1
|
Ghabban H, Albalawi DA, Al-otaibi AS, Alshehri D, Alenzi AM, Alatawy M, Alatawi HA, Alnagar DK, Bahieldin A. Investigating the bacterial community of gray mangroves ( Avicennia marina) in coastal areas of Tabuk region. PeerJ 2024; 12:e18282. [PMID: 39434799 PMCID: PMC11493069 DOI: 10.7717/peerj.18282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Mangrove vegetation, a threatened and unique inter-tidal ecosystem, harbours a complex and largely unexplored bacterial community crucial for nutrient cycling and the degradation of toxic pollutants in coastal areas. Despite its importance, the bacterial community composition of the gray mangrove (Avicennia marina) in the Red Sea coastal regions remains under-studied. This study aims to elucidate the structural and functional diversity of the microbiome in the bulk and rhizospheric soils associated with A. marina in the coastal areas of Ras Alshabaan-Umluj (Umluj) and Almunibrah-Al-Wajh (Al-Wajh) within the Tabuk region of Saudi Arabia. Amplicon sequencing targeting the 16S rRNA was performed using the metagenomic DNAs from the bulk and rhizospheric soil samples from Umluj and Al-Wajh. A total of 6,876 OTUs were recovered from all samples, of which 1,857 OTUs were common to all locations while the total number of OTUs unique to Al-wajh was higher (3,011 OTUs) than the total number of OTUs observed (1,324 OTUs) at Umluj site. Based on diversity indices, overall bacterial diversity was comparatively higher in rhizospheric soil samples of both sites. Comparing the diversity indices for the rhizosphere samples from the two sites revealed that the diversity was much higher in the rhizosphere samples from Al-Wajh as compared to those from Umluj. The most dominant genera in rhizosphere sample of Al-Wajh were Geminicoccus and Thermodesulfovibrio while the same habitat of the Umluj site was dominated by Propionibacterium, Corynebacterium and Staphylococcus. Bacterial functional potential prediction analyses showed that bacteria from two locations have almost similar patterns of functional genes including amino acids and carbohydrates metabolisms, sulfate reduction and C-1 compound metabolism and xenobiotics biodegradation. However, the rhizosphere samples of both sites harbour more genes involved in the utilization and assimilation of C-1 compounds. Our results reveal that bacterial communities inhabiting the rhizosphere of A. marina differed significantly from those in the bulk soil, suggesting a possible role of A. marina roots in shaping these bacterial communities. Additionally, not only vegetation but also geographical location appears to influence the overall bacterial composition at the two sites.
Collapse
Affiliation(s)
- Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Doha A. Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Amenah S. Al-otaibi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Asma Massad Alenzi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Hanan Ali Alatawi
- Department of Biological Sciences, University Collage of Haqel, University of Tabuk, Tabuk, Saudi Arabia
| | - Dalia Kamal Alnagar
- Department of Statistics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Lin H, Peddada SD. Multigroup analysis of compositions of microbiomes with covariate adjustments and repeated measures. Nat Methods 2024; 21:83-91. [PMID: 38158428 PMCID: PMC10776411 DOI: 10.1038/s41592-023-02092-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/17/2023] [Indexed: 01/03/2024]
Abstract
Microbiome differential abundance analysis methods for two groups are well-established in the literature. However, many microbiome studies involve more than two groups, sometimes even ordered groups such as stages of a disease, and require different types of comparison. Standard pairwise comparisons are inefficient in terms of power and false discovery rates. In this Article, we propose a general framework, ANCOM-BC2, for performing a wide range of multigroup analyses with covariate adjustments and repeated measures. We illustrate our methodology through two real datasets. The first example explores the effects of aridity on the soil microbiome, and the second example investigates the effects of surgical interventions on the microbiome of patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Huang Lin
- Biostatistics and Computational Biology Branch, NIEHS, NIH, Research Triangle Park, NC, USA
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD, USA
| | - Shyamal Das Peddada
- Biostatistics and Computational Biology Branch, NIEHS, NIH, Research Triangle Park, NC, USA.
| |
Collapse
|
3
|
Chen X, Tang L, Wu K, Mo Y, Tang Q, Li G, Zhu Y. Combined contribution of biochar and introduced AM fungi on lead stability and microbial community in polluted agricultural soil. Front Microbiol 2023; 14:1284321. [PMID: 38033595 PMCID: PMC10684681 DOI: 10.3389/fmicb.2023.1284321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Lead (Pb) pollution in agricultural soil has been accelerated by industrial development and human activities, and poses a major threat to agricultural ecosystems. Both biochar and arbuscular mycorrhiza (AM) fungi are considered to play an important role in remediation of Pb contaminated soil. Methods The combined remediation effects of introduced AM fungi and biochar on soil properties, Pb availability, microbial community and functional profiles were systematically investigated in unsterilized Pb-polluted agricultural soil. Results Results indicated that soil nutrients were significantly improved through the combined application of biochar and introduced AM fungi. The introduced AM fungi combined with biochar prepared at 400°C and 500°C promoted the transformation of Pb to a more stable state with low bioavailability. Moreover, the addition of AM fungi and biochar affected the relative abundances of dominant bacteria and fungi at the phylum and genus levels. Biochar mainly affected soil bacterial community and obviously increased the relative abundance of Actinobacteria and Blastococcus. The interactions between biochar and introduced AM fungi mainly affected fungal community, and increased the abundance of Ascomycota and Botryotrichum. Further, PICRUSt analysis indicated biochar amendment supported stronger bacterial metabolic functional potentials. Discussion Therefore, the combined application of biochar and Therefore, the combined application of biochar and introduced AM fungi could improve soil nutrients, reduce Pb introduced AM fungi could improve soil nutrients, reduce Pb availability, availability, and show and show a positive effect on a positive effect on indigenous microbial communities and indigenous microbial communities and metabolic functions in metabolic functions in farmland soil.
