1
|
Wallner A, Antonielli L, Mesguida O, Rey P, Compant S. Genomic diversity in Paenibacillus polymyxa: unveiling distinct species groups and functional variability. BMC Genomics 2024; 25:720. [PMID: 39054421 PMCID: PMC11271205 DOI: 10.1186/s12864-024-10610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Paenibacillus polymyxa is a bacterial species of high interest, as suggested by the increased number of publications on its functions in the past years. Accordingly, the number of described strains and sequenced genomes is also on the rise. While functional diversity of P. polymyxa has been suggested before, the available genomic data is now sufficient for robust comparative genomics analyses. RESULTS Using 157 genomes, we found significant disparities among strains currently affiliated to P. polymyxa. Multiple taxonomic groups were identified with conserved predicted functions putatively impacting their respective ecology. As strains of this species have been reported to exhibit considerable potential in agriculture, medicine, and bioremediation, it is preferable to clarify their taxonomic organization to facilitate reliable and durable approval as active ingredients. CONCLUSIONS Strains currently affiliated to P. polymyxa can be separated into two major species groups with differential potential in nitrogen fixation, plant interaction, secondary metabolism, and antimicrobial resistance, as inferred from genomic data.
Collapse
Affiliation(s)
- Adrian Wallner
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Konrad Lorenz Str. 24, Tulln, 3430, Austria.
| | - Livio Antonielli
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Konrad Lorenz Str. 24, Tulln, 3430, Austria
| | - Ouiza Mesguida
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, 64000, France
- GreenCell, Biopôle Clermont-Limagne, Saint Beauzire, 63360, France
| | - Patrice Rey
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, 64000, France
| | - Stéphane Compant
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Konrad Lorenz Str. 24, Tulln, 3430, Austria
| |
Collapse
|
2
|
Weyer R, Hellmann MJ, Hamer-Timmermann SN, Singh R, Moerschbacher BM. Customized chitooligosaccharide production-controlling their length via engineering of rhizobial chitin synthases and the choice of expression system. Front Bioeng Biotechnol 2022; 10:1073447. [PMID: 36588959 PMCID: PMC9795070 DOI: 10.3389/fbioe.2022.1073447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Chitooligosaccharides (COS) have attracted attention from industry and academia in various fields due to their diverse bioactivities. However, their conventional chemical production is environmentally unfriendly and in addition, defined and pure molecules are both scarce and expensive. A promising alternative is the in vivo synthesis of desired COS in microbial platforms with specific chitin synthases enabling a more sustainable production. Hence, we examined the whole cell factory approach with two well-established microorganisms-Escherichia coli and Corynebacterium glutamicum-to produce defined COS with the chitin synthase NodC from Rhizobium sp. GRH2. Moreover, based on an in silico model of the synthase, two amino acids potentially relevant for COS length were identified and mutated to direct the production. Experimental validation showed the influence of the expression system, the mutations, and their combination on COS length, steering the production from originally pentamers towards tetramers or hexamers, the latter virtually pure. Possible explanations are given by molecular dynamics simulations. These findings pave the way for a better understanding of chitin synthases, thus allowing a more targeted production of defined COS. This will, in turn, at first allow better research of COS' bioactivities, and subsequently enable sustainable large-scale production of oligomers.
Collapse
|
3
|
Crystal structure of ChbG from Klebsiella pneumoniae reveals the molecular basis of diacetylchitobiose deacetylation. Commun Biol 2022; 5:862. [PMID: 36002585 PMCID: PMC9402603 DOI: 10.1038/s42003-022-03824-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
The chitobiose (chb) operon is involved in the synthesis of chitooligosaccharide and is comprised of a BCARFG gene cluster. ChbG encodes a chitooligosaccharide deacetylase (CDA) which catalyzes the removal of one acetyl group from N,N’-diacetylchitobiose. It is considered a novel type of CDA due to its lack of sequence homology. Although there are various structural studies of CDAs linked to the kinetic properties of the enzyme, the structural information of ChbG is unavailable. In this study, the crystal structure of ChbG from Klebsiella pneumoniae is provided. The molecular basis of deacetylation of diacetylchitobiose by ChbG is determined based on structural analysis, mutagenesis, biophysical analysis, and in silico docking of the substrate, diacetylchitobiose. This study contributes towards a deeper understanding of chitin and chitosan biology, as well as provides a platform to engineer CDA biocatalysts. Structural and functional characterization of Klebsiella pneumonia ChbG (which lacks sequence homology) reveals the mechanism of chitooligosaccharide processing by ChbG.
