1
|
Cinar MS, Niyas A, Avci FY. Serine-rich repeat proteins: well-known yet little-understood bacterial adhesins. J Bacteriol 2024; 206:e0024123. [PMID: 37975670 PMCID: PMC10810200 DOI: 10.1128/jb.00241-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Serine-rich-repeat proteins (SRRPs) are large mucin-like glycoprotein adhesins expressed by a plethora of pathogenic and symbiotic Gram-positive bacteria. SRRPs play major functional roles in bacterial-host interactions, like adhesion, aggregation, biofilm formation, virulence, and pathogenesis. Through their functional roles, SRRPs aid in the development of host microbiomes but also diseases like infective endocarditis, otitis media, meningitis, and pneumonia. SRRPs comprise shared domains across different species, including two or more heavily O-glycosylated long stretches of serine-rich repeat regions. With loci that can be as large as ~40 kb and can encode up to 10 distinct glycosyltransferases that specifically facilitate SRRP glycosylation, the SRRP loci makes up a significant portion of the bacterial genome. The significance of SRRPs and their glycans in host-microbe communications is becoming increasingly evident. Studies are beginning to reveal the glycosylation pathways and mature O-glycans presented by SRRPs. Here we review the glycosylation machinery of SRRPs across species and discuss the functional roles and clinical manifestations of SRRP glycosylation.
Collapse
Affiliation(s)
- Mukaddes S. Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Afaq Niyas
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y. Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Abstract
In addition to SecA of the general Sec system, many Gram-positive bacteria, including mycobacteria, express SecA2, a second, transport-associated ATPase. SecA2s can be subdivided into two mechanistically distinct types: (i) SecA2s that are part of the accessory Sec (aSec) system, a specialized transporter mediating the export of a family of serine-rich repeat (SRR) glycoproteins that function as adhesins, and (ii) SecA2s that are part of multisubstrate systems, in which SecA2 interacts with components of the general Sec system, specifically the SecYEG channel, to export multiple types of substrates. Found mainly in streptococci and staphylococci, the aSec system also contains SecY2 and novel accessory Sec proteins (Asps) that are required for optimal export. Asp2 also acetylates glucosamine residues on the SRR domains of the substrate during transport. Targeting of the SRR substrate to SecA2 and the aSec translocon is mediated by a specialized signal peptide. Multisubstrate SecA2 systems are present in mycobacteria, corynebacteria, listeriae, clostridia, and some bacillus species. Although most substrates for this SecA2 have canonical signal peptides that are required for export, targeting to SecA2 appears to depend on structural features of the mature protein. The feature of the mature domains of these proteins that renders them dependent on SecA2 for export may be their potential to fold in the cytoplasm. The discovery of aSec and multisubstrate SecA2 systems expands our appreciation of the diversity of bacterial export pathways. Here we present our current understanding of the mechanisms of each of these SecA2 systems.
