1
|
Rush JS, Zamakhaeva S, Murner NR, Deng P, Morris AJ, Kenner CW, Black I, Heiss C, Azadi P, Korotkov KV, Widmalm G, Korotkova N. Structure and mechanism of biosynthesis of Streptococcus mutans cell wall polysaccharide. Nat Commun 2025; 16:954. [PMID: 39843487 PMCID: PMC11754754 DOI: 10.1038/s41467-025-56205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Streptococcus mutans, the causative agent of human dental caries, expresses a cell wall attached Serotype c-specific Carbohydrate (SCC) that is critical for cell viability. SCC consists of a polyrhamnose backbone of →3)α-Rha(1 → 2)α-Rha(1→ repeats with glucose (Glc) side-chains and glycerol phosphate (GroP) decorations. This study reveals that SCC has one predominant and two more minor Glc modifications. The predominant Glc modification, α-Glc, attached to position 2 of 3-rhamnose, is installed by SccN and SccM glycosyltransferases and is the site of the GroP addition. The minor Glc modifications are β-Glc linked to position 4 of 3-rhamnose installed by SccP and SccQ glycosyltransferases, and α-Glc attached to position 4 of 2-rhamnose installed by SccN working in tandem with an unknown enzyme. Both the major and the minor β-Glc modifications control bacterial morphology, but only the GroP and major Glc modifications are critical for biofilm formation.
Collapse
Affiliation(s)
- Jeffrey S Rush
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Svetlana Zamakhaeva
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Nicholas R Murner
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Pan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Andrew J Morris
- Division of Cardiovascular Medicine and the Gill Heart Institute, University of Kentucky, Lexington, KY, USA
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Science and Central Arkansas Veterans Affairs Healthcare System, Little Rock, AR, USA
| | - Cameron W Kenner
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Natalia Korotkova
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Kokoulin MS, Savicheva YV, Otstavnykh NY, Kurilenko VV, Meleshko DA, Isaeva MP. Structure and Biosynthetic Gene Cluster of Sulfated Capsular Polysaccharide from the Marine Bacterium Vibrio sp. KMM 8419. Int J Mol Sci 2024; 25:12927. [PMID: 39684638 DOI: 10.3390/ijms252312927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Vibrio sp. KMM 8419 (=CB1-14) is a Gram-negative bacterium isolated from a food-net mucus sample of marine polychaete Chaetopterus cautus collected in the Sea of Japan. Here, we report the structure and biosynthetic gene cluster of the capsular polysaccharide (CPS) from strain KMM 8419. The CPS was isolated and studied by one- and two-dimensional 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The molecular weight of the CPS was about 254 kDa. The CPS consisted of disaccharide repeating units of D-glucose and sulfated and acetylated L-rhamnose established as →2)-α-L-Rhap3S4Ac-(1→6)-α-D-Glcp-(1→. To identify the genes responsible for CPS biosynthesis, whole-genome sequencing of KMM 8419 was carried out. Based on the genome annotations together with the Interproscan, UniProt and AntiSMASH results, a CPS-related gene cluster of 80 genes was found on chromosome 1. This cluster contained sets of genes encoding for the nucleotide sugar biosynthesis (UDP-Glc and dTDP-Rha), assembly (glycosyltransferases (GT)), transport (ABC transporter) and sulfation (PAPS biosynthesis and sulfotransferases) of the sulfated CPS. A hypothetical model for the assembly and transportation of the sulfated CPS was also proposed. In addition, this locus included genes for O-antigen biosynthesis. Further studies of biological activity, the structure-activity relationship in the new sulfated polysaccharide and its biosynthesis are necessary for the development of potent anticancer agents or drug delivery systems.