Collapse
|
4
|
Walter A, Friz S, Mayer C. Chitin, Chitin Oligosaccharide, and Chitin Disaccharide Metabolism of Escherichia coli Revisited: Reassignment of the Roles of ChiA, ChbR, ChbF, and ChbG. Microb Physiol 2021; 31:178-194. [PMID: 33794535 DOI: 10.1159/000515178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/05/2021] [Indexed: 11/19/2022]
Abstract
Escherichia coli is unable to grow on polymeric and oligomeric chitin, but grows on chitin disaccharide (GlcNAc-GlcNAc; N,N'-diacetylchitobiose) and chitin trisaccharide (GlcNAc-GlcNAc-GlcNAc; N,N',N''-triacetylchitotriose) via expression of the chb operon (chbBCARFG). The phosphotransferase system (PTS) transporter ChbBCA facilitates transport of both saccharides across the inner membrane and their concomitant phosphorylation at the non-reducing end, intracellularly yielding GlcNAc 6-phosphate-GlcNAc (GlcNAc6P-GlcNAc) and GlcNAc6P-GlcNAc-GlcNAc, respectively. We revisited the intracellular catabolism of the PTS products, thereby correcting the reported functions of the 6-phospho-glycosidase ChbF, the monodeacetylase ChbG, and the transcriptional regulator ChbR. Intracellular accumulation of glucosamine 6P-GlcNAc (GlcN6P-GlcNAc) and GlcN6P-GlcNAc-GlcNAc in a chbF mutant unraveled a role for ChbG as a monodeacetylase that removes the N-acetyl group at the non-reducing end. Consequently, GlcN6P- but not GlcNAc6P-containing saccharides likely function as coactivators of ChbR. Furthermore, ChbF removed the GlcN6P from the non-reducing terminus of the former saccharides, thereby degrading the inducers of the chb operon and facilitating growth on the saccharides. Consequently, ChbF was unable to hydrolyze GlcNAc6P-residues from the non-reducing end, contrary to previous assumptions but in agreement with structural modeling data and with the unusual catalytic mechanism of the family 4 of glycosidases, to which ChbF belongs. We also refuted the assumption that ChiA is a bifunctional endochitinase/lysozyme ChiA, and show that it is unable to degrade peptidoglycans but acts as a bona fide chitinase in vitro and in vivo, enabling growth of E. coli on chitin oligosaccharides when ectopically expressed. Overall, this study revises our understanding of the chitin, chitin oligosaccharide, and chitin disaccharide metabolism of E. coli.
Collapse
Affiliation(s)
- Axel Walter
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Simon Friz
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Monge EC, Gardner JG. Efficient chito-oligosaccharide utilization requires two TonB-dependent transporters and one hexosaminidase in Cellvibrio japonicus. Mol Microbiol 2021; 116:366-380. [PMID: 33735458 DOI: 10.1111/mmi.14717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 11/29/2022]
Abstract
Chitin utilization by microbes plays a significant role in biosphere carbon and nitrogen cycling, and studying the microbial approaches used to degrade chitin will facilitate our understanding of bacterial strategies to degrade a broad range of recalcitrant polysaccharides. The early stages of chitin depolymerization by the bacterium Cellvibrio japonicus have been characterized and are dependent on one chitin-specific lytic polysaccharide monooxygenase and nonredundant glycoside hydrolases from the family GH18 to generate chito-oligosaccharides for entry into metabolism. Here, we describe the mechanisms for the latter stages of chitin utilization by C. japonicus with an emphasis on the fate of chito-oligosaccharides. Our systems biology approach combined transcriptomics and bacterial genetics using ecologically relevant substrates to determine the essential mechanisms for chito-oligosaccharide transport and catabolism in C. japonicus. Using RNAseq analysis we found a coordinated expression of genes that encode polysaccharide-degrading enzymes. Mutational analysis determined that the hex20B gene product, predicted to encode a hexosaminidase, was required for efficient utilization of chito-oligosaccharides. Furthermore, two gene loci (CJA_0353 and CJA_1157), which encode putative TonB-dependent transporters, were also essential for chito-oligosaccharides utilization. This study further develops our model of C. japonicus chitin metabolism and may be predictive for other environmentally or industrially important bacteria.
Collapse
Affiliation(s)
- Estela C Monge
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA
| |
Collapse
|
6
|
Vortmann M, Stumpf AK, Sgobba E, Dirks-Hofmeister ME, Krehenbrink M, Wendisch VF, Philipp B, Moerschbacher BM. A bottom-up approach towards a bacterial consortium for the biotechnological conversion of chitin to L-lysine. Appl Microbiol Biotechnol 2021; 105:1547-1561. [PMID: 33521845 PMCID: PMC7880967 DOI: 10.1007/s00253-021-11112-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 01/27/2023]
Abstract
Chitin is an abundant waste product from shrimp and mushroom industries and as such, an appropriate secondary feedstock for biotechnological processes. However, chitin is a crystalline substrate embedded in complex biological matrices, and, therefore, difficult to utilize, requiring an equally complex chitinolytic machinery. Following a bottom-up approach, we here describe the step-wise development of a mutualistic, non-competitive consortium in which a lysine-auxotrophic Escherichia coli substrate converter cleaves the chitin monomer N-acetylglucosamine (GlcNAc) into glucosamine (GlcN) and acetate, but uses only acetate while leaving GlcN for growth of the lysine-secreting Corynebacterium glutamicum producer strain. We first engineered the substrate converter strain for growth on acetate but not GlcN, and the producer strain for growth on GlcN but not acetate. Growth of the two strains in co-culture in the presence of a mixture of GlcN and acetate was stabilized through lysine cross-feeding. Addition of recombinant chitinase to cleave chitin into GlcNAc2, chitin deacetylase to convert GlcNAc2 into GlcN2 and acetate, and glucosaminidase to cleave GlcN2 into GlcN supported growth of the two strains in co-culture in the presence of colloidal chitin as sole carbon source. Substrate converter strains secreting a chitinase or a β-1,4-glucosaminidase degraded chitin to GlcNAc2 or GlcN2 to GlcN, respectively, but required glucose for growth. In contrast, by cleaving GlcNAc into GlcN and acetate, a chitin deacetylase-expressing substrate converter enabled growth of the producer strain in co-culture with GlcNAc as sole carbon source, providing proof-of-principle for a fully integrated co-culture for the biotechnological utilization of chitin. ![]()
Collapse
Affiliation(s)
- Marina Vortmann
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Anna K Stumpf
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149, Münster, Germany
| | - Elvira Sgobba
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, P.O. Box 100131, 33501, Bielefeld, Germany
- Department of Forest Genetics and Plant Physiology, SLU, Skogsmarksgränd 17, 90183, Umeå, Sweden
| | | | | | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, P.O. Box 100131, 33501, Bielefeld, Germany
| | - Bodo Philipp
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany.
