1
|
Wang Y, Wang Y, Rong H, Guo Z, Xu J, Huang X. Risk factors of lower respiratory tract infection caused by Stenotrophomonas maltophilia: Systematic review and meta-analysis. Front Public Health 2023; 10:1035812. [PMID: 36703851 PMCID: PMC9871542 DOI: 10.3389/fpubh.2022.1035812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Objective To systematically evaluate the risk factors of lower respiratory tract infection caused by Stenotrophomonas maltophilia for better clinical treatment. Methods PubMed, Embase, the Cochrane Library, Web of Science, China Journal full-text Database (CNKI), Wanfang Database (WanFang Data), VIP (VIP), and China Biomedical Literature Database (CBM) were selected and published by June 2022 about the risk factors of lower respiratory tract infection of S. maltophilia. Two researchers independently screened the literature, extracted data, and quality evaluation according to the inclusion and exclusion criteria. RevMan 5.4 software was used for meta-analysis. Results A total of 18 articles were included, including 10 in English and 8 in Chinese. Meta analysis showed that the risk factors of lower respiratory tract infection caused by S. maltophilia included disease severity, hospitalization days, use of glucocorticoids, invasive procedures, use of broad-spectrum antibiotics and use of more than 3 Antibiotics. The OR values of patients with hospitalization, mechanical ventilation, use of more than 3 Antibiotics, endotracheal intubation and tracheotomy were the highest. Specific hospitalization days (OR = 14.56, 95% CI: 6.12~23.01), mechanical ventilation (OR = 14.16, 95% CI: 5.85~34.3), use of more than 3 Antibiotics (OR = 6.21, 95% CI: 1.24~31.14), tracheal intubation (OR = 6.07, 95% CI: 1.97~3.64), tracheotomy (OR = 3.77, 95% CI: 1.09~13.04). Conclusion There are many risk factors for lower respiratory tract infection of S. maltophilia, which can occur in patients with severe illness, high APACHE-II score, invasive procedures, and the need for broad-spectrum antibiotics. In terms of the host, these patients are characterized by impaired immune function, severe illness and long-term hospitalization, which objectively leads to the infection of S. maltophilia. Therefore, strengthening the monitoring, prevention and control of patients with risk factors of S. maltophilia infection is conducive to reducing the risk of infection and death.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yizhi Wang
- College of Medicine, Institute of Pharmaceutical Innovation, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Hechen Rong
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhonghong Guo
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jie Xu
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,Jie Xu ✉
| | - Xiaoping Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,*Correspondence: Xiaoping Huang ✉
| |
Collapse
|
2
|
Yang T, Wang X, Zhou X. Microbiome Analysis of the Bamboo Aphid Melanaphis bambusae Infected with the Aphid Obligate Pathogen Conidiobolus obscurus (Entomophthoromycotina). INSECTS 2022; 13:insects13111040. [PMID: 36354864 PMCID: PMC9692958 DOI: 10.3390/insects13111040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/01/2023]
Abstract
Insect-associated microbes exert diverse effects on host fitness. This study provides insights into the microbiota of the bamboo aphid, Melanaphis bambusae, and their response to Conidiobolus obscurus infection. 16S rRNA and ITS sequencing data were used to analyze the bacterial and fungal samples associated with healthy, infected, and starved aphids. At ≥97% nucleotide similarity, the total reads were clustered into 79 bacteria and 97 fungi operational Taxonomic Units (OTUs). The phyla Proteobacteria and Ascomycota dominated the bacterial and fungal communities, respectively. The significant divergence in OTU distribution presented differential profiles of the microbiota in response to host conditions. Lower α-diversity indices were found in bacterial and fungal diversity when the aphids were experiencing fungal infection and starvation stresses, respectively. The β-diversity analyses of the communities showed significant differences among the three host conditions, demonstrating that aphid-associated microbiota could significantly shift in response to varying host conditions. Moreover, some OTUs increased under fungal infection, which potentially increased aphid susceptibility. Presumably, C. obscurus infection contributed to this increase by causing the disintegration of host tissues other than host starvation. In conclusion, understanding the differentiation of aphid microbiota caused by fungal entomopathogens helped facilitate the development of novel pest management strategies.
Collapse
|
3
|
Fluit AC, Bayjanov JR, Aguilar MD, Cantón R, Elborn S, Tunney MM, Scharringa J, Benaissa-Trouw BJ, Ekkelenkamp MB. Taxonomic position, antibiotic resistance and virulence factor production by Stenotrophomonas isolates from patients with cystic fibrosis and other chronic respiratory infections. BMC Microbiol 2022; 22:129. [PMID: 35549675 PMCID: PMC9097388 DOI: 10.1186/s12866-022-02466-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The potential pathogenic role of Stenotrophomonas maltophilia in lung disease and in particular in cystic fibrosis is unclear. To develop further understanding of the biology of this taxa, the taxonomic position, antibiotic resistance and virulence factors of S. maltophilia isolates from patients with chronic lung disease were studied. RESULTS A total of 111 isolates recovered between 2003 and 2016 from respiratory samples from patients in five different countries were included. Based on a cut-off of 95%, analysis of average nucleotide identity by BLAST (ANIb) showed that the 111 isolates identified as S. maltophilia by Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) belonged to S. maltophilia (n = 65), S. pavanii (n = 6) and 13 putative novel species (n = 40), which each included 1-5 isolates; these groupings coincided with the results of the 16S rDNA analysis, and the L1 and L2 ß-lactamase Neighbor-Joining phylogeny. Chromosomally encoded aminoglycoside resistance was identified in all S. maltophilia and S. pavani isolates, while acquired antibiotic resistance genes were present in only a few isolates. Nevertheless, phenotypic resistance levels against commonly used antibiotics, determined by standard broth microbroth dilution, were high. Although putative virulence genes were present in all isolates, the percentage of positive isolates varied. The Xps II secretion system responsible for the secretion of the StmPr1-3 proteases was mainly limited to isolates identified as S. maltophilia based on ANIb, but no correlation with phenotypic expression of protease activity was found. The RPF two-component quorum sensing system involved in virulence and antibiotic resistance expression has two main variants with one variant lacking 190 amino acids in the sensing region. CONCLUSIONS The putative novel Stenotrophomonas species recovered from patient samples and identified by MALDI-TOF/MS as S. maltophilia, differed from S. maltophilia in resistance and virulence genes, and therefore possibly in pathogenicity. Revision of the Stenotrophomonas taxonomy is needed in order to reliably identify strains within the genus and elucidate the role of the different species in disease.
Collapse
Affiliation(s)
- Ad C Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands.
| | - Jumamurat R Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| | - María Díez Aguilar
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain.,Present Address: Servicio de Microbiología, Hospital Universitario La Princesa, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Stuart Elborn
- Queen's University Belfast, School of Pharmacy, Belfast, UK
| | | | - Jelle Scharringa
- Department of Medical Microbiology, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| | - Barry J Benaissa-Trouw
- Department of Medical Microbiology, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| | - Miquel B Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| |
Collapse
|
4
|
Majumdar R, Hariharan K, Vaishnavi S, Sugumar S. Review on Stenotrophomonas maltophilia: an emerging multidrug-resistant opportunistic pathogen. Recent Pat Biotechnol 2022; 16:329-354. [PMID: 35549857 DOI: 10.2174/1872208316666220512121205] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022]
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen that results in nosocomial infections in immunocompromised individuals. These bacteria colonize on the surface of medical devices and therapeutic equipment like urinary catheters, endoscopes, and ventilators, causing respiratory and urinary tract infections. The low outer membrane permeability of multidrug-resistance efflux systems and the two chromosomally encoded β-lactamases present in S.maltophilia are challenging for arsenal control. The cell-associated and extracellular virulence factors in S.maltophilia are involved in colonization and biofilm formation on the host surfaces. The spread of antibiotic-resistant genes in the pathogenic S.maltophilia attributes to bacterial resistance against a wide range of antibiotics, including penicillin, quinolones, and carbapenems. So far, tetracycline derivatives, fluoroquinolones, and trimethoprim-sulfamethoxazole (TMP-SMX) are considered promising antibiotics against S.maltophilia. Due to the adaptive nature of the intrinsically resistant mechanism towards the number of antibiotics and its ability to acquire new resistance via mutation and horizontal gene transfer, it is quite tricky for medicinal contribution against S.maltophilia. The current review summarizes the literary data of pathogenicity, quorum sensing, biofilm formation, virulence factors, and antibiotic resistance of S.maltophilia.
Collapse
Affiliation(s)
- Rikhia Majumdar
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - K Hariharan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - S Vaishnavi
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - Shobana Sugumar
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| |
Collapse
|
5
|
Li Y, Feng T, Wang Y. The role of bacterial signaling networks in antibiotics response and resistance regulation. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:163-178. [PMID: 37073223 PMCID: PMC10077285 DOI: 10.1007/s42995-022-00126-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/07/2022] [Indexed: 05/03/2023]
Abstract
Excessive use of antibiotics poses a threat to public health and the environment. In ecosystems, such as the marine environment, antibiotic contamination has led to an increase in bacterial resistance. Therefore, the study of bacterial response to antibiotics and the regulation of resistance formation have become an important research field. Traditionally, the processes related to antibiotic responses and resistance regulation have mainly included the activation of efflux pumps, mutation of antibiotic targets, production of biofilms, and production of inactivated or passivation enzymes. In recent years, studies have shown that bacterial signaling networks can affect antibiotic responses and resistance regulation. Signaling systems mostly alter resistance by regulating biofilms, efflux pumps, and mobile genetic elements. Here we provide an overview of how bacterial intraspecific and interspecific signaling networks affect the response to environmental antibiotics. In doing so, this review provides theoretical support for inhibiting bacterial antibiotic resistance and alleviating health and ecological problems caused by antibiotic contamination.
Collapse
Affiliation(s)
- Yuying Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Tao Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| |
Collapse
|
6
|
Hu M, Li C, Xue Y, Hu A, Chen S, Chen Y, Lu G, Zhou X, Zhou J. Isolation, Characterization, and Genomic Investigation of a Phytopathogenic Strain of Stenotrophomonas maltophilia. PHYTOPATHOLOGY 2021; 111:2088-2099. [PMID: 33759550 DOI: 10.1094/phyto-11-20-0501-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stenotrophomonas maltophilia is ubiquitous in diverse environmental habitats. It merits significant concern because of its increasing incidence of nosocomial and community-acquired infection in immunocompromised patients and multiple drug resistance. It is rarely reported as a phytopathogen except in causing white stripe disease of rice in India and postharvest fruit rot of Lanzhou lily. For this study, Dickeya zeae and S. maltophilia strains were simultaneously isolated from soft rot leaves of Clivia miniata in Guangzhou, China, and were both demonstrated to be pathogenic to the host. Compared with the D. zeae strains, S. maltophilia strains propagated faster for greater growth in lysogeny broth medium and produced no cellulases or polygalacturonases, but did produce more proteases and fewer extracellular polysaccharides. Furthermore, S. maltophilia strains swam and swarmed dramatically less on semisolid media, but formed a great many more biofilms. Both D. zeae and S. maltophilia strains isolated from clivia caused rot symptoms on other monocot hosts, but not on dicots. Similar to previously reported S. maltophilia strains isolated from other sources, the strain JZL8 survived under many antibiotic stresses. The complete genome sequence of S. maltophilia strain JZL8 consists of a chromosome of 4,635,432 bp without a plasmid. Pan-genome analysis of JZL8 and 180 other S. maltophilia strains identified 50 genes that are unique to JZL8, seven of which implicate JZL8 as the potential pathogen contributor in plants. JZL8 also contains three copies of Type I Secretion System machinery; this is likely responsible for its greater production of proteases. Findings from this study extend our knowledge on the host range of S. maltophilia and provide insight into the phenotypic and genetic features underlying the plant pathogenicity of JZL8.
