1
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
da Silveira BP, Cohen ND, Lawhon SD, Watson RO, Bordin AI. Protective immune response against Rhodococcus equi: An innate immunity-focused review. Equine Vet J 2024. [PMID: 39258739 DOI: 10.1111/evj.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Rhodococcus equi causes pyogranulomatous pneumonia in foals and immunocompromised people. Despite decades of research efforts, no vaccine is available against this common cause of disease and death in foals. The purpose of this narrative review is to summarise the current understanding of interactions between R. equi and the host innate immune system, to describe features of the immune response that are associated with resistance or susceptibility to R. equi infection, and help guide strategies for developing novel approaches for preventing R. equi infections. Virulence of R. equi in foals has been attributed to the virulence associated protein A which allows intracellular survival in macrophages by preventing acidification of R. equi-containing vacuole. Additionally, foal susceptibility to R. equi infection is associated with immaturity and naivety of innate and adaptive immune systems, while adult horses with fully functional immune system are resistant to pneumonia. Specific interaction between R. equi and innate immune cells can result in bacterial survival or death; learning how to manipulate these responses to control infection is critical to prevent pneumonia in foals. Administration of live vaccines and stimulation of innate immune responses appears to improve foals' immune response and has the potential to overcome the challenges of foal active vaccination and elicit protection against pneumonia.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, School of Medicine, College Station, Texas, USA
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| |
Collapse
|
3
|
Miranda-CasoLuengo R, Yerlikaya Z, Luo H, Cheng C, Blanco A, Haas A, Meijer WG. The N-terminal domain is required for cell surface localisation of VapA, a member of the Vap family of Rhodococcus equi virulence proteins. PLoS One 2024; 19:e0298900. [PMID: 38421980 PMCID: PMC10903876 DOI: 10.1371/journal.pone.0298900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Rhodococcus equi pneumonia is an important cause of mortality in foals worldwide. Virulent equine isolates harbour an 80-85kb virulence plasmid encoding six virulence-associated proteins (Vaps). VapA, the main virulence factor of this intracellular pathogen, is known to be a cell surface protein that creates an intracellular niche for R. equi growth. In contrast, VapC, VapD and VapE are secreted into the intracellular milieu. Although these Vaps share very high degree of sequence identity in the C-terminal domain, the N-terminal domain (N-domain) of VapA is distinct. It has been proposed that this domain plays a role in VapA surface localization but no direct experimental data provides support to such hypothesis. In this work, we employed R. equi 103S harbouring an unmarked deletion of vapA (R. equi ΔvapA) as the genetic background to express C-terminal Strep-tagged Vap-derivatives integrated in the chromosome. The surface localization of these proteins was assessed by flow cytometry using the THE2122;-NWSHPQFEK Tag FITC-antibody. We show that VapA is the only cell surface Vap encoded in the virulence plasmid. We present compelling evidence for the role of the N-terminal domain of VapA on cell surface localization using fusion proteins in which the N-domain of VapD was exchanged with the N-terminus of VapA. Lastly, using an N-terminally Strep-tagged VapA, we found that the N-terminus of VapA is exposed to the extracellular environment. Given the lack of a lipobox in VapA and the exposure of the N-terminal Strep-tag, it is possible that VapA localization on the cell surface is mediated by interactions between the N-domain and components of the cell surface. We discuss the implications of this work on the light of the recent discovery that soluble recombinant VapA added to the extracellular medium functionally complement the loss of VapA.
Collapse
Affiliation(s)
- Raúl Miranda-CasoLuengo
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Zeynep Yerlikaya
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- Department of Microbiology, School of Veterinary Medicine, Firat University, Elazığ, Türkiye
| | - Haixia Luo
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Cheng Cheng
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Alfonso Blanco
- Flow Cytometry Core Technology, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Albert Haas
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Wim G. Meijer
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Zhao L, Ge T, Cheng T, Wang Q, Cui M, Yuan H, Zhao L. Fine-tuning gene expression of regulator AdmX for improved biosynthesis of andrimid in Erwinia persicina BST187. Appl Microbiol Biotechnol 2023; 107:6775-6788. [PMID: 37715803 DOI: 10.1007/s00253-023-12770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
Andrimid is a potent antibiotic that inhibits acetyl-CoA carboxylase. However, its low biological yield and complex chemical synthesis have hindered its large-scale application. In this study, we found that the LysR-type transcriptional activator AdmX controls andrimid yield by adjusting its expression level in the andrimid-producing bacterium Erwinia persicina strain BST187. Our results showed that gradually increasing of admX transcriptional levels significantly improved andrimid yield, while the yield declined when admX was overexpressed excessively. To further estimate the effect of AdmX on andrimid promotion, we fitted and developed a model which was y = -0.5576x2 + 61.945x + 800.63 (R2 = 0.9591), where x represents the admX transcriptional level and y represents andrimid yield. Andrimid yield of admX overexpression strain BST187ΔadmX/pET28a-Pgap-1::admX was greatly improved by 260%, which was reported for the first time that andrimid yield could be promoted by genetic engineering. Thus, this study provides important insights that the biosynthesis of andrimid would be improved by bioengineering and sheds lights on the potential application of andrimid in both biomedicine and bioagricultural manipulation with its large-scale production in the future. KEY POINTS: • Andrimid production can be greatly promoted by genetic engineering on non-model chassis. • The relationship between AdmX abundance and andrimid yield in Erwinia persicina strain BST187 might be parabolic. • Erwinia persicina BST187 combined with chassis modification enable the promising applications in andrimid industrialization.
Collapse
Affiliation(s)
- Lunqiang Zhao
- Key Laboratory of Engineering Biology for Low Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tongling Ge
- Key Laboratory of Engineering Biology for Low Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Tingfeng Cheng
- Key Laboratory of Engineering Biology for Low Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Qing Wang
- Key Laboratory of Engineering Biology for Low Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Meijie Cui
- Key Laboratory of Engineering Biology for Low Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Hongli Yuan
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lei Zhao
- Key Laboratory of Engineering Biology for Low Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
5
|
Baugh AC, Momany C, Neidle EL. Versatility and Complexity: Common and Uncommon Facets of LysR-Type Transcriptional Regulators. Annu Rev Microbiol 2023; 77:317-339. [PMID: 37285554 DOI: 10.1146/annurev-micro-050323-040543] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
LysR-type transcriptional regulators (LTTRs) form one of the largest families of bacterial regulators. They are widely distributed and contribute to all aspects of metabolism and physiology. Most are homotetramers, with each subunit composed of an N-terminal DNA-binding domain followed by a long helix connecting to an effector-binding domain. LTTRs typically bind DNA in the presence or absence of a small-molecule ligand (effector). In response to cellular signals, conformational changes alter DNA interactions, contact with RNA polymerase, and sometimes contact with other proteins. Many are dual-function repressor-activators, although different modes of regulation may occur at multiple promoters. This review presents an update on the molecular basis of regulation, the complexity of regulatory schemes, and applications in biotechnology and medicine. The abundance of LTTRs reflects their versatility and importance. While a single regulatory model cannot describe all family members, a comparison of similarities and differences provides a framework for future study.