Collapse
Affiliation(s)
- Maxim S Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Yulia V Savicheva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Nadezhda Y Otstavnykh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Valeria V Kurilenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Dmitry A Meleshko
- Principal Engineering School, ITMO University, 9, Lomonosova Street, St. Petersburg 191002, Russia
| | - Marina P Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russia
| |
Collapse
|
3
|
Kametani M, Akitomo T, Hamada M, Usuda M, Kaneki A, Ogawa M, Ikeda S, Ito Y, Hamaguchi S, Kusaka S, Asao Y, Iwamoto Y, Mitsuhata C, Suehiro Y, Okawa R, Nakano K, Nomura R. Inhibitory Effects of Surface Pre-Reacted Glass Ionomer Filler Eluate on Streptococcus mutans in the Presence of Sucrose. Int J Mol Sci 2024; 25:9541. [PMID: 39273489 PMCID: PMC11395275 DOI: 10.3390/ijms25179541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The surface pre-reacted glass ionomer (S-PRG) filler is a type of bioactive functional glass that releases six different ions. This study examined the effects of the S-PRG filler eluate on Streptococcus mutans in the presence of sucrose. In a solution containing S. mutans, the concentrations of BO33-, Al3+, Sr2+, and F- were significantly higher in the presence of the S-PRG filler eluate than in its absence (p < 0.001). The concentrations of these ions further increased in the presence of sucrose. Additionally, the S-PRG filler eluate significantly reduced glucan formation by S. mutans (p < 0.001) and significantly increased the pH of the bacterial suspension (p < 0.001). Bioinformatic analyses revealed that the S-PRG filler eluate downregulated genes involved in purine biosynthesis (purC, purF, purL, purM, and purN) and upregulated genes involved in osmotic pressure (opuAa and opuAb). At a low pH (5.0), the S-PRG filler eluate completely inhibited the growth of S. mutans in the presence of sucrose and significantly increased the osmotic pressure of the bacterial suspension compared with the control (p < 0.001). These findings suggest that ions released from the S-PRG filler induce gene expression changes and exert an inhibitory effect on S. mutans in the presence of sucrose.
Collapse
Affiliation(s)
- Mariko Kametani
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tatsuya Akitomo
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Momoko Usuda
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ami Kaneki
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masashi Ogawa
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shunya Ikeda
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuya Ito
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shuma Hamaguchi
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Satoru Kusaka
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuria Asao
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuko Iwamoto
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Chieko Mitsuhata
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuto Suehiro
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Rena Okawa
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
4
|
Díaz-Garrido N, Lozano CP, Kreth J, Giacaman RA. Extended biofilm formation time by Streptococcus sanguinis modifies its non-cariogenic behavior, in vitro. Braz Oral Res 2022; 36:e107. [PMID: 35946735 DOI: 10.1590/1807-3107bor-2022.vol36.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Although the commensal Streptococcus sanguinis [ S. sanguinis] is isolated from caries-free people, it can ferment carbohydrates producing acids. We aimed to characterize S. sanguinis cariogenic potential as a function of different enamel biofilm formation periods, in vitro. Saliva-coated enamel slabs were inoculated with S. sanguinis to form initial biofilms for 8, 12 or 16 h in presence of sucrose and followed by a period in medium with glucose for 16, 12 or 8 h, respectively, until completion of 24 h. To simulate cariogenic challenges, S. sanguinis biofilms were exposed to 10% sucrose for 5 minutes, 3x/day for 5 days. Biofilm biomass, viable cells, total proteins, intracellular and extracellular polysaccharides production, acidogenicity and enamel demineralization were determined. Biofilms of Streptococcus mutans [ S. mutans ] served as caries-positive control. Biofilms of S. sanguinis forming on enamel for 12 and 16 h showed higher demineralization than those formed during 8 h, but lower than S. mutans biofilms, regardless of the initial biofilm formation time. No differences were detected in the biofilm properties among the different biofilm formation times tested for S. sanguinis . Increased enamel initial biofilm formation time by S. sanguinis appears to induce a cariogenic potential, but lower than S. mutans .
Collapse
Affiliation(s)
- Natalia Díaz-Garrido
- University of Talca , Cariology Unit , Department of Oral Rehabilitation , Talca , Chile
| | - Carla Paola Lozano
- Universidad de Chile , Institute for Research in Dental Sciences , Faculty of Dentistry , Laboratory of Biochemistry and Oral Biology, Santiago , Chile
| | - Jens Kreth
- Oregon Health & Science University , Department of Restorative Dentistry , Portland , OR , USA
| | - Rodrigo Andrés Giacaman
- Interuniversity Center on Healthy Aging , Chilean State Universities Consortium , Santiago , Chile
| |
Collapse
|
5
|
Effects of pH on the Properties of Membrane Vesicles Including Glucosyltransferase in Streptococcus mutans. Microorganisms 2021; 9:microorganisms9112308. [PMID: 34835434 PMCID: PMC8618110 DOI: 10.3390/microorganisms9112308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022] Open
Abstract
Streptococcus mutans releases membrane vesicles (MVs) and induces MV-dependent biofilm formation. Glucosyltransferases (Gtfs) are bound to MVs and contribute to the adhesion and glucans-dependent biofilm formation of early adherent bacteria on the tooth surface. The biofilm formation of S. mutans may be controlled depending on whether the initial pH tends to be acidic or alkaline. In this study, the characteristics and effects of MVs extracted from various conditions {(initial pH 6.0 and 8.0 media prepared with lactic acid (LA) and acetic acid (AA), and with NaOH (NO), respectively)} on the biofilm formation of S. mutans and early adherent bacteria were investigated. The quantitative changes in glucans between primary pH 6.0 and 8.0 conditions were observed, associated with different activities affecting MV-dependent biofilm formation. The decreased amount of Gtfs on MVs under the initial pH 6.0 conditions strongly guided low levels of MV-dependent biofilm formation. However, in the initial pH 6.0 and 8.0 solutions prepared with AA and NO, the MVs in the biofilm appeared to be formed by the expression of glucans and/or extracellular DNA. These results suggest that the environmental pH conditions established by acid and alkaline factors determine the differences in the local pathogenic activities of biofilm development in the oral cavity.