Collapse
Affiliation(s)
- Ming Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Chuhao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yang Xue
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Anqun Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shanshan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yufan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Guangtao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
8
|
Bostanghadiri N, Ardebili A, Ghalavand Z, Teymouri S, Mirzarazi M, Goudarzi M, Ghasemi E, Hashemi A. Antibiotic resistance, biofilm formation, and biofilm-associated genes among Stenotrophomonas maltophilia clinical isolates. BMC Res Notes 2021; 14:151. [PMID: 33879237 PMCID: PMC8059177 DOI: 10.1186/s13104-021-05567-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/13/2021] [Indexed: 11/12/2022] Open
Abstract
Objective The purpose of the present study was to investigate the antimicrobial susceptibility pattern, biofilm production, and the presence of biofilm genes among the S. maltophilia clinical isolates. A total of 85 clinical isolates of S. maltophilia were collected from patients referred to several hospitals. Susceptibility to antibiotics was investigated by disc diffusion method according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI). By the crystal violet staining method, the capability of biofilm formation was examined. The genes associated with biofilm production were investigated by the PCR-sequencing techniques. Results All isolates were resistant to doripenem, imipenem, and meropenem. Minocycline, trimethoprim/sulfamethoxazole and levofloxacin exhibited the highest susceptibility of 100%, 97.65%, and 95.29%, respectively. The results of crystal violet staining assay showed that all isolates (100%) form biofilm. Moreover, 24 (28.23%), 32 (37.65%), and 29 (34.12%) of isolates were categorized as weak, moderate, and strong biofilm producers, respectively. Biofilm genes including rpfF, spgM and rmlA had an overall prevalence of 89.41% (76/85), 100% (85/85) and 84.71% (72/85), respectively. Rational prescribing of antibiotics and implementation of infection control protocols are necessary to prevent further infection and development of antimicrobial resistance. Combination strategies based on the appropriate antibiotics along with anti-biofilm agents can also be selected to eliminate biofilm-associated infections.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdollah Ardebili
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samane Teymouri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mirzarazi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Azimi A, Aslanimehr M, Yaseri M, Shadkam M, Douraghi M. Distribution of smf-1, rmlA, spgM and rpfF genes among Stenotrophomonas maltophilia isolates in relation to biofilm-forming capacity. J Glob Antimicrob Resist 2020; 23:321-326. [PMID: 33137534 DOI: 10.1016/j.jgar.2020.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The molecular mechanisms involved in biofilm formation inStenotrophomonas maltophilia are poorly understood. Here, we examined whether the presence of smf-1, rmlA, spgM and rpfF genes is associated with biofilm formation and antibiotic resistance in S. maltophilia. METHODS A total of 150 S. maltophilia isolates were collected from three tertiary-care hospitals in Iran and were identified through PCR amplification of the 23S rRNA gene. Biofilm formation was determined by microtitre plate assay. Presence of smf-1, rmlA, spgM and rpfF genes was examined by PCR. RESULTS Among the isolates examined, 148 (98.7%) were able to produce biofilm, of which 69 (46.0%) were strong biofilm-producers, whereas 32 (21.3%) and 47 (31.3%) were moderate and weak biofilm-producers, respectively. The frequency ofsmf-1, rmlA, spgM and rpfF was 99.3%, 98.0%, 97.3% and 70.0%, respectively. Statistical analysis indicated a direct correlation between presence of the rpfF gene and biofilm formation (P < 0.001). The high prevalence of smf-1 (99.3%) among the isolates is noted and there was a significant association between smf-1 and biofilm-forming ability (P < 0.01), but lower than rpfF. Additionally, a direct association was found between resistance to ticarcillin/clavulanate, ceftazidime, ciprofloxacin and doxycycline and strong biofilm formation in the S. maltophilia isolates (P < 0.01). CONCLUSION This study demonstrated thatS. maltophilia clinical isolates significantly differ in biofilm-forming ability. Moreover, presence of rpfF and smf-1, but not spgM, could be associated with biofilm formation. This study highlights the importance of rpfF in formation of biofilm compared with the other genes involved.
Collapse
Affiliation(s)
- Akram Azimi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Aslanimehr
- Department of Microbiology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shadkam
- Department of Microbiology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Characterization of a Novel Quorum-Quenching Bacterial Strain, Burkholderia anthina HN-8, and Its Biocontrol Potential against Black Rot Disease Caused by Xanthomonas campestris pv. campestris. Microorganisms 2020; 8:microorganisms8101485. [PMID: 32992637 PMCID: PMC7601453 DOI: 10.3390/microorganisms8101485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Diffusible signal factor (DSF) is a type of cis unsaturated fatty acid, with a chemical structure of 11-methyl-2-dodecylene acid. DSF is widely conserved in a variety of Gram-negative bacterial pathogens and is involved in the regulation of pathogenic virulence. Quorum quenching (QQ) is a promising strategy for preventing and controlling quorum sensing (QS)-mediated bacterial infections by interfering with the QS system of pathogens. In this study, a novel DSF-degrading bacterium, Burkholderia anthina strain HN-8, was isolated and characterized for its degradation ability and potential biocontrol of black rot disease caused by Xanthomonas campestris pv. campestris (Xcc). The HN-8 strain exhibited superb DSF degradation activity and completely degraded 2 mM DSF within 48 h. In addition, we present the first evidence of bacterium having a metabolic pathway for the complete degradation and metabolism of DSF. Analysis of DSF metabolic products by gas chromatography–mass spectrometry led to the identification of dodecanal as the main intermediate product, revealing that DSF could be degraded via oxidation–reduction. Furthermore, application of strain HN-8 as a potent biocontrol agent was able to significantly reduce the severity of black rot disease in radishes and Chinese cabbage. Taken together, these results shed light on the QQ mechanisms of DSF, and they provide useful information showing the potential for the biocontrol of infectious diseases caused by DSF-dependent bacterial pathogens.
Collapse
|
11
|
Yero D, Huedo P, Conchillo-Solé O, Martínez-Servat S, Mamat U, Coves X, Llanas F, Roca I, Vila J, Schaible UE, Daura X, Gibert I. Genetic Variants of the DSF Quorum Sensing System in Stenotrophomonas maltophilia Influence Virulence and Resistance Phenotypes Among Genotypically Diverse Clinical Isolates. Front Microbiol 2020; 11:1160. [PMID: 32582100 PMCID: PMC7283896 DOI: 10.3389/fmicb.2020.01160] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
The pathogenicity of Stenotrophomonas maltophilia is regulated in part by its quorum sensing (QS) system. The main QS signaling molecule in S. maltophilia is known as diffusible signal factor (DSF), and the rpf gene cluster is responsible for its synthesis and perception. Two cluster variants have been previously described, rpf-1 and rpf-2, which differ basically in the conditions under which DSF is produced. Here, correlations between the rpf variant and antibiotic susceptibility, LPS electrophoretic profiles and virulence-related phenotypes were evaluated for a collection of 78 geographically and genetically diverse clinical strains of S. maltophilia. In general there were associations between previously established genogroups and the genetic variant of the rpf cluster. However, only few genotype-phenotype correlations could be observed. Resistance to the β-lactam antibiotics ceftazidime and ticarcillin was associated with strains carrying the rpf-1 variant, whereas strains of variant rpf-2, particularly those of genogroup C, showed higher resistance levels to colistin. Strains of variant rpf-2 were also significantly more virulent to Galleria mellonella larvae than those of rpf-1, most likely due to an increased ability of rpf-2 strains to form biofilms. A comparative genomic analysis revealed the presence of proteins unique to individual genogroups. In particular, the strains of genogroup C share an operon that encodes for a new virulence determinant in S. maltophilia related to the synthesis of an alternative Flp/Tad pilus. Overall, this study establishes a link between the DSF-based QS system and the virulence and resistance phenotypes in this species, and identifies potential high-risk clones circulating in European hospitals.
Collapse
Affiliation(s)
- Daniel Yero
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Pol Huedo
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Oscar Conchillo-Solé
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Sònia Martínez-Servat
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Xavier Coves
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ferran Llanas
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ignasi Roca
- Department of Clinical Microbiology-ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vila
- Department of Clinical Microbiology-ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ulrich E Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
12
|
Molloy K, Cagney G, Dillon ET, Wynne K, Greene CM, McElvaney NG. Impaired Airway Epithelial Barrier Integrity in Response to Stenotrophomonas maltophilia Proteases, Novel Insights Using Cystic Fibrosis Bronchial Epithelial Cell Secretomics. Front Immunol 2020; 11:198. [PMID: 32161586 PMCID: PMC7053507 DOI: 10.3389/fimmu.2020.00198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative opportunistic pathogen that can chronically colonize the lungs of people with cystic fibrosis (CF) and is associated with lethal pulmonary hemorrhage in immunocompromised patients. Its secreted virulence factors include the extracellular serine proteases StmPR1, StmPR2, and StmPR3. To explore the impact of secreted virulence determinants on pulmonary mucosal defenses in CF, we examined the secretome of human CFBE41o- bronchial epithelial cells in response to treatment with S. maltophilia K279a cell culture supernatant (CS) using a liquid-chromatography-tandem mass spectrometry (LC-MS/MS) based label-free quantitative (LFQ) shotgun proteomics approach for global profiling of the cell secretome. Secretome analysis identified upregulated pathways mainly relating to biological adhesion and epithelial cell signaling in infection, whereas no specific pathways relating to the immune response were enriched. Further exploration of the potentially harmful effects of K279a CS on CF bronchial epithelial cells, demonstrated that K279a CS caused CFBE41o- cell condensation and detachment, reversible by the serine protease inhibitor PMSF. K279a CS also decreased trans-epithelial electrical resistance in CFBE41o- cell monolayers suggestive of disruption of tight junction complexes (TJC). This finding was corroborated by an observed increase in fluorescein isothiocyanate (FITC) dextran permeability and by demonstrating PMSF-sensitive degradation of the tight junction proteins ZO-1 and occludin, but not JAM-A or claudin-1. These observations demonstrating destruction of the CFBE41o- TJC provide a novel insight regarding the virulence of S. maltophilia and may explain the possible injurious effects of this bacterium on the CF bronchial epithelium and the pathogenic mechanism leading to lethal pulmonary hemorrhage.