Collapse
Affiliation(s)
- Alyssa C Baugh
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| | - Cory Momany
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| |
Collapse
|
6
|
Tyagi E, Singhvi N, Keshavam CC, Sangwan N, Gupta V, Bhimwal T, Seth R, Seth RK, Singh Y. Phylogenetic analysis and interactomics study unveil gene co-optive evolution of LysR-type transcription regulators across non-pathogenic, opportunistic, and pathogenic mycobacteria. 3 Biotech 2023; 13:168. [PMID: 37188288 PMCID: PMC10167064 DOI: 10.1007/s13205-023-03583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/23/2023] [Indexed: 05/17/2023] Open
Abstract
Mycobacterial species is known for inhabiting various niches ranging from soil to harsh intracellular environment of animal hosts and their survival through constant changes. For survival and persistence, these organisms must quickly adapt by bringing shift in their metabolism. Metabolic shifts are brought by sensing the environmental cues usually by membrane localized sensor molecules. These signals are transmitted to regulators of various metabolic pathways leading to post-translational modifications of regulators ultimately resulting in altered metabolic state of the cell. Multiple regulatory mechanisms have been unearthed so far that play crucial role in adapting to these situations, and among them, the signal-dependent transcriptional regulators mediated responses are integral for the microbes to perceive environmental signals and generate appropriate adaptive responses. LysR-type transcriptional regulators (LTTRs) form the largest family of transcriptional regulators, which are present in all kingdoms of life. Their numbers vary among bacterial genera and even in different mycobacterial species. To understand the evolutionary aspect of pathogenicity based on LTTRs, we performed phylogenetic analysis of LTTRs encoded by several mycobacterial species representing non-pathogenic (NP), opportunistic (OP), and totally pathogenic (TP) mycobacteria. Our results showed that LTTRs of TP clustered separately from LTTRs of NP and OP mycobacteria. In addition, LTTRs frequency per Mb of genome was reduced in TP when compared with NP and OP. Further, the protein-protein interactions and degree-based network analysis showed concomitant increased interactions per LTTRs with increase in pathogenicity. These results suggested the increase in regulon of LTTRs during evolution of TP mycobacteria.
Collapse
Affiliation(s)
- Ekta Tyagi
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248001 India
| | | | - Nitika Sangwan
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Vipin Gupta
- Ministry of Environment Forest & Climate Change, Integrated Regional Office, Dehradun, 248001 India
| | - Tanisha Bhimwal
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Ranjana Seth
- Deshbandhu College, University of Delhi South Campus, New Delhi, 110019 India
| | | | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
- Present Address: Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, 110007 India
| |
Collapse
|
7
|
Haubenthal T, Hansen P, Krämer I, Gindt M, Jünger-Leif A, Utermöhlen O, Haas A. Specific preadaptations of Rhodococcus equi cooperate with its Virulence-associated protein A during macrophage infection. Mol Microbiol 2023; 119:285-301. [PMID: 36627747 DOI: 10.1111/mmi.15026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Gram-positive Rhodococcus equi (Prescotella equi) is a lung pathogen of foals and immunocompromised humans. Intra-macrophage multiplication requires production of the bacterial Virulence-associated protein A (VapA) which is released into the phagosome lumen. VapA pH-neutralizes intracellular compartments allowing R. equi to multiply in an atypical macrophage phagolysosome. Here, we show that VapA does not support intra-macrophage growth of several other bacterial species demonstrating that only few bacteria have the specific preadaptations needed to profit from VapA. We show that the closest relative of R. equi, environmental Rhodococcus defluvii (Prescotella defluvii), does not multiply in macrophages at 37°C even when VapA is present because of its thermosensitivity but it does so once the infection temperature is lowered providing rare experimental evidence for 'thermal restriction'. Using growth experiments with isolated macrophage lysosomes and modified infection schemes we provide evidence that R. equi resists the attack by phagolysosome contents at low pH for several hours. During this time, R. equi produces and secretes VapA which enables it to grow at the expense of lysosome constituents. We present arguments that, under natural infection conditions, R. equi is VapA-less during the initial encounter with the host. This has important implications for vaccine development.
Collapse
Affiliation(s)
| | - Philipp Hansen
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Ina Krämer
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Mélanie Gindt
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | | | - Olaf Utermöhlen
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany
| | - Albert Haas
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Abstract
Pollution with microplastic has become a prime environmental concern. The various ways in which human-made polymers and microorganisms interact are little understood, and this is particularly true for microplastic and pathogenic microorganisms. Previous reports demonstrated that expression of central virulence-associated protein A (VapA) of the pathogenic bacterium Rhodococcus equi is shut off at 30°C, whereas it is strongly expressed at 37°C, a temperature which may serve as an intrahost cue. Here, we show that cultivation at 30°C in disposable plastic tubes increases mRNA levels of vapA 70-fold compared to growth in conventional glass tubes. Strong expression of vapA in plastic tubes does not seem to be caused by a compound leaching from plastic but rather by tube surface properties. Expression stimulation during growth in plastic is regulated by the R. equi transcription regulators VirR and VirS, indicating that plastic-induced vapA expression is (co)regulated through the canonical vapA expression pathway. Our observations have important implications for the future analysis and assessment of environmental microplastic contaminations in that they show that, in principle, contact of pathogens with environmental plastic can increase their virulence. IMPORTANCE Millions of tons small plastic pieces (microplastic) find their way into the environment every year. They pose digestive and toxicity problems to various life forms in soil, freshwater, and seawater. Additionally, microplastic offers an opportunity for microorganisms to attach and to become an important part of a “plastisphere community.” The significance of our study lies in the documentation of a sharp increase in production of a central virulence factor by a bacterial pathogen when the bacterium is in touch with certain makes of plastic. Although this feature may not reflect an increased health risk in case of this particular soilborne pathogen, our data disclose a new facet of how microplastics can endanger life.