Collapse
|
3
|
Bensing BA, Li L, Yakovenko O, Wong M, Barnard KN, Iverson TM, Lebrilla CB, Parrish CR, Thomas WE, Xiong Y, Sullam PM. Recognition of specific sialoglycan structures by oral streptococci impacts the severity of endocardial infection. PLoS Pathog 2019; 15:e1007896. [PMID: 31233555 PMCID: PMC6611644 DOI: 10.1371/journal.ppat.1007896] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/05/2019] [Accepted: 06/05/2019] [Indexed: 11/18/2022] Open
Abstract
Streptococcus gordonii and Streptococcus sanguinis are primary colonizers of the tooth surface. Although generally non-pathogenic in the oral environment, they are a frequent cause of infective endocarditis. Both streptococcal species express a serine-rich repeat surface adhesin that mediates attachment to sialylated glycans on mucin-like glycoproteins, but the specific sialoglycan structures recognized can vary from strain to strain. Previous studies have shown that sialoglycan binding is clearly important for aortic valve infections caused by some S. gordonii, but this process did not contribute to the virulence of a strain of S. sanguinis. However, these streptococci can bind to different subsets of sialoglycan structures. Here we generated isogenic strains of S. gordonii that differ only in the type and range of sialoglycan structures to which they adhere and examined whether this rendered them more or less virulent in a rat model of endocarditis. The findings indicate that the recognition of specific sialoglycans can either enhance or diminish pathogenicity. Binding to sialyllactosamine reduces the initial colonization of mechanically-damaged aortic valves, whereas binding to the closely-related trisaccharide sialyl T-antigen promotes higher bacterial densities in valve tissue 72 hours later. A surprising finding was that the initial attachment of streptococci to aortic valves was inversely proportional to the affinity of each strain for platelets, suggesting that binding to platelets circulating in the blood may divert bacteria away from the endocardial surface. Importantly, we found that human and rat platelet GPIbα (the major receptor for S. gordonii and S. sanguinis on platelets) display similar O-glycan structures, comprised mainly of a di-sialylated core 2 hexasaccharide, although the rat GPIbα has a more heterogenous composition of modified sialic acids. The combined results suggest that streptococcal interaction with a minor O-glycan on GPIbα may be more important than the over-all affinity for GPIbα for pathogenic effects. Infective endocarditis (IE) is a life-threatening infection of heart valves, and streptococci that normally reside in the mouth are a leading cause of this disease. Some oral streptococcal species express a protein on their surface that enables attachment to glycan (sugar) modifications on saliva proteins, an interaction that may be important for colonization of the tooth and other oral surfaces. These "Siglec-like adhesins" are hypervariable in the type and number of glycan structures they bind, ranging from just one to more than six of the structures displayed on the saliva proteins. If streptococci enter into the bloodstream, the Siglec-like adhesin can mediate attachment to similar glycans that decorate platelet or plasma proteins, which can impact the overall virulence of the organism. This study highlights how recognition of a specific type of glycan structure can cause a generally beneficial or neutral microbe to create damage to specific tissues—in this case the heart valves, illustrating one means by which commensal bacteria can become opportunistic or accidental pathogens. The findings further indicate that certain glycan-binding streptococci among the oral microbiota may be predisposed to produce infective endocarditis.
Collapse
Affiliation(s)
- Barbara A. Bensing
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, California, United States of America
- * E-mail:
| | - Liang Li
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Olga Yakovenko
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Karen N. Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - T. M. Iverson
- Departments of Pharmacology and Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Wendy E. Thomas
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Yan Xiong
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Paul M. Sullam
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, California, United States of America
| |
Collapse
|
4
|
Spencer C, Bensing BA, Mishra NN, Sullam PM. Membrane trafficking of the bacterial adhesin GspB and the accessory Sec transport machinery. J Biol Chem 2018; 294:1502-1515. [PMID: 30514759 DOI: 10.1074/jbc.ra118.005657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
The serine-rich repeat (SRR) glycoproteins of Gram-positive bacteria are large, cell wall-anchored adhesins that mediate binding to many host cells and proteins and are associated with bacterial virulence. SRR glycoproteins are exported to the cell surface by the accessory Sec (aSec) system comprising SecA2, SecY2, and 3-5 additional proteins (Asp1 to Asp5) that are required for substrate export. These adhesins typically have a 90-amino acid-long signal peptide containing an elongated N-region and a hydrophobic core. Previous studies of GspB (the SRR adhesin of Streptococcus gordonii) have shown that a glycine-rich motif in its hydrophobic core is essential for selective, aSec-mediated transport. However, the role of this extended N-region in transport is poorly understood. Here, using protein-lipid co-flotation assays and site-directed mutagenesis, we report that the N-region of the GspB signal peptide interacts with anionic lipids through electrostatic forces and that this interaction is necessary for GspB preprotein trafficking to lipid membranes. Moreover, we observed that protein-lipid binding is required for engagement of GspB with SecA2 and for aSec-mediated transport. We further found that SecA2 and Asp1 to Asp3 also localize selectively to liposomes that contain anionic lipids. These findings suggest that the GspB signal peptide electrostatically binds anionic lipids at the cell membrane, where it encounters SecA2. After SecA2 engagement with the signal peptide, Asp1 to Asp3 promote SecA2 engagement with the mature domain, which activates GspB translocation.
