1
|
Quintero-Yanes A, Léger L, Collignon M, Mignon J, Mayard A, Michaux C, Hallez R. Regulation of potassium uptake in Caulobacter crescentus. J Bacteriol 2024; 206:e0010724. [PMID: 39133005 PMCID: PMC11411941 DOI: 10.1128/jb.00107-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/13/2024] [Indexed: 08/13/2024] Open
Abstract
Potassium (K+) is an essential physiological element determining membrane potential, intracellular pH, osmotic/turgor pressure, and protein synthesis in cells. Here, we describe the regulation of potassium uptake systems in the oligotrophic α-proteobacterium Caulobacter crescentus known as a model for asymmetric cell division. We show that C. crescentus can grow in concentrations from the micromolar to the millimolar range by mainly using two K+ transporters to maintain potassium homeostasis, the low-affinity Kup and the high-affinity Kdp uptake systems. When K+ is not limiting, we found that the kup gene is essential while kdp inactivation does not impact the growth. In contrast, kdp becomes critical but not essential and kup dispensable for growth in K+-limited environments. However, in the absence of kdp, mutations in kup were selected to improve growth in K+-depleted conditions, likely by increasing the affinity of Kup for K+. In addition, mutations in the KdpDE two-component system, which regulates kdpABCDE expression, suggest that the inner membrane sensor regulatory component KdpD mainly works as a phosphatase to limit the growth when cells reach late exponential phase. Our data therefore suggest that KdpE is phosphorylated by another non-cognate histidine kinase. On top of this, we determined the KdpE-dependent and independent K+ transcriptome. Together, our work illustrates how an oligotrophic bacterium responds to fluctuation in K+ availability.IMPORTANCEPotassium (K+) is a key metal ion involved in many essential cellular processes. Here, we show that the oligotroph Caulobacter crescentus can support growth at micromolar concentrations of K+ by mainly using two K+ uptake systems, the low-affinity Kup and the high-affinity Kdp. Using genome-wide approaches, we also determined the entire set of genes required for C. crescentus to survive at low K+ concentration as well as the full K+-dependent regulon. Finally, we found that the transcriptional regulation mediated by the KdpDE two-component system is unconventional since unlike Escherichia coli, the inner membrane sensor regulatory component KdpD seems to work rather as a phosphatase on the phosphorylated response regulator KdpE~P.
Collapse
Affiliation(s)
- Alex Quintero-Yanes
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Loïc Léger
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Madeline Collignon
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Julien Mignon
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), Universite de Namur, Namur, Belgium
| | - Aurélie Mayard
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), Universite de Namur, Namur, Belgium
| | - Régis Hallez
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
- WEL Research Institute, University of Namur, Namur, Belgium
| |
Collapse
|
2
|
Chong TN, Panjalingam M, Saurabh S, Shapiro L. Phosphatase to kinase switch of a critical enzyme contributes to timing of cell differentiation. mBio 2024; 15:e0212523. [PMID: 38055339 PMCID: PMC10790692 DOI: 10.1128/mbio.02125-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE The process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, Caulobacter crescentus, undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity in vitro. PleC mutants that are unable to bind PodJ have increased kinase activity in vivo, resulting in premature differentiation. We propose a model in which PodJ regulation of PleC's enzymatic activity contributes to the robust timing of cell differentiation during the Caulobacter cell cycle.
Collapse
Affiliation(s)
- Trisha N. Chong
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Mayura Panjalingam
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Saumya Saurabh
- Department of Chemistry, New York University, New York, New York, USA
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Kohiyama M, Herrick J, Norris V. Open Questions about the Roles of DnaA, Related Proteins, and Hyperstructure Dynamics in the Cell Cycle. Life (Basel) 2023; 13:1890. [PMID: 37763294 PMCID: PMC10532879 DOI: 10.3390/life13091890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The DnaA protein has long been considered to play the key role in the initiation of chromosome replication in modern bacteria. Many questions about this role, however, remain unanswered. Here, we raise these questions within a framework based on the dynamics of hyperstructures, alias large assemblies of molecules and macromolecules that perform a function. In these dynamics, hyperstructures can (1) emit and receive signals or (2) fuse and separate from one another. We ask whether the DnaA-based initiation hyperstructure acts as a logic gate receiving information from the membrane, the chromosome, and metabolism to trigger replication; we try to phrase some of these questions in terms of DNA supercoiling, strand opening, glycolytic enzymes, SeqA, ribonucleotide reductase, the macromolecular synthesis operon, post-translational modifications, and metabolic pools. Finally, we ask whether, underpinning the regulation of the cell cycle, there is a physico-chemical clock inherited from the first protocells, and whether this clock emits a single signal that triggers both chromosome replication and cell division.