Collapse
|
9
|
Sangkanjanavanich N, Kakuda T, Suzuki Y, Sasaki Y, Takai S. Identification of genes required for the fitness of Rhodococcus equi during the infection of mice via signature-tagged transposon mutagenesis. J Vet Med Sci 2021; 83:1182-1190. [PMID: 34108307 PMCID: PMC8437726 DOI: 10.1292/jvms.21-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rhodococcus equi is a Gram-positive facultative intracellular bacterium that causes pyogranulomatous pneumonia in foals and immunocompromised people. In the present study, signature-tagged transposon mutagenesis was applied for the negative selection of R. equi mutants that cannot survive in vivo. Twenty-five distinguishable plasmid-transposon (plasposon) vectors by polymerase chain reaction (PCR), each containing a unique oligonucleotide tag, were constructed and used to select the transposon mutants that have in vivo fitness defects using a mouse systemic infection model. Of the 4,560 transposon mutants, 102 mutants were isolated via a real-time PCR-based screening as the mutants were unable to survive in the mouse model. Finally, 50 single transposon insertion sites were determined via the self-cloning strategy. The insertion of the transposon was seen on the virulence plasmid in 15 of the 50 mutants, whereas the remaining 35 mutants had the insertion of transposon on the chromosome. The chromosomal mutants contained transposon insertions in genes involved in cellular metabolism, DNA repair and recombination, gene regulation, non-ribosomal peptide synthesis, and unknown functions. Additionally, seven of the chromosomal mutants showed a reduced ability to multiply in the macrophages in vitro. In this study, we have identified several biosynthetic pathways as fitness factors associated with the growth within macrophages and survival in mice.
Collapse
Affiliation(s)
- Nuttapone Sangkanjanavanich
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Tsutomu Kakuda
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Yasunori Suzuki
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Yukako Sasaki
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Shinji Takai
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| |
Collapse
|
10
|
Identification of a Novel LysR-Type Transcriptional Regulator in Staphylococcus aureus That Is Crucial for Secondary Tissue Colonization during Metastatic Bloodstream Infection. mBio 2020; 11:mBio.01646-20. [PMID: 32843554 PMCID: PMC7448277 DOI: 10.1128/mbio.01646-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is an important pathogen that can disseminate via the bloodstream and establish metastatic infections in distant organs. To achieve a better understanding of the bacterial factors facilitating the development of these metastatic infections, we used in this study a Staphylococcus aureus transposon mutant library in a murine model of intravenous infection, where bacteria first colonize the liver as the primary infection site and subsequently progress to secondary sites such as the kidney and bones. We identified a novel LysR-type transcriptional regulator (LTTR), which was specifically required by S. aureus for efficient colonization of secondary organs. We also determined the transcriptional activation as well as the regulon of LTTR, which suggests that this regulator is involved in the metabolic adaptation of S. aureus to the host microenvironment found in secondary infection sites. Staphylococcus aureus is a common cause of bacteremia that can lead to severe complications once the bacteria exit the bloodstream and establish infection in secondary organs. Despite its clinical relevance, little is known about the bacterial factors facilitating the development of these metastatic infections. Here, we used an S. aureus transposon mutant library coupled to transposon insertion sequencing (Tn-Seq) to identify genes that are critical for efficient bacterial colonization of secondary organs in a murine model of metastatic bloodstream infection. Our transposon screen identified a LysR-type transcriptional regulator (LTTR), which was required for efficient colonization of secondary organs such as the kidneys in infected mice. The critical role of LTTR in secondary organ colonization was confirmed using an isogenic mutant deficient in the expression of LTTR. To identify the set of genes controlled by LTTR, we used an S. aureus strain carrying the LTTR gene in an inducible expression plasmid. Gene expression analysis upon induction of LTTR showed increased transcription of genes involved in branched-chain amino acid biosynthesis, a methionine sulfoxide reductase, and a copper transporter as well as decreased transcription of genes coding for urease and components of pyrimidine nucleotides. Furthermore, we show that transcription of LTTR is repressed by glucose, is induced under microaerobic conditions, and required trace amounts of copper ions. Our data thus pinpoints LTTR as an important element that enables a rapid adaptation of S. aureus to the changing host microenvironment.
Collapse
|
11
|
Lavrov KV, Grechishnikova EG, Shemyakina AO, Novikov AD, Kalinina TI, Epremyan AS, Glinskii SA, Minasyan RA, Voronin SP, Yanenko AS. Optimization of the Expression of Nitrilase from Alcaligenes denitrificans in Rhodococcus rhodochrous to Improve the Efficiency of Biocatalytic Synthesis of Ammonium Acrylate. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819090035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Vázquez‐Boland JA, Meijer WG. The pathogenic actinobacterium Rhodococcus equi: what's in a name? Mol Microbiol 2019; 112:1-15. [PMID: 31099908 PMCID: PMC6852188 DOI: 10.1111/mmi.14267] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
Rhodococcus equi is the only recognized animal pathogenic species within an extended genus of metabolically versatile Actinobacteria of considerable biotechnological interest. Best known as a horse pathogen, R. equi is commonly isolated from other animal species, particularly pigs and ruminants, and causes severe opportunistic infections in people. As typical in the rhodococci, R. equi niche specialization is extrachromosomally determined, via a conjugative virulence plasmid that promotes intramacrophage survival. Progress in the molecular understanding of R. equi and its recent rise as a novel paradigm of multihost adaptation has been accompanied by an unusual nomenclatural instability, with a confusing succession of names: "Prescottia equi", "Prescotella equi", Corynebacterium hoagii and Rhodococcus hoagii. This article reviews current advances in the genomics, biology and virulence of this pathogenic actinobacterium with a unique mechanism of plasmid-transferable animal host tropism. It also discusses the taxonomic and nomenclatural issues around R. equi in the light of recent phylogenomic evidence that confirms its membership as a bona fide Rhodococcus.
