1
|
Scott CJR, McGregor NGS, Leadbeater DR, Oates NC, Hoßbach J, Abood A, Setchfield A, Dowle A, Overkleeft HS, Davies GJ, Bruce NC. Parascedosporium putredinis NO1 tailors its secretome for different lignocellulosic substrates. Microbiol Spectr 2024; 12:e0394323. [PMID: 38757984 PMCID: PMC11218486 DOI: 10.1128/spectrum.03943-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Parascedosporium putredinis NO1 is a plant biomass-degrading ascomycete with a propensity to target the most recalcitrant components of lignocellulose. Here we applied proteomics and activity-based protein profiling (ABPP) to investigate the ability of P. putredinis NO1 to tailor its secretome for growth on different lignocellulosic substrates. Proteomic analysis of soluble and insoluble culture fractions following the growth of P. putredinis NO1 on six lignocellulosic substrates highlights the adaptability of the response of the P. putredinis NO1 secretome to different substrates. Differences in protein abundance profiles were maintained and observed across substrates after bioinformatic filtering of the data to remove intracellular protein contamination to identify the components of the secretome more accurately. These differences across substrates extended to carbohydrate-active enzymes (CAZymes) at both class and family levels. Investigation of abundant activities in the secretomes for each substrate revealed similar variation but also a high abundance of "unknown" proteins in all conditions investigated. Fluorescence-based and chemical proteomic ABPP of secreted cellulases, xylanases, and β-glucosidases applied to secretomes from multiple growth substrates for the first time confirmed highly adaptive time- and substrate-dependent glycoside hydrolase production by this fungus. P. putredinis NO1 is a promising new candidate for the identification of enzymes suited to the degradation of recalcitrant lignocellulosic feedstocks. The investigation of proteomes from the biomass bound and culture supernatant fractions provides a more complete picture of a fungal lignocellulose-degrading response. An in-depth understanding of this varied response will enhance efforts toward the development of tailored enzyme systems for use in biorefining.IMPORTANCEThe ability of the lignocellulose-degrading fungus Parascedosporium putredinis NO1 to tailor its secreted enzymes to different sources of plant biomass was revealed here. Through a combination of proteomic, bioinformatic, and fluorescent labeling techniques, remarkable variation was demonstrated in the secreted enzyme response for this ascomycete when grown on multiple lignocellulosic substrates. The maintenance of this variation over time when exploring hydrolytic polysaccharide-active enzymes through fluorescent labeling, suggests that this variation results from an actively tailored secretome response based on substrate. Understanding the tailored secretomes of wood-degrading fungi, especially from underexplored and poorly represented families, will be important for the development of effective substrate-tailored treatments for the conversion and valorization of lignocellulose.
Collapse
Affiliation(s)
- Conor J R Scott
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Nicholas G S McGregor
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, United Kingdom
| | - Daniel R Leadbeater
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Nicola C Oates
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Janina Hoßbach
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Amira Abood
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Alexander Setchfield
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Adam Dowle
- Bioscience Technology Facility, Department of Biology, University of York, York, United Kingdom
| | | | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, United Kingdom
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
2
|
Ma J, Jiang Z, Yan Q, Lv A, Li Y, Yang S. Structural and functional analysis of SpGlu64A: a novel glycoside hydrolase family 64 laminaripentaose-producing β-1,3-glucanase from Streptomyces pratensis. FEBS J 2024; 291:2009-2022. [PMID: 38380733 DOI: 10.1111/febs.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Laminaripentaose (L5)-producing β-1,3-glucanases can preferentially cleave the triple-helix curdlan into β-1,3-glucooligosaccharides, especially L5. In this study, a newly identified member of the glycoside hydrolase family 64, β-1,3-glucanase from Streptomyces pratensis (SpGlu64A), was functionally and structurally characterized. SpGlu64A shared highest identity (30%) with a β-1,3-glucanase from Streptomyces matensis. The purified SpGlu64A showed maximal activity at pH 7.5 and 50 °C, and exhibited strict substrate specificity toward curdlan (83.1 U·mg-1). It efficiently hydrolyzed curdlan to produce L5 as the end product. The overall structure of SpGlu64A consisted of a barrel domain and a mixed (α/β) domain, which formed an unusually wide groove with a crescent-like structure. In the two complex structures (SpGlu64A-L3 and SpGlu64A-L4), two oligosaccharide chains were captured and the triple-helical structure was relatively compatible with the wide groove, which suggested the possibility of binding to the triple-helical β-1,3-glucan. A catalytic framework (β6-β9-β10) and the steric hindrance formed by the side chains of residues Y161, N163, and H393 in the catalytic groove were predicted to complete the exotype-like cleavage manner. On the basis of the structure, a fusion protein with the CBM56 domain (SpGlu64A-CBM) and a mutant (Y161F; by site-directed mutation) were obtained, with 1.2- and 1.7-fold increases in specific activity, respectively. Moreover, the combined expression of SpGlu64A-CBM and -Y161F improved the enzyme activity by 2.63-fold. The study will not only be helpful in understanding the reaction mechanism of β-1,3-glucanases but will also provide a basis for further enzyme engineering.