| |
Collapse
|
7
|
Identification and Characterization of a β- N-Acetylhexosaminidase with a Biosynthetic Activity from the Marine Bacterium Paraglaciecola hydrolytica S66 T. Int J Mol Sci 2020; 21:ijms21020417. [PMID: 31936522 PMCID: PMC7014002 DOI: 10.3390/ijms21020417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 11/24/2022] Open
Abstract
β-N-Acetylhexosaminidases are glycoside hydrolases (GHs) acting on N-acetylated carbohydrates and glycoproteins with the release of N-acetylhexosamines. Members of the family GH20 have been reported to catalyze the transfer of N-acetylglucosamine (GlcNAc) to an acceptor, i.e., the reverse of hydrolysis, thus representing an alternative to chemical oligosaccharide synthesis. Two putative GH20 β-N-acetylhexosaminidases, PhNah20A and PhNah20B, encoded by the marine bacterium Paraglaciecola hydrolytica S66T, are distantly related to previously characterized enzymes. Remarkably, PhNah20A was located by phylogenetic analysis outside clusters of other studied β-N-acetylhexosaminidases, in a unique position between bacterial and eukaryotic enzymes. We successfully produced recombinant PhNah20A showing optimum activity at pH 6.0 and 50 °C, hydrolysis of GlcNAc β-1,4 and β-1,3 linkages in chitobiose (GlcNAc)2 and GlcNAc-1,3-β-Gal-1,4-β-Glc (LNT2), a human milk oligosaccharide core structure. The kinetic parameters of PhNah20A for p-nitrophenyl-GlcNAc and p-nitrophenyl-GalNAc were highly similar: kcat/KM being 341 and 344 mM−1·s−1, respectively. PhNah20A was unstable in dilute solution, but retained full activity in the presence of 0.5% bovine serum albumin (BSA). PhNah20A catalyzed the formation of LNT2, the non-reducing trisaccharide β-Gal-1,4-β-Glc-1,1-β-GlcNAc, and in low amounts the β-1,2- or β-1,3-linked trisaccharide β-Gal-1,4(β-GlcNAc)-1,x-Glc by a transglycosylation of lactose using 2-methyl-(1,2-dideoxy-α-d-glucopyrano)-oxazoline (NAG-oxazoline) as the donor. PhNah20A is the first characterized member of a distinct subgroup within GH20 β-N-acetylhexosaminidases.
Collapse
|
8
|
Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11111696. [PMID: 31683697 PMCID: PMC6896196 DOI: 10.3390/cancers11111696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Sphingosylphosphorylcholine (SPC) is a unique type of lysosphingolipid found in some diseases, and has been studied in cardiovascular, neurological, and inflammatory phenomena. In particular, SPC’s studies on cancer have been conducted mainly in terms of effects on cancer cells, and relatively little consideration has been given to aspects of tumor microenvironment. This review summarizes the effects of SPC on cancer and tumor microenvironment, and presents the results and prospects of modulators that regulate the various actions of SPC.
Collapse
|
9
|
Kim EJ, Park MK, Kang GJ, Byun HJ, Kim HJ, Yu L, Kim B, Chae HS, Chin YW, Shim JG, Lee H, Lee CH. YDJC Induces Epithelial-Mesenchymal Transition via Escaping from Interaction with CDC16 through Ubiquitination of PP2A. JOURNAL OF ONCOLOGY 2019; 2019:3542537. [PMID: 31485224 PMCID: PMC6702825 DOI: 10.1155/2019/3542537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023]
Abstract
Lung cancer is the number 1 cause of cancer-related casualties in the world. Appropriate diagnostic markers and novel targets for lung cancer are needed. Chitooligosaccharide deacetylase homolog (YDJC) catalyzes the deacetylation of acetylated carbohydrates; however, the role of YDJC in lung cancer progression has yet to be studied. A549 lung cancer orthotopic mouse model was used for mice experiments. We found that YDJC overexpression contributes to lung cancer progression in an orthotopic mouse model. Long-term treatment (48 h) induces YDJC expression in sphingosylphosphorylcholine (SPC)-induced epithelial-mesenchymal transition (EMT). Gene silencing of YDJC (siYDJC) reduced N-cadherin expression and increased E-cadherin expression in SPC-induced EMT. Overexpression of YDJC reverses them but overexpression of the deacetylase deficient mutant YDJCD13A could not. Interestingly, overexpression of CDC16, a YDJC binding partner, suppressed EMT. ERK2 is activated in siCDC16-induced EMT. YDJC overexpression reduces expression of protein phosphatase 2A (PP2A), whereas CDC16 overexpression induces PP2A expression. YDJC overexpression induced ubiquitination of PP2A but YDJCD13A could not. CDC16 overexpression increased the ubiquitination of YDJC. These results suggest that YDJC contributes to the progression of lung cancer via enhancing EMT by inducing the ubiquitination of PP2A. Therefore, YDJC might be a new target for antitumor therapy against lung cancer.