Collapse
|
6
|
Wang M, Chan EWC, Wan Y, Wong MHY, Chen S. Active maintenance of proton motive force mediates starvation-induced bacterial antibiotic tolerance in Escherichia coli. Commun Biol 2021; 4:1068. [PMID: 34521984 PMCID: PMC8440630 DOI: 10.1038/s42003-021-02612-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
Recent evidence suggests that metabolic shutdown alone does not fully explain how bacteria exhibit phenotypic antibiotic tolerance. In an attempt to investigate the range of starvation-induced physiological responses underlying tolerance development, we found that active maintenance of the transmembrane proton motive force (PMF) is essential for prolonged expression of antibiotic tolerance in bacteria. Eradication of tolerant sub-population could be achieved by disruption of PMF using the ionophore CCCP, or through suppression of PMF maintenance mechanisms by simultaneous inhibition of the phage shock protein (Psp) response and electron transport chain (ETC) complex activities. We consider disruption of bacterial PMF a feasible strategy for treatment of chronic and recurrent bacterial infections.
Collapse
Affiliation(s)
- Miaomiao Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yingkun Wan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Marcus Ho-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
7
|
Li QM, Zhou YL, Wei ZF, Wang Y. Phylogenomic Insights into Distribution and Adaptation of Bdellovibrionota in Marine Waters. Microorganisms 2021; 9:757. [PMID: 33916768 PMCID: PMC8067016 DOI: 10.3390/microorganisms9040757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
Bdellovibrionota is composed of obligate predators that can consume some Gram-negative bacteria inhabiting various environments. However, whether genomic traits influence their distribution and marine adaptation remains to be answered. In this study, we performed phylogenomics and comparative genomics studies using 132 Bdellovibrionota genomes along with five metagenome-assembled genomes (MAGs) from deep sea zones. Four phylogenetic groups, Oligoflexia, Bdello-group1, Bdello-group2 and Bacteriovoracia, were revealed by constructing a phylogenetic tree, of which 53.84% of Bdello-group2 and 48.94% of Bacteriovoracia were derived from the ocean. Bacteriovoracia was more prevalent in deep sea zones, whereas Bdello-group2 was largely distributed in the epipelagic zone. Metabolic reconstruction indicated that genes involved in chemotaxis, flagellar (mobility), type II secretion system, ATP-binding cassette (ABC) transporters and penicillin-binding protein were necessary for the predatory lifestyle of Bdellovibrionota. Genes involved in glycerol metabolism, hydrogen peroxide (H2O2) degradation, cell wall recycling and peptide utilization were ubiquitously present in Bdellovibrionota genomes. Comparative genomics between marine and non-marine Bdellovibrionota demonstrated that betaine as an osmoprotectant is probably widely used by marine Bdellovibrionota, and all the marine genomes have a number of genes for adaptation to marine environments. The genes encoding chitinase and chitin-binding protein were identified for the first time in Oligoflexia, which implied that Oligoflexia may prey on a wider spectrum of microbes. This study expands our knowledge on adaption strategies of Bdellovibrionota inhabiting deep seas and the potential usage of Oligoflexia for biological control.