Collapse
Affiliation(s)
- Masamichi Kohiyama
- Institut Jacques Monod, Université Paris Cité, CNRS, 75013 Paris, France;
| | - John Herrick
- Independent Researcher, 3 rue des Jeûneurs, 75002 Paris, France;
| | - Vic Norris
- CBSA UR 4312, University of Rouen Normandy, University of Caen Normandy, Normandy University, 76000 Rouen, France
| |
Collapse
|
4
|
Guo K, Glatter T, Paczia N, Liesack W. Asparagine Uptake: a Cellular Strategy of Methylocystis to Combat Severe Salt Stress. Appl Environ Microbiol 2023; 89:e0011323. [PMID: 37184406 PMCID: PMC10305061 DOI: 10.1128/aem.00113-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Methylocystis spp. are known to have a low salt tolerance (≤1.0% NaCl). Therefore, we tested various amino acids and other well-known osmolytes for their potential to act as an osmoprotectant under otherwise growth-inhibiting NaCl conditions. Adjustment of the medium to 10 mM asparagine had the greatest osmoprotective effect under severe salinity (1.50% NaCl), leading to partial growth recovery of strain SC2. The intracellular concentration of asparagine increased to 264 ± 57 mM, with a certain portion hydrolyzed to aspartate (4.20 ± 1.41 mM). In addition to general and oxidative stress responses, the uptake of asparagine specifically induced major proteome rearrangements related to the KEGG level 3 categories of "methane metabolism," "pyruvate metabolism," "amino acid turnover," and "cell division." In particular, various proteins involved in cell division (e.g., ChpT, CtrA, PleC, FtsA, FtsH1) and peptidoglycan synthesis showed a positive expression response. Asparagine-derived 13C-carbon was incorporated into nearly all amino acids. Both the exometabolome and the 13C-labeling pattern suggest that in addition to aspartate, the amino acids glutamate, glycine, serine, and alanine, but also pyruvate and malate, were most crucially involved in the osmoprotective effect of asparagine, with glutamate being a major hub between the central carbon and amino acid pathways. In summary, asparagine induced significant proteome rearrangements, leading to major changes in central metabolic pathway activity and the sizes of free amino acid pools. In consequence, asparagine acted, in part, as a carbon source for the growth recovery of strain SC2 under severe salinity. IMPORTANCE Methylocystis spp. play a major role in reducing methane emissions into the atmosphere from methanogenic wetlands. In addition, they contribute to atmospheric methane oxidation in upland soils. Although these bacteria are typical soil inhabitants, Methylocystis spp. are thought to have limited capacity to acclimate to salt stress. This called for a thorough study into potential osmoprotectants, which revealed asparagine as the most promising candidate. Intriguingly, asparagine was taken up quantitatively and acted, at least in part, as an intracellular carbon source under severe salt stress. The effect of asparagine as an osmoprotectant for Methylocystis spp. is an unexpected finding. It may provide Methylocystis spp. with an ecological advantage in wetlands, where these methanotrophs colonize the roots of submerged vascular plants. Collectively, our study offers a new avenue into research on compounds that may increase the resilience of Methylocystis spp. to environmental change.