Collapse
Affiliation(s)
- Kevin Molloy
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Eugene T Dillon
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Kieran Wynne
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Catherine M Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
13
|
Batra P, Mathur P, Misra MC. Clinical characteristics and prognostic factors of patients with Stenotrophomonas maltophilia infections. J Lab Physicians 2020; 9:132-135. [PMID: 28367030 PMCID: PMC5320877 DOI: 10.4103/0974-2727.199639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION: Stenotrophomonas maltophilia earlier had limited pathogenic potential, but now with growing degree of immunosuppression in general population, it is being recognized as an important nosocomial pathogen. METHODOLOGY: A retrospective 7 years study was carried out to determine the clinical characteristics of all patients with Stenotrophomonas infections, antibiotic resistance pattern, and risk factors associated with hospital mortality. All patients with Stenotrophomonas culture positivity were identified and their medical records were reviewed. Risk factor associated with hospital mortality was analyzed. RESULTS: A total of 123 samples obtained from 88 patients were culture positive. Most patients presented with bacteremia (45, 51%) followed by pneumonia (37, 42%) and skin and soft tissue infections (6, 7%). About 23 of 88 Stenotrophomonas infected patients had co-infection. Percentage resistance to cotrimoxazole; 8 (5.4%) was lower than that for levofloxacin; 18 (12%). Twenty-eight patients died during hospital stay. Intensive Care Unit admission (P = 0.0002), mechanical ventilation (P = 0.0004), central venous catheterization (P = 0.0227), urethral catheterization (P = 0.0484), and previous antibiotic intake (P = 0.0026) were independent risk factors associated with mortality. CONCLUSION: Our findings suggest that Stenotrophomonas can cause various infections irrespective of patient's immune status and irrespective of potential source. Thus, Stenotrophomonas should be thought of as potential pathogen and its isolation should be looked with clinical suspicion.
Collapse
Affiliation(s)
- Priyam Batra
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Purva Mathur
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Mahesh C Misra
- Department of Surgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Flores-Treviño S, Bocanegra-Ibarias P, Camacho-Ortiz A, Morfín-Otero R, Salazar-Sesatty HA, Garza-González E. Stenotrophomonas maltophilia biofilm: its role in infectious diseases. Expert Rev Anti Infect Ther 2019; 17:877-893. [PMID: 31658838 DOI: 10.1080/14787210.2019.1685875] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Infections caused by the opportunistic Stenotrophomonas maltophilia pathogen in immunocompromised patients are complicated to treat due to antibiotic resistance and the ability of the bacteria to produce biofilm.Areas covered: A MEDLINE/PubMed search was performed of available literature to describe the role of biofilm produced by S. maltophilia in the diseases it causes, including biofilm-influencing factors, the biofilm forming process and composition. The antimicrobial resistance due to S. maltophilia biofilm production and current antibiofilm strategies is also included.Expert opinion: Through the production of biofilm, S. maltophilia strains can easily adhere to the surfaces in hospital settings and aid in its transmission. The biofilm can also cause antibiotic tolerance rendering some of the therapeutic options ineffective, causing setbacks in the selection of an appropriate treatment. Conventional susceptibility tests do not yet offer therapeutic guidelines to treat biofilm-associated infections. Current S. maltophilia biofilm control strategies include natural and synthetic compounds, chelating agents, and commonly prescribed antibiotics. As biofilm age and matrix composition affect the level of antibiotic tolerance, their characterization should be included in biofilm susceptibility testing, in addition to molecular and proteomic analyzes. As for now, several commonly recommended antibiotics can be used to treat biofilm-related S. maltophilia infections.
Collapse
Affiliation(s)
- Samantha Flores-Treviño
- Servicio de Gastroenterología, Hospital Universitario y Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Paola Bocanegra-Ibarias
- Servicio de Gastroenterología, Hospital Universitario y Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Adrián Camacho-Ortiz
- Servicio de Infectología, Hospital Universitario, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Humberto Antonio Salazar-Sesatty
- Unidad de Terapias Experimentales, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Elvira Garza-González
- Servicio de Gastroenterología, Hospital Universitario y Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| |
Collapse
|
15
|
Bostanghadiri N, Ghalavand Z, Fallah F, Yadegar A, Ardebili A, Tarashi S, Pournajaf A, Mardaneh J, Shams S, Hashemi A. Characterization of Phenotypic and Genotypic Diversity of Stenotrophomonas maltophilia Strains Isolated From Selected Hospitals in Iran. Front Microbiol 2019; 10:1191. [PMID: 31191502 PMCID: PMC6548850 DOI: 10.3389/fmicb.2019.01191] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/10/2019] [Indexed: 12/25/2022] Open
Abstract
Stenotrophomonas maltophilia is an environmental Gram-negative bacterium that has rapidly emerged as an important nosocomial pathogen in hospitalized patients. Treatment of S. maltophilia infections is difficult due to increasing resistance to multiple antibacterial agents. The purpose of this study was to determine the phenotypic and genotypic characterization of S. maltophilia isolates recovered from patients referred to several hospitals. A total of 164 clinical isolates of S. maltophilia were collected from hospitals in various regions in Iran between 2016 and 2017. Antibiotic susceptibility testing was performed by disc diffusion method and E-test assay according to the Clinical and Laboratory Standards Institute (CLSI) guideline. The ability of biofilm formation was assessed with crystal violet staining and then, biofilm-associated genes were investigated by PCR-sequencing method. The presence of L1 (a metallo-β-lactamase), L2 (a clavulanic acid-sensitive cephalosporinase), sul1 and sul2 (resistance to Trimethoprim/Sulfamethoxazole), Smqnr (intrinsic resistance to quinolones), and dfrA genes (dihydrofolate reductase enzyme that contributes to trimethoprim resistance) was also examined by PCR-sequencing. Relative gene expression of smeDEF efflux pump was assessed by real-time PCR. Genotyping was performed using the multi-locus sequencing typing (MLST) and repetitive extragenic palindromic-PCR (Rep-PCR). Isolates were resistant to imipenem (100%), meropenem (96%), doripenem (96%), and ceftazidime (36.58%). Notably, 5 (3.04%) isolates showed resistant to trimethoprim-sulfamethoxazole (TMP-SMX), an alarming trend of decreased susceptibility to TMP-SMX in Iran. Minocycline and levofloxacin exhibited the highest susceptibility of 91.46 and 99.39%, respectively. Using the crystal violet staining, 157 (95.73%) isolates had biofilm phenotype: 49 (29.87%), 63 (38.41%), and 45 (27.43%) isolates were categorized as strong-, moderate- and weak-biofilm producer while 7 isolates (4.26%) were identified a non-biofilm producer. Biofilm genes had an overall prevalence of 145 (88.41%), 137 (83.53%), and 164 (100%) of rmlA, rpfF, and spgM, respectively. L1, L2, Smqnr, sul1, and sul2 resistance genes were detected in 145 (88.41%), 156 (96.12%), 103 (62.80%), 89 (54.26%), and 92 (56.09%) isolates, respectively. None of the S. maltophilia isolates were positive for dfrA12, dfrA17, and dfrA27 genes. Gene expression analysis showed that smeD efflux system was overexpressed in two out of the five clinical isolates (40%) that showed resistance to TMP-SMX. Most of the isolates were genetically unrelated. Two new sequence types (ST139 and ST259) were determined. Our results showed that TMP-SMX was still an effective antibiotic against S. maltophilia. The findings of the current study revealed an increasing prevalence of antibiotic resistance and biofilm genes in clinical S. maltophilia isolates in Iran.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Ardebili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Samira Tarashi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Abazar Pournajaf
- Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Jalal Mardaneh
- Microbiology Department, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Saeed Shams
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Treatment Outcomes of Stenotrophomonas maltophilia Bacteremia in Critically Ill Children: A Multicenter Experience. Pediatr Crit Care Med 2019; 20:e231-e239. [PMID: 31058792 DOI: 10.1097/pcc.0000000000001919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Stenotrophomonas maltophilia is a gram-negative opportunistic bacterium that may cause a myriad of clinical diseases in immunocompromised individuals. We aimed to describe the clinical characteristics, risk factors, mortality, and treatment of S. maltophilia bacteremia in critically ill children, a topic on which data are sparse. DESIGN A multicenter observational retrospective study in which medical charts of critically ill children with S. maltophilia bacteremia were reviewed between 2012 and 2017. SETTING Data were collected from each of the four largest PICUs nationwide, allocated in tertiary medical centers to which children with complex conditions are referred regularly. PATIENTS A total of 68 suitable cases of S. maltophilia bacteremia were retrieved and reviewed. MEASUREMENTS AND MAIN RESULTS The total occurrence rate of S. maltophilia isolation had increased significantly during the study period (r = 0.65; p = 0.02). The crude mortality was 42%, and the attributed mortality was 18%. Significant risk factors for mortality were a longer length of hospital stay prior to infection (33 d in nonsurvivors vs 28 in survivors; p = 0.03), a nosocomial source of infection (p = 0.02), presentation with septic shock (p < 0.001), and treatment with chemotherapy (p = 0.007) or carbapenem antibiotics (p = 0.05) prior to culture retrieval. On multivariate analysis, septic shock (odds ratio, 14.6; 95% CI, 1.45-147.05; p = 0.023) and being treated with chemotherapy prior to infection (odds ratio, 5.2; 95% CI, 1.59-17.19; p = 0.006)] were associated with mortality. The combination of ciprofloxacin, trimethoprim-sulfamethoxazole, and minocycline resulted in the longest survival time (p < 0.01). CONCLUSIONS The significant attributed mortality associated with S. maltophilia bacteremia in critically ill children calls for an aggressive therapeutic approach. The findings of this investigation favor a combination of trimethoprim-sulfamethoxazole, ciprofloxacin, and minocycline.
Collapse
|
17
|
Alcaraz E, García C, Friedman L, de Rossi BP. The rpf/DSF signalling system of Stenotrophomonas maltophilia positively regulates biofilm formation, production of virulence-associated factors and β-lactamase induction. FEMS Microbiol Lett 2019; 366:5437675. [DOI: 10.1093/femsle/fnz069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Eliana Alcaraz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Microbiología, Junín 956, 1113 Buenos Aires, Argentina
| | - Carlos García
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Microbiología, Junín 956, 1113 Buenos Aires, Argentina
| | - Laura Friedman
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Microbiología, Junín 956, 1113 Buenos Aires, Argentina
| | - Beatriz Passerini de Rossi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Microbiología, Junín 956, 1113 Buenos Aires, Argentina
| |
Collapse
|
18
|
Trifonova A, Strateva T. Stenotrophomonas maltophilia – a low-grade pathogen with numerous virulence factors. Infect Dis (Lond) 2018; 51:168-178. [DOI: 10.1080/23744235.2018.1531145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Angelina Trifonova
- Laboratory of Microbiology, Department of Military Epidemiology and Hygiene, Military Medical Academy, Sofia, Bulgaria
| | - Tanya Strateva
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
19
|
Abstract
BACKGROUND Stenotrophomonas maltophilia is a life-threatening nosocomial pathogen with profound multidrug-resistant attributes. It is associated with high mortality, particularly in immunocompromised patients. Data on therapy for S. maltophilia infections are scarce, especially in children hospitalized in intensive care settings (pediatric intensive care unit). METHODS A retrospective chart review of pediatric patients with isolates of S. maltophilia hospitalized over a 5-year period in 2 pediatric intensive care units. RESULTS Thirty-one patients and 91 isolates from blood, respiratory secretions and soft tissues were identified and reviewed. The overall incidence of S. maltophilia infections increased during the study period (P = 0.003). The all-cause crude mortality was 61%, and the attributed mortality was approximately 16%. Risk factors associated with mortality included longer hospitalization before infection (P = 0.002), septic shock (P = 0.003), mechanical ventilation (P = 0.004), an indwelling central vein catheter (P = 0.03) and prior use of steroids (P = 0.04) and carbapenems (P = 0.004). On multivariate analysis, mortality was associated with mechanical ventilation (P = 0.02) and preinfection hospitalization days (P = 0.01). Combination treatment of trimethoprim and sulfamethoxazole, ciprofloxacin and/or minocycline significantly extended survival time (P < 0.001). The method of treatment did not significantly affect the interval between S. maltophilia isolation to resolution of infection (P = 0.200). CONCLUSIONS Combinations of trimethoprim and sulfamethoxazole, ciprofloxacin and minocycline are proposed for pediatric intensive care unit patients harboring S. maltophilia. Meticulous evaluation of central vascular access and prior treatment with carbapenems are indicated, especially for mechanically ventilated and septic children.