Collapse
Affiliation(s)
- Qing-Mei Li
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.-M.L.); (Y.-L.Z.); (Z.-F.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Li Zhou
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.-M.L.); (Y.-L.Z.); (Z.-F.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fei Wei
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.-M.L.); (Y.-L.Z.); (Z.-F.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Wang
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.-M.L.); (Y.-L.Z.); (Z.-F.W.)
| |
Collapse
|
8
|
Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol 2000 2021; 86:32-56. [PMID: 33690911 PMCID: PMC9413593 DOI: 10.1111/prd.12361] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Graham P Stafford
- Integrated Biosciences, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
LytR-CpsA-Psr Glycopolymer Transferases: Essential Bricks in Gram-Positive Bacterial Cell Wall Assembly. Int J Mol Sci 2021; 22:ijms22020908. [PMID: 33477538 PMCID: PMC7831098 DOI: 10.3390/ijms22020908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/28/2022] Open
Abstract
The cell walls of Gram-positive bacteria contain a variety of glycopolymers (CWGPs), a significant proportion of which are covalently linked to the peptidoglycan (PGN) scaffolding structure. Prominent CWGPs include wall teichoic acids of Staphylococcus aureus, streptococcal capsules, mycobacterial arabinogalactan, and rhamnose-containing polysaccharides of lactic acid bacteria. CWGPs serve important roles in bacterial cellular functions, morphology, and virulence. Despite evident differences in composition, structure and underlaying biosynthesis pathways, the final ligation step of CWGPs to the PGN backbone involves a conserved class of enzymes-the LytR-CpsA-Psr (LCP) transferases. Typically, the enzymes are present in multiple copies displaying partly functional redundancy and/or preference for a distinct CWGP type. LCP enzymes require a lipid-phosphate-linked glycan precursor substrate and catalyse, with a certain degree of promiscuity, CWGP transfer to PGN of different maturation stages, according to in vitro evidence. The prototype attachment mode is that to the C6-OH of N-acetylmuramic acid residues via installation of a phosphodiester bond. In some cases, attachment proceeds to N-acetylglucosamine residues of PGN-in the case of the Streptococcus agalactiae capsule, even without involvement of a phosphate bond. A novel aspect of LCP enzymes concerns a predicted role in protein glycosylation in Actinomyces oris. Available crystal structures provide further insight into the catalytic mechanism of this biologically important class of enzymes, which are gaining attention as new targets for antibacterial drug discovery to counteract the emergence of multidrug resistant bacteria.
Collapse
|
10
|
Potential Risk of Spreading Resistance Genes within Extracellular-DNA-Dependent Biofilms of Streptococcus mutans in Response to Cell Envelope Stress Induced by Sub-MICs of Bacitracin. Appl Environ Microbiol 2020; 86:AEM.00770-20. [PMID: 32532873 DOI: 10.1128/aem.00770-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Antibiotics are used to treat or prevent some types of bacterial infection. The inappropriate use of antibiotics unnecessarily promotes antibiotic resistance and increases resistant bacteria, and controlling these bacteria is difficult. While the emergence of drug-resistant bacteria is a serious problem, the behavior of drug-resistant bacteria is not fully understood. In this study, we investigated the behavior of Streptococcus mutans, a major etiological agent of dental caries that is resistant to bacitracin, which is a cell wall-targeting antibiotic, and focused on biofilm formation in the presence of bacitracin. S. mutans UA159 most strongly induced extracellular DNA (eDNA)-dependent biofilm formation in the presence of bacitracin at 1/8× MIC. The ΔmbrC and ΔmbrD mutant strains, which lack bacitracin resistance, also formed biofilms in the presence of bacitracin at 1/2× MIC. This difference between the wild type and the mutants was caused by the induction of atlA expression in the mid-log phase. We also revealed that certain rgp genes involved in the synthesis of rhamnose-glucose polysaccharide related to cell wall synthesis were downregulated by bacitracin. In addition, glucosyltransferase-I was also involved in eDNA-dependent biofilm formation. The biofilm led to increased transformation efficiencies and promoted horizontal gene transfer. Biofilms were also induced by ampicillin and vancomycin, antibiotics targeting cell wall synthesis, suggesting that cell envelope stress triggers biofilm formation. Therefore, the expression of the atlA and rgp genes is regulated by S. mutans, which forms eDNA-dependent biofilms, promoting horizontal gene transfer in response to cell envelope stress induced by sub-MICs of antibiotics.IMPORTANCE Antibiotics have been reported to induce biofilm formation in many bacteria at subinhibitory concentrations. Accordingly, it is conceivable that the MIC against drug-sensitive bacteria may promote biofilm formation of resistant bacteria. Since drug-resistant bacteria have spread, it is important to understand the behavior of resistant bacteria. Streptococcus mutans is bacitracin resistant, and the 1/8× MIC of bacitracin, which is a cell wall-targeted antibiotic, induced eDNA-dependent biofilm formation. The ΔmbrC and ΔmbrD strains, which are not resistant to bacitracin, also formed biofilms in the presence of bacitracin at 1/2× MIC, and biofilms of both the wild type and mutants promoted horizontal gene transfer. Another cell wall-targeted antibiotic, vancomycin, showed effects on biofilms and gene transfer similar to those of bacitracin. Thus, treatment with cell wall-targeted antibiotics may promote the spread of drug-resistant genes in biofilms. Therefore, the behavior of resistant bacteria in the presence of antibiotics at sub-MICs should be investigated when using antibiotics.