Collapse
Affiliation(s)
- Junwen Ma
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing, China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, China
| | - Ang Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanxiao Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Wang K, Huai S, Tan Z, Ngea GLN, Godana EA, Shi J, Yang Q, Zhang X, Zhao L, Zhang H. A First Expression, Purification and Characterization of Endo-β-1,3-Glucanase from Penicillium expansum. J Fungi (Basel) 2023; 9:961. [PMID: 37888217 PMCID: PMC10608044 DOI: 10.3390/jof9100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
β-1,3-glucanase plays an important role in the biodegradation, reconstruction, and development of β-1,3-glucan. An endo-β-1,3-glucanase which was encoded by PeBgl1 was expressed, purified and characterized from Penicillium expansum for the first time. The PeBgl1 gene was amplified and transformed into the competent cells of E. coli Rosetta strain with the help of the pET-30a cloning vector. The recombinant protein PeBgl1 was expressed successfully at the induction conditions of 0.8 mmol/L IPTG at 16 °C for 16 h and then was purified by nickel ion affinity chromatography. The optimum reaction temperature of PeBgl1 was 55 °C and it had maximal activity at pH 6.0 according to the enzymatic analysis. Na2HPO4-NaH2PO4 buffer (pH 6.0) and NaCl have inhibitory and enhancing effects on the enzyme activities, respectively. SDS, TritonX-100 and some metal ions (Mg2+, Ca2+, Ba2+, Cu2+, and Zn2+) have an inhibitory effect on the enzyme activity. The results showed that PeBgl1 protein has good enzyme activity at 50-60 °C and at pH 5.0-9.0, and it is not a metal dependent enzyme, which makes it robust for storage and transportation, ultimately holding great promise in green biotechnology and biorefining.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (K.W.); (S.H.); (Z.T.); (G.L.N.N.); (E.A.G.); (J.S.); (Q.Y.); (X.Z.); (L.Z.)
| |
Collapse
|
4
|
Bai L, Kim J, Son KH, Shin DH, Ku BH, Kim DY, Park HY. Novel Anti-Fungal d-Laminaripentaose-Releasing Endo-β-1,3-glucanase with a RICIN-like Domain from Cellulosimicrobium funkei HY-13. Biomolecules 2021; 11:biom11081080. [PMID: 34439747 PMCID: PMC8394091 DOI: 10.3390/biom11081080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Endo-β-1,3-glucanase plays an essential role in the deconstruction of β-1,3-d-glucan polysaccharides through hydrolysis. The gene (1650-bp) encoding a novel, bi-modular glycoside hydrolase family 64 (GH64) endo-β-1,3-glucanase (GluY) with a ricin-type β-trefoil lectin domain (RICIN)-like domain from Cellulosimicrobium funkei HY-13 was identified and biocatalytically characterized. The recombinant enzyme (rGluY: 57.5 kDa) displayed the highest degradation activity for laminarin at pH 4.5 and 40 °C, while the polysaccharide was maximally decomposed by its C-terminal truncated mutant enzyme (rGluYΔRICIN: 42.0 kDa) at pH 5.5 and 45 °C. The specific activity (26.0 U/mg) of rGluY for laminarin was 2.6-fold higher than that (9.8 U/mg) of rGluYΔRICIN for the same polysaccharide. Moreover, deleting the C-terminal RICIN domain in the intact enzyme caused a significant decrease (>60%) of its ability to degrade β-1,3-d-glucans such as pachyman and curdlan. Biocatalytic degradation of β-1,3-d-glucans by inverting rGluY yielded predominantly d-laminaripentaose. rGluY exhibited stronger growth inhibition against Candida albicans in a dose-dependent manner than rGluYΔRICIN. The degree of growth inhibition of C. albicans by rGluY (approximately 1.8 μM) was approximately 80% of the fungal growth. The superior anti-fungal activity of rGluY suggests that it can potentially be exploited as a supplementary agent in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Lu Bai
- Department of Biotechnology, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea;
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Jonghoon Kim
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Kwang-Hee Son
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Dong-Ha Shin
- Insect Biotech Co. Ltd., Daejeon 34054, Korea; (D.-H.S.); (B.-H.K.)
| | - Bon-Hwan Ku
- Insect Biotech Co. Ltd., Daejeon 34054, Korea; (D.-H.S.); (B.-H.K.)
| | - Do Young Kim
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
- Correspondence: (D.Y.K.); (H.-Y.P.)
| | - Ho-Yong Park
- Department of Biotechnology, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea;
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
- Correspondence: (D.Y.K.); (H.-Y.P.)
| |
Collapse
|