Collapse
|
20
|
Singhal L, Kaur P, Gautam V. Stenotrophomonas maltophilia: From trivial to grievous. Indian J Med Microbiol 2018; 35:469-479. [PMID: 29405136 DOI: 10.4103/ijmm.ijmm_16_430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stenotrophomonas maltophilia, once regarded as an organism of low virulence, has evolved as a significant opportunistic pathogen causing severe human infections in both hospital and community settings, especially amongst highly debilitated patients. Globally, S. maltophilia ranks third amongst the four most common pathogenic non-fermenting Gram-negative bacilli (NFGNBs), others being Pseudomonas aeruginosa, Acinetobacter baumannii and Burkholderia cepacia complex (Bcc). The worth of accurate identification of S. maltophilia comes to the forefront as it needs to be differentiated from other NFGNBs such as Acinetobacter, P. aeruginosa and Bcc due to its inherently contrasting antibiotic susceptibility pattern. Consequently, its correct identification is essential as no single drug is amply effective against all NFGNBs, which hinders initiation of appropriate empirical treatment resulting in increased morbidity and mortality.
Collapse
Affiliation(s)
- Lipika Singhal
- Department of Microbiology, Government Medical College and Hospital, Chandigarh, India
| | - Parvinder Kaur
- Department of Biotechnology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College, Bela, Ropar, Punjab, India
| | - Vikas Gautam
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
21
|
White CV, Herman MA. Transcriptomic, Functional, and Network Analyses Reveal Novel Genes Involved in the Interaction Between Caenorhabditis elegans and Stenotrophomonas maltophilia. Front Cell Infect Microbiol 2018; 8:266. [PMID: 30177956 PMCID: PMC6109753 DOI: 10.3389/fcimb.2018.00266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
The bacterivorous nematode Caenorhabditis elegans is an excellent model for the study of innate immune responses to a variety of bacterial pathogens, including the emerging nosocomial bacterial pathogen Stenotrophomonas maltophilia. The study of this interaction has ecological and medical relevance as S. maltophilia is found in association with C. elegans and other nematodes in the wild and is an emerging opportunistic bacterial pathogen. We identified 393 genes that were differentially expressed when exposed to virulent and avirulent strains of S. maltophilia and an avirulent strain of E. coli. We then used a probabilistic functional gene network model (WormNet) to determine that 118 of the 393 differentially expressed genes formed an interacting network and identified a set of highly connected genes with eight or more predicted interactions. We hypothesized that these highly connected genes might play an important role in the defense against S. maltophila and found that mutations of six of seven highly connected genes have a significant effect on nematode survival in response to these bacteria. Of these genes, C48B4.1, mpk-2, cpr-4, clec-67, and lys-6 are needed for combating the virulent S. maltophilia JCMS strain, while dod-22 was solely involved in response to the avirulent S. maltophilia K279a strain. We further found that dod-22 and clec-67 were up regulated in response to JCMS vs. K279a, while C48B4.1, mpk-2, cpr-4, and lys-6 were down regulated. Only dod-22 had a documented role in innate immunity, which demonstrates the merit of our approach in the identification of novel genes that are involved in combating S. maltophilia infection.
Collapse
Affiliation(s)
- Corin V White
- Ecological Genomics Institute, Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Michael A Herman
- Ecological Genomics Institute, Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
22
|
An SQ, Tang JL. Diffusible signal factor signaling regulates multiple functions in the opportunistic pathogen Stenotrophomonas maltophilia. BMC Res Notes 2018; 11:569. [PMID: 30097057 PMCID: PMC6086056 DOI: 10.1186/s13104-018-3690-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/06/2018] [Indexed: 11/10/2022] Open
Abstract
Objective Stenotrophomonas maltophilia is a Gram-negative bacterium commonly isolated from nosocomial infections. Analysis of the genome of the clinical S. maltophilia isolate K279a indicates that it encodes a diffusible signal factor (DSF)-dependent cell–cell signaling mechanism that is highly similar to the system previously described in phytopathogens from the genera Xanthomonas and Xylella. Our objective was to study the function of DSF signaling in the clinical strain S. maltophilia K279a using genetic and functional genomic analyses. Results We compared the wild-type strain with a mutant deficient in the rpfF (regulation of pathogenicity factors) gene that is essential for the synthesis of DSF. The effects of disruption of DSF signaling were pleiotropic with an impact on virulence, biofilm formation and pathogenesis. The phenotypic effects of rpfF mutation in S. maltophilia could be reversed by addition of exogenous DSF. Taken together, we demonstrate that DSF signaling regulates factors contributing to virulence, biofilm formation and motility of this important opportunistic pathogen.
Collapse
Affiliation(s)
- Shi-Qi An
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Ji-Liang Tang
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
23
|
Huedo P, Coves X, Daura X, Gibert I, Yero D. Quorum Sensing Signaling and Quenching in the Multidrug-Resistant Pathogen Stenotrophomonas maltophilia. Front Cell Infect Microbiol 2018; 8:122. [PMID: 29740543 PMCID: PMC5928129 DOI: 10.3389/fcimb.2018.00122] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic Gram-negative pathogen with increasing incidence in clinical settings. The most critical aspect of S. maltophilia is its frequent resistance to a majority of the antibiotics of clinical use. Quorum Sensing (QS) systems coordinate bacterial populations and act as major regulatory mechanisms of pathogenesis in both pure cultures and poly-microbial communities. Disruption of QS systems, a phenomenon known as Quorum Quenching (QQ), represents a new promising paradigm for the design of novel antimicrobial strategies. In this context, we review the main advances in the field of QS in S. maltophilia by paying special attention to Diffusible Signal Factor (DSF) signaling, Acyl Homoserine Lactone (AHL) responses and the controversial Ax21 system. Advances in the DSF system include regulatory aspects of DSF synthesis and perception by both rpf-1 and rpf-2 variant systems, as well as their reciprocal communication. Interaction via DSF of S. maltophilia with unrelated organisms including bacteria, yeast and plants is also considered. Finally, an overview of the different QQ mechanisms involving S. maltophilia as quencher and as object of quenching is presented, revealing the potential of this species for use in QQ applications. This review provides a comprehensive snapshot of the interconnected QS network that S. maltophilia uses to sense and respond to its surrounding biotic or abiotic environment. Understanding such cooperative and competitive communication mechanisms is essential for the design of effective anti QS strategies.
Collapse
Affiliation(s)
- Pol Huedo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Coves
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Depluverez S, Daled S, De Waele S, Planckaert S, Schoovaerts J, Deforce D, Devreese B. Microfluidics-based LC-MS MRM approach for the relative quantification of Burkholderia cenocepacia secreted virulence factors. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:469-479. [PMID: 29322563 DOI: 10.1002/rcm.8059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/15/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Burkholderia cenocepacia is an opportunistic pathogen that is commonly isolated from patients with cystic fibrosis (CF). Several virulence factors have been identified, including extracellular enzymes that are secreted by type II and type VI secretion systems. The activity of these secretion systems is modulated by quorum sensing. Apart from the classical acylhomoserine lactone quorum sensing, B. cenocepacia also uses the diffusible signal factor system (DSF) i.e. 2-undecenoic acid derivatives that are recognized by specific receptors resulting in changes in biofilm formation, motility and virulence. However, quantitative information on alterations in the actual production and release of virulence factors upon exposure to DSF is lacking. We here describe an approach implementing microfluidics based chromatography combined with single reaction monitoring to quantify protein virulence factors in the secretome of B. cenocepacia.
Collapse
Affiliation(s)
- Sofie Depluverez
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, KL Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Simon Daled
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Stijn De Waele
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, KL Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Sören Planckaert
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, KL Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Jolien Schoovaerts
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, KL Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Bart Devreese
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, KL Ledeganckstraat 35, B-9000, Ghent, Belgium
| |
Collapse
|
25
|
Adegoke AA, Stenström TA, Okoh AI. Stenotrophomonas maltophilia as an Emerging Ubiquitous Pathogen: Looking Beyond Contemporary Antibiotic Therapy. Front Microbiol 2017; 8:2276. [PMID: 29250041 PMCID: PMC5714879 DOI: 10.3389/fmicb.2017.02276] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Stenotrophomonas maltophilia is a commensal and an emerging pathogen earlier noted in broad-spectrum life threatening infections among the vulnerable, but more recently as a pathogen in immunocompetent individuals. The bacteria are consistently being implicated in necrotizing otitis, cutaneous infections including soft tissue infection and keratitis, endocarditis, meningitis, acute respiratory tract infection (RTI), bacteraemia (with/without hematological malignancies), tropical pyomyositis, cystic fibrosis, septic arthritis, among others. S. maltophilia is also an environmental bacteria occurring in water, rhizospheres, as part of the animals' microflora, in foods, and several other microbiota. This review highlights clinical reports on S. maltophilia both as an opportunistic and as true pathogen. Also, biofilm formation as well as quorum sensing, extracellular enzymes, flagella, pili/fimbriae, small colony variant, other virulence or virulence-associated factors, the antibiotic resistance factors, and their implications are considered. Low outer membrane permeability, natural MDR efflux systems, and/or resistance genes, resistance mechanisms like the production of two inducible chromosomally encoded β-lactamases, and lack of carefully compiled patient history are factors that pose great challenges to the S. maltophilia control arsenals. The fluoroquinolone, some tetracycline derivatives and trimethoprim-sulphamethaxole (TMP-SMX) were reported as effective antibiotics with good therapeutic outcome. However, TMP-SMX resistance and allergies to sulfa together with high toxicity of fluoroquinolone are notable setbacks. S. maltophilia's production and sustenance of biofilm by quorum sensing enhance their virulence, resistance to antibiotics and gene transfer, making quorum quenching an imperative step in Stenotrophomonas control. Incorporating several other proven approaches like bioengineered bacteriophage therapy, Epigallocatechin-3-gallate (EGCG), essential oil, nanoemulsions, and use of cationic compounds are promising alternatives which can be incorporated in Stenotrophomonas control arsenal.