Collapse
Affiliation(s)
- Xuedong Chen
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Lin Tang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Kongyang Wu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Yifan Mo
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Qian Tang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Gaojie Li
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ying Zhu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
4
|
Shilova SA, Matyuta IO, Petrova ES, Nikolaeva AY, Rakitina TV, Minyaev ME, Boyko KM, Popov VO, Bezsudnova EY. Expanded Substrate Specificity in D-Amino Acid Transaminases: A Case Study of Transaminase from Blastococcus saxobsidens. Int J Mol Sci 2023; 24:16194. [PMID: 38003383 PMCID: PMC10671532 DOI: 10.3390/ijms242216194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Enzymes with expanded substrate specificity are good starting points for the design of biocatalysts for target reactions. However, the structural basis of the expanded substrate specificity is still elusive, especially in the superfamily of pyridoxal-5'-phosphate-dependent transaminases, which are characterized by a conserved organization of both the active site and functional dimer. Here, we analyze the structure-function relationships in a non-canonical D-amino acid transaminase from Blastococcus saxobsidens, which is active towards D-amino acids and primary (R)-amines. A detailed study of the enzyme includes a kinetic analysis of its substrate scope and a structural analysis of the holoenzyme and its complex with phenylhydrazine-a reversible inhibitor and analogue of (R)-1-phenylethylamine-a benchmark substrate of (R)-selective amine transaminases. We suggest that the features of the active site of transaminase from B. saxobsidens, such as the flexibility of the R34 and R96 residues, the lack of bulky residues in the β-turn at the entrance to the active site, and the short O-pocket loop, facilitate the binding of substrates with and without α-carboxylate groups. The proposed structural determinants of the expanded substrate specificity can be used for the design of transaminases for the stereoselective amination of keto compounds.
Collapse
Affiliation(s)
- Sofia A. Shilova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
| | - Ilya O. Matyuta
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
| | - Elizaveta S. Petrova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alena Y. Nikolaeva
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
| | - Tatiana V. Rakitina
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Mikhail E. Minyaev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia;
| | - Konstantin M. Boyko
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
| | - Vladimir O. Popov
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina Yu. Bezsudnova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
| |
Collapse
|
5
|
Montero-Calasanz MDC, Yaramis A, Rohde M, Schumann P, Klenk HP, Meier-Kolthoff JP. Genotype-phenotype correlations within the Geodermatophilaceae. Front Microbiol 2022; 13:975365. [PMID: 36439792 PMCID: PMC9686282 DOI: 10.3389/fmicb.2022.975365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
The integration of genomic information into microbial systematics along with physiological and chemotaxonomic parameters provides for a reliable classification of prokaryotes. In silico analysis of chemotaxonomic traits is now being introduced to replace characteristics traditionally determined in the laboratory with the dual goal of both increasing the speed of the description of taxa and the accuracy and consistency of taxonomic reports. Genomics has already successfully been applied in the taxonomic rearrangement of Geodermatophilaceae (Actinomycetota) but in the light of new genomic data the taxonomy of the family needs to be revisited. In conjunction with the taxonomic characterisation of four strains phylogenetically located within the family, we conducted a phylogenetic analysis of the whole proteomes of the sequenced type strains and established genotype-phenotype correlations for traits related to chemotaxonomy, cell morphology and metabolism. Results indicated that the four isolates under study represent four novel species within the genus Blastococcus. Additionally, the genera Blastococcus, Geodermatophilus and Modestobacter were shown to be paraphyletic. Consequently, the new genera Trujillonella, Pleomorpha and Goekera were proposed within the Geodermatophilaceae and Blastococcus endophyticus was reclassified as Trujillonella endophytica comb. nov., Geodermatophilus daqingensis as Pleomorpha daqingensis comb. nov. and Modestobacter deserti as Goekera deserti comb. nov. Accordingly, we also proposed emended descriptions of Blastococcus aggregatus, Blastococcus jejuensis, Blastococcus saxobsidens and Blastococcus xanthilyniticus. In silico chemotaxonomic results were overall consistent with wet-lab results. Even though in silico discriminatory levels varied depending on the respective chemotaxonomic trait, this approach is promising for effectively replacing and/or complementing chemotaxonomic analyses at taxonomic ranks above the species level. Finally, interesting but previously overlooked insights regarding morphology and ecology were revealed by the presence of a repertoire of genes related to flagellum synthesis, chemotaxis, spore production and pilus assembly in all representatives of the family. A rich carbon metabolism including four different CO2 fixation pathways and a battery of enzymes able to degrade complex carbohydrates were also identified in Blastococcus genomes.
Collapse
Affiliation(s)
- Maria del Carmen Montero-Calasanz
- IFAPA Las Torres-Andalusian Institute of Agricultural and Fisheries Research and Training, Junta de Andalucía, Seville, Spain
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adnan Yaramis
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manfred Rohde
- Central Facility for Microscopy, HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jan P. Meier-Kolthoff
- Department Bioinformatics and Databases, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
6
|
Jiang ZM, Zhang BH, Sun HM, Zhang T, Yu LY, Zhang YQ. Properties of Modestobacter deserti sp. nov., a Kind of Novel Phosphate-Solubilizing Actinobacteria Inhabited in the Desert Biological Soil Crusts. Front Microbiol 2021; 12:742798. [PMID: 34803963 PMCID: PMC8602919 DOI: 10.3389/fmicb.2021.742798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
Three Gram-stain-positive, aerobic, motile actinobacterial strains designated as CPCC 205119T, CPCC 205215, and CPCC 205251 were isolated from different biological soil crust samples collected from Tengger Desert, China. The 16S rRNA gene sequence comparison of these three strains showed they had almost identical 16S rRNA genes, which were closely related to members of the family Geodermatophilaceae, with the highest similarities of 96.3–97.3% to the species of Modestobacter. In the phylogenetic tree based on 16S rRNA gene sequences, these isolates clustered into a subclade next to the branch containing the species of Modestobacter lapidis and Modestobacter multiseptatus, within the lineage of the genus Modestobacter. The comparative genomic characteristics (values of ANI, dDDH, AAI, and POCP) and the phenotypic properties (morphological, physiological, and chemotaxonomic characteristics) of these isolates readily supported to affiliate them to the genus Modestobacter as a single separate species. For which, we proposed that the isolates CPCC 205119T, CPCC 205215, and CPCC 205251 represent a novel species of the genus Modestobacter as Modestobacter deserti sp. nov. CPCC 205119T (=I12A-02624=NBRC 113528T=KCTC 49201T) is the type strain. The genome of strain CPCC 205119T consisted of one chromosome (4,843,235bp) containing 4,424 coding genes, 48 tRNA genes, five rRNA genes, three other ncRNA genes, and 101 pseudogenes, with G+C content of 74.7%. The whole-genome sequences analysis indicated that this species contained alkaline phosphatase genes (phoA/phoD), phosphate transport-related genes (phoU, phnC, phnD, phnE, phoB, phoH, phoP, phoR, pitH, ppk, pstA, pstB, pstC, and pstS), trehalose-phosphate synthase gene (otsA), trehalose 6-phosphate phosphatase gene (otsB) and other encoding genes for the properties that help the microorganisms to adapt to harsh environmental conditions prevalent in deserts. Strains of this species could solubilize tricalcium phosphate [Ca3(PO4)2] and phytin, assimilate pyrophosphate, thiophosphate, dithiophosphate, phosphoenol pyruvate, 2-deoxy-d-glucose-6-phosphate, and cysteamine-S-phosphate.