Collapse
Affiliation(s)
- Cierra Spencer
- Division of Infectious Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121; Department of Medicine, University of California, San Francisco, California 94143
| | - Barbara A Bensing
- Division of Infectious Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121; Department of Medicine, University of California, San Francisco, California 94143
| | - Nagendra N Mishra
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Torrance, California 90502; David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Paul M Sullam
- Division of Infectious Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121; Department of Medicine, University of California, San Francisco, California 94143.
| |
Collapse
|
5
|
Chen Y, Bensing BA, Seepersaud R, Mi W, Liao M, Jeffrey PD, Shajahan A, Sonon RN, Azadi P, Sullam PM, Rapoport TA. Unraveling the sequence of cytosolic reactions in the export of GspB adhesin from Streptococcus gordonii. J Biol Chem 2018; 293:5360-5373. [PMID: 29462788 DOI: 10.1074/jbc.ra117.000963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
Many pathogenic bacteria, including Streptococcus gordonii, possess a pathway for the cellular export of a single serine-rich-repeat protein that mediates the adhesion of bacteria to host cells and the extracellular matrix. This adhesin protein is O-glycosylated by several cytosolic glycosyltransferases and requires three accessory Sec proteins (Asp1-3) for export, but how the adhesin protein is processed for export is not well understood. Here, we report that the S. gordonii adhesin GspB is sequentially O-glycosylated by three enzymes (GtfA/B, Nss, and Gly) that attach N-acetylglucosamine and glucose to Ser/Thr residues. We also found that modified GspB is transferred from the last glycosyltransferase to the Asp1/2/3 complex. Crystal structures revealed that both Asp1 and Asp3 are related to carbohydrate-binding proteins, suggesting that they interact with carbohydrates and bind glycosylated adhesin, a notion that was supported by further analyses. We further observed that Asp1 also has an affinity for phospholipids, which is attenuated by Asp2. In summary, our findings support a model in which the GspB adhesin is sequentially glycosylated by GtfA/B, Nss, and Gly and then transferred to the Asp1/2/3 complex in which Asp1 mediates the interaction of the Asp1/2/3 complex with the lipid bilayer for targeting of matured GspB to the export machinery.
Collapse
Affiliation(s)
- Yu Chen
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Barbara A Bensing
- the Department of Medicine, San Francisco Veteran Affairs Medical Center, University of California at San Francisco, San Francisco, California 94121
| | - Ravin Seepersaud
- the Department of Medicine, San Francisco Veteran Affairs Medical Center, University of California at San Francisco, San Francisco, California 94121
| | - Wei Mi
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Maofu Liao
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Philip D Jeffrey
- the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Asif Shajahan
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Roberto N Sonon
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Parastoo Azadi
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Paul M Sullam
- the Department of Medicine, San Francisco Veteran Affairs Medical Center, University of California at San Francisco, San Francisco, California 94121
| | - Tom A Rapoport
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, .,the Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
6
|
Prabudiansyah I, Driessen AJM. The Canonical and Accessory Sec System of Gram-positive Bacteria. Curr Top Microbiol Immunol 2016; 404:45-67. [DOI: 10.1007/82_2016_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Nguyen-Mau SM, Oh SY, Schneewind DI, Missiakas D, Schneewind O. Bacillus anthracis SlaQ Promotes S-Layer Protein Assembly. J Bacteriol 2015; 197:3216-27. [PMID: 26216847 PMCID: PMC4560277 DOI: 10.1128/jb.00492-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/22/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Bacillus anthracis vegetative forms assemble an S-layer comprised of two S-layer proteins, Sap and EA1. A hallmark of S-layer proteins are their C-terminal crystallization domains, which assemble into a crystalline lattice once these polypeptides are deposited on the bacterial surface via association between their N-terminal S-layer homology domains and the secondary cell wall polysaccharide. Here we show that slaQ, encoding a small cytoplasmic protein conserved among pathogenic bacilli elaborating S-layers, is required for the efficient secretion and assembly of Sap and EA1. S-layer protein precursors cosediment with SlaQ, and SlaQ appears to facilitate Sap assembly. Purified SlaQ polymerizes and when mixed with purified Sap promotes the in vitro formation of tubular S-layer structures. A model is discussed whereby SlaQ, in conjunction with S-layer secretion factors SecA2 and SlaP, promotes localized secretion and S-layer assembly in B. anthracis. IMPORTANCE S-layer proteins are endowed with the propensity for self-assembly into crystalline arrays. Factors promoting S-layer protein assembly have heretofore not been reported. We identified Bacillus anthracis SlaQ, a small cytoplasmic protein that facilitates S-layer protein assembly in vivo and in vitro.