Collapse
Affiliation(s)
- Anthony A Adegoke
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa.,Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Thor A Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
26
|
Lira F, Berg G, Martínez JL. Double-Face Meets the Bacterial World: The Opportunistic Pathogen Stenotrophomonas maltophilia. Front Microbiol 2017; 8:2190. [PMID: 29170656 PMCID: PMC5684188 DOI: 10.3389/fmicb.2017.02190] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/25/2017] [Indexed: 11/24/2022] Open
Abstract
Most studies on bacterial virulence focus on the pathogen itself. However, it is important to recall that the in-host behavior and the virulence of bacterial pathogens constitute a complex situation that depends on both the microorganisms and the infected host. While healthy people (the community) is infected by classical pathogenic microorganisms, able to cope with the anti-infection defenses of the host, in the case of people with basal diseases, debilitated or immunodepressed, the range of pathogens able to cause infection is wider and includes the so-named opportunistic pathogens, which lack the inherent ability to cause disease in healthy hosts and rarely produce infections in the community. Some of the most relevant opportunistic pathogens, as Stenotrophomonas maltophilia, have an environmental origin and, in occasions, present interesting biotechnological properties. Consequently, it is important knowing whether S. maltophilia isolates recovered from infections constitute a specific phylogenetic branch that has evolved toward acquiring a virulent phenotype as it happens in the case of classical pathogens or rather, any member of this bacterial species is capable of producing infection and its pathogenic behavior is mainly a consequence of the host situation. To address this question, we analyzed a set of environmental and clinical S. maltophilia strains. Our results indicate that this opportunistic pathogen presents a large core genome and that the distribution of genes in general, and of known virulence determinants in particular, is similar among environmental and clinical isolates. The majority of genes not belonging to the S. maltophilia core genome are present in just one or two of the analyzed strains. This indicates that, more than speciation into different lineages (virulent and environmental), the evolution of S. maltophilia is based in the strain-specific acquisition of genes, likely involved in the adaptation of this bacterial species to different microniches. In addition, both environmental and clinical isolates present low susceptibility to several antimicrobials. Altogether our results support that S. maltophilia does not present a specific evolutionary branch toward virulence and most likely infection is mainly the consequence of the impaired anti-infective response of the infected patients.
Collapse
Affiliation(s)
- Felipe Lira
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - José L Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
27
|
Interkingdom signaling in plant-microbe interactions. SCIENCE CHINA-LIFE SCIENCES 2017; 60:785-796. [PMID: 28755299 DOI: 10.1007/s11427-017-9092-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
The widespread communications between prokaryotes and eukaryotes via signaling molecules are believed to affect gene expression in both partners. During the communication process, the contacted organisms produce and release small molecules that establish communication channels between two kingdoms-this procedure is known as interkingdom signaling. Interkingdom communications are widespread between pathogenic or beneficial bacteria and their host plants, with diversified outcomes depending on the specific chemical-triggered signaling pathways. Deciphering the signals or language of this interkingdom communication and uncovering the underlying mechanisms are major current challenges in this field. It is evident that diverse signaling molecules can be produced or derived from bacteria and plants, and researchers have sought to identify these signals and explore the mechanisms of the signaling pathways. The results of such studies will lead to the development of strategies to improve plant disease resistance through controlling interkingdom signals, rather than directly killing the pathogenic bacteria. Also, the identification of signals produced by beneficial bacteria will be useful for agricultural applications. In this review, we summarize the recent progress of cross-kingdom interactions between plant and bacteria, and how LuxR-family transcription factors in plant associated bacterial quorum sensing system are involved in the interkingdom signaling.
Collapse
|
28
|
Song Z, Zhao Y, Qian G, Odhiambo BO, Liu F. Novel insights into the regulatory roles of gene hshB in Xanthomonas oryzae pv. oryzicola. Res Microbiol 2016; 168:165-173. [PMID: 27810475 DOI: 10.1016/j.resmic.2016.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/15/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
Abstract
Xanthomonas oryzae pv. oryzicola causes leaf streak disease of rice. The gene hshB is a newly identified virulence-associated gene that is co-regulated by diffusible signal factor signaling and global regulator Clp in X. oryzae pv. oryzicola. Our previous study showed that mutation of hshB remarkably impaired the virulence, extracellular protease activity, extracellular polysaccharide production and resistance to oxidative stress of X. oryzae pv. oryzicola. In this study, the regulatory role of hshB in X. oryzae pv .oryzicola was expanded. Results showed that hshB was also required for cell swimming motility. Transcriptome analysis showed that 305 genes were significantly differentially expressed after deletion of hshB in X. oryzae pv. oryzicola. Further analysis of transcriptome data indicated that the differentially expressed genes focused on two aspects: namely, cell motility and cell signal transduction. This finding strongly identified the closely related function of hshB to cell motility and signal transduction. In addition, the mutation of hshB of X. oryzae pv. oryzicola enhanced biofilm formation. Collectively, the study showed novel functions of gene hshB in cell motility and biofilm formation by transcriptome analysis, thus expanding our understanding of the roles of gene hshB in the pathogenic X. oryzae pv. oryzicola.
Collapse
Affiliation(s)
- Zhiwei Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Benard Omondi Odhiambo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.
| |
Collapse
|
29
|
Madi H, Lukić J, Vasiljević Z, Biočanin M, Kojić M, Jovčić B, Lozo J. Genotypic and Phenotypic Characterization of Stenotrophomonas maltophilia Strains from a Pediatric Tertiary Care Hospital in Serbia. PLoS One 2016; 11:e0165660. [PMID: 27798695 PMCID: PMC5087882 DOI: 10.1371/journal.pone.0165660] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/14/2016] [Indexed: 01/15/2023] Open
Abstract
Background Stenotrophomonas maltophilia is an environmental bacterium and an opportunistic pathogen usually associated with healthcare-associated infections, which has recently been recognized as a globally multi-drug resistant organism. The aim of this study was genotyping and physiological characterization of Stenotrophomonas maltophilia isolated in a large, tertiary care pediatric hospital in Belgrade, Serbia, hosting the national reference cystic fibrosis (CF) center for pediatric and adult patients. Methods We characterized 42 strains of cystic fibrosis (CF) and 46 strains of non-cystic fibrosis (non-CF) origin isolated from 2013 to 2015 in order to investigate their genetic relatedness and phenotypic traits. Genotyping was performed using sequencing of 16S rRNA gene, Pulse Field Gel Electrophoresis (PFGE) and Multi locus sequencing typing (MLST) analysis. Sensitivity to five relevant antimicrobial agents was determined, namely trimethoprim/sulfamethoxazole (TMP/SMX), chloramphenicol, ciprofloxacin, levofloxacin and tetracycline. Surface characteristics, motility, biofilm formation and adhesion to mucin were tested in all strains. Statistical approach was used to determine correlations between obtained results. Results Most of the isolates were not genetically related. Six new sequence types were determined. Strains were uniformly sensitive to all tested antimicrobial agents. The majority of isolates (89.8%) were able to form biofilm with almost equal representation in both CF and non-CF strains. Swimming motility was observed in all strains, while none of them exhibited swarming motility. Among strains able to adhere to mucin, no differences between CF and non-CF isolates were observed. Conclusions High genetic diversity among isolates implies the absence of clonal spread within the hospital. Positive correlation between motility, biofilm formation and adhesion to mucin was demonstrated. Biofilm formation and motility were more pronounced among non-CF than CF isolates.
Collapse
Affiliation(s)
- Haowa Madi
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Jovanka Lukić
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Zorica Vasiljević
- Institute for Mother and Child Health Care of Serbia "Dr Vukan Čupić", Belgrade, Serbia
| | - Marjan Biočanin
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Milan Kojić
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Branko Jovčić
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
- University of Belgrade, Faculty of Biology, Belgrade, Serbia
| | - Jelena Lozo
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
- University of Belgrade, Faculty of Biology, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
30
|
Dow JM, Naughton LM, Hollmann B, An SQ, Ryan RP. The Diffusible Signal Factor Family of Bacterial CellCell Signals. Isr J Chem 2016. [DOI: 10.1002/ijch.201500075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Deng Y, Wu J, Yin W, Li P, Zhou J, Chen S, He F, Cai J, Zhang LH. Diffusible signal factor family signals provide a fitness advantage to Xanthomonas campestris pv. campestris in interspecies competition. Environ Microbiol 2016; 18:1534-45. [PMID: 26913592 DOI: 10.1111/1462-2920.13244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 11/29/2022]
Abstract
Diffusible signal factor (DSF) represents a new class of widely conserved quorum sensing signals, which regulates various biological functions through intra- or interspecies signaling. The previous studies identified that there is an antagonistic interaction between Xanthomonas and Bacillus species bacteria in natural ecosystem, but the detailed molecular mechanism of interspecies competition is not clear. This study showed that Xanthomonas campestris pv. campestris (Xcc) interfered with morphological transition and sporulation of Bacillus thuringiensis in mixed cultures, whereas abrogation of the DSF synthase RpfF reduced the interference. DSF inhibited B. thuringiensis cell division and sporulation through modulation of ftsZ, which encodes an important cell division protein in bacterial cells. In addition, RpfF is essential for production of six DSF-family signals in Xcc, which employ the same signaling pathways to regulate biological functions in Xcc and play similar effects on reduction of cell division, sporulation and antibiotic resistance of B. thuringiensis. Furthermore, abrogation of RpfF decreased the competitive capability of Xcc against B. thuringiensis on the surface of Chinese cabbage leaves. Our findings provide new insights into the role of DSF-family signals in interspecies competition and depict molecular mechanisms with which Xcc competes with B. thuringiensis.
Collapse
Affiliation(s)
- Yinyue Deng
- Guangdong Innovative and Entepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, South China Agricultural University, Guangzhou, 510642, China.,Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Jien Wu
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Wenfang Yin
- Guangdong Innovative and Entepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Shaohua Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Fei He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Cai
- Department of Microbiology, Nankai University, Tianjin, 300071, China
| | - Lian-Hui Zhang
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
32
|
Suppiger A, Aguilar C, Eberl L. Evidence for the widespread production of DSF family signal molecules by members of the genus Burkholderia by the aid of novel biosensors. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:38-44. [PMID: 26487448 DOI: 10.1111/1758-2229.12348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/08/2015] [Accepted: 10/17/2015] [Indexed: 06/05/2023]
Abstract
Many bacteria employ cis-2-unsaturated fatty acids, referred to as DSF (diffusible signal factor) family signals, to communicate with each other. Such systems have been shown to control biofilm formation, motility, production of hydrolytic enzymes and expression of virulence factors. We report the construction of novel biosensors on the basis of components of the Burkholderia-DSF (BDSF) dependent circuitry of Burkholderia cenocepacia H111 and evaluated their utility for detecting the production of DSF family signal molecules. We show that a luxAB-based biosensor responds to nM levels of synthetic BDSF and is suitable to detect a wide range of cis-2 fatty acid molecules. Using this biosensor we show that the production of DSF family molecules is widespread among members of the B. cepacia complex and demonstrate for the first time that DSF-based molecules are also produced by plant-associated Burkholderia species.
Collapse
Affiliation(s)
- Angela Suppiger
- Department of Microbiology, Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Claudio Aguilar
- Department of Microbiology, Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Microbiology, Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
The DSF type quorum sensing signalling system RpfF/R regulates diverse phenotypes in the opportunistic pathogen Cronobacter. Sci Rep 2016; 6:18753. [PMID: 26725701 PMCID: PMC4698668 DOI: 10.1038/srep18753] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022] Open
Abstract
Several bacterial pathogens produce diffusible signal factor (DSF)-type quorum sensing (QS) signals to control biofilm formation and virulence. Previous work showed that in Burkholderia cenocepacia the RpfFBc/RpfR system is involved in sensing and responding to DSF signals and that this signal/sensor gene pair is highly conserved in several bacterial species including Cronobacter spp. Here we show that C. turicensis LMG 23827T possesses a functional RpfF/R system that is involved in the regulation of various phenotypes, including colony morphology, biofilm formation and swarming motility. In vivo experiments using the zebrafish embryo model revealed a role of this regulatory system in virulence of this opportunistic pathogen. We provide evidence that the RpfF/R system modulates the intracellular c-di-GMP level of the organism, an effect that may underpin the alteration in phenotype and thus the regulated phenotypes may be a consequence thereof. This first report on an RpfF/R-type QS system of an organism outside the genus Burkholderia revealed that both the underlying molecular mechanisms as well as the regulated functions show a high degree of conservation.