Collapse
Affiliation(s)
- Zhu-Ming Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bing-Huo Zhang
- College of Life Science, Jiujiang University, Jiujiang, China
| | - Hong-Min Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Draft Genome Sequences of Blastococcus sp. Clones TML/M2B and TML/C7B, with Different Motilities, Isolated in a Laboratory. Microbiol Resour Announc 2021; 10:10/12/e00121-21. [PMID: 33766900 PMCID: PMC7996459 DOI: 10.1128/mra.00121-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Two novel Blastococcus sp. clones, TML/M2B and TML/C7B, with 2 stable different growth phenotypes, were isolated from a laboratory tissue culture. The draft genome sequences generated through genomic sequencing of clones TML/M2B and TML/C7B contain 4 and 2 contigs, respectively. The respective genome sizes are 4.10 Mb and 4.11 Mb, with GC contents of 74.17% and 74.14%. Two novel Blastococcus sp. clones, TML/M2B and TML/C7B, with 2 different stable growth phenotypes, were isolated from a laboratory tissue culture. The draft genome sequences generated through genomic sequencing of clones TML/M2B and TML/C7B contain 4 and 2 contigs, respectively. The respective genome sizes are 4.10 Mb and 4.11 Mb, with G+C contents of 74.17% and 74.14%, respectively.
Collapse
|
8
|
Salam LB, Obayori OS, Ilori MO, Amund OO. Acenaphthene biodegradation and structural and functional metagenomics of the microbial community of an acenaphthene-enriched animal charcoal polluted soil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Villa F, Cappitelli F. The Ecology of Subaerial Biofilms in Dry and Inhospitable Terrestrial Environments. Microorganisms 2019; 7:microorganisms7100380. [PMID: 31547498 PMCID: PMC6843906 DOI: 10.3390/microorganisms7100380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/23/2022] Open
Abstract
The ecological relationship between minerals and microorganisms arguably represents one of the most important associations in dry terrestrial environments, since it strongly influences major biochemical cycles and regulates the productivity and stability of the Earth’s food webs. Despite being inhospitable ecosystems, mineral substrata exposed to air harbor form complex and self-sustaining communities called subaerial biofilms (SABs). Using life on air-exposed minerals as a model and taking inspiration from the mechanisms of some microorganisms that have adapted to inhospitable conditions, we illustrate the ecology of SABs inhabiting natural and built environments. Finally, we advocate the need for the convergence between the experimental and theoretical approaches that might be used to characterize and simulate the development of SABs on mineral substrates and SABs’ broader impacts on the dry terrestrial environment.
Collapse
Affiliation(s)
- Federica Villa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
10
|
Godoy-Lozano EE, Escobar-Zepeda A, Raggi L, Merino E, Gutierrez-Rios RM, Juarez K, Segovia L, Licea-Navarro AF, Gracia A, Sanchez-Flores A, Pardo-Lopez L. Bacterial Diversity and the Geochemical Landscape in the Southwestern Gulf of Mexico. Front Microbiol 2018; 9:2528. [PMID: 30405581 PMCID: PMC6200919 DOI: 10.3389/fmicb.2018.02528] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/03/2018] [Indexed: 11/26/2022] Open
Abstract
Marine sediments are an example of one of the most complex microbial habitats. These bacterial communities play an important role in several biogeochemical cycles in the marine ecosystem. In particular, the Gulf of Mexico has a ubiquitous concentration of hydrocarbons in its sediments, representing a very interesting niche to explore. Additionally, the Mexican government has opened its oil industry, offering several exploration and production blocks in shallow and deep water in the southwestern Gulf of Mexico (swGoM), from which there are no public results of conducted studies. Given the higher risk of large-scale oil spills, the design of contingency plans and mitigation activities before oil exploitation is of growing concern. Therefore, a bacterial taxonomic baseline profile is crucial to understanding the impact of any eventual oil spill. Here, we show a genus level taxonomic profile to elucidate the bacterial baseline, pointing out richness and relative abundance, as well as relationships with 79 abiotic parameters, in an area encompassing ∼150,000 km2, including a region where the exploitation of new oil wells has already been authorized. Our results describe for the first time the bacterial landscape of the swGoM, establishing a bacterial baseline "core" of 450 genera for marine sediments in this region. We can also differentiate bacterial populations from shallow and deep zones of the swGoM based on their community structure. Shallow sediments have been chronically exposed to aromatic hydrocarbons, unlike deep zones. Our results reveal that the bacterial community structure is particularly enriched with hydrocarbon-degrading bacteria in the shallow zone, where a greater aromatic hydrocarbon concentration was determined. Differences in the bacterial communities in the swGoM were also observed through a comprehensive comparative analysis relative to various marine sediment sequencing projects, including sampled sites from the Deep Water Horizon oil spill. This study in the swGoM provides clues to the bacterial population adaptation to the ubiquitous presence of hydrocarbons and reveals organisms such as Thioprofundum bacteria with potential applications in ecological surveillance. This resource will allow us to differentiate between natural conditions and alterations generated by oil extraction activities, which, in turn, enables us to assess the environmental impact of such activities.
