly improve GABA production from MSG. It was found that Lb. brevis was capable of producing H2O2, cysteine protected Lb. brevis against H2O2-induced oxidative damage to increase cell viability for the enhancement of GABA production. Moreover, cysteine promoted glucose consumption to produce acetyl-CoA for synthesizing long-chain fatty acids to significantly up-regulate GABA biosynthesis. These findings deciphered antioxidative capability of cysteine in Lb. brevis 145 and provided a theoretical basis for fatty acids synthesis-mediated GABA synthesis in Lb. brevis 145, and possibly in other lactic acid bacteria.
Collapse
Affiliation(s)
- Tingting Xiao
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Dengwei Zhang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hein Min Tun
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
7
|
Abstract
Over the last decade, the genomes of several Bifidobacterium strains have been sequenced, delivering valuable insights into their genetic makeup. However, bifidobacterial genomes have not yet been systematically mined for genes associated with stress response functions and their regulation. In this work, a list of 76 genes related to stress response in bifidobacteria was compiled from previous studies. The prevalence of the genes was evaluated among the genome sequences of 171 Bifidobacterium strains. Although genes of the protein quality control and DNA repair systems appeared to be highly conserved, genome-wide in silico screening for consensus sequences of putative regulators suggested that the regulation of these systems differs among phylogenetic groups. Homologs of multiple oxidative stress-associated genes are shared across species, albeit at low sequence similarity. Bee isolates were confirmed to harbor unique genetic features linked to oxygen tolerance. Moreover, most studied Bifidobacterium adolescentis and all Bifidobacterium angulatum strains lacked a set of reactive oxygen species-detoxifying enzymes, which might explain their high sensitivity to oxygen. Furthermore, the presence of some putative transcriptional regulators of stress responses was found to vary across species and strains, indicating that different regulation strategies of stress-associated gene transcription contribute to the diverse stress tolerance. The presented stress response gene profiles of Bifidobacterium strains provide a valuable knowledge base for guiding future studies by enabling hypothesis generation and the identification of key genes for further analyses. IMPORTANCE Bifidobacteria are Gram-positive bacteria that naturally inhabit diverse ecological niches, including the gastrointestinal tract of humans and animals. Strains of the genus Bifidobacterium are widely used as probiotics, since they have been associated with health benefits. In the course of their production and administration, probiotic bifidobacteria are exposed to several stressors that can challenge their survival. The stress tolerance of probiotic bifidobacteria is, therefore, an important selection criterion for their commercial application, since strains must maintain their viability to exert their beneficial health effects. As the ability to cope with stressors varies among Bifidobacterium strains, comprehensive understanding of the underlying stress physiology is required for enabling knowledge-driven strain selection and optimization of industrial-scale production processes.
Collapse
|
8
|
Jaswal K, Shrivastava M, Chaba R. Revisiting long-chain fatty acid metabolism in Escherichia coli: integration with stress responses. Curr Genet 2021; 67:573-582. [PMID: 33740112 DOI: 10.1007/s00294-021-01178-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/29/2022]
Abstract
Long-chain fatty acids (LCFAs) are a tremendous source of metabolic energy, an essential component of membranes, and important effector molecules that regulate a myriad of cellular processes. As an energy-rich nutrient source, the role of LCFAs in promoting bacterial survival and infectivity is well appreciated. LCFA degradation generates a large number of reduced cofactors that may confer redox stress; therefore, it is imperative to understand how bacteria deal with this paradoxical situation. Although the LCFA utilization pathway has been studied in great detail, especially in Escherichia coli, where the earliest studies date back to the 1960s, the interconnection of LCFA degradation with bacterial stress responses remained largely unexplored. Recent work in E. coli shows that LCFA degradation induces oxidative stress and also impedes oxidative protein folding. Importantly, both issues arise due to the insufficiency of ubiquinone, a lipid-soluble electron carrier in the electron transport chain. However, to maintain redox homeostasis, bacteria induce sophisticated cellular responses. Here, we review these findings in light of our current knowledge of the LCFA metabolic pathway, metabolism-induced oxidative stress, the process of oxidative protein folding, and stress combat mechanisms. We discuss probable mechanisms for the activation of defense players during LCFA metabolism and the likely feedback imparted by them. We suggest that besides defending against intrinsic stresses, LCFA-mediated upregulation of stress response pathways primes bacteria to adapt to harsh external environments. Collectively, the interplay between LCFA metabolism and stress responses is likely an important factor that underlies the success of LCFA-utilizing bacteria in the host.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Megha Shrivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India.