Collapse
Affiliation(s)
- José A. Vázquez‐Boland
- Microbial Pathogenesis Group, Edinburgh Medical School (Biomedical Sciences – Infection Medicine)University of EdinburghChancellor's Building, Little France campusEdinburghEH16 4SBUK
| | - Wim G. Meijer
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
13
|
Bargen K, Scraba M, Krämer I, Ketterer M, Nehls C, Krokowski S, Repnik U, Wittlich M, Maaser A, Zapka P, Bunge M, Schlesinger M, Huth G, Klees A, Hansen P, Jeschke A, Bendas G, Utermöhlen O, Griffiths G, Gutsmann T, Wohlmann J, Haas A. Virulence‐associated protein A fromRhodococcus equiis an intercompartmental pH‐neutralising virulence factor. Cell Microbiol 2018; 21:e12958. [DOI: 10.1111/cmi.12958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Kristine Bargen
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Mirella Scraba
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Ina Krämer
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Maren Ketterer
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | | | - Sina Krokowski
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Urska Repnik
- Department of BiosciencesUniversity of Oslo Oslo Norway
| | - Michaela Wittlich
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Anna Maaser
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Pia Zapka
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Madeleine Bunge
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | | | - Gitta Huth
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Annette Klees
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Philipp Hansen
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Andreas Jeschke
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Gerd Bendas
- Pharmaceutical InstituteUniversity of Bonn Bonn Germany
| | - Olaf Utermöhlen
- Institute for Medical Microbiology, Immunology and Hygiene, University Medical Center, and Center for Molecular Medicine Köln, and German Center for Infection Research (DCIF) Cologne Germany
| | | | | | - Jens Wohlmann
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
- Department of BiosciencesUniversity of Oslo Oslo Norway
| | - Albert Haas
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| |
Collapse
|
14
|
MacArthur I, Anastasi E, Alvarez S, Scortti M, Vázquez-Boland JA. Comparative Genomics of Rhodococcus equi Virulence Plasmids Indicates Host-Driven Evolution of the vap Pathogenicity Island. Genome Biol Evol 2017; 9:1241-1247. [PMID: 28369330 PMCID: PMC5434932 DOI: 10.1093/gbe/evx057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 01/16/2023] Open
Abstract
The conjugative virulence plasmid is a key component of the Rhodococcus equi accessory genome essential for pathogenesis. Three host-associated virulence plasmid types have been identified: the equine pVAPA and porcine pVAPB circular variants, and the linear pVAPN found in bovine (ruminant) isolates. We recently characterized the R. equi pangenome (Anastasi E, et al. 2016. Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol. 8:3140–3148.) and we report here the comparative analysis of the virulence plasmid genomes. Plasmids within each host-associated type were highly similar despite their diverse origins. Variation was accounted for by scattered single nucleotide polymorphisms and short nucleotide indels, while larger indels—mostly in the plasticity region near the vap pathogencity island (PAI)—defined plasmid genomic subtypes. Only one of the plasmids analyzed, of pVAPN type, was exceptionally divergent due to accumulation of indels in the housekeeping backbone. Each host-associated plasmid type carried a unique PAI differing in vap gene complement, suggesting animal host-specific evolution of the vap multigene family. Complete conservation of the vap PAI was observed within each host-associated plasmid type. Both diversity of host-associated plasmid types and clonality of specific chromosomal-plasmid genomic type combinations were observed within the same R. equi phylogenomic subclade. Our data indicate that the overall strong conservation of the R. equi host-associated virulence plasmids is the combined result of host-driven selection, lateral transfer between strains, and geographical spread due to international livestock exchanges.
Collapse
Affiliation(s)
- Iain MacArthur
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Elisa Anastasi
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sonsiray Alvarez
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Mariela Scortti
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - José A Vázquez-Boland
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom.,Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Boonma S, Romsang A, Duang-Nkern J, Atichartpongkul S, Trinachartvanit W, Vattanaviboon P, Mongkolsuk S. The FinR-regulated essential gene fprA, encoding ferredoxin NADP+ reductase: Roles in superoxide-mediated stress protection and virulence of Pseudomonas aeruginosa. PLoS One 2017; 12:e0172071. [PMID: 28187184 PMCID: PMC5302815 DOI: 10.1371/journal.pone.0172071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/30/2017] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa has two genes encoding ferredoxin NADP(+) reductases, denoted fprA and fprB. We show here that P. aeruginosa fprA is an essential gene. However, the ΔfprA mutant could only be successfully constructed in PAO1 strains containing an extra copy of fprA on a mini-Tn7 vector integrated into the chromosome or carrying it on a temperature-sensitive plasmid. The strain containing an extra copy of the ferredoxin gene (fdx1) could suppress the essentiality of FprA. Other ferredoxin genes could not suppress the requirement for FprA, suggesting that Fdx1 mediates the essentiality of FprA. The expression of fprA was highly induced in response to treatments with a superoxide generator, paraquat, or sodium hypochlorite (NaOCl). The induction of fprA by these treatments depended on FinR, a LysR-family transcription regulator. In vivo and in vitro analysis suggested that oxidized FinR acted as a transcriptional activator of fprA expression by binding to its regulatory box, located 20 bases upstream of the fprA -35 promoter motif. This location of the FinR box also placed it between the -35 and -10 motifs of the finR promoter, where the reduced regulator functions as a repressor. Under uninduced conditions, binding of FinR repressed its own transcription but had no effect on fprA expression. Exposure to paraquat or NaOCl converted FinR to a transcriptional activator, leading to the expression of both fprA and finR. The ΔfinR mutant showed an increased paraquat sensitivity phenotype and attenuated virulence in the Drosophila melanogaster host model. These phenotypes could be complemented by high expression of fprA, indicating that the observed phenotypes of the ΔfinR mutant arose from the inability to up-regulate fprA expression. In addition, increased expression of fprB was unable to rescue essentiality of fprA or the superoxide-sensitive phenotype of the ΔfinR mutant, suggesting distinct mechanisms of the FprA and FprB enzymes.
Collapse
Affiliation(s)
- Siriwan Boonma
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Adisak Romsang
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jintana Duang-Nkern
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | | | | | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry Of Education, Bangkok, Thailand.,Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry Of Education, Bangkok, Thailand.,Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Shah N, Klaponski N, Selin C, Rudney R, Fernando WGD, Belmonte MF, de Kievit TR. PtrA Is Functionally Intertwined with GacS in Regulating the Biocontrol Activity of Pseudomonas chlororaphis PA23. Front Microbiol 2016; 7:1512. [PMID: 27713742 PMCID: PMC5031690 DOI: 10.3389/fmicb.2016.01512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/09/2016] [Indexed: 11/13/2022] Open
Abstract
In vitro inhibition of the fungal pathogen Sclerotinia sclerotiorum by Pseudomonas chlororaphis PA23 is reliant upon a LysR-type transcriptional regulator (LTTR) called PtrA. In the current study, we show that Sclerotinia stem rot and leaf infection are significantly increased in canola plants inoculated with the ptrA-mutant compared to the wild type, establishing PtrA as an essential regulator of PA23 biocontrol. LTTRs typically regulate targets that are upstream of and divergently transcribed from the LTTR locus. We identified a short chain dehydrogenase (scd) gene immediately upstream of ptrA. Characterization of a scd mutant revealed that it is phenotypically identical to the wild type. Moreover, scd transcript abundance was unchanged in the ptrA mutant. These findings indicate that PtrA regulation does not involve scd, rather this LTTR controls genes located elsewhere on the chromosome. Employing a combination of complementation and transcriptional analysis we investigated whether connections exist between PtrA and other regulators of biocontrol. Besides ptrA, gacS was the only gene able to partially rescue the wild-type phenotype, establishing a connection between PtrA and the sensor kinase GacS. Transcriptomic analysis revealed decreased expression of biosynthetic (phzA, prnA) and regulatory genes (phzI, phzR, rpoS, gacA, rsmX, rsmZ, retS) in the ptrA mutant; conversely, rsmE, and rsmY were markedly upregulated. The transcript abundance of ptrA was nine-fold higher in the mutant background indicating that this LTTR negatively autoregulates itself. In summary, PtrA is an essential regulator of genes required for PA23 biocontrol that is functionally intertwined with GacS.