Collapse
Affiliation(s)
| | | | - Luciana Raggi
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Enrique Merino
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Katy Juarez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lorenzo Segovia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Adolfo Gracia
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | | | - Liliana Pardo-Lopez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
11
|
Castro JF, Nouioui I, Sangal V, Choi S, Yang SJ, Kim BY, Trujillo ME, Riesco R, Montero-Calasanz MDC, Rahmani TPD, Bull AT, Sutcliffe IC, Asenjo JA, Andrews B, Goodfellow M. Blastococcus atacamensis sp. nov., a novel strain adapted to life in the Yungay core region of the Atacama Desert. Int J Syst Evol Microbiol 2018; 68:2712-2721. [PMID: 29969090 DOI: 10.1099/ijsem.0.002828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A polyphasic study was undertaken to establish the taxonomic status of a Blastococcus strain isolated from an extreme hyper-arid Atacama Desert soil. The isolate, strain P6T, was found to have chemotaxonomic and morphological properties consistent with its classification in the genus Blastococcus. It was shown to form a well-supported branch in the Blastococcus 16S rRNA gene tree together with the type strains of Blastococcus capsensis and Blastococcus saxobsidens and was distinguished from the latter, its close phylogenetic neighbour, by a broad range of phenotypic properties. The draft genome sequence of isolate P6T showed 84.6 % average nucleotide identity, 83.0 % average amino acid identity and a digital DNA-DNA hybridisation value of 27.8 % in comparison with the genome sequence of B. saxobsidens DSM 44509T, values consistent with its assignment to a separate species. Based on these data it is proposed that isolate P6T (NCIMB 15090T=NRRL B-65468T) be assigned to the genus Blastococcus as Blastococcus atacamensis sp. nov. Analysis of the whole genome sequence of B. atacamensis P6T, with 3778 open reading frames and a genome size of 3.9 Mb showed the presence of genes and gene clusters that encode for properties that reflect its adaptation to the extreme environmental conditions that prevail in Atacama Desert soils.
Collapse
Affiliation(s)
- Jean Franco Castro
- 1School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- 2Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Imen Nouioui
- 1School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Vartul Sangal
- 3Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Seonbin Choi
- 4ChunLab, Inc., 1, Gwanaka-ro, Gwanak-gu, Seoul 151015, Republic of Korea
| | - Seung-Jo Yang
- 4ChunLab, Inc., 1, Gwanaka-ro, Gwanak-gu, Seoul 151015, Republic of Korea
| | - Byung-Yong Kim
- 4ChunLab, Inc., 1, Gwanaka-ro, Gwanak-gu, Seoul 151015, Republic of Korea
| | - Martha E Trujillo
- 5Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Raul Riesco
- 4ChunLab, Inc., 1, Gwanaka-ro, Gwanak-gu, Seoul 151015, Republic of Korea
| | | | - Tara P D Rahmani
- 1School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Alan T Bull
- 6School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Iain C Sutcliffe
- 3Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Juan A Asenjo
- 2Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Barbara Andrews
- 2Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Michael Goodfellow
- 1School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
12
|
Sun Y, Shi YL, Wang H, Zhang T, Yu LY, Sun H, Zhang YQ. Diversity of Bacteria and the Characteristics of Actinobacteria Community Structure in Badain Jaran Desert and Tengger Desert of China. Front Microbiol 2018; 9:1068. [PMID: 29875762 PMCID: PMC5974926 DOI: 10.3389/fmicb.2018.01068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/04/2018] [Indexed: 01/21/2023] Open
Abstract
To assess the diversity of actinobacterial taxa in desert sands and obtain the novel microbial resources, 79 and 50 samples were collected from the Badain Jaran (BJD) and Tengger Deserts (TGD) of China, respectively. High-throughput sequencing (HTS) of environmental 16S rRNA genes within these samples was conducted on an Illumina Miseq platform, using universal bacterial primers targeting the V3–V4 hypervariable region. Based on the HTS analyses, cultivation-dependent (CULD) techniques were optimized to identify the cultivable Actinobacteria members. A total of 346,766 16S rRNA gene reads comprising 3,365 operational taxonomic units (OTUs) were obtained from the BJD sands using HTS, while 170,583 reads comprising 1,250 OTUs were detected in the TGD sands. Taxonomic classification indicated that Actinobacteria was the predominant phylum, comprising 35.0 and 29.4% of the communities in BJD and TGD sands, respectively. Among the Actinobacteria, members of the Geodermatophilaceae were considerably abundant in both deserts, indicating that they represent ubiquitous populations within the deserts. At the genus level, Arthrobacter spp. and Kocuria spp. were dominant, and corresponded to 21.2 and 5.3% of the actinobacterial communities in BJD and TGD deserts, respectively. A total of 786 and 376 actinobacterial strains were isolated and identified from BJD and TGD samples, respectively. The isolates comprised 73 genera of 30 families within the phylum Actinobacteria. In addition to the Geodermatophilaceae, Streptomyces spp. were a prominent component of the isolates, comprising 25% of the isolates from BJD and 17.5% of those from TGD. Comparison of the actinobacterial community structure in other ecosystems indicated that Geodermatophilaceae was the main actinobacterial group in desert sands, which is consistent with our results. Additionally, in these desert habits, Geodermatophilaceae and some other core groups may promote or inhabit the subsequent members' occurrence or prosper to shape the bacteria community structure. However, it should be noted that a number of other low-abundance bacteria appear to be specific to desert sands, which are worth further investigation. In antimicrobial activity assays, 10.36 % of the tested isolates showed antimicrobial activities in one or more screens. Importantly, 37 of the newly isolated strains reported here represent novel taxa that could be valuable resources for further research of novel secondary metabolites and their ecological significance in deserts.