| |
Collapse
|
9
|
Hu S, Yu Y, Lv Z, Shen J, Ke Y, Xiao X. Proteomics study unveils ROS balance in acid-adapted Salmonella Enteritidis. Food Microbiol 2020; 92:103585. [PMID: 32950169 DOI: 10.1016/j.fm.2020.103585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
Salmonella Enteritidis is a major cause of foodborne gastroenteritis and is thus a persistent threat to global public health. The acid adaptation response helps Salmonella survive exposure to gastric environment during ingestion. In a previous study we highlighted the damage caused to cell membrane and the regulation of intracellular reactive oxygen species (ROS) in S. Enteritidis. In this study, we applied both physiologic and iTRAQ analyses to explore the regulatory mechanism of acid resistance in Salmonella. It was found that after S. Enteritidis was subject to a 1 h period of acid adaptation at pH 5.5, an additional 1 h period of acid shock stress at pH 3.0 caused less Salmonella cell death than in non-acid adapted Salmonella cells. Although there were no significant differences between adapted and non-adapted cells in terms of cell membrane damage (e.g., membrane permeability or lipid peroxidation) after 30 min, intracellular ROS level in acid adapted cells was dramatically reduced compared to that in non-acid adapted cells, indicating that acid adaption promoted less ROS generation or increased the ability of ROS scavenging with little reduction in the integrity of the cell membrane. These findings were confirmed via an iTRAQ analysis. The adapted cells were shown to trigger incorporation of exogenous long-chain fatty acids into the cellular membrane, resulting in a different membrane lipid profile and promoting survival rate under acid stress. S. Enteritidis experiences oxidative damage and iron deficiency under acid stress, but after acid adaption S. Enteritidis cells were able to balance their concentrations of intracellular ROS. Specifically, SodAB consumed the free protons responsible for forming reactive oxygen intermediates (ROIs) and KatE protected cells from the toxic effects of ROIs. Additionally, acid-labile proteins released free unbound iron promoting ferroptotic metabolism, and NADH reduced GSSH to G-SH, protecting cells from acid/oxidative stress.
Collapse
Affiliation(s)
- Shuangfang Hu
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, 518055, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 10083, PR China
| | - Yigang Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, PR China
| | - Ziquan Lv
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, 518055, PR China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 10083, PR China
| | - Yuebin Ke
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, 518055, PR China.
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, PR China.
| |
Collapse
|
10
|
Senizza A, Callegari ML, Senizza B, Minuti A, Rocchetti G, Morelli L, Patrone V. Effects of Linoleic Acid on Gut-Derived Bifidobacterium breve DSM 20213: A Transcriptomic Approach. Microorganisms 2019; 7:microorganisms7120710. [PMID: 31861103 PMCID: PMC6955684 DOI: 10.3390/microorganisms7120710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023] Open
Abstract
Bacterial production of conjugated linoleic acid (CLA) has recently received great attention because of the potential health benefits of this fatty acid. Linoleic acid (LA) can be converted to CLA by several microorganisms, including bifidobacteria, possibly as a detoxification mechanism to avoid the growth inhibition effect of LA. In the present in vitro study, we investigated the gene expression landscape of the intestinal strain Bifidobacterium breve DSM 20213 when exposed to LA. Transcriptomic analysis using RNA-seq revealed that LA induced a multifactorial stress response in the test strain, including upregulation of genes involved in iron uptake and downregulation of genes involved in sugar and oligopeptide transport. We also observed reduced transcription of genes involved in membrane and pili biosynthesis. The upregulation of iron uptake was not related to any putative ability of LA to chelate Fe2+, but was somewhat linked to stress response. Furthermore, we demonstrated that LA increased reactive oxygen species (ROS) production in bacterial cells, activating an oxidative stress response. This response was proved by thioredoxin reductase transcription, and was primarily evident among bacteria cultured in the absence of cysteine. This is the first report of the potential mechanisms involved in bacterial LA transport and stress response in B. breve.