Collapse
Affiliation(s)
- Sao-Mai Nguyen-Mau
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - So-Young Oh
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Daphne I Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
A prl mutation in SecY suppresses secretion and virulence defects of Listeria monocytogenes secA2 mutants. J Bacteriol 2014; 197:932-42. [PMID: 25535272 DOI: 10.1128/jb.02284-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bulk of bacterial protein secretion occurs through the conserved SecY translocation channel that is powered by SecA-dependent ATP hydrolysis. Many Gram-positive bacteria, including the human pathogen Listeria monocytogenes, possess an additional nonessential specialized ATPase, SecA2. SecA2-dependent secretion is required for normal cell morphology and virulence in L. monocytogenes; however, the mechanism of export via this pathway is poorly understood. L. monocytogenes secA2 mutants form rough colonies, have septation defects, are impaired for swarming motility, and form small plaques in tissue culture cells. In this study, 70 spontaneous mutants were isolated that restored swarming motility to L. monocytogenes secA2 mutants. Most of the mutants had smooth colony morphology and septated normally, but all were lysozyme sensitive. Five representative mutants were subjected to whole-genome sequencing. Four of the five had mutations in proteins encoded by the lmo2769 operon that conferred lysozyme sensitivity and increased swarming but did not rescue virulence defects. A point mutation in secY was identified that conferred smooth colony morphology to secA2 mutants, restored wild-type plaque formation, and increased virulence in mice. This secY mutation resembled a prl suppressor known to expand the repertoire of proteins secreted through the SecY translocation complex. Accordingly, the ΔsecA2prlA1 mutant showed wild-type secretion levels of P60, an established SecA2-dependent secreted autolysin. Although the prl mutation largely suppressed almost all of the measurable SecA2-dependent traits, the ΔsecA2prlA1 mutant was still less virulent in vivo than the wild-type strain, suggesting that SecA2 function was still required for pathogenesis.
Collapse
|
9
|
Thomer L, Becker S, Emolo C, Quach A, Kim HK, Rauch S, Anderson M, Leblanc JF, Schneewind O, Faull KF, Missiakas D. N-acetylglucosaminylation of serine-aspartate repeat proteins promotes Staphylococcus aureus bloodstream infection. J Biol Chem 2013; 289:3478-86. [PMID: 24344128 DOI: 10.1074/jbc.m113.532655] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus secretes products that convert host fibrinogen to fibrin and promote its agglutination with fibrin fibrils, thereby shielding bacteria from immune defenses. The agglutination reaction involves ClfA (clumping factor A), a surface protein with serine-aspartate (SD) repeats that captures fibrin fibrils and fibrinogen. Pathogenic staphylococci express several different SD proteins that are modified by two glycosyltransferases, SdgA and SdgB. Here, we characterized three genes of S. aureus, aggA, aggB (sdgA), and aggC (sdgB), and show that aggA and aggC contribute to staphylococcal agglutination with fibrin fibrils in human plasma. We demonstrate that aggB (sdgA) and aggC (sdgB) are involved in GlcNAc modification of the ClfA SD repeats. However, only sdgB is essential for GlcNAc modification, and an sdgB mutant is defective in the pathogenesis of sepsis in mice. Thus, GlcNAc modification of proteins promotes S. aureus replication in the bloodstream of mammalian hosts.
