1
|
Gu F, He W, Zhu D, Zeng Q, Li X, Xiao S, Ni Y, Han L. Genome-wide comparative analysis of CC1 Staphylococcus aureus between colonization and infection. Eur J Med Res 2024; 29:474. [PMID: 39343893 PMCID: PMC11441255 DOI: 10.1186/s40001-024-02076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Staphylococcus aureus is one of the most important bacteria in human colonization and infection. Clonal complex1 (CC1) is one of the largest and most important S. aureus CCs, and it is a predominant clone in S. aureus colonization and can cause a series of S. aureus infections including bloodstream infections. No studies on the relationship of CC1 S. aureus between colonization and infection have been published. METHODS To figure out if there are some significant factors in CC1 S. aureus help its colonization or infection, 15 CC1 S. aureus isolates including ten from colonization and five from bloodstream infections were enrolled in this study. Whole-genome sequencing and bioinformatics analysis were performed. RESULTS Virulence factor regulators XdrA, YSIRK signal peptide, CPBP family and OmpR family specifically found in infection isolates can promote virulence factors and enhance the pathogenicity of S. aureus. In addition, some significant differences in metabolism and human diseases were discovered between colonization and infection. Fst family of type I toxin-antitoxin system that mainly maintains stable inheritance was specifically found in CC1 S. aureus colonization isolates and might help S. aureus survive for colonization. No significant differences in genomic evolutionary relationship were found among CC1 S. aureus isolates between colonization and infection. CONCLUSIONS Virulence factor regulators and metabolic state can promote CC1 S. aureus pathogenic process compared with colonization, and it seems that the strains of colonization origin cannot have pathogenic potential. Experimental confirmation and a bigger number of CC1 S. aureus strains are necessary for further study about the details and mechanism between colonization and infection.
Collapse
Affiliation(s)
- Feifei Gu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiping He
- Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Dedong Zhu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zeng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Li
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuzhen Xiao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxing Ni
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lizhong Han
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Wongdontree P, Millan-Oropeza A, Upfold J, Lavergne JP, Halpern D, Lambert C, Page A, Kénanian G, Grangeasse C, Henry C, Fouet A, Gloux K, Anba-Mondoloni J, Gruss A. Oxidative stress is intrinsic to staphylococcal adaptation to fatty acid synthesis antibiotics. iScience 2024; 27:109505. [PMID: 38577105 PMCID: PMC10993138 DOI: 10.1016/j.isci.2024.109505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/08/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Antibiotics inhibiting the fatty acid synthesis pathway (FASII) of the major pathogen Staphylococcus aureus reach their enzyme targets, but bacteria continue growth by using environmental fatty acids (eFAs) to produce phospholipids. We assessed the consequences and effectors of FASII-antibiotic (anti-FASII) adaptation. Anti-FASII induced lasting expression changes without genomic rearrangements. Several identified regulators affected the timing of adaptation outgrowth. Adaptation resulted in decreased expression of major virulence factors. Conversely, stress responses were globally increased and adapted bacteria were more resistant to peroxide killing. Importantly, pre-exposure to peroxide led to faster anti-FASII-adaptation by stimulating eFA incorporation. This adaptation differs from reports of peroxide-stimulated antibiotic efflux, which leads to tolerance. In vivo, anti-FASII-adapted S. aureus killed the insect host more slowly but continued multiplying. We conclude that staphylococcal adaptation to FASII antibiotics involves reprogramming, which decreases virulence and increases stress resistance. Peroxide, produced by the host to combat infection, favors anti-FASII adaptation.
Collapse
Affiliation(s)
- Paprapach Wongdontree
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Aaron Millan-Oropeza
- PAPPSO Platform, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jennifer Upfold
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Jean-Pierre Lavergne
- Bacterial Pathogens and Protein Phosphorylation, Molecular Microbiology and Structural Biology, UMR 5086 - CNRS / Université de Lyon, Building IBCP, 7 Passage du Vercors, Lyon, France
| | - David Halpern
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Clara Lambert
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Adeline Page
- Protein Science Facility, SFR BioSciences, CNRS, UMS3444, INSERM US8, Université de Lyon, Lyon, France
| | - Gérald Kénanian
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Christophe Grangeasse
- Bacterial Pathogens and Protein Phosphorylation, Molecular Microbiology and Structural Biology, UMR 5086 - CNRS / Université de Lyon, Building IBCP, 7 Passage du Vercors, Lyon, France
| | - Céline Henry
- PAPPSO Platform, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Agnès Fouet
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Karine Gloux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Jamila Anba-Mondoloni
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Alexandra Gruss
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| |
Collapse
|
3
|
Costa MDOCE, do Nascimento APB, Martins YC, dos Santos MT, Figueiredo AMDS, Perez-Rueda E, Nicolás MF. The gene regulatory network of Staphylococcus aureus ST239-SCC mecIII strain Bmb9393 and assessment of genes associated with the biofilm in diverse backgrounds. Front Microbiol 2023; 13:1049819. [PMID: 36704545 PMCID: PMC9871828 DOI: 10.3389/fmicb.2022.1049819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Staphylococcus aureus is one of the most prevalent and relevant pathogens responsible for a wide spectrum of hospital-associated or community-acquired infections. In addition, methicillin-resistant Staphylococcus aureus may display multidrug resistance profiles that complicate treatment and increase the mortality rate. The ability to produce biofilm, particularly in device-associated infections, promotes chronic and potentially more severe infections originating from the primary site. Understanding the complex mechanisms involved in planktonic and biofilm growth is critical to identifying regulatory connections and ways to overcome the global health problem of multidrug-resistant bacteria. Methods In this work, we apply literature-based and comparative genomics approaches to reconstruct the gene regulatory network of the high biofilm-producing strain Bmb9393, belonging to one of the highly disseminating successful clones, the Brazilian epidemic clone. To the best of our knowledge, we describe for the first time the topological properties and network motifs for the Staphylococcus aureus pathogen. We performed this analysis using the ST239-SCCmecIII Bmb9393 strain. In addition, we analyzed transcriptomes available in the literature to construct a set of genes differentially expressed in the biofilm, covering different stages of the biofilms and genetic backgrounds of the strains. Results and discussion The Bmb9393 gene regulatory network comprises 1,803 regulatory interactions between 64 transcription factors and the non-redundant set of 1,151 target genes with the inclusion of 19 new regulons compared to the N315 transcriptional regulatory network published in 2011. In the Bmb9393 network, we found 54 feed-forward loop motifs, where the most prevalent were coherent type 2 and incoherent type 2. The non-redundant set of differentially expressed genes in the biofilm consisted of 1,794 genes with functional categories relevant for adaptation to the variable microenvironments established throughout the biofilm formation process. Finally, we mapped the set of genes with altered expression in the biofilm in the Bmb9393 gene regulatory network to depict how different growth modes can alter the regulatory systems. The data revealed 45 transcription factors and 876 shared target genes. Thus, the gene regulatory network model provided represents the most up-to-date model for Staphylococcus aureus, and the set of genes altered in the biofilm provides a global view of their influence on biofilm formation from distinct experimental perspectives and different strain backgrounds.