Collapse
Affiliation(s)
- Nidhi Shah
- Department of Microbiology, University of Manitoba Winnipeg, MB, Canada
| | - Natasha Klaponski
- Department of Microbiology, University of Manitoba Winnipeg, MB, Canada
| | - Carrie Selin
- Department of Plant Science, University of Manitoba Winnipeg, MB, Canada
| | - Rachel Rudney
- Department of Microbiology, University of Manitoba Winnipeg, MB, Canada
| | | | - Mark F Belmonte
- Department of Biological Science, University of Manitoba Winnipeg, MB, Canada
| | | |
Collapse
|
17
|
Kakuda T, Miyazaki S, Hagiuda H, Takai S. Transcriptional regulation by VirR and VirS of members of the Rhodococcus equi virulence-associated protein multigene family. Microbiol Immunol 2016; 59:495-9. [PMID: 26094962 DOI: 10.1111/1348-0421.12277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/18/2015] [Accepted: 06/17/2015] [Indexed: 11/30/2022]
Abstract
A virulence plasmid of Rhodococcus equi harbors the vap mutigene family. Here it is shown that transcription of vap gene family members other than vapA (vapD, vapE and vapG) is regulated by temperature and pH and abolished when either virS or virR is deleted. Expression of VirS in the absence of functional VirR was found to increase the transcription of vap genes to the amount expressed in the presence of VirR. These findings suggest that transcription of vap genes is regulated by VirS and that VirR is involved in the mechanism of transcriptional responses to temperature and pH.
Collapse
Affiliation(s)
- Tsutomu Kakuda
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada Aomori, 034-8628, Japan
| | - Shiko Miyazaki
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada Aomori, 034-8628, Japan
| | - Hirofumi Hagiuda
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada Aomori, 034-8628, Japan
| | - Shinji Takai
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada Aomori, 034-8628, Japan
| |
Collapse
|
18
|
Transcriptome reprogramming by plasmid-encoded transcriptional regulators is required for host niche adaption of a macrophage pathogen. Infect Immun 2015; 83:3137-45. [PMID: 26015480 DOI: 10.1128/iai.00230-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus equi is a facultative intracellular pathogen of macrophages, relying on the presence of a conjugative virulence plasmid harboring a 21-kb pathogenicity island (PAI) for growth in host macrophages. The PAI encodes a family of 6 virulence-associated proteins (Vaps) in addition to 20 other proteins. The contribution of these to virulence has remained unclear. We show that the presence of only 3 virulence plasmid genes (of 73 in total) is required and sufficient for intracellular growth. These include a single vap family member, vapA, and two PAI-located transcriptional regulators, virR and virS. Both transcriptional regulators are essential for wild-type-level expression of vapA, yet vapA expression alone is not sufficient to allow intracellular growth. A whole-genome microarray analysis revealed that VirR and VirS substantially integrate themselves into the chromosomal regulatory network, significantly altering the transcription of 18% of all chromosomal genes. This pathoadaptation involved significant enrichment of select gene ontologies, in particular, enrichment of genes involved in transport processes, energy production, and cellular metabolism, suggesting a major change in cell physiology allowing the bacterium to grow in the hostile environment of the host cell. The results suggest that following the acquisition of the virulence plasmid by an avirulent ancestor of R. equi, coevolution between the plasmid and the chromosome took place, allowing VirR and VirS to regulate the transcription of chromosomal genes in a process that ultimately promoted intracellular growth. Our findings suggest a mechanism for cooption of existing chromosomal traits during the evolution of a pathogenic bacterium from an avirulent saprophyte.
Collapse
|
19
|
Okoko T, Blagova EV, Whittingham JL, Dover LG, Wilkinson AJ. Structural characterisation of the virulence-associated protein VapG from the horse pathogen Rhodococcus equi. Vet Microbiol 2015; 179:42-52. [PMID: 25746683 PMCID: PMC4518536 DOI: 10.1016/j.vetmic.2015.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 01/20/2023]
Abstract
The 3-dimensional structure of a Rhodococcus equi virulence protein was determined. VapG comprises a closed beta barrel domain preceded by a natively disordered region. The structures of VapB, VapD and VapG are closely superimposable. The VAP structures lack recognisable ligand or protein binding sites. Phagosome-induced conformational changes may be required for virulence.
Virulence and host range in Rhodococcus equi depends on the variable pathogenicity island of their virulence plasmids. Notable gene products are a family of small secreted virulence-associated proteins (Vaps) that are critical to intramacrophagic proliferation. Equine-adapted strains, which cause severe pyogranulomatous pneumonia in foals, produce a cell-associated VapA that is necessary for virulence, alongside five other secreted homologues. In the absence of biochemical insight, attention has turned to the structures of these proteins to develop a functional hypothesis. Recent studies have described crystal structures for VapD and a truncate of the VapA orthologue of porcine-adapted strains, VapB. Here, we crystallised the full-length VapG and determined its structure by molecular replacement. Electron density corresponding to the N-terminal domain was not visible suggesting that it is disordered. The protein core adopted a compact elliptical, anti-parallel β-barrel fold with β1–β2–β3–β8–β5–β6–β7–β4 topology decorated by a single peripheral α-helix unique to this family. The high glycine content of the protein allows close packing of secondary structural elements. Topologically, the surface has no indentations that indicate a nexus for molecular interactions. The distribution of polar and apolar groups on the surface of VapG is markedly uneven. One-third of the surface is dominated by exposed apolar side-chains, with no ionisable and only four polar side-chains exposed, giving rise to an expansive flat hydrophobic surface. Other surface regions are more polar, especially on or near the α-helix and a belt around the centre of the β-barrel. Possible functional significance of these recent structures is discussed.