Collapse
Affiliation(s)
- Lena Thomer
- From the Department of Microbiology, The University of Chicago, Chicago, Illinois 60637 and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bensing BA, Seepersaud R, Yen YT, Sullam PM. Selective transport by SecA2: an expanding family of customized motor proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1674-86. [PMID: 24184206 DOI: 10.1016/j.bbamcr.2013.10.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/20/2013] [Accepted: 10/23/2013] [Indexed: 01/22/2023]
Abstract
The SecA2 proteins are a special class of transport-associated ATPases that are related to the SecA component of the general Sec system, and are found in an increasingly large number of Gram-positive bacterial species. The SecA2 substrates are typically linked to the cell wall, but may be lipid-linked, peptidoglycan-linked, or non-covalently associated S-layer proteins. These substrates can have a significant impact on virulence of pathogenic organisms, but may also aid colonization by commensals. The SecA2 orthologues range from being highly similar to their SecA paralogues, to being distinctly different in apparent structure and function. Two broad classes of SecA2 are evident. One transports multiple substrates, and may interact with the general Sec system, or with an as yet unidentified transmembrane channel. The second type transports a single substrate, and is a component of the accessory Sec system, which includes the SecY paralogue SecY2 along with the accessory Sec proteins Asp1-3. Recent studies indicate that the latter three proteins may have a unique role in coordinating post-translational modification of the substrate with transport by SecA2. Comparative functional and phylogenetic analyses suggest that each SecA2 may be uniquely adapted for a specific type of substrate. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Barbara A Bensing
- San Francisco Veterans Affairs Medical Center and the University of California, San Francisco, CA 94121, USA.
| | - Ravin Seepersaud
- San Francisco Veterans Affairs Medical Center and the University of California, San Francisco, CA 94121, USA
| | - Yihfen T Yen
- San Francisco Veterans Affairs Medical Center and the University of California, San Francisco, CA 94121, USA
| | - Paul M Sullam
- San Francisco Veterans Affairs Medical Center and the University of California, San Francisco, CA 94121, USA
| |
Collapse
|
11
|
Freudl R. Leaving home ain't easy: protein export systems in Gram-positive bacteria. Res Microbiol 2013; 164:664-74. [PMID: 23541477 DOI: 10.1016/j.resmic.2013.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
Transport of proteins into or across biological membranes is catalyzed by membrane-bound transport machineries. In Gram-positive bacteria, the vast majority of proteins are exported out of the cytosol by the conserved general secretion (Sec) system or, alternatively, by the twin-arginine translocation (Tat) system, that closely resemble their well-studied counterparts in Gram-negative bacteria. Besides these common major export routes, additional unique protein export systems (such as accessory Sec2 systems and/or type VII/WXG100 secretion systems) exist in some Gram-positive bacteria that are specifically involved in the secretion of limited subsets of proteins.
Collapse
Affiliation(s)
- Roland Freudl
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
12
|
Renier S, Chambon C, Viala D, Chagnot C, Hébraud M, Desvaux M. Exoproteomic analysis of the SecA2-dependent secretion in Listeria monocytogenes EGD-e. J Proteomics 2013; 80:183-95. [PMID: 23291529 DOI: 10.1016/j.jprot.2012.11.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/12/2012] [Accepted: 11/29/2012] [Indexed: 12/21/2022]
Abstract
As part of the Sec translocase, the accessory ATPase SecA2 is present in some pathogenic Gram-positive bacteria. In Listeria monocytogenes, deletion of secA2 results in filamentous cells that form rough colonies and have lower virulence. However, only a few proteins have been identified that are secreted by this pathway. This investigation aims to provide the first exoproteomic analysis of the SecA2-dependent secretion in L. monocytogenes EGD-e. By using media and temperatures relevant to bacterial physiology, we demonstrated that the rough colony and elongated bacterial cell morphotypes are highly dependent on growth conditions. Subsequently, comparative exoproteomic analyses of the ΔsecA2 versus wt strains were performed in chemically defined medium at 20°C and 37°C. Analyzing the proteomic data following the secretomics-based method, part of the proteins appeared routed towards the Sec pathway and exhibited an N-terminal signal peptide. For another significant part, they were primarily cytoplasmic proteins, thus lacking signal peptide and with no predictable secretion pathway. In total, 13 proteins were newly identified as secreted via SecA2, which were essentially associated with cell-wall metabolism, adhesion and/or biofilm formation. From this comparative exoproteomic analysis, new insights into the L. monocytogenes physiology are discussed in relation to its saprophytic and pathogenic lifestyle.