Collapse
Affiliation(s)
- Alice Senizza
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
| | - Maria Luisa Callegari
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
- Biotechnology Research Centre (CRB), via Milano 24, 26100 Cremona, Italy
| | - Biancamaria Senizza
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
| | - Andrea Minuti
- Department of Animal Science, Food and Nutrition (DiANA), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy;
- Nutrigenomics and Proteomics Research Center (PRONUTRIGEN), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
| | - Lorenzo Morelli
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
- Biotechnology Research Centre (CRB), via Milano 24, 26100 Cremona, Italy
| | - Vania Patrone
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
- Nutrigenomics and Proteomics Research Center (PRONUTRIGEN), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
- Correspondence: ; Tel.: +39-0523-599247
| |
Collapse
|
11
|
Mora D, Filardi R, Arioli S, Boeren S, Aalvink S, de Vos WM. Development of omics-based protocols for the microbiological characterization of multi-strain formulations marketed as probiotics: the case of VSL#3. Microb Biotechnol 2019; 12:1371-1386. [PMID: 31402586 PMCID: PMC6801179 DOI: 10.1111/1751-7915.13476] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
The growing commercial interest in multi-strain formulations marketed as probiotics has not been accompanied by an equal increase in the evaluation of quality levels of these biotechnological products. The multi-strain product VSL#3 was used as a model to setup a microbiological characterization that could be extended to other formulations with high complexity. Shotgun metagenomics by deep Illumina sequencing was applied to DNA isolated from the commercial VSL#3 product to confirm strains identity safety and composition. Single-cell analysis was used to evaluate the cell viability, and β-galactosidase and urease activity have been used as marker to monitor the reproducibility of the production process. Similarly, these lots were characterized in detail by a metaproteomics approach for which a robust protein extraction protocol was combined with advanced mass spectrometry. The results identified over 1600 protein groups belonging to all strains present in the VSL#3 formulation. Of interest, only 3.2 % proteins showed significant differences mainly related to small variations in strain abundance. The protocols developed in this study addressed several quality criteria that are relevant for marketed multi-strain products and these represent the first efforts to define the quality of complex probiotic formulations such as VSL#3.
Collapse
Affiliation(s)
- Diego Mora
- Department of Food Environmental and Nutritional Sciences (DeFENS)University of MilanMilanItaly
| | - Rossella Filardi
- Department of Food Environmental and Nutritional Sciences (DeFENS)University of MilanMilanItaly
| | - Stefania Arioli
- Department of Food Environmental and Nutritional Sciences (DeFENS)University of MilanMilanItaly
| | - Sjef Boeren
- Laboratory of BiochemistryWageningen UniversityWageningenThe Netherlands
| | - Steven Aalvink
- Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
| | - Willem M. de Vos
- Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
- Human Microbiome Research Program Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
12
|
Zhang J, Wang S, Zeng Z, Qin Y, Li P. The complete genome sequence of Bifidobacterium animalis subsp. lactis 01 and its integral components of antioxidant defense system. 3 Biotech 2019; 9:352. [PMID: 31501753 DOI: 10.1007/s13205-019-1890-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
The strain Bifidobacterium animalis 01, isolated from centenarians, showed promising antioxidant potential in our previous studies. In this study, the genome information on strain 01 and the important antioxidant components are presented. The complete genome comprises a single circular chromosome (1,931,632 bp; 60.49% G + C content) with 1569 coding DNA sequences, 52 tRNA, and 9 rRNA operons. Based on phylogenomic analyses, strain 01 was designated as B. animalis subsp. lactis 01. The genomic analysis reveals that at least eight protein-coding genes are antioxidant-related genes. The conditions for simulating the oxidative stress have been determined. The results of quantitative reverse transcription PCR further demonstrated that the genes encoding the thioredoxin system (ahpC, ahpF, bcp, trxB, trxA, nrdH, and msrAB) and non-enzyme factors of the divalent cation transporter gene (mntH) were upregulated under the H2O2 challenge, indicating that the eight genes were effective components of the antioxidant system. The results of this study could benefit for understanding the antioxidant mechanism of B. animalis 01 and future utilization of it as a potential antioxidant agent.
Collapse
Affiliation(s)
- Jinlan Zhang
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, HaiDian District, Beijing, 10083 China
| | - Shibo Wang
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, HaiDian District, Beijing, 10083 China
| | - Zhu Zeng
- 2College of Biotechnology, Southwest University, No. 2 Tiansheng, Beibei District, Chongqing, 400715 China
| | - Yuxuan Qin
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, HaiDian District, Beijing, 10083 China
| | - Pinglan Li
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, HaiDian District, Beijing, 10083 China
| |
Collapse
|
13
|
Wei Y, Gao J, Liu D, Li Y, Liu W. Adaptational changes in physiological and transcriptional responses of Bifidobacterium longum involved in acid stress resistance after successive batch cultures. Microb Cell Fact 2019; 18:156. [PMID: 31514746 PMCID: PMC6743126 DOI: 10.1186/s12934-019-1206-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Bifidobacterium inhabiting the human and animal intestinal tract is known for its health-promoting effect. Tolerance to acid stress is crucial for bifidobacteria to survive and then exert their beneficial effects in the gut. A long-term adaptation in successive batch cultures was used as evolutionary engineering strategy to improve acid stress tolerance in an industrial probiotic strain, B. longum JDM301. Its derivative, JDM301AR showed higher resistance to several stress conditions, including acid stress than the parental strain, JDM301. To better understand bifidobacterial acid stress response, the changes of fatty acid (FA) in cell membrane of these two strains were determined. A shift in the production of FA in cell membrane, characterized by increased C14:0 was found, when JDM301AR was exposed to low-pH environment. It was implied that the increased production of C14:0 is associated with the acquisition of acid-tolerant phenotype for JDM301AR. High-throughput RNA-sequencing was performed to analyze the changes of gene expression profile after acid-exposure. The transcriptional profiles of JDM301AR and JDM301 under normal condition and acid stress were compared to reveal the different acid response between them. A total of 5 genes involved in FA metabolism were upregulated and no downregulated genes were found in response to acid stress in JDM301AR. The up-regulated BLJ_0565 and BLJ_1105 may play important roles in the modification of membrane FA composition of JDM301AR after acid exposure. Overall, these results suggested that successive batch cultures induced the acid stress tolerance of B. longum involved in transcriptional and physiological responses, including modification of cell wall and cell membrane, metabolism of amino acid and neutralization of internal pH by strengthening NH3 production and transport.