Collapse
Affiliation(s)
- Tebekeme Okoko
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Elena V Blagova
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Jean L Whittingham
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Lynn G Dover
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
20
|
Kakuda T, Hirota T, Takeuchi T, Hagiuda H, Miyazaki S, Takai S. VirS, an OmpR/PhoB subfamily response regulator, is required for activation of vapA gene expression in Rhodococcus equi. BMC Microbiol 2014; 14:243. [PMID: 25281192 PMCID: PMC4190465 DOI: 10.1186/s12866-014-0243-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/09/2014] [Indexed: 11/12/2022] Open
Abstract
Background Rhodococcus equi is an important pulmonary pathogen in foals and in immunocompromised individuals. Virulent R. equi strains carry an 80-90 kb virulence plasmid that expresses the virulence-associated protein A (VapA). VapA expression is regulated by temperature and pH. The LysR-type transcriptional regulator, VirR, is involved in the regulation of the vapA gene. To examine the mechanism underlying transcriptional regulation of vapA, we characterized an R. equi mutant in which another putative transcriptional regulator encoded on the virulence plasmid, VirS, was deleted. Results Deletion of virS reduced vapA promoter activity to non-inducible levels. Complementary expression of VirS in the virS deletion mutant restored transcription at the PvapA promoter, even under non-inducing conditions (30°C and pH 8.0). In addition, VirS expression increased PvapA promoter activity in the absence of functional VirR. Further, transcription of the icgA operon containing virS was regulated by pH and temperature in the same manner as vapA. Conclusions This study suggests that VirS is required for VapA expression and that regulation of PvapA-promoter activity may be achieved by controlling VirS expression levels. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0243-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tsutomu Kakuda
- Laboratory of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada 034-8628, Aomori, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Souza BM, Castro TLDP, Carvalho RDDO, Seyffert N, Silva A, Miyoshi A, Azevedo V. σ(ECF) factors of gram-positive bacteria: a focus on Bacillus subtilis and the CMNR group. Virulence 2014; 5:587-600. [PMID: 24921931 PMCID: PMC4105308 DOI: 10.4161/viru.29514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The survival of bacteria to different environmental conditions depends on the activation of adaptive mechanisms, which are intricately driven through gene regulation. Because transcriptional initiation is considered to be the major step in the control of bacterial genes, we discuss the characteristics and roles of the sigma factors, addressing (1) their structural, functional and phylogenetic classification; (2) how their activity is regulated; and (3) the promoters recognized by these factors. Finally, we focus on a specific group of alternative sigma factors, the so-called σ(ECF) factors, in Bacillus subtilis and some of the main species that comprise the CMNR group, providing information on the roles they play in the microorganisms' physiology and indicating some of the genes whose transcription they regulate.
Collapse
Affiliation(s)
- Bianca Mendes Souza
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| | - Thiago Luiz de Paula Castro
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| | - Rodrigo Dias de Oliveira Carvalho
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| | - Nubia Seyffert
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| | - Artur Silva
- Laboratório de Polimorfismo de DNA; Instituto de Ciências Biológicas; Departamento de Genética; Universidade Federal do Pará; Belém, PA Brazil
| | - Anderson Miyoshi
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular; Instituto de Ciências Biológicas; Departamento de Biologia Geral; Universidade Federal de Minas Gerais; Belo Horizonte, MG Brazil
| |
Collapse
|
22
|
IcgA is a virulence factor of Rhodococcus equi that modulates intracellular growth. Infect Immun 2014; 82:1793-800. [PMID: 24549327 DOI: 10.1128/iai.01670-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulence of the intracellular pathogen Rhodococcus equi depends on a 21.3-kb pathogenicity island located on a conjugative plasmid. To date, the only nonregulatory pathogenicity island-encoded virulence factor identified is the cell envelope-associated VapA protein. Although the pathogenicity islands from porcine and equine R. equi isolates have undergone major rearrangements, the virR operon (virR-icgA-vapH-orf7-virS) is highly conserved in both, suggesting these genes play an important role in pathogenicity. VirR and VirS are transcriptional regulators controlling expression of pathogenicity island genes, including vapA. Here, we show that while vapH and orf7 are dispensable for intracellular growth of R. equi, deletion of icgA, formerly known as orf5, encoding a major facilitator superfamily transport protein, elicited an enhanced growth phenotype in macrophages and a significant reduction in macrophage viability, while extracellular growth in broth remained unaffected. Transcription of virS, located downstream of icgA, and vapA was not affected by the icgA deletion during growth in broth or in macrophages, showing that the enhanced growth phenotype caused by deletion of icgA was not mediated through abnormal transcription of these genes. Transcription of icgA increased 6-fold within 2 h following infection of macrophages and remained significantly higher 48 h postinfection compared to levels at the start of the infection. The major facilitator superfamily transport protein IcgA is the first factor identified in R. equi that negatively affects intracellular replication. Aside from VapA, it is only the second pathogenicity island-encoded structural protein shown to play a direct role in intracellular growth of this pathogenic actinomycete.
Collapse
|
23
|
Vázquez-Boland JA, Giguère S, Hapeshi A, MacArthur I, Anastasi E, Valero-Rello A. Rhodococcus equi: the many facets of a pathogenic actinomycete. Vet Microbiol 2013; 167:9-33. [PMID: 23993705 DOI: 10.1016/j.vetmic.2013.06.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022]
Abstract
Rhodococcus equi is a soil-dwelling pathogenic actinomycete that causes pulmonary and extrapulmonary pyogranulomatous infections in a variety of animal species and people. Young foals are particularly susceptible and develop a life-threatening pneumonic disease that is endemic at many horse-breeding farms worldwide. R. equi is a facultative intracellular parasite of macrophages that replicates within a modified phagocytic vacuole. Its pathogenicity depends on a virulence plasmid that promotes intracellular survival by preventing phagosome-lysosome fusion. Species-specific tropism of R. equi for horses, pigs and cattle appears to be determined by host-adapted virulence plasmid types. Molecular epidemiological studies of these plasmids suggest that human R. equi infection is zoonotic. Analysis of the recently determined R. equi genome sequence has identified additional virulence determinants on the bacterial chromosome. This review summarizes our current understanding of the clinical aspects, biology, pathogenesis and immunity of this fascinating microbe with plasmid-governed infectivity.
Collapse
Affiliation(s)
- José A Vázquez-Boland
- Microbial Pathogenesis Unit, School of Biomedical Sciences and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH9 3JT, UK; Grupo de Patogenómica Bacteriana, Facultad de Veterinaria, Universidad de León, 24071 León, Spain.