Collapse
Affiliation(s)
- Ye Sun
- Peking Union Medical College, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun-Lei Shi
- Peking Union Medical College, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Wang
- Peking Union Medical College, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Zhang
- Peking Union Medical College, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Li-Yan Yu
- Peking Union Medical College, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Henry Sun
- Desert Research Institute, Las Vegas, NV, United States
| | - Yu-Qin Zhang
- Peking Union Medical College, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Hezbri K, Nouioui I, Rohde M, Spröer C, Schumann P, Gtari M, Klenk HP, Montero-Calasanz MDC, Ghodhbane-Gtari F. Blastococcus xanthinilyticus sp. nov., isolated from monument. Int J Syst Evol Microbiol 2018; 68:1177-1183. [PMID: 29458502 DOI: 10.1099/ijsem.0.002646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel, non-motile, coccoid, Gram-stain-positive actinobacterium, designated BMG 862T, was isolated from a marble sample collected from the Bulla Regia monument, Northern Tunisia. Its taxonomic position was determined using a polyphasic approach. Results from chemotaxonomic analyses showed MK-9(H4), MK-8(H4) and MK-9(H2) as the predominant menaquinones. The major polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, glycophosphatidylinositol, hydroxy-phosphatidylethanolamine and three unidentified phospholipids. The fatty acids consisted of significant amounts (≥10 %) of iso-C16 : 0, C17 : 1ω8c, iso-C15 : 0 and C16 : 1ω7c. Phylogenetic analysis on the basis of 16S rRNA gene sequence comparisons showed that strain BMG 862T belongs to the genus Blastococcus, being most closely related to Blastococcus saxobsidens (=DSM 44509T) (99.5 %) and Blastococcus capsensis (=DSM 46835T=CECT 8876T) (99.3 %). The genomic DNA G+C content of the organism was 74.7 mol%. Results of DNA-DNA hybridization and physiological tests allowed differentiation of strain BMG 862T from related species. The strain was also characterized by its ability to hydrolyse xanthine. On the basis of phenotypic and molecular characteristics, strain BMG 862T (=DSM 46842T=CECT 8884T) represents the type strain of a novel species of the genus Blastococcus, for which the name Blastococcus xanthinilyticus sp. nov. is proposed.
Collapse
Affiliation(s)
- Karima Hezbri
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar, Faculté des Sciences de Tunis, 2092 Tunis, Tunisia
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Manfred Rohde
- Central Facility for Microscopy, HZI - Helmholtz Centre for Infection Research Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Maher Gtari
- Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord BP 676-1080 Tunis Cedex, Tunisia
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Maria Del Carmen Montero-Calasanz
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar, Faculté des Sciences de Tunis, 2092 Tunis, Tunisia
| |
Collapse
|
14
|
Hezbri K, Nouioui I, Rohde M, Schumann P, Gtari M, Klenk HP, Montero-Calasanz MDC, Ghodhbane-Gtari F. Blastococcus colisei sp. nov, isolated from an archaeological amphitheatre. Antonie van Leeuwenhoek 2016; 110:339-346. [DOI: 10.1007/s10482-016-0804-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022]
|
15
|
Hezbri K, Louati M, Nouioui I, Gtari M, Rohde M, Spröer C, Schumann P, Klenk HP, Ghodhbane-Gtari F, Montero-Calasanz MDC. Blastococcus capsensis sp. nov., isolated from an archaeological Roman pool and emended description of the genus Blastococcus, B. aggregatus, B. saxobsidens, B. jejuensis and B. endophyticus. Int J Syst Evol Microbiol 2016; 66:4864-4872. [PMID: 27553620 DOI: 10.1099/ijsem.0.001443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-reaction-positive actinobacterium, designated BMG 804T, was isolated from an archaeological Roman pool located in Gafsa, Tunisia. The strain grew as dry bright orange colonies at 30 °C and pH 6.0-8.0. It contained meso-diaminopimelic acid in the cell wall. The whole-cell sugars consisted of glucose, rhamnose and ribose. Polar lipids present were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, an unidentified glycolipid and two unidentified phospholipids. MK-9(H4) was the predominant menaquinone. The fatty acid profile contained major amounts (>5 %) of C17 : 1ω8c, C16 : 1ω7c, iso-C15 : 0, iso-C16 : 0 and iso-C16 : 1H. The 16S rRNA gene sequence of BMG 804T showed 99.4 % as highest sequence similarity with Blastococcussaxobsidens. DNA-DNA hybridization between strain BMG 804T and B.saxobsidens DSM 44509T was 48.6±6.6 %. The G+C content of the DNA was 73.7 mol%. On the basis of the phenotypic and genotypic characteristics, including DNA-DNA hybridization results, BMG 804T (=DSM 46835T=CECT 8876T) is proposed as the type strain of a novel species Blastococcuscapsensis sp. nov. Emended descriptions of the genus Blastococcus and the species Blastococcus aggregatus, B. saxobsidens, Blastococcus jejuensis and Blastococcus endophyticus are also proposed.