Collapse
Affiliation(s)
- Eun Ji Kim
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Mi Kyung Park
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Gyeoung-Jin Kang
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Hyun Jung Byun
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Hyun Ji Kim
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Lu Yu
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Boram Kim
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Hee-Sung Chae
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Young-Won Chin
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| | - Jae Gal Shim
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Chang Hoon Lee
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul, Goyang, 04620, Republic of Korea
| |
Collapse
|
10
|
Pascual S, Planas A. Screening Assay for Directed Evolution of Chitin Deacetylases: Application to Vibrio cholerae Deacetylase Mutant Libraries for Engineered Specificity. Anal Chem 2018; 90:10654-10658. [PMID: 30134658 DOI: 10.1021/acs.analchem.8b02729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Not only the degree of acetylation but also the pattern of acetylation of chitosans and chitooligosaccharides (COS) appear to be critical for their biological activities. Protein engineering may expand the toolbox of chitin deacetylases (CDAs) with defined specificities for the enzymatic production of partially deacetylated COS for biotech and biomedical applications. A high-throughput screening (HTS) assay for screening directed evolution libraries is reported. It is based on a fluorescence monitoring assay of the deacetylase activity on COS substrates after capturing the expressed enzyme variants fused to a chitin binding module with chitin-coated magnetic beads. The assay is applied to the screening of random libraries of a Vibrio cholera CDA for increased activity on longer COS substrates.
Collapse
Affiliation(s)
- Sergi Pascual
- Laboratory of Biochemistry , Institut Químic de Sarrià, University Ramon Llull , 08017 Barcelona , Spain
| | - Antoni Planas
- Laboratory of Biochemistry , Institut Químic de Sarrià, University Ramon Llull , 08017 Barcelona , Spain
| |
Collapse
|
11
|
Kim EJ, Park MK, Byun HJ, Kang GJ, Yu L, Kim HJ, Shim JG, Lee H, Lee CH. YdjC chitooligosaccharide deacetylase homolog induces keratin reorganization in lung cancer cells: involvement of interaction between YDJC and CDC16. Oncotarget 2018; 9:22915-22928. [PMID: 29796162 PMCID: PMC5955423 DOI: 10.18632/oncotarget.25145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/03/2018] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is a fatal disease with a high mortality rate. The perinuclear reorganization of keratin 8 (K8) is an important biochemical phenomenon reflecting changes in the physical properties of metastatic cancer. However, there is not much of information about the regulatory molecules involved in phosphorylation and perinuclear reorganization of K8. In this study, we investigated the role and molecular mechanisms of YdjC chitooligosaccha- ride deacetylase homolog (YDJC) in sphingosylphosphorylcholine (SPC)-induced phosphorylation and reorganization of K8, and migration and invasion (SPC-induced events). SPC induced expression of YDJC in a dose- and time-dependent manner. Gene silencing of YDJC suppressed SPC-induced events. YDJC overexpression induced the SPC-induced events. YDJC deacetylase dominant negative mutant (YDJCD13A) did not induce SPC-induced events. YDJC siRNA reduced ERK activation and overexpression of YDJC induced ERK activation. The siRNA of ERK1 or ERK2 suppressed YDJC-induced phosphorylation and reorganization of K8, and migration and invasion. Co-immunoprecipitation revealed that YDJC binds to CDC16. Interestingly, CDC16 siRNA induced SPC-induced events. Overexpression of CDC16 blocked SPC-induced events. KMPLOT analysis based on public microarray data revealed the poor prognosis of lung cancer patients with high expression of YDJC compared with patients with low expression of YDJC. The collective results indicate that YDJC is involved in SPC-induced events in A549 lung cancer cells by interacting with CDC16. YDJC overexpression might be involved in the progression of lung cancer. These results also suggest that suppression of YDJC or boosting of CDC16 interaction with YDJC might be a novel way to prevent progression of lung cancer.