Collapse
|
11
|
Shields RC, Walker AR, Maricic N, Chakraborty B, Underhill SAM, Burne RA. Repurposing the Streptococcus mutans CRISPR-Cas9 System to Understand Essential Gene Function. PLoS Pathog 2020; 16:e1008344. [PMID: 32150575 PMCID: PMC7082069 DOI: 10.1371/journal.ppat.1008344] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/19/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
A recent genome-wide screen identified ~300 essential or growth-supporting genes in the dental caries pathogen Streptococcus mutans. To be able to study these genes, we built a CRISPR interference tool around the Cas9 nuclease (Cas9Smu) encoded in the S. mutans UA159 genome. Using a xylose-inducible dead Cas9Smu with a constitutively active single-guide RNA (sgRNA), we observed titratable repression of GFP fluorescence that compared favorably to that of Streptococcus pyogenes dCas9 (Cas9Spy). We then investigated sgRNA specificity and proto-spacer adjacent motif (PAM) requirements. Interference by sgRNAs did not occur with double or triple base-pair mutations, or if single base-pair mutations were in the 3' end of the sgRNA. Bioinformatic analysis of >450 S. mutans genomes allied with in vivo assays revealed a similar PAM recognition sequence as Cas9Spy. Next, we created a comprehensive library of sgRNA plasmids that were directed at essential and growth-supporting genes. We discovered growth defects for 77% of the CRISPRi strains expressing sgRNAs. Phenotypes of CRISPRi strains, across several biological pathways, were assessed using fluorescence microscopy. A variety of cell structure anomalies were observed, including segregational instability of the chromosome, enlarged cells, and ovococci-to-rod shape transitions. CRISPRi was also employed to observe how silencing of cell wall glycopolysaccharide biosynthesis (rhamnose-glucose polysaccharide, RGP) affected both cell division and pathogenesis in a wax worm model. The CRISPRi tool and sgRNA library are valuable resources for characterizing essential genes in S. mutans, some of which could prove to be promising therapeutic targets.
Collapse
Affiliation(s)
- Robert C. Shields
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Alejandro R. Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Natalie Maricic
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Brinta Chakraborty
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Simon A. M. Underhill
- Department of Physics, University of Florida, Gainesville, Florida, United States of America
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
12
|
Disruption of l-Rhamnose Biosynthesis Results in Severe Growth Defects in Streptococcus mutans. J Bacteriol 2020; 202:JB.00728-19. [PMID: 31871035 DOI: 10.1128/jb.00728-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The rhamnose-glucose cell wall polysaccharide (RGP) of Streptococcus mutans plays a significant role in cell division, virulence, and stress protection. Prior studies examined function of the RGP using strains carrying deletions in the machinery involved in RGP assembly. In this study, we explored loss of the substrate for RGP, l-rhamnose, via deletion of rmlD (encoding the protein responsible for the terminal step in l-rhamnose biosynthesis). We demonstrate that loss of rhamnose biosynthesis causes a phenotype similar to strains with disrupted RGP assembly (ΔrgpG and ΔrgpF strains). Deletion of rmlD not only caused a severe growth defect under nonstress growth conditions but also elevated susceptibility of the strain to acid and oxidative stress, common conditions found in the oral cavity. A genetic complement of the ΔrmlD strain completely restored wild-type levels of growth, whereas addition of exogenous rhamnose did not. The loss of rhamnose production also significantly disrupted biofilm formation, an important aspect of S. mutans growth in the oral cavity. Further, we demonstrate that loss of either rmlD or rgpG results in ablation of rhamnose content in the S. mutans cell wall. Taken together, these results highlight the importance of rhamnose production in both the fitness and the ability of S. mutans to overcome environmental stresses.IMPORTANCE Streptococcus mutans is a pathogenic bacterium that is the primary etiologic agent of dental caries, a disease that affects billions yearly. Rhamnose biosynthesis is conserved not only in streptococcal species but in other Gram-positive, as well as Gram-negative, organisms. This study highlights the importance of rhamnose biosynthesis in RGP production for protection of the organism against acid and oxidative stresses, the two major stressors that the organism encounters in the oral cavity. Loss of RGP also severely impacts biofilm formation, the first step in the onset of dental caries. The high conservation of the rhamnose synthesis enzymes, as well as their importance in S. mutans and other organisms, makes them favorable antibiotic targets for the treatment of disease.