Collapse
Affiliation(s)
- Karima Hezbri
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Moussa Louati
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Imen Nouioui
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Manfred Rohde
- Central Facility for Microscopy, HZI - Helmholtz Centre for Infection Research Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Maria Del Carmen Montero-Calasanz
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| |
Collapse
|
16
|
Characterization of PAS domains in Frankia and selected Actinobacteria and their possible interaction with other co-domains for environmental adaptation. Symbiosis 2016. [DOI: 10.1007/s13199-016-0413-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Zepeda Mendoza ML, Lundberg J, Ivarsson M, Campos P, Nylander JAA, Sallstedt T, Dalen L. Metagenomic Analysis from the Interior of a Speleothem in Tjuv-Ante's Cave, Northern Sweden. PLoS One 2016; 11:e0151577. [PMID: 26985997 PMCID: PMC4795671 DOI: 10.1371/journal.pone.0151577] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/01/2016] [Indexed: 02/01/2023] Open
Abstract
Speleothems are secondary mineral deposits normally formed by water supersaturated with calcium carbonate percolating into underground caves, and are often associated with low-nutrient and mostly non-phototrophic conditions. Tjuv-Ante's cave is a shallow-depth cave formed by the action of waves, with granite and dolerite as major components, and opal-A and calcite as part of the speleothems, making it a rare kind of cave. We generated two DNA shotgun sequencing metagenomic datasets from the interior of a speleothem from Tjuv-Ante's cave representing areas of old and relatively recent speleothem formation. We used these datasets to perform i) an evaluation of the use of these speleothems as past biodiversity archives, ii) functional and taxonomic profiling of the speleothem's different formation periods, and iii) taxonomic comparison of the metagenomic results to previous microscopic analyses from a nearby speleothem of the same cave. Our analyses confirm the abundance of Actinobacteria and fungi as previously reported by microscopic analyses on this cave, however we also discovered a larger biodiversity. Interestingly, we identified photosynthetic genes, as well as genes related to iron and sulphur metabolism, suggesting the presence of chemoautotrophs. Furthermore, we identified taxa and functions related to biomineralization. However, we could not confidently establish the use of this type of speleothems as biological paleoarchives due to the potential leaching from the outside of the cave and the DNA damage that we propose has been caused by the fungal chemical etching.
Collapse
Affiliation(s)
| | - Johannes Lundberg
- Department of Botany, Swedish Museum of Natural History, Stockholm, Sweden
| | - Magnus Ivarsson
- Department of Palaeobiology and the Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, Stockholm, Sweden
| | - Paula Campos
- Centre for GeoGenetics, University of Copenhagen, Natural History Museum of Denmark, Copenhagen, Denmark
| | - Johan A. A. Nylander
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Therese Sallstedt
- Department of Palaeobiology and the Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, Stockholm, Sweden
| | - Love Dalen
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
18
|
Pereira LB, Vicentini R, Ottoboni LMM. Characterization of the core microbiota of the drainage and surrounding soil of a Brazilian copper mine. Genet Mol Biol 2015; 38:484-9. [PMID: 26537607 PMCID: PMC4763313 DOI: 10.1590/s1415-475738420150025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/20/2015] [Indexed: 11/21/2022] Open
Abstract
The core microbiota of a neutral mine drainage and the surrounding high heavy metal content soil at a Brazilian copper mine were characterized by 16S rDNA pyrosequencing. The core microbiota of the drainage was dominated by the generalist genus Meiothermus. The soil samples contained a more heterogeneous bacterial community, with the presence of both generalist and specialist bacteria. Both environments supported mainly heterotrophic bacteria, including organisms resistant to heavy metals, although many of the bacterial groups identified remain poorly characterized. The results contribute to the understanding of bacterial communities in soils impacted by neutral mine drainage, for which information is scarce, and demonstrate that heavy metals can play an important role in shaping the microbial communities in mine environments.
Collapse
Affiliation(s)
- Letícia Bianca Pereira
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Renato Vicentini
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Laura M M Ottoboni
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
19
|
Sun HM, Zhang T, Yu LY, Sen K, Zhang YQ. Ubiquity, diversity and physiological characteristics of Geodermatophilaceae in Shapotou National Desert Ecological Reserve. Front Microbiol 2015; 6:1059. [PMID: 26483778 PMCID: PMC4588033 DOI: 10.3389/fmicb.2015.01059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
The goal of this study was to gain insight into the diversity of culturable actinobacteria in desert soil crusts and to determine the physiological characteristics of the predominant actinobacterial group in these crusts. Culture-dependent method was employed to obtain actinobacterial strains from desert soil samples collected from Shapotou National Desert Ecological Reserve (NDER) located in Tengger Desert, China. A total of 376 actinobacterial strains were isolated and 16S rRNA gene sequences analysis indicated that these isolates belonged to 29 genera within 18 families, among which the members of the family Geodermatophilaceae were predominant. The combination of 16S rRNA gene information and the phenotypic data allowed these newly-isolated Geodermatophilaceae members to be classified into 33 “species clusters,” 11 of which represented hitherto unrecognized species. Fermentation broths from 19.7% of the isolated strains showed activity in at least one of the six screens for antibiotic activity. These isolates exhibited bio-diversity in enzymatic characteristics and carbon utilization profiles. The physiological characteristics of the isolates from different types of crusts or bare sand samples were specific to their respective micro-ecological environments. Our study revealed that members of the family Geodermatophilaceae were ubiquitous, abundant, and diverse in Shapotou NDER, and these strains may represent a new major group of potential functional actinobacteria in desert soil.
Collapse
Affiliation(s)
- Hong-Min Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Keya Sen
- Division of Biological Sciences, School of Science, Technology, Engineering, and Mathematics, University of Washington Bothell Bothell, WA, USA
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| |
Collapse
|
20
|
Jroundi F, Gonzalez-Muñoz MT, Sterflinger K, Piñar G. Molecular Tools for Monitoring the Ecological Sustainability of a Stone Bio-Consolidation Treatment at the Royal Chapel, Granada. PLoS One 2015; 10:e0132465. [PMID: 26222040 PMCID: PMC4519126 DOI: 10.1371/journal.pone.0132465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/15/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Biomineralization processes have recently been applied in situ to protect and consolidate decayed ornamental stone of the Royal Chapel in Granada (Spain). While this promising method has demonstrated its efficacy regarding strengthening of the stone, little is known about its ecological sustainability. METHODOLOGY/PRINCIPAL FINDINGS Here, we report molecular monitoring of the stone-autochthonous microbiota before and at 5, 12 and 30 months after the bio-consolidation treatment (medium/long-term monitoring), employing the well-known molecular strategy of DGGE analyses. Before the bio-consolidation treatment, the bacterial diversity showed the exclusive dominance of Actinobacteria (100%), which decreased in the community (44.2%) after 5 months, and Gamma-proteobacteria (30.24%) and Chloroflexi (25.56%) appeared. After 12 months, Gamma-proteobacteria vanished from the community and Cyanobacteria (22.1%) appeared and remained dominant after thirty months, when the microbiota consisted of Actinobacteria (42.2%) and Cyanobacteria (57.8%) only. Fungal diversity showed that the Ascomycota phylum was dominant before treatment (100%), while, after five months, Basidiomycota (6.38%) appeared on the stone, and vanished again after twelve months. Thirty months after the treatment, the fungal population started to stabilize and Ascomycota dominated on the stone (83.33%) once again. Members of green algae (Chlorophyta, Viridiplantae) appeared on the stone at 5, 12 and 30 months after the treatment and accounted for 4.25%, 84.77% and 16.77%, respectively. CONCLUSIONS The results clearly show that, although a temporary shift in the bacterial and fungal diversity was observed during the first five months, most probably promoted by the application of the bio-consolidation treatment, the microbiota tends to regain its initial stability in a few months. Thus, the treatment does not seem to have any negative side effects on the stone-autochthonous microbiota over that time. The molecular strategy employed here is suggested as an efficient monitoring tool to assess the impact on the stone-autochthonous microbiota of the application of biomineralization processes as a restoration/conservation procedure.