Collapse
Affiliation(s)
- Kangli Guo
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Werner Liesack
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
5
|
Barrows JM, Goley ED. Synchronized Swarmers and Sticky Stalks: Caulobacter crescentus as a Model for Bacterial Cell Biology. J Bacteriol 2023; 205:e0038422. [PMID: 36715542 PMCID: PMC9945503 DOI: 10.1128/jb.00384-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
First isolated and classified in the 1960s, Caulobacter crescentus has been instrumental in the study of bacterial cell biology and differentiation. C. crescentus is a Gram-negative alphaproteobacterium that exhibits a dimorphic life cycle composed of two distinct cell types: a motile swarmer cell and a nonmotile, division-competent stalked cell. Progression through the cell cycle is accentuated by tightly controlled biogenesis of appendages, morphological transitions, and distinct localization of developmental regulators. These features as well as the ability to synchronize populations of cells and follow their progression make C. crescentus an ideal model for answering questions relevant to how development and differentiation are achieved at the single-cell level. This review will explore the discovery and development of C. crescentus as a model organism before diving into several key features and discoveries that have made it such a powerful organism to study. Finally, we will summarize a few of the ongoing areas of research that are leveraging knowledge gained over the last century with C. crescentus to highlight its continuing role at the forefront of cell and developmental biology.
Collapse
Affiliation(s)
- Jordan M. Barrows
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Yang Y, Cao C, Gu N. Identifying magnetosome-associated genes in the extended CtrA regulon in Magnetospirillum magneticum AMB-1 using a combinational approach. Brief Funct Genomics 2023; 22:61-74. [PMID: 36424838 DOI: 10.1093/bfgp/elac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Magnetotactic bacteria (MTB) are worth studying because of magnetosome biomineralization. Magnetosome biogenesis in MTB is controlled by multiple genes known as magnetosome-associated genes. Recent advances in bioinformatics provide a unique opportunity for studying functions of magnetosome-associated genes and networks that they are involved in. Furthermore, various types of bioinformatics analyses can also help identify genes associated with magnetosome biogenesis. To predict novel magnetosome-associated genes in the extended CtrA regulon, we analyzed expression data of Magnetospirillum magneticum AMB-1 in the GSE35625 dataset in NCBI GEO. We identified 10 potential magnetosome-associated genes using a combinational approach of differential expression analysis, Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analysis, protein-protein interaction network analysis and weighted gene co-expression network analysis. Meanwhile, we also discovered and compared two co-expression modules that most known magnetosome-associated genes belong to. Our comparison indicated the importance of energy on regulating co-expression module structures for magnetosome biogenesis. At the last stage of our research, we predicted at least four real magnetosome-associated genes out of 10 potential genes, based on a comparison of evolutionary trees between known and potential magnetosome-associated genes. Because of the discovery of common subtrees that the stressed species are enriched in, we proposed a hypothesis that multiple types of environmental stress can trigger magnetosome evolution in different waters, and therefore its evolution can recur at different times in various locations on earth. Overall, our research provides useful information for identifying new MTB species and understanding magnetosome biogenesis.
Collapse
Affiliation(s)
- Yizi Yang
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Chen Cao
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Ning Gu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
7
|
Quintero-Yanes A, Mayard A, Hallez R. The two-component system ChvGI maintains cell envelope homeostasis in Caulobacter crescentus. PLoS Genet 2022; 18:e1010465. [PMID: 36480504 PMCID: PMC9731502 DOI: 10.1371/journal.pgen.1010465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/09/2022] [Indexed: 12/13/2022] Open
Abstract
Two-component systems (TCS) are often used by bacteria to rapidly assess and respond to environmental changes. The ChvG/ChvI (ChvGI) TCS conserved in α-proteobacteria is known for regulating expression of genes related to exopolysaccharide production, virulence and growth. The sensor kinase ChvG autophosphorylates upon yet unknown signals and phosphorylates the response regulator ChvI to regulate transcription. Recent studies in Caulobacter crescentus showed that chv mutants are sensitive to vancomycin treatment and fail to grow in synthetic minimal media. In this work, we identified the osmotic imbalance as the main cause of growth impairment in synthetic minimal media. We also determined the ChvI regulon and found that ChvI regulates cell envelope architecture by controlling outer membrane, peptidoglycan assembly/recycling and inner membrane proteins. In addition, we found that ChvI phosphorylation is also activated upon antibiotic treatment with vancomycin. We also challenged chv mutants with other cell envelope related stress and found that treatment with antibiotics targeting transpeptidation of peptidoglycan during cell elongation impairs growth of the mutant. Finally, we observed that the sensor kinase ChvG relocates from a patchy-spotty distribution to distinctive foci after transition from complex to synthetic minimal media. Interestingly, this pattern of (re)location has been described for proteins involved in cell growth control and peptidoglycan synthesis upon osmotic shock. Overall, our data support that the ChvGI TCS is mainly used to monitor and respond to osmotic imbalances and damages in the peptidoglycan layer to maintain cell envelope homeostasis.