Collapse
Affiliation(s)
- Eun Ji Kim
- College of Pharmacy, Dongguk University-Seoul, 04620, Seoul, South Korea
| | | | - Hyun Jung Byun
- College of Pharmacy, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Gyeoung Jin Kang
- College of Pharmacy, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Lu Yu
- College of Pharmacy, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Hyun Ji Kim
- College of Pharmacy, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Jae Gal Shim
- National Cancer Center, Goyang, 10408, South Korea
| | - Ho Lee
- National Cancer Center, Goyang, 10408, South Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University-Seoul, 04620, Seoul, South Korea
| |
Collapse
|
12
|
Chitin Deacetylases: Structures, Specificities, and Biotech Applications. Polymers (Basel) 2018; 10:polym10040352. [PMID: 30966387 PMCID: PMC6415152 DOI: 10.3390/polym10040352] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
Depolymerization and de-N-acetylation of chitin by chitinases and deacetylases generates a series of derivatives including chitosans and chitooligosaccharides (COS), which are involved in molecular recognition events such as modulation of cell signaling and morphogenesis, immune responses, and host-pathogen interactions. Chitosans and COS are also attractive scaffolds for the development of bionanomaterials for drug/gene delivery and tissue engineering applications. Most of the biological activities associated with COS seem to be largely dependent not only on the degree of polymerization but also on the acetylation pattern, which defines the charge density and distribution of GlcNAc and GlcNH₂ moieties in chitosans and COS. Chitin de-N-acetylases (CDAs) catalyze the hydrolysis of the acetamido group in GlcNAc residues of chitin, chitosan, and COS. The deacetylation patterns are diverse, some CDAs being specific for single positions, others showing multiple attack, processivity or random actions. This review summarizes the current knowledge on substrate specificity of bacterial and fungal CDAs, focusing on the structural and molecular aspects of their modes of action. Understanding the structural determinants of specificity will not only contribute to unravelling structure-function relationships, but also to use and engineer CDAs as biocatalysts for the production of tailor-made chitosans and COS for a growing number of applications.
Collapse
|
13
|
Li FF, Yan P, Zhao ZX, Liu Z, Song DW, Zhao XW, Wang XS, Wang GY, Liu SL. Polymorphisms in the CHIT1 gene: Associations with colorectal cancer. Oncotarget 2018; 7:39572-39581. [PMID: 27153562 PMCID: PMC5129954 DOI: 10.18632/oncotarget.9138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/16/2016] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common solid tumors worldwide, often associated with inflammation. The microbes in the human intestine have a key role in inflammations and CRC. Chitotriose renders growth advantage to some bacteria, especially some pathogens, and thus has a role in inflammations. The enzyme chitotriosidase, encoded by the CHIT1 gene of the host, may degrade chitotriose with different efficiencies depending on the alleles. We sequenced the CHIT1 gene for 320 Chinese Han CRC patients and 404 normal controls, and focused on variations rs61745299 and rs35920428 within the CHIT1 gene for their possible roles in CRC. Statistical analyses were conducted using Chi-Square Tests as implemented in SPSS (version 19.0). Multiple sequence alignment was conducted using the Vector NTI, and protein expression levels were analyzed by western blotting. The two variations, rs61745299 and rs35920428 within the CDS region of CHIT1 gene, were associated with the risk of CRC (both with P values < 0.001). Western blotting analysis showed that the variations increased the expression levels of the CHIT1 and C-reaction protein genes in the cancer tissue. We conclude that the two variations of CHIT1, rs61745299 and rs35920428, increase expression of the gene and are associated with CRC in Chinese Han populations.
Collapse
Affiliation(s)
- Fei-Feng Li
- Genomics Research Center, State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Peng Yan
- Department of Colorectal Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhi-Xun Zhao
- Department of Colorectal Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zheng Liu
- Department of Colorectal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Da-Wei Song
- Department of Colorectal Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing-Wang Zhao
- Department of Colorectal Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xi-Shan Wang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Department of Colorectal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gui-Yu Wang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Department of Colorectal Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
14
|
Soysa HSM, Schulte A, Suginta W. Functional analysis of an unusual porin-like channel that imports chitin for alternative carbon metabolism in Escherichia coli. J Biol Chem 2017; 292:19328-19337. [PMID: 28972167 DOI: 10.1074/jbc.m117.812321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/22/2017] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli have the genetic potential to use chitin as a carbon source in the absence of glucose, importing it via the chitin-uptake channel EcChiP for processing by the glucosamine catabolic pathway. The chip gene is usually not expressed when E. coli are grown on glucose-enriched nutrients, providing a general regulatory mechanism for the pathway. EcChiP is unusual in that it is homologous to porins and monomeric instead of trimeric, the typical form of sugar-specific channels, making it unclear how this channel operates. We recently reported that EcChiP could form a stable channel in lipid membranes and that the channel is specific for chitooligosaccharides. This report describes the biophysical nature of sugar-channel interactions and the kinetics of sugar association and dissociation. Titrating EcChiP with chitohexaose resulted in protein fluorescence enhancement in a concentration-dependent manner, yielding a binding constant of 2.9 × 105 m-1, consistent with the value of 2.5 × 105 m-1 obtained from isothermal titration microcalorimetry. Analysis of the integrated heat change suggested that the binding process was endothermic and driven by entropy. Single-channel recordings confirmed the voltage dependence of the penetration of chitohexaose molecules into and their release from EcChiP. Once inside the pore, the sugar release rate (koff) from the affinity site increased with elevated voltage, regardless of the side of sugar addition. Our findings revealed distinct thermodynamic and kinetic features of the activity of sugar-specific EcChiP and advance our knowledge of the physiological possibility of chitin utilization by non-chitinolytic bacteria.