Collapse
Affiliation(s)
| | - Ana Paula Barbosa do Nascimento
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Agnes Marie de Sá Figueiredo
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Merida, Mexico
| | - Ernesto Perez-Rueda
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,*Correspondence: Ernesto Perez-Rueda ✉
| | - Marisa Fabiana Nicolás
- Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Brazil,Marisa Fabiana Nicolás ✉
| |
Collapse
|
4
|
Long X, Wang X, Mao D, Wu W, Luo Y. A Novel XRE-Type Regulator Mediates Phage Lytic Development and Multiple Host Metabolic Processes in Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0351122. [PMID: 36445133 PMCID: PMC9769523 DOI: 10.1128/spectrum.03511-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/28/2022] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen, the leading cause of acute and chronic infections in immunocompromised patients, frequently with high morbidity and mortality rates. The xenobiotic response element (XRE) family proteins are the second most common transcriptional regulators (TRs) in P. aeruginosa. However, only a few XRE-like TRs have been reported to regulate multiple bacterial cellular processes, encompassing virulence, metabolism, antibiotic synthesis or resistance, stress responses, and phage infection, etc. Our understanding of what roles these XRE-like small regulatory proteins play in P. aeruginosa remains limited. Here, we aimed to decipher the role of a putative XRE-type transcriptional regulator (designated LfsT) from a prophage region on the chromosome of a clinical P. aeruginosa isolate, P8W. Southern blot and reverse transcription quantitative PCR (RT-qPCR) assays demonstrated that LfsT controlled host sensitivity to the phage PP9W2 and was essential for efficient phage replication. In addition, electrophoretic mobility shift assays (EMSAs) and transcriptional lacZ fusion analyses indicated that LfsT repressed the lysogenic development and promoted the lytic cycle of phage PP9W2 by binding to the promoter regions of the gp71 gene (encoding a CI-like repressor) and several vital phage genes. Combined with RNA-seq and a series of phenotypic validation tests, our results showed that LfsT bound to the flexible palindromic sites within the promoters upstream of several genes in the bacterial genome, regulating fatty acid (FA) metabolism, spermidine (SPD) transport, as well as the type III secretion system (T3SS). Overall, this study reveals novel regulatory roles of LfsT in P. aeruginosa, improving our understanding of the molecular mechanisms behind bacterium-phage interactions. IMPORTANCE This work elucidates the novel roles of a putative XRE family TR, LfsT, in the intricate regulatory systems of P. aeruginosa. We found that LfsT bound directly to the core promoter regions upstream of the start codons of numerous genes involved in various processes, including phage infection, FA metabolism, SPD transport, and the T3SS, regulating as the repressor or activator. The identified partial palindromic motif NAACN(5,8)GTTN recognized by LfsT suggests extensive effects of LfsT on gene expression by maintaining preferential binding to nucleotide sites under evolutionary pressure. In summary, these findings indicate that LfsT enhances metabolic activity in P. aeruginosa, while it reduces host resistance to the phage. This study helps us better understand the coevolution of bacteria and phages (e.g., survival comes at a cost) and provides clues for designing novel antimicrobials against P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiang Long
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, China
| | - Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Fan J, Zhao L, Hu Q, Li S, Li H, Zhang Q, Zou G, Zhang L, Li L, Huang Q, Zhou R. Screening for Virulence-Related Genes via a Transposon Mutant Library of Streptococcus suis Serotype 2 Using a Galleria mellonella Larvae Infection Model. Microorganisms 2022; 10:microorganisms10050868. [PMID: 35630313 PMCID: PMC9143085 DOI: 10.3390/microorganisms10050868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023] Open
Abstract
Streptococcus suis (S. suis) is a zoonotic bacterial pathogen causing lethal infections in pigs and humans. Identification of virulence-related genes (VRGs) is of great importance in understanding the pathobiology of a bacterial pathogen. To identify novel VRGs, a transposon (Tn) mutant library of S. suis strain SC19 was constructed in this study. The insertion sites of approximately 1700 mutants were identified by Tn-seq, which involved 417 different genes. A total of 32 attenuated strains were identified from the library by using a Galleria mellonella larvae infection model, and 30 novel VRGs were discovered, including transcription regulators, transporters, hypothetical proteins, etc. An isogenic deletion mutant of hxtR gene (ΔhxtR) and its complementary strain (CΔhxtR) were constructed, and their virulence was compared with the wild-type strain in G. mellonella larvae and mice, which showed that disruption of hxtR significantly attenuated the virulence. Moreover, the ΔhxtR strain displayed a reduced survival ability in whole blood, increased sensitivity to phagocytosis, increased chain length, and growth defect. Taken together, this study performed a high throughput screening for VRGs of S. suis using a G. mellonella larvae model and further characterized a novel critical virulence factor.