Collapse
Affiliation(s)
- Alex Quintero-Yanes
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur, Belgium
| | - Aurélie Mayard
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur, Belgium
| | - Régis Hallez
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur, Belgium
- WELBIO, University of Namur, Namur, Belgium
- * E-mail:
| |
Collapse
|
8
|
Fatima NI, Fazili KM, Bhat NH. Proteolysis dependent cell cycle regulation in Caulobacter crescentus. Cell Div 2022; 17:3. [PMID: 35365160 PMCID: PMC8973945 DOI: 10.1186/s13008-022-00078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
Caulobacter crescentus, a Gram-negative alpha-proteobacterium, has surfaced as a powerful model system for unraveling molecular networks that control the bacterial cell cycle. A straightforward synchronization protocol and existence of many well-defined developmental markers has allowed the identification of various molecular circuits that control the underlying differentiation processes executed at the level of transcription, translation, protein localization and dynamic proteolysis. The oligomeric AAA+ protease ClpXP is a well-characterized example of an enzyme that exerts post-translational control over a number of pathways. Also, the proteolytic pathways of its candidate proteins are reported to play significant roles in regulating cell cycle and protein quality control. A detailed evaluation of the impact of its proteolysis on various regulatory networks of the cell has uncovered various significant cellular roles of this protease in C. crescentus. A deeper insight into the effects of regulatory proteolysis with emphasis on cell cycle progression could shed light on how cells respond to environmental cues and implement developmental switches. Perturbation of this network of molecular machines is also associated with diseases such as bacterial infections. Thus, research holds immense implications in clinical translation and health, representing a promising area for clinical advances in the diagnosis, therapeutics and prognosis.
Collapse
Affiliation(s)
- Nida I Fatima
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Nowsheen Hamid Bhat
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, 191201, India.
| |
Collapse
|
9
|
Beroual W, Prévost K, Lalaouna D, Ben Zaina N, Valette O, Denis Y, Djendli M, Brasseur G, Brilli M, Robledo Garrido M, Jimenez-Zurdo JI, Massé E, Biondi EG. The noncoding RNA CcnA modulates the master cell cycle regulators CtrA and GcrA in Caulobacter crescentus. PLoS Biol 2022; 20:e3001528. [PMID: 35192605 PMCID: PMC8959179 DOI: 10.1371/journal.pbio.3001528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/28/2022] [Accepted: 01/05/2022] [Indexed: 12/01/2022] Open
Abstract
Bacteria are powerful models for understanding how cells divide and accomplish global regulatory programs. In Caulobacter crescentus, a cascade of essential master regulators supervises the correct and sequential activation of DNA replication, cell division, and development of different cell types. Among them, the response regulator CtrA plays a crucial role coordinating all those functions. Here, for the first time, we describe the role of a novel factor named CcnA (cell cycle noncoding RNA A), a cell cycle–regulated noncoding RNA (ncRNA) located at the origin of replication, presumably activated by CtrA, and responsible for the accumulation of CtrA itself. In addition, CcnA may be also involved in the inhibition of translation of the S-phase regulator, GcrA, by interacting with its 5′ untranslated region (5′ UTR). Performing in vitro experiments and mutagenesis, we propose a mechanism of action of CcnA based on liberation (ctrA) or sequestration (gcrA) of their ribosome-binding site (RBS). Finally, its role may be conserved in other alphaproteobacterial species, such as Sinorhizobium meliloti, representing indeed a potentially conserved process modulating cell cycle in Caulobacterales and Rhizobiales. During cell cycle progression in the bacterium Caulobacter crescentus, the master cell cycle regulator CtrA is controlled by CcnA, a cell cycle-regulated non-coding RNA transcribed from a gene located at the origin of replication.