Collapse
Affiliation(s)
- H Sasimali M Soysa
- From the Biochemistry-Electrochemistry Research Unit, Institute of Science and
| | - Albert Schulte
- the School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Wipa Suginta
- From the Biochemistry-Electrochemistry Research Unit, Institute of Science and .,the Center of Excellence in Advanced Functional Materials, Suranaree University of Technology Nakhon Ratchasima 30000, Thailand and
| |
Collapse
|
15
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
16
|
Kadoya R, Kodama Y, Matsumoto K, Ooi T, Taguchi S. Genome-wide screening of transcription factor deletion targets in Escherichia coli for enhanced production of lactate-based polyesters. J Biosci Bioeng 2017; 123:535-539. [DOI: 10.1016/j.jbiosc.2016.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 01/19/2023]
|
17
|
A comparative study of the evolution of cellobiose utilization in Escherichia coli and Shigella sonnei. Arch Microbiol 2016; 199:247-257. [PMID: 27695910 DOI: 10.1007/s00203-016-1299-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/05/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
Abstract
The chb operon of Escherichia coli is involved in the utilization of chitooligosaccharides. While acquisition of two classes of mutations leading to altered regulation of the chb operon is necessary to confer the ability to utilize the glucose disaccharide cellobiose to wild-type strains of E. coli, in the closely related organism Shigella sonnei, Cel+ mutants arise relatively faster, requiring only a single mutational event. In Type I mutants, the insertion of IS600 at -21 leads to ChbR regulator-independent, constitutive expression of the operon. In Type II mutants, the insertion of IS2/600 within the distal binding site of the negative regulator NagC leads to ChbR-dependent cellobiose-inducible expression of the operon. These studies underscore the significance of strain background, specifically the diversity of transposable elements, in the evolution of novel metabolic functions. Constitutive expression of the chb operon also enables utilization of the aromatic β-glucosides arbutin and salicin, implying that the chb structural genes are inherently promiscuous.
Collapse
|
18
|
Soysa HSM, Suginta W. Identification and Functional Characterization of a Novel OprD-like Chitin Uptake Channel in Non-chitinolytic Bacteria. J Biol Chem 2016; 291:13622-33. [PMID: 27226611 DOI: 10.1074/jbc.m116.728881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 11/06/2022] Open
Abstract
Chitoporin from the chitinolytic marine Vibrio has been characterized as a trimeric OmpC-like channel responsible for effective chitin uptake. In this study we describe the identification and characterization of a novel OprD-like chitoporin (so-called EcChiP) from Escherichia coli The gene was identified, cloned, and functionally expressed in the Omp-deficient E. coli BL21 (Omp8) Rosetta strain. On size exclusion chromatography, EcChiP had an apparent native molecular mass of 50 kDa, as predicted by amino acid sequencing and mass analysis, confirming that the protein is a monomer. Black lipid membrane reconstitution demonstrated that EcChiP could readily form stable, monomeric channels in artificial phospholipid membranes, with an average single channel conductance of 0.55 ± 0.01 nanosiemens and a slight preference for cations. Single EcChiP channels showed strong specificity, interacting with long chain chitooligosaccharides but not with maltooligosaccharides. Liposome swelling assays indicated the bulk permeation of neutral monosaccharides and showed the size exclusion limit of EcChiP to be ∼200-300 Da for small permeants that pass through by general diffusion while allowing long chain chitooligosaccharides to pass through by a facilitated diffusion process. Taking E. coli as a model, we offer the first evidence that non-chitinolytic bacteria can activate a quiescent ChiP gene to express a functional chitoporin, enabling them to take up chitooligosaccharides for metabolism as an immediate source of energy.
Collapse
Affiliation(s)
- H Sasimali M Soysa
- From the Biochemistry-Electrochemistry Research Unit and School of Chemistry, Institute of Science and
| | - Wipa Suginta
- From the Biochemistry-Electrochemistry Research Unit and School of Chemistry, Institute of Science and Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
19
|
Overexpression of an outer membrane protein associated with decreased susceptibility to carbapenems in Proteus mirabilis. PLoS One 2015; 10:e0120395. [PMID: 25756370 PMCID: PMC4355480 DOI: 10.1371/journal.pone.0120395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
Proteus mirabilis isolates commonly have decreased susceptibility to imipenem. Previously, we found P. mirabilis hfq mutant was more resistant to imipenem and an outer membrane protein (OMP) could be involved. Therefore, we investigated the role of this OMP in carbapenem susceptibility. By SDS-PAGE we found this OMP (named ImpR) was increased in hfq mutant and LC-MS/MS revealed it to be the homologue of Salmonella YbfM, which is a porin for chitobiose and subject to MicM (a small RNA) regulation. We demonstrated that ImpR overexpression resulted in increased carbapenem MICs in the laboratory strain and clinical isolates. Chitobiose induced expression of chb (a chitobiose utilization operon). Real-time RT-PCR and SDS-PAGE were performed to elucidate the relationship of hfq, impR, chb and MicM in P. mirabilis. We found MicM RNA was decreased in hfq mutant and chbBC-intergenic region (chbBC-IGR) overexpression strain (chbIGRov), while impR mRNA was increased in hfq mutant, micM mutant and chbIGRov strain. In addition, mutation of hfq or micM and overexpression of chbBC-IGR increased ImpR protein level. Accordingly, chitobiose made wild-type have higher levels of ImpR protein and are more resistant to carbapenems. Hfq- and MicM-complemented strains restored wild-type MICs. Mutation of both impR and hfq eliminated the increase in carbapenem MICs observed in hfq mutant and ImpR-complementation of hfq/impR double mutant resulted in MICs as hfq mutant, indicating that the ImpR-dependent decreased carbapenem susceptibility of hfq mutant. These indicate MicM was antisense to impR mRNA and was negatively-regulated by chbBC-IGR. Together, overexpression of ImpR contributed to the decreased carbapenem susceptibility in P. mirabilis.