Collapse
Affiliation(s)
- Yanxia Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, 22104, Jiangsu, China.
| | - Jing Gao
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, 22104, Jiangsu, China
| | - Dianbin Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, 22104, Jiangsu, China
| | - Yang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, 22104, Jiangsu, China
| | - Wenli Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, 22104, Jiangsu, China
| |
Collapse
|
14
|
Satoh T, Todoroki M, Kobayashi K, Niimura Y, Kawasaki S. Purified thioredoxin reductase from O 2-sensitive Bifidobacterium bifidum degrades H 2O 2 by interacting with alkyl hydroperoxide reductase. Anaerobe 2019; 57:45-54. [PMID: 30880149 DOI: 10.1016/j.anaerobe.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 01/17/2023]
Abstract
Bifidobacterium is beneficial for host health and exhibits different O2 sensitivity levels among species or strains via unknown mechanisms. Bifidobacterium bifidum JCM1255T, a type species of Bifidobacterium, is an O2-sensitive bacterium that can grow under low-O2 (5%) conditions, and the growth of this species is inhibited under high-O2 conditions (10% ∼) with accumulation of H2O2. We previously reported that NADH or NAD(P)H oxidase-active fractions were detected during purification using microaerobically grown B. bifidum cells, and the active enzyme was purified from the NADH oxidase-active fraction. The purified enzyme was identified as b-type dihydroorotate dehydrogenase (DHODb) and characterized as a dominant H2O2 producer in B. bifidum. In this study, we performed further purification of the enzyme from the NAD(P)H oxidase-active fraction and characterized the purified enzyme as a part of the H2O2 degradation system in B. bifidum. This purified enzyme was identified as thioredoxin reductase (TrxR); the NAD(P)H oxidase activity of this enzyme was not expressed in anaerobically grown B. bifidum, and mRNA expression was induced by O2 exposure. Furthermore, the purified B. bifidum TrxR interacted with recombinant alkyl hydroperoxide reductase (rAhpC) and exhibited NAD(P)H peroxidase activity. These results suggest that TrxR responds to O2 and protects B. bifidum from oxidative stress by degrading H2O2 via the TrxR-AhpC system.
Collapse
Affiliation(s)
- Takumi Satoh
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan.