Collapse
Affiliation(s)
- Sandra Renier
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Christophe Chambon
- INRA, Plate-forme d'Exploration du Métabolisme, F-63122 Saint-Genès Champanelle, France
| | - Didier Viala
- INRA, Plate-forme d'Exploration du Métabolisme, F-63122 Saint-Genès Champanelle, France
| | - Caroline Chagnot
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France; INRA, Plate-forme d'Exploration du Métabolisme, F-63122 Saint-Genès Champanelle, France
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France.
| |
Collapse
|
13
|
Protein export by the mycobacterial SecA2 system is determined by the preprotein mature domain. J Bacteriol 2012. [PMID: 23204463 DOI: 10.1128/jb.02032-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
At the core of the bacterial general secretion (Sec) pathway is the SecA ATPase, which powers translocation of unfolded preproteins containing Sec signal sequences through the SecYEG membrane channel. Mycobacteria have two nonredundant SecA homologs: SecA1 and SecA2. While the essential SecA1 handles "housekeeping" export, the nonessential SecA2 exports a subset of proteins and is required for Mycobacterium tuberculosis virulence. Currently, it is not understood how SecA2 contributes to Sec export in mycobacteria. In this study, we focused on identifying the features of two SecA2 substrates that target them to SecA2 for export, the Ms1704 and Ms1712 lipoproteins of the model organism Mycobacterium smegmatis. We found that the mature domains of Ms1704 and Ms1712, not the N-terminal signal sequences, confer SecA2-dependent export. We also demonstrated that the lipid modification and the extreme N terminus of the mature protein do not impart the requirement for SecA2 in export. We further showed that the Ms1704 mature domain can be efficiently exported by the twin-arginine translocation (Tat) pathway. Because the Tat system exports only folded proteins, this result implies that SecA2 substrates can fold in the cytoplasm and suggests a putative role of SecA2 in enabling export of such proteins. Thus, the mycobacterial SecA2 system may represent another way that bacteria solve the problem of exporting proteins that can fold in the cytoplasm.
Collapse
|
14
|
Differential localization of the streptococcal accessory sec components and implications for substrate export. J Bacteriol 2012. [PMID: 23204472 DOI: 10.1128/jb.01742-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accessory Sec system of Streptococcus gordonii is comprised of SecY2, SecA2, and five proteins (Asp1 through -5) that are required for the export of a serine-rich glycoprotein, GspB. We have previously shown that a number of the Asps interact with GspB, SecA2, or each other. To further define the roles of these Asps in export, we examined their subcellular localization in S. gordonii and in Escherichia coli expressing the streptococcal accessory Sec system. In particular, we assessed how the locations of these accessory Sec proteins were altered by the presence of other components. Using fluorescence microscopy, we found in E. coli that SecA2 localized within multiple foci at the cell membrane, regardless of whether other accessory Sec proteins were expressed. Asp2 alone localized to the cell poles but formed a similar punctate pattern at the membrane when SecA2 was present. Asp1 and Asp3 localized diffusely in the cytosol when expressed alone or with SecA2. However, these proteins redistributed to the membrane in a punctate arrangement when all of the accessory Sec components were present. Cell fractionation studies with S. gordonii further corroborated these microscopy results. Collectively, these findings indicate that Asp1 to -3 are not integral membrane proteins that form structural parts of the translocation channel. Instead, SecA2 serves as a docking site for Asp2, which in turn attracts a complex of Asp1 and Asp3 to the membrane. These protein interactions may be important for the trafficking of GspB to the cell membrane and its subsequent translocation.