Collapse
|
13
|
Baker JL, Saputo S, Faustoferri RC, Quivey RG. Streptococcus mutans SpxA2 relays the signal of cell envelope stress from LiaR to effectors that maintain cell wall and membrane homeostasis. Mol Oral Microbiol 2020; 35:118-128. [PMID: 32043713 DOI: 10.1111/omi.12282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/01/2022]
Abstract
Streptococcus mutans is a major etiologic agent of dental caries, which is the most common chronic infectious disease worldwide. S. mutans is particularly adept at causing caries due to its exceptional capacity to form biofilms and its ability to survive acidic conditions that arrest acid production and growth in many more benign members of the oral microbiota. Two mechanisms utilized by S. mutans to tolerate acid are: modulation of the membrane fatty acid content and utilization of the F1 F0 -ATPase to pump protons out of the cytosol. In this study, the role of the spxA2 transcriptional regulator in these two pathways, and overall cell envelope homeostasis, was examined. Loss of spxA2 resulted in an increase in the proportion of saturated fatty acids in the S. mutans membrane and altered transcription of several genes involved in the production of these membrane fatty acids, including fabT and fabM. Furthermore, activity of the F1 F0 -ATPase was increased in the ∆spxA2 strain. Transcription of spxA2 was elevated in the presence of a variety of membrane stressors, and highly dependent on the liaR component of the LiaFSR system, which is known to sense cell envelope stress in many Gram-positive bacteria. Finally, deletion of ∆spxA2 led to altered susceptibility of S. mutans to membrane stressors. Overall, the results of this study indicate that spxA2 serves a crucial role in transmitting the signal of cell wall/membrane damage from the LiaFSR sensor to downstream effectors in the SpxA2 regulon which restore and maintain membrane and cell wall homeostasis.
Collapse
Affiliation(s)
- Jonathon L Baker
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - Sarah Saputo
- Center for Oral Biology, Box 611, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Roberta C Faustoferri
- Center for Oral Biology, Box 611, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Robert G Quivey
- Center for Oral Biology, Box 611, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
14
|
Zorzoli A, Meyer BH, Adair E, Torgov VI, Veselovsky VV, Danilov LL, Uhrin D, Dorfmueller HC. Group A, B, C, and G Streptococcus Lancefield antigen biosynthesis is initiated by a conserved α-d-GlcNAc-β-1,4-l-rhamnosyltransferase. J Biol Chem 2019; 294:15237-15256. [PMID: 31506299 PMCID: PMC6802508 DOI: 10.1074/jbc.ra119.009894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Group A carbohydrate (GAC) is a bacterial peptidoglycan-anchored surface rhamnose polysaccharide (RhaPS) that is essential for growth of Streptococcus pyogenes and contributes to its ability to infect the human host. In this study, using molecular and synthetic biology approaches, biochemistry, radiolabeling techniques, and NMR and MS analyses, we examined the role of GacB, encoded in the S. pyogenes GAC gene cluster, in the GAC biosynthesis pathway. We demonstrate that GacB is the first characterized α-d-GlcNAc-β-1,4-l-rhamnosyltransferase that synthesizes the committed step in the biosynthesis of the GAC virulence determinant. Importantly, the substitution of S. pyogenes gacB with the homologous gene from Streptococcus agalactiae (Group B Streptococcus), Streptococcus equi subsp. zooepidemicus (Group C Streptococcus), Streptococcus dysgalactiae subsp. equisimilis (Group G Streptococcus), or Streptococcus mutans complemented the GAC biosynthesis pathway. These results, combined with those from extensive in silico studies, reveal a common phylogenetic origin of the genes required for this priming step in >40 pathogenic species of the Streptococcus genus, including members from the Lancefield Groups B, C, D, E, G, and H. Importantly, this priming step appears to be unique to streptococcal ABC transporter-dependent RhaPS biosynthesis, whereas the Wzx/Wzy-dependent streptococcal capsular polysaccharide pathways instead require an α-d-Glc-β-1,4-l-rhamnosyltransferase. The insights into the RhaPS priming step obtained here open the door to targeting the early steps of the group carbohydrate biosynthesis pathways in species of the Streptococcus genus of high clinical and veterinary importance.