| | | | - Kazuya Kobayashi
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Youichi Niimura
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan; Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shinji Kawasaki
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan; Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
15
|
Fiocco D, Longo A, Arena MP, Russo P, Spano G, Capozzi V. How probiotics face food stress: They get by with a little help. Crit Rev Food Sci Nutr 2019; 60:1552-1580. [DOI: 10.1080/10408398.2019.1580673] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Angela Longo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Mattia Pia Arena
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
16
|
Xie X, He Y, Li H, Yu D, Na L, Sun T, Zhang D, Shi X, Xia Y, Jiang T, Rong S, Yang S, Ma X, Xu G. Effects of prebiotics on immunologic indicators and intestinal microbiota structure in perioperative colorectal cancer patients. Nutrition 2018; 61:132-142. [PMID: 30711862 DOI: 10.1016/j.nut.2018.10.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate the effects of prebiotics (containing fructooligosaccharides, xylooligosaccharides, polydextrose, and resistant dextrin) intake on immune function and intestinal microbiota structure in perioperative patients with colorectal cancer (CRC). METHODS A randomized, double-blind, no-treatment parallel control clinical trial involving 140 perioperative patients (90 men and 50 women, aged 40-75 y) with CRC was performed. Patients were randomly divided into two groups: an intervention group (prebiotic group, n = 70) that received prebiotic supplementation of 30 g/d for 7 d, and a control group (non-prebiotic group, n = 70) that received no prebiotic supplementation. The nutritional and immunologic indices were evaluated for both groups before and after operation and analyzed against baseline values. Moreover, fecal samples were collected from 40 patients randomly chosen from the two groups to study intestinal microbiota, which was analyzed by sequencing the V3-V4 region of 16S ribosomal DNA using the Illumina (San Diego, CA) MiSeq (PE 2 × 300 bp) platform. RESULTS Oral intake of prebiotics produced significant effects on immunologic indices in both the preoperative and postoperative periods, but the patterns of effects were different. In the preoperative period, prebiotics increased serum levels of immunoglobulin G (IgG; P = 0.02), IgM (P = 0.00), and transferrin (P = 0.027; all P < 0.05). In the postoperative period, enhanced levels of IgG (P = 0.003), IgA (P = 0.007), suppressor/cytotoxic T cells (CD3+CD8+; P = 0.043), and total B lymphocytes (CD19+; P = 0.012) were identified in the prebiotic group (all P < 0.05). The differences in the intestinal microbiota at the phylum level were not statistically significant between the intervention and control groups (P > 0.05). At the genus level, prebiotics increased the abundance of Bifidobacterium (P = 0.017) and Enterococcus (P = 0.02; both P < 0.05) but decreased the abundance of Bacteroides (P = 0.04) in the preoperative period (all P < 0.05). In the postoperative period, the abundance of Bacteroides (P = 0.04) was decreased, but the abundance of Enterococcus (P = 0.00), Bacillus (P = 0.01), Lactococcus (P = 0.00), and Streptococcus (P = 0.037) increased in the non-prebiotic group (all P < 0.05); however, no significant change was identified in the abundance of Enterococcus (P = 0.56), Lactococcus (P = 0.07), and Streptococcus (P = 0.56) as a result of prebiotic intervention in this period (all P > 0.05). The abundance of Escherichia-Shigella was increased after prebiotic intake in the postoperative period (P = 0.014, P < 0.05). There was a notable trend of decline in the abundance of intestinal microbiota from preoperative to postoperative in the non-prebiotic group. CONCLUSIONS Prebiotic intake is recommended to improve serum immunologic indicators in patients with CRC 7 d before operation. Prebiotics improved the abundance of four commensal microbiota containing opportunistic pathogens in patients with CRC. Surgical stress decreased the abundance of most intestinal microbiota in the intestinal tract but increased the abundance of some opportunistic pathogens and commensal microbiota. Bacteroides is a relevant bacterial species for further research on the mechanism of prebiotics.
Collapse
Affiliation(s)
- Xiaoliang Xie
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China; College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yaqin He
- Surgical Department, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hai Li
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Dong Yu
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Li Na
- Biobank of the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ting Sun
- Biobank of the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Dong Zhang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xinrong Shi
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuhan Xia
- Nutrition Department, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Jiang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shikuo Rong
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Shaoqi Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Xiaoqiang Ma
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Guangxian Xu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
17
|
Zuo F, Yu R, Xiao M, Khaskheli GB, Sun X, Ma H, Ren F, Zhang B, Chen S. Transcriptomic analysis of Bifidobacterium longum subsp. longum BBMN68 in response to oxidative shock. Sci Rep 2018; 8:17085. [PMID: 30459453 PMCID: PMC6244367 DOI: 10.1038/s41598-018-35286-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 10/18/2018] [Indexed: 02/08/2023] Open
Abstract
Bifidobacterium longum strain BBMN68 is sensitive to low concentrations of oxygen. A transcriptomic study was performed to identify candidate genes for B. longum BBMN68's response to oxygen treatment (3%, v/v). Expression of genes and pathways of B. longum BBMN68 involved in nucleotide metabolism, amino acid transport, protein turnover and chaperones increased, and that of carbohydrate metabolism, translation and biogenesis decreased to adapt to the oxidative stress. Notably, expression of two classes of ribonucleotide reductase (RNR), which are important for deoxyribonucleotide biosynthesis, was rapidly and persistently induced. First, the class Ib RNR NrdHIEF was immediately upregulated after 5 min oxygen exposure, followed by the class III RNR NrdDG, which was upregulated after 20 min of exposure. The upregulated expression of branched-chain amino acids and tetrahydrofolate biosynthesis-related genes occurred in bifidobacteria in response to oxidative stress. These change toward to compensate for DNA and protein damaged by reactive oxygen species (ROS). In addition, oxidative stress resulted in improved B. longum BBMN68 cell hydrophobicity and autoaggregation. These results provide a rich resource for our understanding of the response mechanisms to oxidative stress in bifidobacteria.