Collapse
|
15
|
Abstract
The conserved general secretion (Sec) pathway carries out most protein export in bacteria and is powered by the essential ATPase SecA. Interestingly, mycobacteria and some Gram-positive bacteria possess two SecA proteins: SecA1 and SecA2. In these species, SecA1 is responsible for exporting most proteins, whereas SecA2 exports only a subset of substrates and is implicated in virulence. However, despite the impressive body of knowledge about the canonical SecA1, less is known concerning SecA2 function. Here, we review our current understanding of the different types of SecA2 systems and outline future directions for their study.
Collapse
Affiliation(s)
- Meghan E Feltcher
- Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-27290, USA
| | | |
Collapse
|
16
|
Lizcano A, Sanchez CJ, Orihuela CJ. A role for glycosylated serine-rich repeat proteins in gram-positive bacterial pathogenesis. Mol Oral Microbiol 2012; 27:257-69. [PMID: 22759311 DOI: 10.1111/j.2041-1014.2012.00653.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bacterial attachment to host surfaces is a pivotal event in the biological and infectious processes of both commensal and pathogenic bacteria, respectively. Serine-rich repeat proteins (SRRPs) are a family of adhesins in Gram-positive bacteria that mediate attachment to a variety of host and bacterial surfaces. As such, they contribute towards a wide-range of diseases including sub-acute bacterial endocarditis, community-acquired pneumonia, and meningitis. SRRPs are unique in that they are glycosylated, require a non-canonical Sec-translocase for transport, and are largely composed of a domain containing hundreds of alternating serine residues. These serine-rich repeats are thought to extend a unique non-repeat (NR) domain outward away from the bacterial surface to mediate adhesion. So far, NR domains have been determined to bind to sialic acid moieties, keratins, or other NR domains of a similar SRRP. This review summarizes how this important family of bacterial adhesins mediates bacterial attachment to host and bacterial cells, contributes to disease pathogenesis, and might be targeted for pharmacological intervention or used as novel protective vaccine antigens. This review also highlights recent structural findings on the NR domains of these proteins.
Collapse
Affiliation(s)
- A Lizcano
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
17
|
Bensing BA, Yen YT, Seepersaud R, Sullam PM. A Specific interaction between SecA2 and a region of the preprotein adjacent to the signal peptide occurs during transport via the accessory Sec system. J Biol Chem 2012; 287:24438-47. [PMID: 22654116 DOI: 10.1074/jbc.m112.378059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The accessory Sec systems of streptococci and staphylococci mediate the transport of a family of large, serine-rich glycoproteins to the bacterial cell surface. These systems are comprised of SecA2, SecY2, and three core accessory Sec proteins (Asp1-3). In Streptococcus gordonii, transport of the serine-rich glycoprotein GspB requires both a unique 90-residue N-terminal signal peptide and an adjacent 24-residue segment (the AST domain). We used in vivo site-specific photo-cross-linking to identify proteins that interact with the AST domain during transport. To facilitate this analysis, the entire accessory Sec system of S. gordonii was expressed in Escherichia coli. The determinants of GspB trafficking to the accessory Sec system in E. coli matched those in S. gordonii, establishing the validity of this approach. When the photo-cross-linker was placed within the AST domain, the preprotein was found to cross-link to SecA2. Importantly, no cross-linking to SecA was detected. Cross-linking of the N-terminal end of the AST domain to SecA2 occurred regardless of whether Asp1-3 were present. However, cross-linking to the C-terminal end was dependent on the Asps. The combined results indicate that full engagement of the AST domain by SecA2 is modulated by one or more of the Asps, and suggest that this process is important for initiating transport.