Collapse
Affiliation(s)
- Jingyan Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Lelin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Qiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Siqi Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Qianqian Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Liangsheng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- Correspondence: (Q.H.); (R.Z.)
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- The HZAU-HVSEN Research Institute, Wuhan 430042, China
- Correspondence: (Q.H.); (R.Z.)
| |
Collapse
|
6
|
Si M, Chen C, Zhong J, Li X, Liu Y, Su T, Yang G. MsrR is a thiol-based oxidation-sensing regulator of the XRE family that modulates C. glutamicum oxidative stress resistance. Microb Cell Fact 2020; 19:189. [PMID: 33008408 PMCID: PMC7532634 DOI: 10.1186/s12934-020-01444-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background Corynebacterium glutamicum thrives under oxidative stress caused by the inevitably extreme environment during fermentation as it harbors antioxidative stress genes. Antioxidant genes are controlled by pathway-specific sensors that act in response to growth conditions. Although many families of oxidation-sensing regulators in C. glutamicum have been well described, members of the xenobiotic-response element (XRE) family, involved in oxidative stress, remain elusive. Results In this study, we report a novel redox-sensitive member of the XER family, MsrR (multiple stress resistance regulator). MsrR is encoded as part of the msrR-3-mst (3-mercaptopyruvate sulfurtransferase) operon; msrR-3-mst is divergent from multidrug efflux protein MFS. MsrR was demonstrated to bind to the intergenic region between msrR-3-mst and mfs. This binding was prevented by an MsrR oxidation-mediated increase in MsrR dimerization. MsrR was shown to use Cys62 oxidation to sense oxidative stress, resulting in its dissociation from the promoter. Elevated expression of msrR-3-mst and mfs was observed under stress. Furthermore, a ΔmsrR mutant strain displayed significantly enhanced growth, while the growth of strains lacking either 3-mst or mfs was significantly inhibited under stress. Conclusion This report is the first to demonstrate the critical role of MsrR-3-MST-MFS in bacterial stress resistance.
Collapse
Affiliation(s)
- Meiru Si
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Can Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Jingyi Zhong
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Xiaona Li
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Yang Liu
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Tao Su
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Ge Yang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| |
Collapse
|
7
|
The Novel Streptococcal Transcriptional Regulator XtgS Negatively Regulates Bacterial Virulence and Directly Represses PseP Transcription. Infect Immun 2020; 88:IAI.00035-20. [PMID: 32690636 DOI: 10.1128/iai.00035-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/04/2020] [Indexed: 01/14/2023] Open
Abstract
Streptococcus agalactiae (group B streptococcus [GBS]) has received continuous attention for its involvement in invasive infections and its broad host range. Transcriptional regulators have an important impact on bacterial adaptation to various environments. Research on transcriptional regulators will shed new light on GBS pathogenesis. In this study, we identified a novel XRE-family transcriptional regulator encoded on the GBS genome, designated XtgS. Our data demonstrate that XtgS inactivation significantly increases bacterial survival in host blood and animal challenge test, suggesting that it is a negative regulator of GBS pathogenicity. Further transcriptomic analysis and quantitative reverse transcription-PCR (qRT-PCR) mainly indicated that XtgS significantly repressed transcription of its upstream gene pseP Based on electrophoretic mobility shift and lacZ fusion assays, we found that an XtgS homodimer directly binds a palindromic sequence in the pseP promoter region. Meanwhile, the PseP and XtgS combination naturally coexists in diverse Streptococcus genomes and has a strong association with sequence type, serotype diversification and host adaptation of GBS. Therefore, this study reveals that XtgS functions as a transcriptional regulator that negatively affects GBS virulence and directly represses PseP expression, and it provides new insights into the relationships between transcriptional regulator and genome evolution.