Collapse
Affiliation(s)
- Fanglei Zuo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Key Laboratory of Functional Dairy, Department of Food Science and Engineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691, Stockholm, Sweden
| | - Rui Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Key Laboratory of Functional Dairy, Department of Food Science and Engineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Man Xiao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Key Laboratory of Functional Dairy, Department of Food Science and Engineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Gul Bahar Khaskheli
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Key Laboratory of Functional Dairy, Department of Food Science and Engineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Xiaofei Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Shangwu Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China. .,Key Laboratory of Functional Dairy, Department of Food Science and Engineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| |
Collapse
|
18
|
Guo Q, Li S, Xie Y, Zhang Q, Liu M, Xu Z, Sun H, Yang Y. The NAD +-dependent deacetylase, Bifidobacterium longum Sir2 in response to oxidative stress by deacetylating SigH (σ H) and FOXO3a in Bifidobacterium longum and HEK293T cell respectively. Free Radic Biol Med 2017; 108:929-939. [PMID: 28506746 DOI: 10.1016/j.freeradbiomed.2017.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/25/2022]
Abstract
Silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. The mammalian sirtuin family SIRT1, SIRT2, SIRT3 and SIRT6 can regulate oxidative stress. The probiotics (Bifidobacterium longum(B.longum) and Lactobacillus acidophilus(L. acidophilus)) have Sir2 gene family and have antioxidant activity in human body. it remains unknown whether probiotics Sir2 has a direct role in regulating oxidative stress. To this end, we knockout BL-sir2(sir2 B. longum) and LA-sir2(sir2 L.acidophilus) in low oxygen level. The antioxidant activities of two sir2 deficient strains was decreased, while when reintroduction of BL-sir2 and LA-sir2, the antioxidant activities were recoveried. In order to understand the regulation mechanism of probiotics Sir2 oxidation response. Then, we screened 65 acetylated protein, and found that SigH (σH) was a substrate of BL-Sir2. In addition, the acetylation level of σH decreased with the increase of BL-Sir2 level in B. longum. Thus, BL-Sir2 deacetylated σH in response to oxidative stress. Next, we transfected BL-Sir2 into H2O2-induced oxidative damage of 293T cells, BL-Sir2 increased the activity of manganese superoxide dismutase (MnSOD/SOD2) and catalase (CAT) and reduced reactive oxygen species(ROS). Then, we analyzed the differential gene by RNA sequencing and Gene ontology (GO) and found that BL-Sir2 regulated forkhead transcription factor (FOXO3a) mediated antioxidant genes in overexpressed BL-Sir2 HEK293T cells. Our study is the first to link probiotics Sir2 with oxidative stress and uncover the antioxidant mechanism of BL-Sir2 in B. longum itself and human body.
Collapse
Affiliation(s)
- Qing Guo
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shiyu Li
- Institute of Genetic Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yajie Xie
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qian Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mengge Liu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhenrui Xu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Yan Yang
- Research Center of Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
19
|
Florence ACR, de Oliveira MN, Delile A, Béal C. Survival of Bifidobacterium strains in organic fermented milk is improved as a result of membrane fatty acid composition. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Oberg TS, Ward RE, Steele JL, Broadbent JR. Transcriptome analysis of Bifidobacterium longum strains that show a differential response to hydrogen peroxide stress. J Biotechnol 2015; 212:58-64. [PMID: 26299205 DOI: 10.1016/j.jbiotec.2015.06.405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/16/2015] [Accepted: 06/19/2015] [Indexed: 01/02/2023]
Abstract
Consumer and commercial interest in foods containing probiotic bifidobacteria is increasing. However, because bifidobacteria are anaerobic, oxidative stress can diminish cell viability during production and storage of bioactive foods. We previously found Bifidobacterium longum strain NCC2705 had significantly greater intrinsic and inducible resistance to hydrogen peroxide (H2O2) than strain D2957. Here, we explored the basis for these differences by examining the transcriptional responses of both strains to sub-lethal H2O2 exposure for 5- or 60-min. Strain NCC2705 had 288 genes that were differentially expressed after the 5-min treatment and 114 differentially expressed genes after the 60-min treatment. In contrast, strain D2957 had only 21 and 90 differentially expressed genes after the 5- and 60-min treatments, respectively. Both strains showed up-regulation of genes coding enzymes implicated in oxidative stress resistance, such as thioredoxin, thioredoxin reductase, peroxiredoxin, ferredoxin, glutaredoxin, and anaerobic ribonucleotide reductase, but induction levels were typically highest in NCC2705. Compared to D2957, NCC2705 also had more up-regulated genes involved in transcriptional regulation and more down-regulated genes involved in sugar transport and metabolism. These results provide a greater understanding of the molecular basis for oxidative stress resistance in B. longum and the factors that contribute to strain-to-strain variability in survival in bioactive food products.