Collapse
|
34
|
A Stenotrophomonas maltophilia Strain Evades a Major Caenorhabditis elegans Defense Pathway. Infect Immun 2015; 84:524-36. [PMID: 26644380 DOI: 10.1128/iai.00711-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/27/2015] [Indexed: 01/10/2023] Open
Abstract
Stenotrophomonas maltophilia is a ubiquitous bacterium and an emerging nosocomial pathogen. This bacterium is resistant to many antibiotics, associated with a number of infections, and a significant health risk, especially for immunocompromised patients. Given that Caenorhabditis elegans shares many conserved genetic pathways and pathway components with higher organisms, the study of its interaction with bacterial pathogens has biomedical implications. S. maltophilia has been isolated in association with nematodes from grassland soils, and it is likely that C. elegans encounters this bacterium in nature. We found that a local S. maltophilia isolate, JCMS, is more virulent than the other S. maltophilia isolates (R551-3 and K279a) tested. JCMS virulence correlates with intestinal distension and bacterial accumulation and requires the bacteria to be alive. Many of the conserved innate immune pathways that serve to protect C. elegans from various pathogenic bacteria also play a role in combating S. maltophilia JCMS. However, S. maltophilia JCMS is virulent to normally pathogen-resistant DAF-2/16 insulin-like signaling pathway mutants. Furthermore, several insulin-like signaling effector genes were not significantly differentially expressed between S. maltophilia JCMS and avirulent bacteria (Escherichia coli OP50). Taken together, these findings suggest that S. maltophilia JCMS evades the pathogen resistance conferred by the loss of DAF-2/16 pathway components. In summary, we have discovered a novel host-pathogen interaction between C. elegans and S. maltophilia and established a new animal model with which to study the mode of action of this emerging nosocomial pathogen.
Collapse
|
35
|
Control of Biofilms with the Fatty Acid Signaling Molecule cis-2-Decenoic Acid. Pharmaceuticals (Basel) 2015; 8:816-35. [PMID: 26610524 PMCID: PMC4695811 DOI: 10.3390/ph8040816] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/11/2015] [Accepted: 11/18/2015] [Indexed: 12/26/2022] Open
Abstract
Biofilms are complex communities of microorganisms in organized structures attached to surfaces. Importantly, biofilms are a major cause of bacterial infections in humans, and remain one of the most significant challenges to modern medical practice. Unfortunately, conventional therapies have shown to be inadequate in the treatment of most chronic biofilm infections based on the extraordinary innate tolerance of biofilms to antibiotics. Antagonists of quorum sensing signaling molecules have been used as means to control biofilms. QS and other cell-cell communication molecules are able to revert biofilm tolerance, prevent biofilm formation and disrupt fully developed biofilms, albeit with restricted effectiveness. Recently however, it has been demonstrated that Pseudomonas aeruginosa produces a small messenger molecule cis-2-decenoic acid (cis-DA) that shows significant promise as an effective adjunctive to antimicrobial treatment of biofilms. This molecule is responsible for induction of the native biofilm dispersion response in a range of Gram-negative and Gram-positive bacteria and in yeast, and has been shown to reverse persistence, increase microbial metabolic activity and significantly enhance the cidal effects of conventional antimicrobial agents. In this manuscript, the use of cis-2-decenoic acid as a novel agent for biofilm control is discussed. Stimulating the biofilm dispersion response as a novel antimicrobial strategy holds significant promise for enhanced treatment of infections and in the prevention of biofilm formation.
Collapse
|
36
|
García CA, Alcaraz ES, Franco MA, Passerini de Rossi BN. Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression, and virulence. Front Microbiol 2015; 6:926. [PMID: 26388863 PMCID: PMC4559654 DOI: 10.3389/fmicb.2015.00926] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/21/2015] [Indexed: 12/26/2022] Open
Abstract
Stenotrophomonas maltophilia is an emerging nosocomial pathogen. In many bacteria iron availability regulates, through the Fur system, not only iron homeostasis but also virulence. The aim of this work was to assess the role of iron on S. maltophilia biofilm formation, EPS production, oxidative stress response, OMPs regulation, quorum sensing (QS), and virulence. Studies were done on K279a and its isogenic fur mutant F60 cultured in the presence or absence of dipyridyl. This is the first report of spontaneous fur mutants obtained in S. maltophilia. F60 produced higher amounts of biofilms than K279a and CLSM analysis demonstrated improved adherence and biofilm organization. Under iron restricted conditions, K279a produced biofilms with more biomass and enhanced thickness. In addition, F60 produced higher amounts of EPS than K279a but with a similar composition, as revealed by ATR-FTIR spectroscopy. With respect to the oxidative stress response, MnSOD was the only SOD isoenzyme detected in K279a. F60 presented higher SOD activity than the wt strain in planktonic and biofilm cultures, and iron deprivation increased K279a SOD activity. Under iron starvation, SDS-PAGE profile from K279a presented two iron-repressed proteins. Mass spectrometry analysis revealed homology with FepA and another putative TonB-dependent siderophore receptor of K279a. In silico analysis allowed the detection of potential Fur boxes in the respective coding genes. K279a encodes the QS diffusible signal factor (DSF). Under iron restriction K279a produced higher amounts of DSF than under iron rich condition. Finally, F60 was more virulent than K279a in the Galleria mellonella killing assay. These results put in evidence that iron levels regulate, likely through the Fur system, S. maltophilia biofilm formation, oxidative stress response, OMPs expression, DSF production and virulence.
Collapse
Affiliation(s)
- Carlos A García
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Eliana S Alcaraz
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Mirta A Franco
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Beatriz N Passerini de Rossi
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Buenos Aires, Argentina
| |
Collapse
|
37
|
Huedo P, Yero D, Martinez-Servat S, Ruyra À, Roher N, Daura X, Gibert I. Decoding the genetic and functional diversity of the DSF quorum-sensing system in Stenotrophomonas maltophilia. Front Microbiol 2015; 6:761. [PMID: 26284046 PMCID: PMC4517397 DOI: 10.3389/fmicb.2015.00761] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/13/2015] [Indexed: 11/13/2022] Open
Abstract
Stenotrophomonas maltophilia uses the Diffusible Signal Factor (DSF) quorum sensing (QS) system to mediate intra- and inter-specific signaling and regulate virulence-related processes. The components of this system are encoded by the rpf cluster, with genes rpfF and rpfC encoding for the DSF synthase RpfF and sensor RpfC, respectively. Recently, we have shown that there exist two variants of the rpf cluster (rpf-1 and rpf-2), distinguishing two groups of S. maltophilia strains. Surprisingly, only rpf-1 strains produce detectable DSF, correlating with their ability to control biofilm formation, swarming motility and virulence. The evolutive advantage of acquiring two different rpf clusters, the phylogenetic time point and mechanism of this acquisition and the conditions that activate DSF production in rpf-2 strains, are however not known. Examination of this cluster in various species suggests that its variability originated most probably by genetic exchange between rhizosphere bacteria. We propose that rpf-2 variant strains make use of a strategy recently termed as "social cheating." Analysis of cellular and extracellular fatty acids (FAs) of strains E77 (rpf-1) and M30 (rpf-2) suggests that their RpfFs have also a thioesterase activity that facilitates the release of unspecific FAs to the medium in addition to DSF. Production of DSF in rpf-1 strains appears in fact to be modulated by some of these extracellular FAs in addition to other factors such as temperature and nutrients, while in rpf-2 strains DSF biosynthesis is derepressed only upon detection of DSF itself, suggesting that they require cohabitation with DSF-producer bacteria to activate their DSF regulatory machinery. Finally, we show that the mixed rpf-1/rpf-2 population presents synergism in DSF production and virulence capacity in an in vivo infection model. Recovery and quantification of DSF from co-infected animals correlates with the observed mortality rate.
Collapse
Affiliation(s)
- Pol Huedo
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB) Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB) Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Sònia Martinez-Servat
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB) Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Àngels Ruyra
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB) Barcelona, Spain
| | - Nerea Roher
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB) Barcelona, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB) Barcelona, Spain ; Catalan Institution for Research and Advanced Studies Barcelona, Spain
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB) Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
38
|
Ryan RP, An SQ, Allan JH, McCarthy Y, Dow JM. The DSF Family of Cell-Cell Signals: An Expanding Class of Bacterial Virulence Regulators. PLoS Pathog 2015; 11:e1004986. [PMID: 26181439 PMCID: PMC4504480 DOI: 10.1371/journal.ppat.1004986] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many pathogenic bacteria use cell–cell signaling systems involving the synthesis and perception of diffusible signal molecules to control virulence as a response to cell density or confinement to niches. Bacteria produce signals of diverse structural classes. Signal molecules of the diffusible signal factor (DSF) family are cis-2-unsaturated fatty acids. The paradigm is cis-11-methyl-2-dodecenoic acid from Xanthomonas campestris pv. campestris (Xcc), which controls virulence in this plant pathogen. Although DSF synthesis was thought to be restricted to the xanthomonads, it is now known that structurally related molecules are produced by the unrelated bacteria Burkholderia cenocepacia and Pseudomonas aeruginosa. Furthermore, signaling involving these DSF family members contributes to bacterial virulence, formation of biofilms and antibiotic tolerance in these important human pathogens. Here we review the recent advances in understanding DSF signaling and its regulatory role in different bacteria. These advances include the description of the pathway/mechanism of DSF biosynthesis, identification of novel DSF synthases and new members of the DSF family, the demonstration of a diversity of DSF sensors to include proteins with a Per-Arnt-Sim (PAS) domain and the description of some of the signal transduction mechanisms that impinge on virulence factor expression. In addition, we address the role of DSF family signals in interspecies signaling that modulates the behavior of other microorganisms. Finally, we consider a number of recently reported approaches for the control of bacterial virulence through the modulation of DSF signaling.
Collapse
Affiliation(s)
- Robert P. Ryan
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail: (RPR); (JMD)
| | - Shi-qi An
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - John H. Allan
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Yvonne McCarthy
- School of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - J. Maxwell Dow
- School of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
- * E-mail: (RPR); (JMD)
| |
Collapse
|
39
|
Type II Secretion-Dependent Degradative and Cytotoxic Activities Mediated by Stenotrophomonas maltophilia Serine Proteases StmPr1 and StmPr2. Infect Immun 2015; 83:3825-37. [PMID: 26169274 DOI: 10.1128/iai.00672-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023] Open
Abstract
Stenotrophomonas maltophilia is an emerging opportunistic pathogen that primarily causes pneumonia and bacteremia in immunocompromised individuals. We recently reported that S. maltophilia strain K279a encodes the Xps type II secretion system and that Xps promotes rounding, actin rearrangement, detachment, and death in the human lung epithelial cell line A549. Here, we show that Xps-dependent cell rounding and detachment occur with multiple human and murine cell lines and that serine protease inhibitors block Xps-mediated rounding and detachment of A549 cells. Using genetic analysis, we determined that the serine proteases StmPr1 and StmPr2, which were confirmed to be Xps substrates, are predominantly responsible for secreted proteolytic activities exhibited by strain K279a, as well as the morphological and cytotoxic effects on A549 cells. Supernatants from strain K279a also promoted the degradation of type I collagen, fibrinogen, and fibronectin in a predominantly Xps- and protease-dependent manner, although some Xps-independent degradation of fibrinogen was observed. Finally, Xps, and predominantly StmPr1, degraded interleukin 8 (IL-8) secreted by A549 cells during coculture with strain K279a. Our findings indicate that while StmPr1 and StmPr2 are predominantly responsible for A549 cell rounding, extracellular matrix protein degradation, and IL-8 degradation, additional Xps substrates also contribute to these activities. Altogether, our data provide new insight into the virulence potential of the S. maltophilia Xps type II secretion system and its StmPr1 and StmPr2 substrates.