Collapse
Affiliation(s)
- Fadwa Jroundi
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| | | | - Katja Sterflinger
- Department of Biotechnology, University of Natural Resources and Life Sciences, VIBT-BOKU, Vienna, Austria
| | - Guadalupe Piñar
- Department of Biotechnology, University of Natural Resources and Life Sciences, VIBT-BOKU, Vienna, Austria
| |
Collapse
|
21
|
Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes. ISME JOURNAL 2015; 10:21-9. [PMID: 26125681 DOI: 10.1038/ismej.2015.108] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/04/2015] [Accepted: 05/09/2015] [Indexed: 01/27/2023]
Abstract
The Geodermatophilaceae are unique model systems to study the ability to thrive on or within stones and their proteogenomes (referring to the whole protein arsenal encoded by the genome) could provide important insight into their adaptation mechanisms. Here we report the detailed comparative genome analysis of Blastococcus saxobsidens (Bs), Modestobacter marinus (Mm) and Geodermatophilus obscurus (Go) isolated respectively from the interior and the surface of calcarenite stones and from desert sandy soils. The genome-scale analysis of Bs, Mm and Go illustrates how adaptation to these niches can be achieved through various strategies including 'molecular tinkering/opportunism' as shown by the high proportion of lost, duplicated or horizontally transferred genes and ORFans. Using high-throughput discovery proteomics, the three proteomes under unstressed conditions were analyzed, highlighting the most abundant biomarkers and the main protein factors. Proteomic data corroborated previously demonstrated stone-related ecological distribution. For instance, these data showed starvation-inducible, biofilm-related and DNA-protection proteins as signatures of the microbes associated with the interior, surface and outside of stones, respectively.
Collapse
|
22
|
Trujillo ME, Goodfellow M, Busarakam K, Riesco R. Modestobacter lapidis sp. nov. and Modestobacter muralis sp. nov., isolated from a deteriorated sandstone historic building in Salamanca, Spain. Antonie van Leeuwenhoek 2015; 108:311-20. [PMID: 25987397 DOI: 10.1007/s10482-015-0482-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/15/2015] [Indexed: 11/28/2022]
Abstract
A polyphasic study was undertaken to establish the taxonomic status of two Modestobacter strains isolated from the surface of deteriorated sandstone of a historic building in Salamanca, Spain. The strains, isolates MDVD1(T) and MON 3.1(T), were found to have chemotaxonomic and morphological properties consistent with their classification in the genus Modestobacter and to form distinct phyletic lines in the Modestobacter 16S rRNA gene tree. Isolate MDVD1(T) was found to be closely related to the type strain of Modestobacter versicolor (98.7 % similarity) and isolate MON 3.1(T) to the type strain of Modestobacter multiseptatus (98.6 % similarity). The isolates were distinguished readily from one another and from the Modestobacter type strains by a broad range of phenotypic properties, by qualitative and quantitative differences in fatty acid profiles and by BOX fingerprint patterns. On the basis of these data, it is proposed that the isolates be classified in the genus Modestobacter as Modestobacter lapidis sp. nov. and Modestobacter muralis sp. nov., with isolates MON 3.1(T) (CECT 8844(T) = DSM 100206(T)) and MDVD1(T) (CECT 8845(T) = DSM 100205(T)) as the respective type strains.
Collapse
Affiliation(s)
- Martha E Trujillo
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain,
| | | | | | | |
Collapse
|
23
|
Sen A, Daubin V, Abrouk D, Gifford I, Berry AM, Normand P. Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders ‘Frankiales’ and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evol Microbiol 2014; 64:3821-3832. [DOI: 10.1099/ijs.0.063966-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phylogeny of the class
Actinobacteria
remains controversial, essentially because it is very sensitive to the choice of dataset and phylogenetic methods. We used a test proposed recently, based on complete genome data, which chooses among candidate species phylogenies based on the number of lateral gene transfers (LGT) needed to explain the diversity of histories among gene trees for a set of genomes. We used 100 completely sequenced genomes representing 35 families and 17 orders of the class
Actinobacteria
and evaluated eight different hypotheses for their phylogeny, including one based on a concatenate of 54 conserved proteins present in single copy in all these genomes, trees based on 16S and 23S rRNA gene sequences or their concatenation, and a tree based on the concatenation of MLSA genes (encoding AtpI, GyrA, FtsZ, SecA and DnaK). We used Prunier to infer the number of LGT in 579 proteins (different from those used to build the concatenated tree) present in at least 70 species, using the different hypothetical species trees as references. The best tree, with the lowest number of lateral transfers, was the one based on the concatenation of 54 proteins. In that tree, the orders
Bifidobacteriales
,
Coriobacteriales
, ‘Coryneb
acteriales’, ‘Micromonosporales’, ‘Propionibacteriales’, ‘Pseudonocardiales’, Streptomycetales and ‘Streptosporangiales’ were recovered while the orders ‘Frankiales’ and
Micrococcales
were not. It is thus proposed that the order ‘Frankiales’, which has an effectively but not validly published name, be split into Frankiales ord. nov. (type family
Frankiaceae
), Geodermatophilales ord. nov. (
Geodermatophilaceae
), Acidothermales ord. nov. (
Acidothermaceae
) and Nakamurellales ord. nov. (
Nakamurellaceae
). The order
Micrococcales
should also be split into
Micrococcales
(genera
Kocuria
,
Rothia
,
Micrococcus
,
Arthrobacter
,
Tropheryma
,
Microbacterium
,
Leifsonia
and
Clavibacter
), Cellulomonales (
Beutenbergia
,
Cellulomonas
,
Xylanimonas
,
Jonesia
and
Sanguibacter
) and Brachybacteriales (
Brachybacterium
) but the formal proposal for this will have to wait until more genomes become available for a significant proportion of strains in this order.