Collapse
|
8
|
Abstract
The complex regulatory role of the proteases necessitates very tight coordination and control of their expression. While this process has been well studied, a major oversight has been the consideration of proteases as a single entity rather than as 10 enzymes produced from four different promoters. As such, in this study, we comprehensively characterized the regulation of each protease promoter, discovering vast differences in the way each protease operon is controlled. Additionally, we broaden the picture of protease regulation using a global screen to identify novel loci controlling protease activity, uncovering a cadre of new effectors of protease expression. The impact of these elements on the activity of proteases and known regulators was characterized by producing a comprehensive regulatory circuit that emphasizes the complexity of protease regulation in Staphylococcus aureus. A primary function of the extracellular proteases of Staphylococcus aureus is to control the progression of infection by selectively modulating the stability of virulence factors. Consequently, a regulatory network exists to titrate protease abundance/activity to influence the accumulation, or lack thereof, of individual virulence factors. Herein, we comprehensively map this system, exploring the regulation of the four protease loci by known and novel factors. In so doing, we determined that seven major elements (SarS, SarR, Rot, MgrA, CodY, SaeR, and SarA) form the primary network of control, with the latter three being the most powerful. We note that expression of aureolysin is largely repressed by these factors, while the spl operon is subject to the strongest upregulation of any protease loci, particularly by SarR and SaeR. Furthermore, when exploring scpA expression, we find it to be profoundly influenced in opposing fashions by SarA (repressor) and SarR (activator). We also present the screening of >100 regulator mutants of S. aureus, identifying 7 additional factors (ArgR2, AtlR, MntR, Rex, XdrA, Rbf, and SarU) that form a secondary circuit of protease control. Primarily, these elements serve as activators, although we reveal XdrA as a new repressor of protease expression. With the exception or ArgR2, each of the new effectors appears to work through the primary network of regulation to influence protease production. Collectively, we present a comprehensive regulatory circuit that emphasizes the complexity of protease regulation and suggest that its existence speaks to the importance of these enzymes to S. aureus physiology and pathogenic potential. IMPORTANCE The complex regulatory role of the proteases necessitates very tight coordination and control of their expression. While this process has been well studied, a major oversight has been the consideration of proteases as a single entity rather than as 10 enzymes produced from four different promoters. As such, in this study, we comprehensively characterized the regulation of each protease promoter, discovering vast differences in the way each protease operon is controlled. Additionally, we broaden the picture of protease regulation using a global screen to identify novel loci controlling protease activity, uncovering a cadre of new effectors of protease expression. The impact of these elements on the activity of proteases and known regulators was characterized by producing a comprehensive regulatory circuit that emphasizes the complexity of protease regulation in Staphylococcus aureus.
Collapse
|
9
|
Keinhörster D, George SE, Weidenmaier C, Wolz C. Function and regulation of Staphylococcus aureus wall teichoic acids and capsular polysaccharides. Int J Med Microbiol 2019; 309:151333. [DOI: 10.1016/j.ijmm.2019.151333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023] Open
|
10
|
Biswas A, Ghosh S, Sinha D, Dutta A, Seal S, Bagchi A, Sau S. Dimerization ability, denaturation mechanism, and the stability of a staphylococcal phage repressor and its two domains. Int J Biol Macromol 2019; 124:903-914. [DOI: 10.1016/j.ijbiomac.2018.11.263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022]
|
11
|
Hu Y, Hu Q, Wei R, Li R, Zhao D, Ge M, Yao Q, Yu X. The XRE Family Transcriptional Regulator SrtR in Streptococcus suis Is Involved in Oxidant Tolerance and Virulence. Front Cell Infect Microbiol 2019; 8:452. [PMID: 30687648 PMCID: PMC6335249 DOI: 10.3389/fcimb.2018.00452] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/19/2018] [Indexed: 11/30/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen that harbors anti-oxidative stress genes, which have been reported to be associated with virulence. Serial passage has been widely used to obtain phenotypic variant strains to investigate the functions of important genes. In the present study, S. suis serotype 9 strain DN13 was serially passaged in mice 30 times. The virulence of a single colony from passage 10 (SS9-P10) was found to increase by at least 140-fold as indicated by LD50 values, and the increased virulence was stable for single colonies from passage 20 (SS0-P20) and 30 (SS0-P30). Compared to the parental strain, the mouse-adapted strains were more tolerant to oxidative and high temperature stress. Genome-wide analysis of nucleotide variations found that reverse mutations occurred in seven genes, as indicated by BLAST analysis. Three of the reverse mutation genes or their homologs in other bacteria were reported to be virulence-associated, including ideSsuis in S. suis, a homolog of malR of Streptococcus pneumoniae, and a homolog of the prepilin peptidase-encoding gene in Legionella pneumophila. However, these genes were not involved in the stress response. Another gene, srtR (stress response transcriptional regulator), encoding an XRE family transcriptional regulator, which had an internal stop in the parental strain, was functionally restored in the adapted strains. Further analysis of DN13 and SS9-P10-background srtR-knock-out and complementing strains supported the contribution of this gene to stress tolerance in vitro and virulence in mice. srtR and its homologs are widely distributed in Gram-positive bacteria including several important human pathogens such as Enterococcus faecium and Clostridioides difficile, indicating similar functions in these bacteria. Taken together, our study identified the first member of the XRE family of transcriptional regulators that is involved in stress tolerance and virulence. It also provides insight into the mechanism of enhanced virulence after serial passage in experimental animals.
Collapse
Affiliation(s)
- Yuli Hu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qian Hu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Rong Wei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Runcheng Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Dun Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Meng Ge
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qing Yao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xinglong Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
12
|
Repression of Capsule Production by XdrA and CodY in Staphylococcus aureus. J Bacteriol 2018; 200:JB.00203-18. [PMID: 29967117 DOI: 10.1128/jb.00203-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/22/2018] [Indexed: 12/25/2022] Open
Abstract
Capsule is one of many virulence factors produced by Staphylococcus aureus, and its expression is highly regulated. Here, we report the repression of capsule by direct interaction of XdrA and CodY with the capsule promoter region. We found, by footprinting analyses, that XdrA repressed capsule by binding to a broad region that extended from upstream of the -35 region of the promoter to the coding region of capA, the first gene of the 16-gene cap operon. Footprinting analyses also revealed that CodY bound to a large region that overlapped extensively with that of XdrA. We found that repression of the cap genes in the xdrA mutant could be achieved by the overexpression of codY but not vice versa, suggesting codY is epistatic to xdrA However, we found XdrA had no effect on CodY expression. These results suggest that XdrA plays a secondary role in capsule regulation by promoting CodY repression of the cap genes. Oxacillin slightly induced xdrA expression and reduced cap promoter activity, but the effect of oxacillin on capsule was not mediated through XdrA.IMPORTANCEStaphylococcus aureus employs a complex regulatory network to coordinate the expression of various virulence genes to achieve successful infections. How virulence genes are coordinately regulated is still poorly understood. We have been studying capsule regulation as a model system to explore regulatory networking in S. aureus In this study, we found that XdrA and CodY have broad binding sites that overlap extensively in the capsule promoter region. Our results also suggest that XdrA assists CodY in the repression of capsule. As capsule gene regulation by DNA-binding regulators has not been fully investigated, the results presented here fill an important knowledge gap, thereby further advancing our understanding of the global virulence regulatory network in S. aureus.