Collapse
|
20
|
One-carbon metabolic pathway rewiring in Escherichia coli reveals an evolutionary advantage of 10-formyltetrahydrofolate synthetase (Fhs) in survival under hypoxia. J Bacteriol 2014; 197:717-26. [PMID: 25448816 DOI: 10.1128/jb.02365-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In cells, N(10)-formyltetrahydrofolate (N(10)-fTHF) is required for formylation of eubacterial/organellar initiator tRNA and purine nucleotide biosynthesis. Biosynthesis of N(10)-fTHF is catalyzed by 5,10-methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) and/or 10-formyltetrahydrofolate synthetase (Fhs). All eubacteria possess FolD, but some possess both FolD and Fhs. However, the reasons for possessing Fhs in addition to FolD have remained unclear. We used Escherichia coli, which naturally lacks fhs, as our model. We show that in E. coli, the essential function of folD could be replaced by Clostridium perfringens fhs when it was provided on a medium-copy-number plasmid or integrated as a single-copy gene in the chromosome. The fhs-supported folD deletion (ΔfolD) strains grow well in a complex medium. However, these strains require purines and glycine as supplements for growth in M9 minimal medium. The in vivo levels of N(10)-fTHF in the ΔfolD strain (supported by plasmid-borne fhs) were limiting despite the high capacity of the available Fhs to synthesize N(10)-fTHF in vitro. Auxotrophy for purines could be alleviated by supplementing formate to the medium, and that for glycine was alleviated by engineering THF import into the cells. The ΔfolD strain (harboring fhs on the chromosome) showed a high NADP(+)-to-NADPH ratio and hypersensitivity to trimethoprim. The presence of fhs in E. coli was disadvantageous for its aerobic growth. However, under hypoxia, E. coli strains harboring fhs outcompeted those lacking it. The computational analysis revealed a predominant natural occurrence of fhs in anaerobic and facultative anaerobic bacteria.
Collapse
|
21
|
Schmerk CL, Welander PV, Hamad MA, Bain KL, Bernards MA, Summons RE, Valvano MA. Elucidation of theBurkholderia cenocepaciahopanoid biosynthesis pathway uncovers functions for conserved proteins in hopanoid-producing bacteria. Environ Microbiol 2014; 17:735-50. [DOI: 10.1111/1462-2920.12509] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/09/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Crystal L. Schmerk
- Department of Microbiology and Immunology; University of Western Ontario; London Ontario N6A 5C1 Canada
| | - Paula V. Welander
- Department of Environmental Earth System Science; Stanford University; Stanford CA USA
| | - Mohamad A. Hamad
- Department of Microbiology and Immunology; University of Western Ontario; London Ontario N6A 5C1 Canada
| | - Katie L. Bain
- Department of Microbiology and Immunology; University of Western Ontario; London Ontario N6A 5C1 Canada
| | - Mark A. Bernards
- Department of Biology; University of Western Ontario; London Ontario N6A 5C1 Canada
| | - Roger E. Summons
- Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology; Cambridge MA USA
| | - Miguel A. Valvano
- Department of Microbiology and Immunology; University of Western Ontario; London Ontario N6A 5C1 Canada
- Centre for Infection and Immunity; Queen's University Belfast; Belfast BT9 5AE UK
| |
Collapse
|
22
|
Göpel Y, Görke B. Lies and deception in bacterial gene regulation: the roles of nucleic acid decoys. Mol Microbiol 2014; 92:641-7. [PMID: 24707963 DOI: 10.1111/mmi.12604] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 12/24/2022]
Abstract
Bacteria use intricately interconnected mechanisms acting at the transcriptional and post-transcriptional level to adjust gene expression to their needs. An intriguing example found in the chitosugar utilization systems of Escherichia coli and Salmonella is uncovered in a study by Plumbridge and colleagues. Three transcription factors (TFs), a small regulatory RNA (sRNA) and a sRNA trap cooperate to set thresholds and dynamics in regulation of chitosugar utilization. Specifically, under inducing conditions a decoy site on the polycistronic chitobiose (chbBCARFG) mRNA sequesters sRNA ChiX, which represses synthesis of the separately encoded chitoporin ChiP. Base-pairing of ChiX with its decoy has no role for the chb genes themselves when the mRNA is in excess. In the absence of substrate, however, this base-pairing tightly represses chbC encoding a subunit of the chitosugar transporter. Thus, one and the same sRNA/mRNA interaction serves different regulatory functions under different environmental conditions. The employment of RNA decoys to control the activities of post-transcriptional regulators themselves is an increasingly recognized mechanism in gene regulation. Another observation in the current study highlights the possibility that decoy sites might even exist on the DNA controlling the availability of TFs for their target promoters.