Collapse
Affiliation(s)
- Arnab Sen
- NBU Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri, 734013, India
| | - Vincent Daubin
- Biométrie et Biologie Evolutive, Centre National de la Recherche Scientifique UMR 5558, Université Lyon I, Université Lyon, Villeurbanne, France
| | - Danis Abrouk
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université Lyon I, Université Lyon, Villeurbanne, France
| | - Isaac Gifford
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Alison M. Berry
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Philippe Normand
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université Lyon I, Université Lyon, Villeurbanne, France
| |
Collapse
|
24
|
Complexity, temporal stability, and clinical correlates of airway bacterial community composition in primary ciliary dyskinesia. J Clin Microbiol 2013; 51:4029-35. [PMID: 24068019 DOI: 10.1128/jcm.02164-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetic disease characterized by abnormalities in ciliary function, leading to compromised airway clearance and chronic bacterial infection of the upper and lower airways. The compositions of these infections and the relationships between their characteristics and disease presentation are poorly defined. We describe here the first systematic culture-independent evaluation of lower airway bacteriology in PCD. Thirty-three airway samples (26 from sputum, 7 from bronchoalveolar lavage [BAL] fluid) were collected from 24 PCD patients aged 4 to 73 years. 16S rRNA quantitative PCR and pyrosequencing were used to determine the bacterial loads and community compositions of the samples. Bacterial loads, which ranged from 1.3 × 10(4) to 5.2 × 10(9) CFU/ml, were positively correlated with age (P = 0.002) but not lung function. An analysis of ∼7,000 16S rRNA sequences per sample identified bacterial species belonging to 128 genera. The concurrently collected paired samples showed high bacterial community similarity. The mean relative abundance of the dominant genera was 64.5% (standard deviation [SD], 24.5), including taxa reported through standard diagnostic microbiology (members of the genera Pseudomonas, Haemophilus, and Streptococcus) and those requiring specific ex vivo growth conditions (members of the genera Prevotella and Porphyromonas). The significant correlations observed included a positive relationship between Pseudomonas aeruginosa relative abundance and age and a negative relationship between P. aeruginosa relative abundance and lung function. Members of the genus Ralstonia were also found to contribute substantially to the bacterial communities in a number of patients. Follow-up samples from a subset of patients revealed high levels of bacterial community temporal stability. The detailed microbiological characterization presented here provides a basis for the reassessment of the clinical management of PCD airway infections.
Collapse
|
25
|
Sellstedt A, Richau KH. Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiol Lett 2013; 342:179-86. [PMID: 23461635 DOI: 10.1111/1574-6968.12116] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 02/27/2013] [Indexed: 01/31/2023] Open
Abstract
Studies of nitrogen-fixing properties among the Gram-positive Actinobacteria revealed that some species of Arthrobacter, Agromyces, Corynebacterium, Mycobacterium, Micromonospora, Propionibacteria and Streptomyces have nitrogen-fixing capacity. This is also valid for Frankia that fix nitrogen both in free-living and in symbiotic conditions. Frankia symbiosis results from interaction between the Frankia bacteria and dicotyledonous plants, that is, actinorhiza. These plants, which are important in forestry and agroforestry, form, together with the legumes (Fabales), a single nitrogen-fixing clade. It has been shown that a receptor-like kinase gene, SymRK, is necessary for nodulation in actinorhizal plants as well as in legumes and arbuscular mycorrhizal fungi. Recently, the involvement of isoflavonoids as signal molecules during nodulation of an actinorhizal plant was shown. The genome sizes of three Frankia species, Frankia EANpec, ACN14a and CcI3, are different, revealing a relationship between genome size and geographical distribution. Recent genomic sequencing data of Frankia represent genomes from cluster I to IV, indicating that the genome of DgI is one of the smallest genomes in Frankia. In addition, nonsymbiotic Frankiales such as Acidothermus cellulolyticus, Blastococcus saxoobsidens, Geodermatophilus obscurus and Modestobacter marinus have a variety of genome sizes ranging from 2.4 to 5.57 Mb.
Collapse
Affiliation(s)
- Anita Sellstedt
- Department of Plant Physiology, UPSC, Umeå University, S-90187 Umeå, Sweden.
| | | |
Collapse
|
26
|
Diversity of Frankia Strains, Actinobacterial Symbionts of Actinorhizal Plants. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-39317-4_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Genome sequence of radiation-resistant Modestobacter marinus strain BC501, a representative actinobacterium that thrives on calcareous stone surfaces. J Bacteriol 2012; 194:4773-4. [PMID: 22887672 DOI: 10.1128/jb.01029-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we report the full genome sequence of Modestobacter marinus strain BC501, an actinobacterial isolate that thrives on stone surfaces. The generated chromosome is circular, with a length of 5.57 Mb and a G+C content of 74.13%, containing 5,445 protein-coding genes, 48 tRNAs, and 3 ribosomal operons.
Collapse
|
28
|
Genome sequences published outside of Standards in Genomic Sciences, May-June 2012. Stand Genomic Sci 2012. [PMCID: PMC3558956 DOI: 10.4056/sigs.3126494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.
Collapse
|