Collapse
|
13
|
Genome-wide screen for genes involved in eDNA release during biofilm formation by Staphylococcus aureus. Proc Natl Acad Sci U S A 2017; 114:E5969-E5978. [PMID: 28674000 DOI: 10.1073/pnas.1704544114] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is a leading cause of both nosocomial and community-acquired infection. Biofilm formation at the site of infection reduces antimicrobial susceptibility and can lead to chronic infection. During biofilm formation, a subset of cells liberate cytoplasmic proteins and DNA, which are repurposed to form the extracellular matrix that binds the remaining cells together in large clusters. Using a strain that forms robust biofilms in vitro during growth under glucose supplementation, we carried out a genome-wide screen for genes involved in the release of extracellular DNA (eDNA). A high-density transposon insertion library was grown under biofilm-inducing conditions, and the relative frequency of insertions was compared between genomic DNA (gDNA) collected from cells in the biofilm and eDNA from the matrix. Transposon insertions into genes encoding functions necessary for eDNA release were identified by reduced representation in the eDNA. On direct testing, mutants of some of these genes exhibited markedly reduced levels of eDNA and a concomitant reduction in cell clustering. Among the genes with robust mutant phenotypes were gdpP, which encodes a phosphodiesterase that degrades the second messenger cyclic-di-AMP, and xdrA, the gene for a transcription factor that, as revealed by RNA-sequencing analysis, influences the expression of multiple genes, including many involved in cell wall homeostasis. Finally, we report that growth in biofilm-inducing medium lowers cyclic-di-AMP levels and does so in a manner that depends on the gdpP phosphodiesterase gene.
Collapse
|
14
|
Genomic Signatures of Experimental Adaptation to Antimicrobial Peptides in Staphylococcus aureus. G3-GENES GENOMES GENETICS 2016; 6:1535-9. [PMID: 27172179 PMCID: PMC4889650 DOI: 10.1534/g3.115.023622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The evolution of resistance against antimicrobial peptides has long been considered unlikely due to their mechanism of action, yet experimental selection with antimicrobial peptides (AMPs) results in rapid evolution of resistance in several species of bacteria. Although numerous studies have utilized mutant screens to identify loci that determine AMP susceptibility, there is a dearth of data concerning the genomic changes that accompany experimental evolution of AMP resistance. Using genome resequencing, we analyzed the mutations that arose during experimental evolution of resistance to the cationic AMPs iseganan, melittin, and pexiganan, as well as to a combination of melittin and pexiganan, or to the aminoglycoside antibiotic streptomycin. Analysis of 17 independently replicated Staphylococcus aureus selection lines, including unselected controls, showed that each AMP selected for mutations at distinct loci. We identify mutations in genes involved in the synthesis and maintenance of the cell envelope. These include genes previously identified from mutant screens for AMP resistance, and genes involved in the response to AMPs and cell-wall-active antibiotics. Furthermore, transposon insertion mutants were used to verify that a number of the identified genes are directly involved in determining AMP susceptibility. Strains selected for AMP resistance under controlled experimental evolution displayed consistent AMP-specific mutations in genes that determine AMP susceptibility. This suggests that different routes to evolve resistance are favored within a controlled genetic background.
Collapse
|
15
|
Tsujimoto R, Kamiya N, Fujita Y. Identification of acis-acting element in nitrogen fixation genes recognized by CnfR in the nonheterocystous nitrogen-fixing cyanobacteriumLeptolyngbya boryana. Mol Microbiol 2016; 101:411-24. [DOI: 10.1111/mmi.13402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Ryoma Tsujimoto
- Graduate School of Bioagricultural Sciences; Nagoya University, Furo-cho; Chikusa-ku Nagoya 464-8601 Japan
| | - Narumi Kamiya
- School of Agricultural Sciences; Nagoya University, Furo-cho; Chikusa-ku Nagoya 464-8601 Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences; Nagoya University, Furo-cho; Chikusa-ku Nagoya 464-8601 Japan
| |
Collapse
|
16
|
RbsR Activates Capsule but Represses the rbsUDK Operon in Staphylococcus aureus. J Bacteriol 2015; 197:3666-75. [PMID: 26350136 DOI: 10.1128/jb.00640-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/02/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Staphylococcus aureus capsule is an important virulence factor that is regulated by a large number of regulators. Capsule genes are expressed from a major promoter upstream of the cap operon. A 10-bp inverted repeat (IR) located 13 bp upstream of the -35 region of the promoter was previously shown to affect capsule gene transcription. However, little is known about transcriptional activation of the cap promoter. To search for potential proteins which directly interact with the cap promoter region (Pcap), we directly analyzed the proteins interacting with the Pcap DNA fragment from shifted gel bands identified by electrophoretic mobility shift assay. One of these regulators, RbsR, was further characterized and found to positively regulate cap gene expression by specifically binding to the cap promoter region. Footprinting analyses showed that RbsR protected a DNA region encompassing the 10-bp IR. Our results further showed that rbsR was directly controlled by SigB and that RbsR was a repressor of the rbsUDK operon, involved in ribose uptake and phosphorylation. The repression of rbsUDK by RbsR could be derepressed by D-ribose. However, D-ribose did not affect RbsR activation of capsule. IMPORTANCE Staphylococcus aureus is an important human pathogen which produces a large number of virulence factors. We have been using capsule as a model virulence factor to study virulence regulation. Although many capsule regulators have been identified, the mechanism of regulation of most of these regulators is unknown. We show here that RbsR activates capsule by direct promoter binding and that SigB is required for the expression of rbsR. These results define a new pathway wherein SigB activates capsule through RbsR. Our results further demonstrate that RbsR inhibits the rbs operon involved in ribose utilization, thereby providing an example of coregulation of metabolism and virulence in S. aureus. Thus, this study further advances our understanding of staphylococcal virulence regulation.
