1
|
Li YG, Breidenstein A, Berntsson RPA, Christie PJ. Conjugative transfer of the IncN plasmid pKM101 is mediated by dynamic interactions between the TraK accessory factor and TraI relaxase. FEBS Lett 2024. [PMID: 39245885 DOI: 10.1002/1873-3468.15011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
Conjugative dissemination of mobile genetic elements (MGEs) among bacteria is initiated by assembly of the relaxosome at the MGE's origin-of-transfer (oriT) sequence. A critical but poorly defined step of relaxosome assembly involves recruitment of the catalytic relaxase to its DNA strand-specific nicking site within oriT. Here, we present evidence by AlphaFold modeling, affinity pulldowns, and in vivo site-directed photocrosslinking that the TraK Ribbon-Helix-Helix DNA-binding protein recruits TraI to oriT through a dynamic interaction in which TraI's C-terminal unstructured domain (TraICTD) wraps around TraK's C-proximal tetramerization domain. Upon relaxosome assembly, conformational changes disrupt this contact, and TraICTD instead self-associates as a prerequisite for relaxase catalytic functions or substrate engagement with the transfer channel. These findings delineate key early-stage processing reactions required for conjugative dissemination of a model MGE.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, TX, USA
| | - Annika Breidenstein
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå Centre for Microbial Research, Umeå University, Sweden
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå Centre for Microbial Research, Umeå University, Sweden
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, TX, USA
| |
Collapse
|
2
|
Al Mamun AAM, Kissoon K, Li YG, Hancock E, Christie PJ. The F plasmid conjutome: the repertoire of E. coli proteins translocated through an F-encoded type IV secretion system. mSphere 2024; 9:e0035424. [PMID: 38940509 PMCID: PMC11288057 DOI: 10.1128/msphere.00354-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Bacterial conjugation systems pose a major threat to human health through their widespread dissemination of mobile genetic elements (MGEs) carrying cargoes of antibiotic resistance genes. Using the Cre Recombinase Assay for Translocation (CRAfT), we recently reported that the IncFV pED208 conjugation system also translocates at least 16 plasmid-encoded proteins to recipient bacteria. Here, we deployed a high-throughput CRAfT screen to identify the repertoire of chromosomally encoded protein substrates of the pED208 system. We identified 32 substrates encoded by the Escherichia coli W3110 genome with functions associated with (i) DNA/nucleotide metabolism, (ii) stress tolerance/physiology, (iii) transcriptional regulation, or (iv) toxin inhibition. The respective gene deletions did not impact pED208 transfer proficiencies, nor did Group 1 (DNA/nucleotide metabolism) mutations detectably alter the SOS response elicited in new transconjugants upon acquisition of pED208. However, MC4100(pED208) donor cells intrinsically exhibit significantly higher SOS activation than plasmid-free MC4100 cells, and this plasmid carriage-induced stress response is further elevated in donor cells deleted of several Group 1 genes. Among 10 characterized substrates, we gained evidence of C-terminal or internal translocation signals that could function independently or synergistically for optimal protein transfer. Remarkably, nearly all tested proteins were also translocated through the IncN pKM101 and IncP RP4 conjugation systems. This repertoire of E. coli protein substrates, here termed the F plasmid "conjutome," is thus characterized by functions of potential benefit to new transconjugants, diverse TSs, and the capacity for promiscuous transfer through heterologous conjugation systems. IMPORTANCE Conjugation systems comprise a major subfamily of the type IV secretion systems (T4SSs) and are the progenitors of a second large T4SS subfamily dedicated to translocation of protein effectors. This study examined the capacity of conjugation machines to function as protein translocators. Using a high-throughput reporter screen, we determined that 32 chromosomally encoded proteins are delivered through an F plasmid conjugation system. The translocated proteins potentially enhance the establishment of the co-transferred F plasmid or mitigate mating-induced stresses. Translocation signals located C-terminally or internally conferred substrate recognition by the F system and, remarkably, many substrates also were translocated through heterologous conjugation systems. Our findings highlight the plasticity of conjugation systems in their capacities to co-translocate DNA and many protein substrates.
Collapse
Affiliation(s)
- Abu Amar M. Al Mamun
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Kimberley Kissoon
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Erin Hancock
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| |
Collapse
|
3
|
Fraikin N, Couturier A, Lesterlin C. The winding journey of conjugative plasmids toward a novel host cell. Curr Opin Microbiol 2024; 78:102449. [PMID: 38432159 DOI: 10.1016/j.mib.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024]
Abstract
Horizontal transfer of plasmids by conjugation is a fundamental mechanism driving the widespread dissemination of drug resistance among bacterial populations. The successful colonization of a new host cell necessitates the plasmid to navigate through a series of sequential steps, each dependent on specific plasmid or host factors. This review explores recent advancements in comprehending the cellular and molecular mechanisms that govern plasmid transmission, establishment, and long-term maintenance. Adopting a plasmid-centric perspective, we describe the critical steps and bottlenecks in the plasmid's journey toward a new host cell, encompassing exploration and contact initiation, invasion, establishment and control, and assimilation.