Collapse
Affiliation(s)
- Azul Zorzoli
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Benjamin H Meyer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Elaine Adair
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Vladimir I Torgov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir V Veselovsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Leonid L Danilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dusan Uhrin
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
15
|
Quantitative Proteomics Uncovers the Interaction between a Virulence Factor and Mutanobactin Synthetases in Streptococcus mutans. mSphere 2019; 4:4/5/e00429-19. [PMID: 31554721 PMCID: PMC6763767 DOI: 10.1128/msphere.00429-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Streptococcus mutans is the major bacterium associated with dental caries. In order to thrive on the highly populated tooth surface and cause disease, S. mutans must be able to protect itself from hydrogen peroxide-producing commensal bacteria and compete effectively against the neighboring microbes. S. mutans produces mutacins, small antimicrobial peptides which help control the population of competing bacterial species. In addition, S. mutans produces a peptide called mutanobactin, which offers S. mutans protection against oxidative stress. Here, we uncover a new link between the putative glycosyltransferase SMU_833 and the mutanobactin-synthesizing protein complex through quantitative proteomic analysis and a tandem-affinity protein purification scheme. Furthermore, we show that SMU_833 mediates bacterial sensitivity to oxidative stress and bacterial ability to compete with commensal streptococci. This study has revealed a previously unknown association between SMU_833 and mutanobactin and demonstrated the importance of SMU_833 in the fitness of S. mutans. Streptococcus mutans, the primary etiological agent of tooth decay, has developed multiple adhesion and virulence factors which enable it to colonize and compete with other bacteria. The putative glycosyltransferase SMU_833 is important for the virulence of S. mutans by altering the biofilm matrix composition and cariogenicity. In this study, we further characterized the smu_833 mutant by evaluating its effects on bacterial fitness. Loss of SMU_833 led to extracellular DNA-dependent bacterial aggregation. In addition, the mutant was more susceptible to oxidative stress and less competitive against H2O2 producing oral streptococci. Quantitative proteomics analysis revealed that SMU_833 deficiency resulted in the significant downregulation of 10 proteins encoded by a biosynthetic gene cluster responsible for the production of mutanobactin, a compound produced by S. mutans which helps it survive oxidative stress. Tandem affinity purification demonstrated that SMU_833 interacts with the synthetic enzymes responsible for the production of mutanobactin. Similar to the smu_833 mutant, the deletion of the mutanobactin gene cluster rendered the mutant less competitive against H2O2-producing streptococci. Our studies revealed a new link between SMU_833 virulence and mutanobactin, suggesting that SMU_833 represents a new virulent target that can be used to develop potential anticaries therapeutics. IMPORTANCEStreptococcus mutans is the major bacterium associated with dental caries. In order to thrive on the highly populated tooth surface and cause disease, S. mutans must be able to protect itself from hydrogen peroxide-producing commensal bacteria and compete effectively against the neighboring microbes. S. mutans produces mutacins, small antimicrobial peptides which help control the population of competing bacterial species. In addition, S. mutans produces a peptide called mutanobactin, which offers S. mutans protection against oxidative stress. Here, we uncover a new link between the putative glycosyltransferase SMU_833 and the mutanobactin-synthesizing protein complex through quantitative proteomic analysis and a tandem-affinity protein purification scheme. Furthermore, we show that SMU_833 mediates bacterial sensitivity to oxidative stress and bacterial ability to compete with commensal streptococci. This study has revealed a previously unknown association between SMU_833 and mutanobactin and demonstrated the importance of SMU_833 in the fitness of S. mutans.