Collapse
Affiliation(s)
- Barbara A Bensing
- San Francisco Veterans Affairs Medical Center and the University of California, San Francisco, California 94121, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Bacillus anthracis grows in chains of rod-shaped cells, a trait that contributes to its escape from phagocytic clearance in host tissues. Using a genetic approach to search for determinants of B. anthracis chain length, we identified mutants with insertional lesions in secA2. All isolated secA2 mutants exhibited an exaggerated chain length, whereas the dimensions of individual cells were not changed. Complementation studies revealed that slaP (S-layer assembly protein), a gene immediately downstream of secA2 on the B. anthracis chromosome, is also a determinant of chain length. Both secA2 and slaP are required for the efficient secretion of Sap and EA1 (Eag), the two S-layer proteins of B. anthracis, but not for the secretion of S-layer-associated proteins or of other secreted products. S-layer assembly via secA2 and slaP contributes to the proper positioning of BslO, the S-layer-associated protein, and murein hydrolase, which cleaves septal peptidoglycan to separate chains of bacilli. SlaP was found to be both soluble in the bacterial cytoplasm and associated with the membrane. The purification of soluble SlaP from B. anthracis-cleared lysates did not reveal a specific ligand, and the membrane association of SlaP was not dependent on SecA2, Sap, or EA1. We propose that SecA2 and SlaP promote the efficient secretion of S-layer proteins by modifying the general secretory pathway of B. anthracis to transport large amounts of Sap and EA1.
Collapse
|
19
|
Schneewind O, Missiakas DM. Protein secretion and surface display in Gram-positive bacteria. Philos Trans R Soc Lond B Biol Sci 2012; 367:1123-39. [PMID: 22411983 PMCID: PMC3297441 DOI: 10.1098/rstb.2011.0210] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions.
Collapse
Affiliation(s)
- Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
20
|
van der Woude AD, Luirink J, Bitter W. Getting across the cell envelope: mycobacterial protein secretion. Curr Top Microbiol Immunol 2012; 374:109-34. [PMID: 23239236 DOI: 10.1007/82_2012_298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein secretion is an essential determinant of mycobacterial virulence. Mycobacterium tuberculosis has a unique cell envelope consisting of two lipid bilayers, which requires dedicated protein secretion pathways. The conserved general Sec and Tat translocation systems are responsible for protein transport across the inner membrane and are both essential. Additionally, the accessory Sec pathway specifically contributes to virulence. How transport of Sec/Tat substrates across the outer membrane is accomplished is currently an enigma. In addition to these pathways, M. tuberculosis also developed specialized secretion systems for protein transport across both membranes, the type VII or ESX secretion systems. Here, we discuss our current knowledge about the mechanisms and substrates of these different protein translocation systems and their role in mycobacterial physiology and virulence.
Collapse
Affiliation(s)
- Aniek D van der Woude
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, VU University, Amsterdam, The Netherlands
| | | | | |
Collapse
|
21
|
Asp2 and Asp3 interact directly with GspB, the export substrate of the Streptococcus gordonii accessory Sec System. J Bacteriol 2011; 193:3165-74. [PMID: 21531800 DOI: 10.1128/jb.00057-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GspB is a serine-rich glycoprotein adhesin of Streptococcus gordonii that is exported to the bacterial surface by the accessory Sec system. This dedicated export pathway is comprised of seven components (SecA2, SecY2, and five accessory Sec proteins [Asp1 to Asp5]). The latter proteins have no known homologs beyond the Asps of other species. Asp1 to Asp3 are absolutely required for export of the substrate GspB, but their roles in this process are unknown. Using copurification analysis and far-Western blotting, we found that Asp2 and Asp3 could individually bind the serine-rich repeat (SRR) domains of GspB. Deletion of both SRR regions of GspB led to a decrease in its export, suggesting that binding of the Asps to the SRR regions is important for GspB transport by the accessory Sec system. The Asps also bound a heterologous substrate for the accessory Sec system containing a slow-folding MalE variant, but they did not bind wild-type MalE. The combined results indicate that the Asps may recognize the export substrate through preferential interactions with its unstructured or unfolded regions. Glycosylation of the SRR domains on GspB prevented Asp binding, suggesting that binding of the Asps to the preprotein occurs prior to its full glycosylation. Together, these findings suggest that Asp2 and Asp3 are likely to function in part as chaperones in the early phase of GspB transport.
Collapse
|