Collapse
Affiliation(s)
- Taylor S Oberg
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT 84322-8700, USA.
| | - Robert E Ward
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT 84322-8700, USA
| | - James L Steele
- Department of Food Science, University of Wisconsin, 1605 Linden Drive, Madison, WI 53706-1565, USA
| | - Jeff R Broadbent
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT 84322-8700, USA
| |
Collapse
|
21
|
Nguyen HT, Razafindralambo H, Richel A, Jacquet N, Evrard P, Antoine P, Thonart P, Delvigne F. Scalable temperature induced stress for the large-scale production of functionalized Bifidobacteria. J Ind Microbiol Biotechnol 2015; 42:1225-31. [PMID: 26162630 DOI: 10.1007/s10295-015-1650-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
The application of sub-lethal stresses is known to be an efficient strategy to enhance survival of probiotic bacteria during drying processes. In this context, we previously showed that the application of heat stress upon the entry into stationary phase increased significantly the viability of Bifidobacterium bifidum. However, this heat shock has been considered only in small-scale bioreactor and no information is available for a possible scaling-up strategy. Five different operating scales (0.2, 2, 20, 200 and 2000 L) have thus been tested and the results showed that the viability of B. bifidum increases from 3.15 to 6.57 folds, depending on the scale considered. Our observations pointed out the fact that the heat stress procedure is scalable according to the main outcome, i.e., increases in cell viability, but other factors have to be taken into account. Among these factors, dissolved carbon dioxide seems to play a significant role, since it explains the differences observed between the test performed at laboratory scale and in industrial conditions.
Collapse
Affiliation(s)
- Huu Thanh Nguyen
- Groupe de Biochimie industrielle and Produits naturels, Université de Ton Duc Thang, 19 Nguyen Huu Tho, Tan Phong, Dis. 7, Ho Chi Minh Ville, Vietnam,
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Relationship between acid tolerance and cell membrane in Bifidobacterium, revealed by comparative analysis of acid-resistant derivatives and their parental strains grown in medium with and without Tween 80. Appl Microbiol Biotechnol 2015; 99:5227-36. [DOI: 10.1007/s00253-015-6447-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/10/2015] [Accepted: 01/29/2015] [Indexed: 02/06/2023]
|
23
|
Flinner N, Mirus O, Schleiff E. The influence of fatty acids on the GpA dimer interface by coarse-grained molecular dynamics simulation. Int J Mol Sci 2014; 15:14247-68. [PMID: 25196522 PMCID: PMC4159849 DOI: 10.3390/ijms150814247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/14/2014] [Accepted: 08/06/2014] [Indexed: 11/17/2022] Open
Abstract
The hydrophobic thickness of membranes, which is manly defined by fatty acids, influences the packing of transmembrane domains of proteins and thus can modulate the activity of these proteins. We analyzed the dynamics of the dimerization of Glycophorin A (GpA) by molecular dynamics simulations to describe the fatty acid dependence of the transmembrane region assembly. GpA represents a well-established model for dimerization of single transmembrane helices containing a GxxxG motif in vitro and in silico. We performed simulations of the dynamics of the NMR-derived dimer as well as self-assembly simulations of monomers in membranes composed of different fatty acid chains and monitored the formed interfaces and their transitions. The observed dimeric interfaces, which also include the one known from NMR, are highly dynamic and converted into each other. The frequency of interface formation and the preferred transitions between interfaces similar to the interface observed by NMR analysis strongly depend on the fatty acid used to build the membrane. Molecular dynamic simulations after adaptation of the helix topology parameters to better represent NMR derived structures of single transmembrane helices yielded an enhanced occurrence of the interface determined by NMR in molecular dynamics simulations. Taken together we give insights into the influence of fatty acids and helix conformation on the dynamics of the transmembrane domain of GpA.