Collapse
Affiliation(s)
- Wanassa Beroual
- Aix-Marseille Université, CNRS, LCB, IMM, Turing Center for Living Systems, Marseille, France
| | - Karine Prévost
- Département de biochimie et de génomique fonctionnelle, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - David Lalaouna
- Département de biochimie et de génomique fonctionnelle, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nadia Ben Zaina
- Aix-Marseille Université, CNRS, LCB, IMM, Turing Center for Living Systems, Marseille, France
| | - Odile Valette
- Aix-Marseille Université, CNRS, LCB, IMM, Turing Center for Living Systems, Marseille, France
| | - Yann Denis
- Aix-Marseille Univ, CNRS, Plate-forme Transcriptome, IMM, Marseille, France
| | - Meriem Djendli
- Aix-Marseille Université, CNRS, LCB, IMM, Turing Center for Living Systems, Marseille, France
| | - Gaël Brasseur
- Aix-Marseille Université, CNRS, LCB, IMM, Turing Center for Living Systems, Marseille, France
| | - Matteo Brilli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biosciences, University of Milan, Milan, Italy
| | - Marta Robledo Garrido
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Jose-Ignacio Jimenez-Zurdo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Eric Massé
- Département de biochimie et de génomique fonctionnelle, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Emanuele G. Biondi
- Aix-Marseille Université, CNRS, LCB, IMM, Turing Center for Living Systems, Marseille, France
- * E-mail:
| |
Collapse
|
10
|
Modeling the temporal dynamics of master regulators and CtrA proteolysis in Caulobacter crescentus cell cycle. PLoS Comput Biol 2022; 18:e1009847. [PMID: 35089921 PMCID: PMC8865702 DOI: 10.1371/journal.pcbi.1009847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/23/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
The cell cycle of Caulobacter crescentus involves the polar morphogenesis and an asymmetric cell division driven by precise interactions and regulations of proteins, which makes Caulobacter an ideal model organism for investigating bacterial cell development and differentiation. The abundance of molecular data accumulated on Caulobacter motivates system biologists to analyze the complex regulatory network of cell cycle via quantitative modeling. In this paper, We propose a comprehensive model to accurately characterize the underlying mechanisms of cell cycle regulation based on the study of: a) chromosome replication and methylation; b) interactive pathways of five master regulatory proteins including DnaA, GcrA, CcrM, CtrA, and SciP, as well as novel consideration of their corresponding mRNAs; c) cell cycle-dependent proteolysis of CtrA through hierarchical protease complexes. The temporal dynamics of our simulation results are able to closely replicate an extensive set of experimental observations and capture the main phenotype of seven mutant strains of Caulobacter crescentus. Collectively, the proposed model can be used to predict phenotypes of other mutant cases, especially for nonviable strains which are hard to cultivate and observe. Moreover, the module of cyclic proteolysis is an efficient tool to study the metabolism of proteins with similar mechanisms. Timed cellular events in both eukaryotes and prokaryotes, such as chromosome replication, transcription, cell differentiation, cytokinesis, and cell division, are controlled by remarkably complex genetic regulations and protein-protein interactions. In this work, we investigate the cell cycle of Caulobacter crescentus, an alphaproteobacterium undergoing asymmetric cell divisions, to understand mechanisms underlying temporal regulations of complex cellular events. The asymmetric lifestyle makes Caulobacter crescentus easily synchronized and tracked, which is the foundation of molecular data accumulation. Here, we utilize the mathematical modeling together with experimental information to systematically integrate the complex gene-protein and protein-protein interactions in cell cycle progression. Using the mathematical model, we capture core features of cell cycle-dependent methylation, transcription, and proteolysis. In mutant cases, we found the complex and redundant regulatory network ensure the robustness of Caulobacter crescentus system because the change of most molecules does not cause immediate mortality, although they influence the time points of cell differentiation and division. The overall model and individual modules such as simulating transcriptional regulations and protease complexes can be further extended to the study of cell development in other bacterial species.
Collapse
|