Collapse
Affiliation(s)
- Yvonne Göpel
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Center of Molecular Biology, University of Vienna, 1030, Vienna, Austria
| | | |
Collapse
|
23
|
Plumbridge J, Bossi L, Oberto J, Wade JT, Figueroa-Bossi N. Interplay of transcriptional and small RNA-dependent control mechanisms regulates chitosugar uptake inEscherichia coliandSalmonella. Mol Microbiol 2014; 92:648-58. [DOI: 10.1111/mmi.12573] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Jacqueline Plumbridge
- UPR9073-CNRS (associated with Université Diderot, Sorbonne Paris Cité); Institut de Biologie Physico-Chimique; 13, Pierre et Marie Curie 75005 Paris France
| | - Lionello Bossi
- UPR3404-CNRS; Centre de Génétique Moléculaire; Gif-sur-Yvette 91198 (associated with Université Paris XI, 91405 Orsay) France
| | - Jacques Oberto
- UMR8621-CNRS Institut de Génétique et Microbiologie; Université Paris XI; 91405 Orsay France
| | - Joseph T. Wade
- Wadsworth Center; New York State Department of Health; Albany NY 12208 USA
- Department of Biomedical Sciences; School of Public Health; University of Albany; Albany NY 12201 USA
| | - Nara Figueroa-Bossi
- UPR3404-CNRS; Centre de Génétique Moléculaire; Gif-sur-Yvette 91198 (associated with Université Paris XI, 91405 Orsay) France
| |
Collapse
|
24
|
Gaugué I, Oberto J, Plumbridge J. Regulation of amino sugar utilization in Bacillus subtilis by the GntR family regulators, NagR and GamR. Mol Microbiol 2014; 92:100-15. [PMID: 24673833 DOI: 10.1111/mmi.12544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 11/30/2022]
Abstract
In Bacillus subtilis separate sets of genes are implicated in the transport and metabolism of the amino sugars, glucosamine and N-acetylglucosamine. The genes for use of N-acetylglucosamine (nagAB and nagP) are found in most firmicutes and are controlled by a GntR family repressor NagR (YvoA). The genes for use of glucosamine (gamAP) are repressed by another GntR family repressor GamR (YbgA). The gamR-gamAP synton is only found in B. subtilis and a few very close relatives. Although NagR and GamR are close phylogenetically, there is no cross regulation between their operons. GlcN6P prevents all binding of GamR to its targets. NagR binds specifically to targets containing the previously identified dre palindrome but its binding is not inhibited by GlcN6P or GlcNAc6P. GamR-like binding sites were also found in some other Bacilli associated with genes for use of chitin, the polymer of N-acetylglucosamine, and with a gene for another GamR homologue (yurK). We show that GamR can bind to two regions in the chi operon of B. licheniformis and that GamR and YurK are capable of heterologous regulation. GamR can repress the B. licheniformis licH-yurK genes and YurK can repress B. subtilis gamA.
Collapse
Affiliation(s)
- Isabelle Gaugué
- UPR9073-CNRS (associated with Université Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13, Pierre et Marie Curie, Paris, 75005, France
| | | | | |
Collapse
|
25
|
Konopka JB. N-acetylglucosamine (GlcNAc) functions in cell signaling. SCIENTIFICA 2012; 2012:489208. [PMID: 23350039 PMCID: PMC3551598 DOI: 10.6064/2012/489208] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/23/2012] [Indexed: 05/21/2023]
Abstract
The amino sugar N-acetylglucosamine (GlcNAc) is well known for the important structural roles that it plays at the cell surface. It is a key component of bacterial cell wall peptidoglycan, fungal cell wall chitin, and the extracellular matrix of animal cells. Interestingly, recent studies have also identified new roles for GlcNAc in cell signaling. For example, GlcNAc stimulates the human fungal pathogen Candida albicans to undergo changes in morphogenesis and expression of virulence genes. Pathogenic E. coli respond to GlcNAc by altering the expression of fimbriae and CURLI fibers that promote biofilm formation and GlcNAc stimulates soil bacteria to undergo changes in morphogenesis and production of antibiotics. Studies with animal cells have revealed that GlcNAc influences cell signaling through the post-translational modification of proteins by glycosylation. O-linked attachment of GlcNAc to Ser and Thr residues regulates a variety of intracellular proteins, including transcription factors such as NFκB, c-myc and p53. In addition, the specificity of Notch family receptors for different ligands is altered by GlcNAc attachment to fucose residues in the extracellular domain. GlcNAc also impacts signal transduction by altering the degree of branching of N-linked glycans, which influences cell surface signaling proteins. These emerging roles of GlcNAc as an activator and mediator of cellular signaling in fungi, animals, and bacteria will be the focus of this review.
Collapse
Affiliation(s)
- James B. Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
- *James B. Konopka:
| |
Collapse
|