Collapse
Affiliation(s)
- Nadine Flinner
- Cluster of Excellence Macromolecular Complexes, Center of Membrane Proteomics, Department of Biosciences, Molecular Cell Biology of Plants, GU Frankfurt am Main, 60439 Frankfurt, Germany.
| | - Oliver Mirus
- Cluster of Excellence Macromolecular Complexes, Center of Membrane Proteomics, Department of Biosciences, Molecular Cell Biology of Plants, GU Frankfurt am Main, 60439 Frankfurt, Germany.
| | - Enrico Schleiff
- Cluster of Excellence Macromolecular Complexes, Center of Membrane Proteomics, Department of Biosciences, Molecular Cell Biology of Plants, GU Frankfurt am Main, 60439 Frankfurt, Germany.
| |
Collapse
|
24
|
Zuo F, Yu R, Khaskheli GB, Ma H, Chen L, Zeng Z, Mao A, Chen S. Homologous overexpression of alkyl hydroperoxide reductase subunit C (ahpC) protects Bifidobacterium longum strain NCC2705 from oxidative stress. Res Microbiol 2014; 165:581-9. [PMID: 24953679 DOI: 10.1016/j.resmic.2014.05.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/14/2014] [Accepted: 05/30/2014] [Indexed: 11/30/2022]
Abstract
The ability to manage reactive oxygen species (ROS) effectively is crucial for the survival of gut bifidobacteria under conditions of oxidative stress. Alkyl hydroperoxide reductase catalytic subunit C (ahpC) of Bifidobacterium longum responds to various oxidative stresses. In this study, an ahpC-overexpressing transformant of B. longum strain NCC2705 was constructed to investigate the role and function of ahpC in oxidative stresses inflicted by treatments with hydrogen peroxide (H2O2), cumene hydroperoxide, and aerobic oxygen. Results indicated that in B. longum, AhpC is the primary scavenger of endogenous H2O2 generated by aerobic metabolism, but it is unable to detoxify high concentrations of exogenous H2O2. The ahpC-overexpressing B. longum strain showed increased resistance to organic hydroperoxide killing, increased viability under aerobic growth, but decreased resistance to exogenous H2O2 in comparison to the control strain. Analysis of genes from the oxidative stress-defense pathway encoding oxygen-independent coproporphyrinogen III oxidase (HemN), NADH oxidase (Nox) and thioredoxin reductase-like protein (TrxB) showed increased transcript levels in the ahpC-overexpressing vs. control strain. These findings suggest that elevated ahpC expression facilitates or activates the different electron donor-dependent ROS-elimination pathways in B. longum's response to oxidative stress.
Collapse
Affiliation(s)
- FangLei Zuo
- Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| | - Rui Yu
- Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| | - Gul Bahar Khaskheli
- Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| | - HuiQin Ma
- College of Agriculture and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| | - LiLi Chen
- Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| | - Zhu Zeng
- Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| | - AiJun Mao
- Beijing Agricultural Function Microbial Engineering and Technology Center, No. 1 Li'ersi Industrial Area, Zhangjiawan Town, Tongzhou District, Beijing 101113, PR China.
| | - ShangWu Chen
- Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China; Beijing Agricultural Function Microbial Engineering and Technology Center, No. 1 Li'ersi Industrial Area, Zhangjiawan Town, Tongzhou District, Beijing 101113, PR China.
| |
Collapse
|
25
|
Zuo F, Yu R, Feng X, Khaskheli GB, Chen L, Ma H, Chen S. Combination of heterogeneous catalase and superoxide dismutase protects Bifidobacterium longum strain NCC2705 from oxidative stress. Appl Microbiol Biotechnol 2014; 98:7523-34. [PMID: 24903816 DOI: 10.1007/s00253-014-5851-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 01/27/2023]
Abstract
Bifidobacteria are generally sensitive to oxidative stress caused by reactive oxygen species (ROS). To improve oxidative-stress tolerance, the superoxide dismutase (SOD) gene from Streptococcus thermophilus (StSodA) and the heme-dependent catalase (KAT) gene from Lactobacillus plantarum (LpKatL) were heterologously expressed in Bifidobacterium longum strain NCC2705. Three types of strain NCC2705 transformants were obtained: with transgenic SOD expression, with transgenic KAT expression, and with coexpression of the two genes. Intracellular expression of the genes and their functional role in oxidative-stress resistance were evaluated. In response to oxidative stress, B. longum NCC2705/pDP401-LpKatL (expressing LpKatL) and NCC2705/pDP-Kat-Sod (coexpressing LpKatL and StSodA) rapidly degraded exogenous H2O2 and the peroxides generated as a byproduct of aerobic cultivation, preventing oxidative damage to DNA and RNA. Individual expression of StSodA or LpKatL both improved B. longum NCC2705 cell viability. Survival rate of strain NCC2705 was further improved by combining SOD and KAT expression. The two enzymes played complementary roles in ROS-scavenging pathways, and coexpression led to a synergistic beneficial effect under conditions of intensified oxidative stress. Our results illustrate that heterogeneous expression of heme-dependent KAT and Mn(2+)-dependent SOD is functional in the B. longum oxidative-stress response, and synergistic protection is achieved when their expressions are combined.
Collapse
Affiliation(s)
- Fanglei Zuo
- Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | | | | | | | | | | | | |
Collapse
|