| | | | | | | | | | | |
Collapse
|
24
|
Toledo M, Santos C, Mendes J, Pelloso A, Beloti L, Crucello A, Favaro M, Santiago A, Schneider D, Saraiva A, Stach-Machado D, Souza A, Trivella D, Aparicio R, Tasic L, Azzoni A, Souza A. Small-angle X-ray scattering and in silico modeling approaches for the accurate functional annotation of an LysR-type transcriptional regulator. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:697-707. [DOI: 10.1016/j.bbapap.2012.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 12/24/2012] [Accepted: 12/26/2012] [Indexed: 01/31/2023]
|
25
|
Whitehead AE, Parreira VR, Hewson J, Watson JL, Prescott JF. Development of a live, attenuated, potential vaccine strain of R. equi expressing vapA and the virR operon, and virulence assessment in the mouse. Vet Immunol Immunopathol 2011; 145:479-84. [PMID: 22088674 DOI: 10.1016/j.vetimm.2011.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 07/04/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
Abstract
Pneumonia caused by Rhodococcus equi remains a significant problem in foals. The objective of this study was to develop a safe and efficacious attenuated strain of R. equi for eventual use in oral immunization of foals. The approach involved expression of vapA in a live, virulence plasmid-negative, strain of R. equi (strain 103-). PCR-amplified fragments of the vapA gene, with and without the upstream genes virR, orf5, vapH, orf7 and orf8 (orf4-8), were cloned into a shuttle vector pNBV1. These plasmids, named pAW48A and pAWVapA respectively, were electroporated into strain 103-. The presence of the recombinant vectors in the attenuated strain (103-) and the integrity of the inserted genes were confirmed, and both constructs expressed VapA. The virulence of the two strains was compared to that of wild type R. equi 103+ and negative controls by their intravenous inoculation into mice, followed by examination of liver clearance 4 days later. Mice inoculated with R. equi 103-, 103-/pAWVapA and 103-/pNBV1 completely cleared infection, whereas strain 103-/pAW48A persisted in 47% of mice.
Collapse
Affiliation(s)
- Ashley E Whitehead
- Department of Clinical Studies, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
26
|
Miranda-CasoLuengo R, Miranda-CasoLuengo AA, O'Connell EP, Fahey RJ, Boland CA, Vázquez-Boland JA, Meijer WG. The vapA co-expressed virulence plasmid gene vcgB (orf10) of the intracellular actinomycete Rhodococcus equi. MICROBIOLOGY-SGM 2011; 157:2357-2368. [PMID: 21565932 DOI: 10.1099/mic.0.049759-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The virulence plasmid of the pathogenic actinomycete Rhodococcus equi is essential for proliferation of this pathogen in macrophages and the development of disease. The pathogenicity island of this plasmid encodes a family of virulence-associated proteins (Vap), one of which (VapA) is a virulence factor. This paper describes the vcgAB operon (vapA co-expressed gene), located upstream of the vapA operon. Transcription of the vcgAB operon gave rise to transcripts with a half-life similar to those determined for other virulence plasmid genes (1.8 min). Transcription started at a promoter similar to the vapA promoter, and proceeded through an inefficient terminator into the downstream vcgC gene. In addition, vcgC is also transcribed from a promoter downstream of vcgB. The vcgAB and vapA operons were coordinately regulated by temperature and pH in a synergistic manner. The latter parameter only affected transcription at higher growth temperatures, indicating that temperature is the dominant regulatory signal. Transcription of the vcgAB operon increased 10-fold during the late exponential and stationary growth phases. Transcription was also upregulated during the initial hours following phagocytosis by phagocytic cells. In contrast to vcgA and vcgC, the vcgB gene is conserved in the porcine VapB-encoding plasmid, as well as in pathogenic mycobacteria. The coordinated regulation of vcgB and vapA, transcription of vcgB following phagocytosis and conservation of vcgB in pathogenic mycobacteria indicate a role for vcgB and the vcg genes in the virulence of R. equi.
Collapse
Affiliation(s)
- Raúl Miranda-CasoLuengo
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | | | - Enda P O'Connell
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Ruth J Fahey
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Clara A Boland
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Jose A Vázquez-Boland
- Grupo de Patogenómica Bacteriana, Facultad de Veterinaria e Instituto de Biología Molecular y Genómica, Universidad de León, 24071 León, Spain.,Microbial Pathogenesis Unit, Centre for Infectious Diseases, Ashworth Laboratories, King's Buildings, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
27
|
MacArthur I, Parreira VR, Lepp D, Mutharia LM, Vazquez-Boland JA, Prescott JF. The sensor kinase MprB is required for Rhodococcus equi virulence. Vet Microbiol 2011; 147:133-41. [DOI: 10.1016/j.vetmic.2010.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/12/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
|
28
|
Letek M, González P, MacArthur I, Rodríguez H, Freeman TC, Valero-Rello A, Blanco M, Buckley T, Cherevach I, Fahey R, Hapeshi A, Holdstock J, Leadon D, Navas J, Ocampo A, Quail MA, Sanders M, Scortti MM, Prescott JF, Fogarty U, Meijer WG, Parkhill J, Bentley SD, Vázquez-Boland JA. The genome of a pathogenic rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet 2010; 6:e1001145. [PMID: 20941392 PMCID: PMC2947987 DOI: 10.1371/journal.pgen.1001145] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 08/31/2010] [Indexed: 11/29/2022] Open
Abstract
We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi. Rhodococcus is a prototypic genus within the Actinobacteria, one of the largest microbial groups on Earth. Many of the ubiquitous rhodococcal species are biotechnologically useful due to their metabolic versatility and biodegradative properties. We have deciphered the genome of a facultatively parasitic Rhodococcus, the animal and human pathogen R. equi. Comparative genomic analyses of related species provide a unique opportunity to increase our understanding of niche-adaptive genome evolution and specialization. The environmental rhodococci have much larger genomes, richer in metabolic and degradative pathways, due to gene duplication and acquisition, not genome contraction in R. equi. This probably reflects that the host-associated R. equi habitat is more stable and favorable than the chemically diverse but nutrient-poor environmental niches of nonpathogenic rhodococci, necessitating metabolically more complex, expanded genomes. Our work also highlights that the recruitment or cooption of core microbial traits, following the horizontal acquistion of a few critical genes that provide access to the host niche, is an important mechanism in actinobacterial virulence evolution. Gene cooption is a key evolutionary mechanism allowing rapid adaptive change and novel trait acquisition. Recognizing the contribution of cooption to virulence provides a rational framework for understanding and interpreting the emergence and evolution of microbial pathogenicity.