Collapse
|
17
|
Moche M, Schlüter R, Bernhardt J, Plate K, Riedel K, Hecker M, Becher D. Time-Resolved Analysis of Cytosolic and Surface-Associated Proteins of Staphylococcus aureus HG001 under Planktonic and Biofilm Conditions. J Proteome Res 2015; 14:3804-22. [DOI: 10.1021/acs.jproteome.5b00148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Moche
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Rabea Schlüter
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Kristina Plate
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Katharina Riedel
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| |
Collapse
|
18
|
Cázares-Domínguez V, Ochoa SA, Cruz-Córdova A, Rodea GE, Escalona G, Olivares AL, Olivares-Trejo JDJ, Velázquez-Guadarrama N, Xicohtencatl-Cortes J. Vancomycin modifies the expression of the agr system in multidrug-resistant Staphylococcus aureus clinical isolates. Front Microbiol 2015; 6:369. [PMID: 25999924 PMCID: PMC4419724 DOI: 10.3389/fmicb.2015.00369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/11/2015] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that colonizes human hosts and causes a wide variety of diseases. Two interacting regulatory systems called agr (accessory gene regulator) and sar (staphylococcal accessory regulator) are involved in the regulation of virulence factors. The aim of this study was to evaluate the effect of vancomycin on hld and spa gene expression during the exponential and post-exponential growth phases in multidrug-resistant (MDR) S. aureus. Methods: Antibiotic susceptibility was evaluated by the standard microdilution method. The phylogenetic profile was obtained by pulsed-field gel electrophoresis (PFGE). Polymorphisms of agr and SCCmec (staphylococcal cassette chromosome mec) were analyzed by multiplex polymerase chain reaction (PCR). The expression levels of hld and spa were analyzed by reverse transcription-PCR. An enzyme-linked immunosorbent assay (ELISA) was performed to detect protein A, and biofilm formation was analyzed via crystal violet staining. Results: In total, 60.60% (20/33) of S. aureus clinical isolates were MDR. Half (10/20) of the MDR S. aureus isolates were distributed in subcluster 10, with >90% similarity among them. In the isolates of this subcluster, a high prevalence (100%) for the agrII and the cassette SCCmec II polymorphisms was found. Our data showed significant increases in hld expression during the post-exponential phase in the presence and absence of vancomycin. Significant increases in spa expression, protein A production and biofilm formation were observed during the post-exponential phase when the MDR S. aureus isolates were challenged with vancomycin. Conclusion: The polymorphism agrII, which is associated with nosocomial isolates, was the most prevalent polymorphism in MDR S. aureus. Additionally, under our study conditions, vancomycin modified hld and spa expression in these clinical isolates. Therefore, vancomycin may regulate alternative systems that jointly participate in the regulation of these virulence factors.
Collapse
Affiliation(s)
- Vicenta Cázares-Domínguez
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez México DF, Mexico
| | - Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez México DF, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez México DF, Mexico
| | - Gerardo E Rodea
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez México DF, Mexico
| | - Gerardo Escalona
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez México DF, Mexico
| | - Alma L Olivares
- Laboratorio de Infectología, Hospital Infantil de México Federico Gómez México DF, Mexico
| | | | | | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez México DF, Mexico
| |
Collapse
|
19
|
Sihto HM, Tasara T, Stephan R, Johler S. Temporal expression of the staphylococcal enterotoxin D gene under NaCl stress conditions. FEMS Microbiol Lett 2015; 362:fnv024. [PMID: 25687922 DOI: 10.1093/femsle/fnv024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most osmotolerant food-borne pathogens. While its growth is repressed by competing bacteria, the organism exhibits a growth advantage at increased salt concentrations. Staphylococcal enterotoxin D leads to vomiting and diarrhea upon ingestion. To date, the effect of NaCl on both sed expression and its regulatory control are unclear. We determined the impact of NaCl stress on sed expression and the influence of agr, sarA and sigB on sed expression under NaCl stress. The temporal expression of sed in LB and LB with 4.5% NaCl was compared, as well as sed expression of wild-type (wt) strains and isogenic Δagr, ΔsarA and ΔsigB mutants. In general, NaCl stress led to decreased sed expression. However, one strain exhibited a trend towards increased sed expression under NaCl stress. No significant effect of agr on sed expression was detected and only one ΔsigB mutant showed a significant decrease in sed expression in the early stationary phase under NaCl stress. One ΔsarA mutant showed decreased sed expression in the early stationary and another increased sed expression in the stationary growth phase under NaCl stress. These findings suggest high strain-specific variation in sed expression and its regulation under NaCl stress.