Collapse
|
40
|
Martínez P, Huedo P, Martinez-Servat S, Planell R, Ferrer-Navarro M, Daura X, Yero D, Gibert I. Stenotrophomonas maltophilia responds to exogenous AHL signals through the LuxR solo SmoR (Smlt1839). Front Cell Infect Microbiol 2015; 5:41. [PMID: 26029670 PMCID: PMC4432800 DOI: 10.3389/fcimb.2015.00041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/28/2015] [Indexed: 11/22/2022] Open
Abstract
Quorum Sensing (QS) mediated by Acyl Homoserine Lactone (AHL) molecules are probably the most widespread and studied among Gram-negative bacteria. Canonical AHL systems are composed by a synthase (LuxI family) and a regulator element (LuxR family), whose genes are usually adjacent in the genome. However, incomplete AHL-QS machinery lacking the synthase LuxI is frequently observed in Proteobacteria, and the regulator element is then referred as LuxR solo. It has been shown that certain LuxR solos participate in interspecific communication by detecting signals produced by different organisms. In the case of Stenotrophomonas maltophilia, a preliminary genome sequence analysis revealed numerous putative luxR genes, none of them associated to a luxI gene. From these, the hypothetical LuxR solo Smlt1839, here designated SmoR, presents a conserved AHL binding domain and a helix-turn-helix DNA binding motif. Its genomic organization—adjacent to hchA gene—indicate that SmoR belongs to the new family “LuxR regulator chaperone HchA-associated.” AHL-binding assays revealed that SmoR binds to AHLs in-vitro, at least to oxo-C8-homoserine lactone, and it regulates operon transcription, likely by recognizing a conserved palindromic regulatory box in the hchA upstream region. Supplementation with concentrated supernatants from Pseudomonas aeruginosa, which contain significant amounts of AHLs, promoted swarming motility in S. maltophilia. Contrarily, no swarming stimulation was observed when the P. aeruginosa supernatant was treated with the lactonase AiiA from Bacillus subtilis, confirming that AHL contributes to enhance the swarming ability of S. maltophilia. Finally, mutation of smoR resulted in a swarming alteration and an apparent insensitivity to the exogenous AHLs provided by P. aeruginosa. In conclusion, our results demonstrate that S. maltophilia senses AHLs produced by neighboring bacteria through the LuxR solo SmoR, regulating population behaviors such as swarming motility.
Collapse
Affiliation(s)
- Paula Martínez
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Pol Huedo
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Sònia Martinez-Servat
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Raquel Planell
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Mario Ferrer-Navarro
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Xavier Daura
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Catalan Institution for Research and Advanced Studies Barcelona, Spain
| | - Daniel Yero
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Isidre Gibert
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
41
|
Song Z, Zhao Y, Zhou X, Wu G, Zhang Y, Qian G, Liu F. Identification and Characterization of Two Novel DSF-Controlled Virulence-Associated Genes Within the nodB-rhgB Locus of Xanthomonas oryzae pv. oryzicola Rs105. PHYTOPATHOLOGY 2015; 105:588-596. [PMID: 26020828 DOI: 10.1094/phyto-07-14-0190-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Xanthomonas oryzae pv. oryzicola and X. oryzae pv. oryzae are two pathovars of X. oryzae that cause leaf streak and blight in rice, respectively. These two bacterial pathogens cause different disease symptoms by utilizing different infection sites on rice. Compared with X. oryzae pv. oryzae, the molecular virulence mechanism of X. oryzae pv. oryzicola remains largely unknown. Previously, we identified a unique diffusible signal factor (DSF)-controlled virulence-related gene (hshB) in X. oryzae pv. oryzicola Rs105 located in the nodB-rghB locus, which is absent in X. oryzae pv. oryzae PXO99(A). In the present study, we identified two additional genes within this locus (hshA and hshC) that were unique to X. oryzae pv. oryzicola Rs105 compared with X. oryzae pv. oryzae PXO99(A), and we found that the transcription of these genes was regulated by DSF signaling in X. oryzae pv. oryzicola. The mutation of these genes impaired the virulence of the wild-type Rs105 when using a low inoculation density of X. oryzae pv. oryzicola. In contrast to hshB, the mutation of these genes did not have any visible effect on characterized virulence-related functions, including in vitro growth, extracellular polysaccharide production, extracellular protease activity, and antioxidative ability. However, we found that mutation of hshA or hshC significantly reduced the in planta growth ability and epiphytic survival level of X. oryzae pv. oryzicola cells, which was the probable mechanisms of involvement of these two genes in virulence. Collectively, our studies of X. oryzae pv. oryzicola have identified two novel DSF-controlled virulence-associated genes (hshA and hshC), which will add to our understanding of the regulatory mechanisms of conserved DSF virulence signaling in Xanthomonas species.
Collapse
Affiliation(s)
- Zhiwei Song
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Yancun Zhao
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Xingyang Zhou
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Guichun Wu
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Yuqiang Zhang
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Guoliang Qian
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Fengquan Liu
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| |
Collapse
|
42
|
de Rossi BP, García C, Alcaraz E, Franco M. Stenotrophomonas maltophilia interferes via the DSF-mediated quorum sensing system with Candida albicans filamentation and its planktonic and biofilm modes of growth. Rev Argent Microbiol 2015; 46:288-97. [PMID: 25576410 DOI: 10.1016/s0325-7541(14)70084-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/29/2014] [Indexed: 11/16/2022] Open
Abstract
Stenotrophomonas maltophilia is a nosocomial pathogen of increasing importance. S. maltophilia K279a genome encodes a diffusible signal factor (DSF) dependent quorum sensing (QS) system that was first identified in Xanthomonas campestris pv. campestris. DSF from X. campestris is a homologue of farnesoic acid, a Candida albicans QS signal which inhibits the yeast-to-hyphal shift. Here we describe the antagonistic effects of S. maltophilia on C. albicans on filamentation as well as on its planktonic and biofilm modes of growth. To determine the role of the DSF-mediated quorum sensing system in these effects, C. albicans ATCC 10231 and C. albicans tup1 mutant, locked in the filamentous form, were grown with K279a or with its rpfF deletion mutant (DSF-). A significant reduction in viable counts of C. albicans was observed in planktonic cocultures with K279a as well as in mixed biofilms. Furthermore, no viable cells of C. albicans tup1 were recovered from K279a mixed biofilms. Fungal viability was also assessed by labeling biofilms with SYTO 9 and propidium iodide. Confocal images showed that K279a can kill hyphae and also yeast cells. Light microscopic analysis showed that K279a severely affects hyphae integrity. On the other hand, the presence of K279a rpfF did not affect fungal morphology or viability. In conclusion, we report for the first time that S. maltophilia interferes with two key virulence factors of C. albicans, the yeast-to-hyphal transition and biofilm formation. DSF could be directly responsible for these effects or may induce the gene expression involved in antifungal activity.
Collapse
Affiliation(s)
- Beatriz Passerini de Rossi
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Carlos García
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Eliana Alcaraz
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mirta Franco
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
43
|
Devos S, Van Oudenhove L, Stremersch S, Van Putte W, De Rycke R, Van Driessche G, Vitse J, Raemdonck K, Devreese B. The effect of imipenem and diffusible signaling factors on the secretion of outer membrane vesicles and associated Ax21 proteins in Stenotrophomonas maltophilia. Front Microbiol 2015; 6:298. [PMID: 25926824 PMCID: PMC4396451 DOI: 10.3389/fmicb.2015.00298] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/26/2015] [Indexed: 02/05/2023] Open
Abstract
Outer membrane vesicles (OMVs) are small nanoscale structures that are secreted by bacteria and that can carry nucleic acids, proteins, and small metabolites. They can mediate intracellular communication and play a role in virulence. In this study, we show that treatment with the β-lactam antibiotic imipenem leads to a dramatic increase in the secretion of outer membrane vesicles in the nosocomial pathogen Stenotrophomonas maltophilia. Proteomic analysis of their protein content demonstrated that the OMVs contain the chromosomal encoded L1 metallo-β-lactamase and L2 serine-β-lactamase. Moreover, the secreted OMVs contain large amounts of two Ax21 homologs, i.e., outer membrane proteins known to be involved in virulence and biofilm formation. We show that OMV secretion and the levels of Ax21 in the OMVs are dependent on the quorum sensing diffusible signal system (DSF). More specific, we demonstrate that the S. maltophilia DSF cis-Δ2-11-methyl-dodecenoic acid and, to a lesser extent, the Burkholderia cenocepacia DSF cis-Δ2-dodecenoic acid, stimulate OMV secretion. By a targeted proteomic analysis, we confirmed that DSF-induced OMVs contain large amounts of the Ax21 homologs, but not the β-lactamases. This work illustrates that both quorum sensing and disturbance of the peptidoglycan biosynthesis provoke the release of OMVs and that OMV content is context dependent.
Collapse
Affiliation(s)
- Simon Devos
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Laurence Van Oudenhove
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Stephan Stremersch
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University Ghent, Belgium
| | - Wouter Van Putte
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Inflammation Research Center, Ghent University Ghent, Belgium ; Inflammation Research Center, Flemish Institute for Biotechnology (VIB) Ghent, Belgium
| | - Gonzalez Van Driessche
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Jolien Vitse
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Koen Raemdonck
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University Ghent, Belgium
| | - Bart Devreese
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| |
Collapse
|
44
|
The host plant metabolite glucose is the precursor of diffusible signal factor (DSF) family signals in Xanthomonas campestris. Appl Environ Microbiol 2015; 81:2861-8. [PMID: 25681189 DOI: 10.1128/aem.03813-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Plant pathogen Xanthomonas campestris pv. campestris produces cis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous addition of host plant juice or ethanol extract to the growth medium of X. campestris pv. campestris could significantly boost DSF family signal production. It was subsequently revealed that X. campestris pv. campestris produces not only DSF but also BDSF (cis-2-dodecenoic acid) and another novel DSF family signal, which was designated DSF-II. BDSF was originally identified in Burkholderia cenocepacia to be involved in regulation of motility, biofilm formation, and virulence in B. cenocepacia. Functional analysis suggested that DSF-II plays a role equal to that of DSF in regulation of biofilm dispersion and virulence factor production in X. campestris pv. campestris. Furthermore, chromatographic separation led to identification of glucose as a specific molecule stimulating DSF family signal biosynthesis in X. campestris pv. campestris. (13)C-labeling experiments demonstrated that glucose acts as a substrate to provide a carbon element for DSF biosynthesis. The results of this study indicate that X. campestris pv. campestris could utilize a common metabolite of the host plant to enhance DSF family signal synthesis and therefore promote virulence.