Collapse
Affiliation(s)
- Michal Letek
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Patricia González
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Iain MacArthur
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Héctor Rodríguez
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Tom C. Freeman
- Division of Genetics and Genomics, Roslin BioCentre, University of Edinburgh, Edinburgh, United Kingdom
| | - Ana Valero-Rello
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Mónica Blanco
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Tom Buckley
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Inna Cherevach
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Ruth Fahey
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Alexia Hapeshi
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Jolyon Holdstock
- Oxford Gene Technology, Begbroke Science Park, Oxford, United Kingdom
| | | | - Jesús Navas
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | - Michael A. Quail
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Mandy Sanders
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Mariela M. Scortti
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Departamento de Bioquímica y Biología Molecular IV, Universidad Complutense, Madrid, Spain
| | - John F. Prescott
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | | | - Wim G. Meijer
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Stephen D. Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - José A. Vázquez-Boland
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Grupo de Patogenómica Bacteriana, Universidad de León, León, Spain
- * E-mail:
| |
Collapse
|
29
|
|
30
|
|
31
|
|
32
|
Rhodococcus equi virulence-associated protein A is required for diversion of phagosome biogenesis but not for cytotoxicity. Infect Immun 2009; 77:5676-81. [PMID: 19797071 DOI: 10.1128/iai.00856-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus equi is a gram-positive facultative intracellular pathogen that can cause severe bronchopneumonia in foals and AIDS patients. Virulence is plasmid regulated and is accompanied by phagosome maturation arrest and host cell necrosis. A replacement mutant in the gene for VapA (virulence-associated protein A), a major virulence factor of R. equi, was tested for its activities during macrophage infection. Early in infection, phagosomes containing the vapA mutant did not fuse with lysosomes and did not stain with the acidotropic fluor LysoTracker similar to those containing virulent wild-type R. equi. However, vapA mutant phagosomes had a lower average pH. Late in infection, phagosomes containing the vapA mutant were as frequently positive for LysoTracker as phagosomes containing plasmid-cured, avirulent bacteria, whereas those with virulent wild-type R. equi were still negative for the fluor. Macrophage necrosis after prolonged infection with virulent bacteria was accompanied by a loss of organelle staining with LysoTracker, suggesting that lysosome proton gradients had collapsed. The vapA mutant still killed the macrophages and yet did not affect the pH of host cell lysosomes. Hence, VapA is not required for host cell necrosis but is required for neutralization of phagosomes and lysosomes or their disruption. This is the first report of an R. equi mutant with altered phagosome biogenesis.
Collapse
|
33
|
Maddocks SE, Oyston PCF. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. MICROBIOLOGY-SGM 2009; 154:3609-3623. [PMID: 19047729 DOI: 10.1099/mic.0.2008/022772-0] [Citation(s) in RCA: 634] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The LysR family of transcriptional regulators represents the most abundant type of transcriptional regulator in the prokaryotic kingdom. Members of this family have a conserved structure with an N-terminal DNA-binding helix-turn-helix motif and a C-terminal co-inducer-binding domain. Despite considerable conservation both structurally and functionally, LysR-type transcriptional regulators (LTTRs) regulate a diverse set of genes, including those involved in virulence, metabolism, quorum sensing and motility. Numerous structural and transcriptional studies of members of the LTTR family are helping to unravel a compelling paradigm that has evolved from the original observations and conclusions that were made about this family of transcriptional regulators.
Collapse
Affiliation(s)
- Sarah E Maddocks
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | | |
Collapse
|
34
|
Hong Y, Hondalus MK. Site-specific integration of Streptomyces PhiC31 integrase-based vectors in the chromosome of Rhodococcus equi. FEMS Microbiol Lett 2008; 287:63-8. [PMID: 18680524 DOI: 10.1111/j.1574-6968.2008.01298.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Streptomyces PhiC31-based site-specific integration was used to transform the facultative intracellular pathogen Rhodococcus equi. The transformation efficiency of vectors incorporating the PhiC31 integrase and attP sites was comparable to that of replication plasmids using the same electroporation procedure. A single attB integration site was identified within an ORF encoding a pirin-like protein, which deviates slightly from the consensus sequence of Streptomyces attB sites. Vector integration was stably maintained in the R. equi chromosome for as many as 100 generations during unselected passage in vitro. In addition, integration does not appear to affect the replication of bacteria inside macrophages. Finally, this integration system was also used to successfully complement an R. equi mutant.
Collapse
Affiliation(s)
- Yang Hong
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
35
|
Evolution of the Rhodococcus equi vap pathogenicity island seen through comparison of host-associated vapA and vapB virulence plasmids. J Bacteriol 2008; 190:5797-805. [PMID: 18606735 DOI: 10.1128/jb.00468-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenic actinomycete Rhodococcus equi harbors different types of virulence plasmids associated with specific nonhuman hosts. We determined the complete DNA sequence of a vapB(+) plasmid, typically associated with pig isolates, and compared it with that of the horse-specific vapA(+) plasmid type. pVAPB1593, a circular 79,251-bp element, had the same housekeeping backbone as the vapA(+) plasmid but differed over an approximately 22-kb region. This variable region encompassed the vap pathogenicity island (PAI), was clearly subject to selective pressures different from those affecting the backbone, and showed major genetic rearrangements involving the vap genes. The pVAPB1593 PAI harbored five different vap genes (vapB and vapJ to -M, with vapK present in two copies), which encoded products differing by 24 to 84% in amino acid sequence from the six full-length vapA(+) plasmid-encoded Vap proteins, consistent with a role for the specific vap gene complement in R. equi host tropism. Sequence analyses, including interpolated variable-order motifs for detection of alien DNA and reconstruction of Vap family phylogenetic relationships, suggested that the vap PAI was acquired by an ancestor plasmid via lateral gene transfer, subsequently evolving by vap gene duplication and sequence diversification to give different (host-adapted) plasmids. The R. equi virulence plasmids belong to a new family of actinobacterial circular replicons characterized by an ancient conjugative backbone and a horizontally acquired niche-adaptive plasticity region.
Collapse
|
36
|
Byrne GA, Boland CA, O'Connell EP, Meijer WG. Differential mRNA stability of the vapAICD operon of the facultative intracellular pathogen Rhodococcus equi. FEMS Microbiol Lett 2008; 280:89-94. [PMID: 18205809 DOI: 10.1111/j.1574-6968.2007.01055.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The gene encoding virulence associated protein A (VapA) is clustered with three vapA homologues (vapICD) within the pathogenicity island of the virulence plasmid of Rhodococcus equi. Northern blot analysis showed a vapA transcript of c. 700 nucleotides (nt) suggesting that vapA is a monocistronic transcript. However, using the more sensitive RT-PCR, it was shown that vapA is cotranscribed with the downstream vapICD genes forming a 2.3-kb operon. This initial transcript is subsequently processed to give rise to a 700 nt vapA transcript with a half-life of 7.5 min. In contrast, the vapI, vapC and vapD transcripts have an average half-life of 1.8 min, identical to that of the five cistronic virR operon located upstream of the vapA operon. It is speculated that the need for differential gene expression arises from the different localisation of the Vap proteins. VapA is tethered to the surface of the cell wall, whereas VapC and VapD are secreted, diffusable proteins. The intercistronic region between vapC and vapD harbours two short ORFs (OrfA, OrfB). These ORFs are translationally coupled to vapC and vapD in which the start codon overlaps the stop codon of the preceding gene.
Collapse
Affiliation(s)
- Gavin A Byrne
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|