Collapse
Affiliation(s)
- Henna-Maria Sihto
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland
| | - Sophia Johler
- Institute for Food Safety and Hygiene, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
20
|
Biswas A, Mandal S, Sau S. The N-terminal domain of the repressor of Staphylococcus aureus phage Φ11 possesses an unusual dimerization ability and DNA binding affinity. PLoS One 2014; 9:e95012. [PMID: 24747758 PMCID: PMC3991615 DOI: 10.1371/journal.pone.0095012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/22/2014] [Indexed: 11/19/2022] Open
Abstract
Bacteriophage Φ11 uses Staphylococcus aureus as its host and, like lambdoid phages, harbors three homologous operators in between its two divergently oriented repressor genes. None of the repressors of Φ11, however, showed binding to all three operators, even at high concentrations. To understand why the DNA binding mechanism of Φ11 repressors does not match that of lambdoid phage repressors, we studied the N-terminal domain of the Φ11 lysogenic repressor, as it harbors a putative helix-turn-helix motif. Our data revealed that the secondary and tertiary structures of the N-terminal domain were different from those of the full-length repressor. Nonetheless, the N-terminal domain was able to dimerize and bind to the operators similar to the intact repressor. In addition, the operator base specificity, binding stoichiometry, and binding mechanism of this domain were nearly identical to those of the whole repressor. The binding affinities of the repressor and its N-terminal domain were reduced to a similar extent when the temperature was increased to 42°C. Both proteins also adequately dislodged a RNA polymerase from a Φ11 DNA fragment carrying two operators and a promoter. Unlike the intact repressor, the binding of the N-terminal domain to two adjacent operator sites was not cooperative in nature. Taken together, we suggest that the dimerization and DNA binding abilities of the N-terminal domain of the Φ11 repressor are distinct from those of the DNA binding domains of other phage repressors.
Collapse
Affiliation(s)
- Anindya Biswas
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Sukhendu Mandal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
21
|
Castelhano Santos N, Pereira MO, Lourenço A. Pathogenicity phenomena in three model systems: from network mining to emerging system-level properties. Brief Bioinform 2013; 16:169-82. [PMID: 24106130 DOI: 10.1093/bib/bbt071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Understanding the interconnections of microbial pathogenicity phenomena, such as biofilm formation, quorum sensing and antimicrobial resistance, is a tremendous open challenge for biomedical research. Progress made by wet-lab researchers and bioinformaticians in understanding the underlying regulatory phenomena has been significant, with converging evidence from multiple high-throughput technologies. Notably, network reconstructions are already of considerable size and quality, tackling both intracellular regulation and signal mediation in microbial infection. Therefore, it stands to reason that in silico investigations would play a more active part in this research. Drug target identification and drug repurposing could take much advantage of the ability to simulate pathogen regulatory systems, host-pathogen interactions and pathogen cross-talking. Here, we review the bioinformatics resources and tools available for the study of the gram-negative bacterium Pseudomonas aeruginosa, the gram-positive bacterium Staphylococcus aureus and the fungal species Candida albicans. The choice of these three microorganisms fits the rationale of the review converging into pathogens of great clinical importance, which thrive in biofilm consortia and manifest growing antimicrobial resistance.
Collapse
|
22
|
Dengler V, McCallum N, Kiefer P, Christen P, Patrignani A, Vorholt JA, Berger-Bächi B, Senn MM. Mutation in the C-di-AMP cyclase dacA affects fitness and resistance of methicillin resistant Staphylococcus aureus. PLoS One 2013; 8:e73512. [PMID: 24013956 PMCID: PMC3754961 DOI: 10.1371/journal.pone.0073512] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/22/2013] [Indexed: 01/28/2023] Open
Abstract
Faster growing and more virulent strains of methicillin resistant Staphylococcus aureus (MRSA) are increasingly displacing highly resistant MRSA. Elevated fitness in these MRSA is often accompanied by decreased and heterogeneous levels of methicillin resistance; however, the mechanisms for this phenomenon are not yet fully understood. Whole genome sequencing was used to investigate the genetic basis of this apparent correlation, in an isogenic MRSA strain pair that differed in methicillin resistance levels and fitness, with respect to growth rate. Sequencing revealed only one single nucleotide polymorphism (SNP) in the diadenylate cyclase gene dacA in the faster growing but less resistant strain. Diadenylate cyclases were recently discovered to synthesize the new second messenger cyclic diadenosine monophosphate (c-di-AMP). Introduction of this mutation into the highly resistant but slower growing strain reduced resistance and increased its growth rate, suggesting a direct connection between the dacA mutation and the phenotypic differences of these strains. Quantification of cellular c-di-AMP revealed that the dacA mutation decreased c-di-AMP levels resulting in reduced autolysis, increased salt tolerance and a reduction in the basal expression of the cell wall stress stimulon. These results indicate that c-di-AMP affects cell envelope-related signalling in S. aureus. The influence of c-di-AMP on growth rate and methicillin resistance in MRSA indicate that altering c-di-AMP levels could be a mechanism by which MRSA strains can increase their fitness levels by reducing their methicillin resistance levels.