Collapse
|
45
|
An SQ, Caly DL, McCarthy Y, Murdoch SL, Ward J, Febrer M, Dow JM, Ryan RP. Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence. PLoS Pathog 2014; 10:e1004429. [PMID: 25329577 PMCID: PMC4199771 DOI: 10.1371/journal.ppat.1004429] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/28/2014] [Indexed: 01/14/2023] Open
Abstract
Bis-(3′,5′) cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc). This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (Kd∼2 µM). Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence. Cyclic di-GMP is a bacterial second messenger that acts to regulate a wide range of functions including those that contribute to the virulence of pathogens. Our knowledge of the different actions and receptors for this nucleotide is far from complete. An understanding of the action of these elements may be key to interference with the processes they control. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris. This analysis identified XC_3703, a protein of the YajQ family that was able to bind cyclic di-GMP with high affinity. Mutation of XC_3703 led to reduced virulence of X. campestris to plants and alteration in biofilm formation. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence and raise the possibility that other members of the YajQ family, which occur widely in bacteria, also act in cyclic di-GMP signalling pathways.
Collapse
Affiliation(s)
- Shi-qi An
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Delphine L. Caly
- School of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Yvonne McCarthy
- School of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Sarah L. Murdoch
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Joseph Ward
- Genomic Sequencing Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Melanie Febrer
- Genomic Sequencing Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - J. Maxwell Dow
- School of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Robert P. Ryan
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Zhuo C, Zhao QY, Xiao SN. The impact of spgM, rpfF, rmlA gene distribution on biofilm formation in Stenotrophomonas maltophilia. PLoS One 2014; 9:e108409. [PMID: 25285537 PMCID: PMC4186781 DOI: 10.1371/journal.pone.0108409] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Stenotrophomonas maltophilia is emerging as one of the most frequently found bacteria in chronic pulmonary infection. Biofilm is increasingly recognized as a contributing factor to disease pathogenesis. In the present study, a total of 37 isolates of S. maltophilia obtained from chronic pulmonary infection patients were evaluated to the relationship between biofilm production and the relative genes expression. METHODS The clonal relatedness of isolates was determined by pulse-field gel electrophoresis. Biofilm formation assays were performed by crystal violet assay, and confirmed by Electron microscopy analysis and CLSM analysis. PCR was employed to learn gene distribution and expression. RESULTS Twenty-four pulsotypes were designated for 37 S. maltophilia isolates, and these 24 pulsotypes exhibited various levels of biofilm production, 8 strong biofilm-producing S. maltophilia strains with OD492 value above 0.6, 14 middle biofilm-producing strains with OD492 average value of 0.4 and 2 weak biofilm-producing strains with OD492 average value of 0.19. CLSM analysis showed that the isolates from the early stage of chronic infection enable to form more highly structured and multilayered biofim than those in the late stage. The prevalence of spgM, rmlA, and rpfF genes was 83.3%, 87.5%, and 50.0% in 24 S. maltophilia strains, respectively, and the presence of rmlA, spgM or rpfF had a close relationship with biofilm formation but did not significantly affect the mean amount of biofilm. Significant mutations of spgM and rmlA were found in both strong and weak biofilm-producing strains. CONCLUSION Mutations in spgM and rmlA may be relevant to biofilm formation in the clinical isolates of S. maltophilia.
Collapse
Affiliation(s)
- Chao Zhuo
- State Key Laboratory of Respiratory Diseases, the first affiliated hospital of Guangzhou Medical College, Guangzhou, China
- * E-mail:
| | - Qian-yu Zhao
- State Key Laboratory of Respiratory Diseases, the first affiliated hospital of Guangzhou Medical College, Guangzhou, China
| | - Shu-nian Xiao
- State Key Laboratory of Respiratory Diseases, the first affiliated hospital of Guangzhou Medical College, Guangzhou, China
| |
Collapse
|
47
|
The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl Environ Microbiol 2014; 80:6976-91. [PMID: 25192989 DOI: 10.1128/aem.01576-14] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Persister cells, which are tolerant to antimicrobials, contribute to biofilm recalcitrance to therapeutic agents. In turn, the ability to kill persister cells is believed to significantly improve efforts in eradicating biofilm-related, chronic infections. While much research has focused on elucidating the mechanism(s) by which persister cells form, little is known about the mechanism or factors that enable persister cells to revert to an active and susceptible state. Here, we demonstrate that cis-2-decenoic acid (cis-DA), a fatty acid signaling molecule, is able to change the status of Pseudomonas aeruginosa and Escherichia coli persister cells from a dormant to a metabolically active state without an increase in cell number. This cell awakening is supported by an increase of the persister cells' respiratory activity together with changes in protein abundance and increases of the transcript expression levels of several metabolic markers, including acpP, 16S rRNA, atpH, and ppx. Given that most antimicrobials target actively growing cells, we also explored the effect of cis-DA on enhancing antibiotic efficacy in killing persister cells due to their inability to keep a persister cell state. Compared to antimicrobial treatment alone, combinational treatments of persister cell subpopulations with antimicrobials and cis-DA resulted in a significantly greater decrease in cell viability. In addition, the presence of cis-DA led to a decrease in the number of persister cells isolated. We thus demonstrate the ability of a fatty acid signaling molecule to revert bacterial cells from a tolerant phenotype to a metabolically active, antimicrobial-sensitive state.
Collapse
|
48
|
Alavi P, Starcher MR, Thallinger GG, Zachow C, Müller H, Berg G. Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. BMC Genomics 2014; 15:482. [PMID: 24939220 PMCID: PMC4101175 DOI: 10.1186/1471-2164-15-482] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 06/11/2014] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In recent years, the number of human infections caused by opportunistic pathogens has increased dramatically. Plant rhizospheres are one of the most typical natural reservoirs for these pathogens but they also represent a great source for beneficial microbes with potential for biotechnological applications. However, understanding the natural variation and possible differences between pathogens and beneficials is the main challenge in furthering these possibilities. The genus Stenotrophomonas contains representatives found to be associated with human and plant host. RESULTS We used comparative genomics as well as transcriptomic and physiological approaches to detect significant borders between the Stenotrophomonas strains: the multi-drug resistant pathogenic S. maltophilia and the plant-associated strains S. maltophilia R551-3 and S. rhizophila DSM14405T (both are biocontrol agents). We found an overall high degree of sequence similarity between the genomes of all three strains. Despite the notable similarity in potential factors responsible for host invasion and antibiotic resistance, other factors including several crucial virulence factors and heat shock proteins were absent in the plant-associated DSM14405T. Instead, S. rhizophila DSM14405T possessed unique genes for the synthesis and transport of the plant-protective spermidine, plant cell-wall degrading enzymes, and high salinity tolerance. Moreover, the presence or absence of bacterial growth at 37°C was identified as a very simple method in differentiating between pathogenic and non-pathogenic isolates. DSM14405T is not able to grow at this human-relevant temperature, most likely in great part due to the absence of heat shock genes and perhaps also because of the up-regulation at increased temperatures of several genes involved in a suicide mechanism. CONCLUSIONS While this study is important for understanding the mechanisms behind the emerging pattern of infectious diseases, it is, to our knowledge, the first of its kind to assess the risk of beneficial strains for biotechnological applications. We identified certain traits typical of pathogens such as growth at the human body temperature together with the production of heat shock proteins as opposed to a temperature-regulated suicide system that is harnessed by beneficials.
Collapse
Affiliation(s)
- Peyman Alavi
- />Graz University of Technology; Environmental Biotechnology, Petersgasse 12, 8010 Graz, Austria
| | - Margaret R Starcher
- />Graz University of Technology; Environmental Biotechnology, Petersgasse 12, 8010 Graz, Austria
| | - Gerhard G Thallinger
- />Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
| | - Christin Zachow
- />Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
| | - Henry Müller
- />Graz University of Technology; Environmental Biotechnology, Petersgasse 12, 8010 Graz, Austria
| | - Gabriele Berg
- />Graz University of Technology; Environmental Biotechnology, Petersgasse 12, 8010 Graz, Austria
| |
Collapse
|
49
|
Two different rpf clusters distributed among a population of Stenotrophomonas maltophilia clinical strains display differential diffusible signal factor production and virulence regulation. J Bacteriol 2014; 196:2431-42. [PMID: 24769700 DOI: 10.1128/jb.01540-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The quorum-sensing (QS) system present in the emerging nosocomial pathogen Stenotrophomonas maltophilia is based on the signaling molecule diffusible signal factor (DSF). Production and detection of DSF are governed by the rpf cluster, which encodes the synthase RpfF and the sensor RpfC, among other components. Despite a well-studied system, little is known about its implication in virulence regulation in S. maltophilia. Here, we have analyzed the rpfF gene from 82 S. maltophilia clinical isolates. Although rpfF was found to be present in all of the strains, it showed substantial variation, with two populations (rpfF-1 and rpfF-2) clearly distinguishable by the N-terminal region of the protein. Analysis of rpfC in seven complete genome sequences revealed a corresponding variability in the N-terminal transmembrane domain of its product, suggesting that each RpfF variant has an associated RpfC variant. We show that only RpfC-RpfF-1 variant strains display detectable DSF production. Heterologous rpfF complementation of ΔrpfF mutants of a representative strain of each variant suggests that RpfF-2 is, however, functional and that the observed DSF-deficient phenotype of RpfC-RpfF-2 variant strains is due to permanent repression of RpfF-2 by RpfC-2. This is corroborated by the ΔrpfC mutant of the RpfC-RpfF-2 representative strain. In line with this observations, deletion of rpfF from the RpfC-RpfF-1 strain leads to an increase in biofilm formation, a decrease in swarming motility, and relative attenuation in the Caenorhabditis elegans and zebrafish infection models, whereas deletion of the same gene from the representative RpfC-RpfF-2 strain has no significant effect on these virulence-related phenotypes.
Collapse
|
50
|
Virulence genes in clinical and environmental Stenotrophomas maltophilia isolates: a genome sequencing and gene expression approach. Microb Pathog 2014; 67-68:20-30. [PMID: 24530922 DOI: 10.1016/j.micpath.2014.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/29/2014] [Accepted: 02/05/2014] [Indexed: 11/21/2022]
Abstract
The rate of nosocomial infections with the opportunistic pathogen Stenotrophomonas maltophilia has remarkably increased in the last decade. To determine S. maltophilia virulence genes, the complete genome sequences of two S. maltophilia isolates were compared. The clinical strain SKK35 was proved virulent in an amoeba host-pathogen model, and wastewater strain RA8 was determined as non-virulent in the amoeba model. The genome sequences of three additional S. maltophilia strains, K279a (clinical, non-virulent against amoeba), R511-3 and SKA14 (both environmental, non-virulent against amoeba) were taken into account as reference strains. We were able to show that all clinical and environmental S. maltophilia strains presented comparable distribution of so far identified potential virulence genes, regardless to their virulence potential against amoebae. Aside from that, strain SKK35 was found harboring a putative, strain specific pathogenicity island, encoding two proteins from the RTX (repeats-in-toxin) family. The actual expression of the RTX genes was verified in growth experiments in different culture media containing blood or blood components and in co-cultures with amoeba.
Collapse
|