Collapse
|
16
|
Kovacs CJ, Faustoferri RC, Bischer AP, Quivey RG. Streptococcus mutans requires mature rhamnose-glucose polysaccharides for proper pathophysiology, morphogenesis and cellular division. Mol Microbiol 2019; 112:944-959. [PMID: 31210392 DOI: 10.1111/mmi.14330] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/30/2022]
Abstract
The cell wall of Gram-positive bacteria has been shown to mediate environmental stress tolerance, antibiotic susceptibility, host immune evasion and overall virulence. The majority of these traits have been demonstrated for the well-studied system of wall teichoic acid (WTA) synthesis, a common cell wall polysaccharide among Gram-positive organisms. Streptococcus mutans, a Gram-positive odontopathogen that contributes to the enamel-destructive disease dental caries, lacks the capabilities to generate WTA. Instead, the cell wall of S. mutans is highly decorated with rhamnose-glucose polysaccharides (RGP), for which functional roles are poorly defined. Here, we demonstrate that the RGP has a distinct role in protecting S. mutans from a variety of stress conditions pertinent to pathogenic capability. Mutant strains with disrupted RGP synthesis failed to properly localize cell division complexes, suffered from aberrant septum formation and exhibited enhanced cellular autolysis. Surprisingly, mutant strains of S. mutans with impairment in RGP side chain modification grew into elongated chains and also failed to properly localize the presumed cell wall hydrolase, GbpB. Our results indicate that fully mature RGP has distinct protective and morphogenic roles for S. mutans, and these structures are functionally homologous to the WTA of other Gram-positive bacteria.
Collapse
Affiliation(s)
- Christopher J Kovacs
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY, 14642, USA
| | - Roberta C Faustoferri
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Box 611, Rochester, NY, 14642, USA
| | - Andrew P Bischer
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY, 14642, USA
| | - Robert G Quivey
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY, 14642, USA.,Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Box 611, Rochester, NY, 14642, USA
| |
Collapse
|
17
|
van der Beek SL, Zorzoli A, Çanak E, Chapman RN, Lucas K, Meyer BH, Evangelopoulos D, de Carvalho LPS, Boons GJ, Dorfmueller HC, van Sorge NM. Streptococcal dTDP-L-rhamnose biosynthesis enzymes: functional characterization and lead compound identification. Mol Microbiol 2019; 111:951-964. [PMID: 30600561 PMCID: PMC6487966 DOI: 10.1111/mmi.14197] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2018] [Indexed: 12/12/2022]
Abstract
Biosynthesis of the nucleotide sugar precursor dTDP‐L‐rhamnose is critical for the viability and virulence of many human pathogenic bacteria, including Streptococcus pyogenes (Group A Streptococcus; GAS), Streptococcus mutans and Mycobacterium tuberculosis. Streptococcal pathogens require dTDP‐L‐rhamnose for the production of structurally similar rhamnose polysaccharides in their cell wall. Via heterologous expression in S. mutans, we confirmed that GAS RmlB and RmlC are critical for dTDP‐L‐rhamnose biosynthesis through their action as dTDP‐glucose‐4,6‐dehydratase and dTDP‐4‐keto‐6‐deoxyglucose‐3,5‐epimerase enzymes respectively. Complementation with GAS RmlB and RmlC containing specific point mutations corroborated the conservation of previous identified catalytic residues. Bio‐layer interferometry was used to identify and confirm inhibitory lead compounds that bind to GAS dTDP‐rhamnose biosynthesis enzymes RmlB, RmlC and GacA. One of the identified compounds, Ri03, inhibited growth of GAS, other rhamnose‐dependent streptococcal pathogens as well as M. tuberculosis with an IC50 of 120–410 µM. Importantly, we confirmed that Ri03 inhibited dTDP‐L‐rhamnose formation in a concentration‐dependent manner through a biochemical assay with recombinant rhamnose biosynthesis enzymes. We therefore conclude that inhibitors of dTDP‐L‐rhamnose biosynthesis, such as Ri03, affect streptococcal and mycobacterial viability and can serve as lead compounds for the development of a new class of antibiotics that targets dTDP‐rhamnose biosynthesis in pathogenic bacteria.
Collapse
Affiliation(s)
- Samantha L van der Beek
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Azul Zorzoli
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Ebru Çanak
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Robert N Chapman
- Department of Chemistry, Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, USA
| | - Kieron Lucas
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Benjamin H Meyer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Dimitrios Evangelopoulos
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
| | - Luiz Pedro S de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
| | - Geert-Jan Boons
- Department of Chemistry, Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, USA.,Department of Medical Chemistry and Chemical Biology, Utrecht Institute Pharmaceutical Science, University Utrecht, Utrecht, 3508 TB, The Netherlands
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|