Collapse
Affiliation(s)
- Vanina Dengler
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Nadine McCallum
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Sydney Emerging Infectious Diseases and Biosecurity Institute (SEIB), University of Sydney, Sydney, Australia
| | - Patrick Kiefer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Andrea Patrignani
- Functional Genomics Center Zurich, University/ETH Zurich, Zurich, Switzerland
| | | | | | - Maria M. Senn
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Ibarra JA, Pérez-Rueda E, Carroll RK, Shaw LN. Global analysis of transcriptional regulators in Staphylococcus aureus. BMC Genomics 2013; 14:126. [PMID: 23442205 PMCID: PMC3616918 DOI: 10.1186/1471-2164-14-126] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 02/12/2013] [Indexed: 02/01/2023] Open
Abstract
Background Staphylococcus aureus is a widely distributed human pathogen capable of infecting almost every ecological niche of the host. As a result, it is responsible for causing many different diseases. S. aureus has a vast array of virulence determinants whose expression is modulated by an intricate regulatory network, where transcriptional factors (TFs) are the primary elements. In this work, using diverse sequence analysis, we evaluated the repertoire of TFs and sigma factors in the community-associated methicillin resistant S. aureus (CA-MRSA) strain USA300-FPR3757. Results A total of 135 TFs and sigma factors were identified and classified into 36 regulatory families. From these around 43% have been experimentally characterized to date, which demonstrates the significant work still at hand to unravel the regulatory network in place for this important pathogen. A comparison of the TF repertoire of S. aureus against 1209 sequenced bacterial genomes was carried out allowing us to identify a core set of orthologous TFs for the Staphylococacceae, and also allowing us to assign potential functions to previously uncharacterized TFs. Finally, the USA300 TFs were compared to those in eleven other S. aureus strains including: Newman, COL, JH1, JH9, MW2, Mu3, Mu50, N315, RF122, MRSA252 and MSSA476. We identify conserved TFs among these strains and suggest possible regulatory interactions. Conclusions The analysis presented herein highlights the complexity of regulatory networks in S. aureus strains, identifies key conserved TFs among the Staphylococacceae, and offers unique insights into several as yet uncharacterized TFs.
Collapse
Affiliation(s)
- Jose Antonio Ibarra
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA.
| | | | | | | |
Collapse
|
24
|
Schulthess B, Bloes DA, Berger-Bächi B. Opposing roles of σB and σB-controlled SpoVG in the global regulation of esxA in Staphylococcus aureus. BMC Microbiol 2012; 12:17. [PMID: 22272815 PMCID: PMC3313859 DOI: 10.1186/1471-2180-12-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 01/24/2012] [Indexed: 01/12/2023] Open
Abstract
Background The production of virulence factors in Staphylococcus aureus is tightly controlled by a complex web of interacting regulators. EsxA is one of the virulence factors that are excreted by the specialized, type VII-like Ess secretion system of S. aureus. The esxA gene is part of the σB-dependent SpoVG subregulon. However, the mode of action of SpoVG and its impact on other global regulators acting on esxA transcription is as yet unknown. Results We demonstrate that the transcription of esxA is controlled by a regulatory cascade involving downstream σB-dependent regulatory elements, including the staphylococcal accessory regulator SarA, the ArlRS two-component system and SpoVG. The esxA gene, preceding the ess gene cluster, was shown to form a monocistronic transcript that is driven by a σA promoter, whereas a putative σB promoter identified upstream of the σA promoter was shown to be inactive. Transcription of esxA was strongly upregulated upon either sarA or sigB inactivation, but decreased in agr, arlR and spoVG single mutants, suggesting that agr, ArlR and SpoVG are able to increase esxA transcription and relieve the repressing effect of the σB-controlled SarA on esxA. Conclusion SpoVG is a σB-dependent element that fine-tunes the expression of esxA by counteracting the σB-induced repressing activity of the transcriptional regulator SarA and activates esxA transcription.
Collapse
Affiliation(s)
- Bettina Schulthess
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 32, 8006 Zurich, Switzerland.
| | | | | |
Collapse
|
25
|
Over B, Heusser R, McCallum N, Schulthess B, Kupferschmied P, Gaiani JM, Sifri CD, Berger-Bächi B, Stutzmann Meier P. LytR-CpsA-Psr proteins in Staphylococcus aureus display partial functional redundancy and the deletion of all three severely impairs septum placement and cell separation. FEMS Microbiol Lett 2011; 320:142-51. [PMID: 21554381 DOI: 10.1111/j.1574-6968.2011.02303.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus contains three members of the LytR-CpsA-Psr (LCP) family of membrane proteins: MsrR, SA0908 and SA2103. The characterization of single-, double- and triple-deletion mutants revealed distinct phenotypes for each of the three proteins. MsrR was involved in cell separation and septum formation and influenced β-lactam resistance; SA0908 protected cells from autolysis; and SA2103, although displaying no apparent phenotype by itself, enhanced the properties of msrR and sa0908 mutants when deleted. The deletion of sa0908 and sa2103 also further attenuated the virulence of msrR mutants in a nematode-killing assay. The severely defective growth phenotype of the triple mutant revealed that LytR-CpsA-Psr proteins are essential for optimal cell division in S. aureus. Growth could be rescued to varying degrees by any one of the three proteins, indicating some functional redundancy within members of this protein family. However, differing phenotypic characteristics of all single and double mutants and complemented triple mutants indicated that each protein played a distinct role(s) and contributed differently to phenotypes influencing cell separation, autolysis, cell surface properties and virulence.
Collapse
Affiliation(s)
- Benjamin Over
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|