Collapse
Affiliation(s)
- Nathan Fraikin
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| | - Agathe Couturier
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| | - Christian Lesterlin
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France.
| |
Collapse
|
4
|
Cabezón E, Valenzuela-Gómez F, Arechaga I. Primary architecture and energy requirements of Type III and Type IV secretion systems. Front Cell Infect Microbiol 2023; 13:1255852. [PMID: 38089815 PMCID: PMC10711112 DOI: 10.3389/fcimb.2023.1255852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Many pathogens use Type III and Type IV protein secretion systems to secrete virulence factors from the bacterial cytosol into host cells. These systems operate through a one-step mechanism. The secreted substrates (protein or nucleo-protein complexes in the case of Type IV conjugative systems) are guided to the base of the secretion channel, where they are directly delivered into the host cell in an ATP-dependent unfolded state. Despite the numerous disparities between these secretion systems, here we have focused on the structural and functional similarities between both systems. In particular, on the structural similarity shared by one of the main ATPases (EscN and VirD4 in Type III and Type IV secretion systems, respectively). Interestingly, these ATPases also exhibit a structural resemblance to F1-ATPases, which suggests a common mechanism for substrate secretion. The correlation between structure and function of essential components in both systems can provide significant insights into the molecular mechanisms involved. This approach is of great interest in the pursuit of identifying inhibitors that can effectively target these systems.
Collapse
Affiliation(s)
- Elena Cabezón
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, Santander, Spain
| | | | - Ignacio Arechaga
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, Santander, Spain
| |
Collapse
|
5
|
Valenzuela-Gómez F, Arechaga I, Cabezón E. Nanopore sensing reveals a preferential pathway for the co-translocational unfolding of a conjugative relaxase-DNA complex. Nucleic Acids Res 2023; 51:6857-6869. [PMID: 37264907 PMCID: PMC10359608 DOI: 10.1093/nar/gkad492] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
Bacterial conjugation is the main mechanism for the dissemination of antibiotic resistance genes. A single DNA strand of the conjugative plasmid is transferred across bacterial membranes covalently bound to a large multi-domain protein, named relaxase, which must be unfolded to traverse the secretion channel. Two tyrosine residues of the relaxase (Y18 and Y26 in relaxase TrwC) play an important role in the processing of conjugative DNA. We have used nanopore technology to uncover the unfolding states that take place during translocation of the relaxase-DNA complex. We observed that the relaxase unfolding pathway depends on the tyrosine residue involved in conjugative DNA binding. Transfer of the nucleoprotein complex is faster when DNA is bound to residue Y18. This is the first time in which a protein-DNA complex that is naturally translocated through bacterial membranes has been analyzed by nanopore sensing, opening new horizons to apply this technology to study protein secretion.
Collapse
Affiliation(s)
- Fernando Valenzuela-Gómez
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, 39011 Santander, Spain
| | - Ignacio Arechaga
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, 39011 Santander, Spain
| | - Elena Cabezón
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, 39011 Santander, Spain
| |
Collapse
|
6
|
Raj Y, Kumar A, Kumari S, Kumar R, Kumar R. Comparative Genomics and Physiological Investigations Supported Multifaceted Plant Growth-Promoting Activities in Two Hypericum perforatum L.-Associated Plant Growth-Promoting Rhizobacteria for Microbe-Assisted Cultivation. Microbiol Spectr 2023; 11:e0060723. [PMID: 37199656 PMCID: PMC10269543 DOI: 10.1128/spectrum.00607-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
Plants are no longer considered standalone entities; instead, they harbor a diverse community of plant growth-promoting rhizobacteria (PGPR) that aid them in nutrient acquisition and can also deliver resilience. Host plants recognize PGPR in a strain-specific manner; therefore, introducing untargeted PGPR might produce unsatisfactory crop yields. Consequently, to develop a microbe-assisted Hypericum perforatum L. cultivation technique, 31 rhizobacteria were isolated from the plant's high-altitude Indian western Himalayan natural habitat and in vitro characterized for multiple plant growth-promoting attributes. Among 31 rhizobacterial isolates, 26 produced 0.59 to 85.29 μg mL-1 indole-3-acetic acid and solubilized 15.77 to 71.43 μg mL-1 inorganic phosphate; 21 produced 63.12 to 99.92% siderophore units, and 15 exhibited 103.60 to 1,296.42 nmol α-ketobutyrate mg-1 protein h-1 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity. Based on superior plant growth-promoting attributes, eight statistically significant multifarious PGPR were further evaluated for an in planta plant growth-promotion assay under poly greenhouse conditions. Plants treated with Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18 showed, by significant amounts, the highest photosynthetic pigments and performance, eventually leading to the highest biomass accumulation. Comparative genome analysis and comprehensive genome mining unraveled their unique genetic features, such as adaptation to the host plant's immune system and specialized metabolites. Moreover, the strains harbor several functional genes regulating direct and indirect plant growth-promotion mechanisms through nutrient acquisition, phytohormone production, and stress alleviation. In essence, the current study endorsed strains HypNH10 and HypNH18 as cogent candidates for microbe-assisted H. perforatum cultivation by highlighting their exclusive genomic signatures, which suggest their unison, compatibility, and multifaceted beneficial interactions with their host and support the excellent plant growth-promotion performance observed in the greenhouse trial. IMPORTANCE Hypericum perforatum L. (St. John's wort) herbal preparations are among the top-selling products to treat depression worldwide. A significant portion of the overall Hypericum supply is sourced through wild collection, prompting a rapid decline in their natural stands. Crop cultivation seems lucrative, although cultivable land and its existing rhizomicrobiome are well suited for traditional crops, and its sudden introduction can create soil microbiome dysbiosis. Also, the conventional plant domestication procedures with increased reliance on agrochemicals can reduce the diversity of the associated rhizomicrobiome and plants' ability to interact with plant growth-promoting microorganisms, leading to unsatisfactory crop production alongside harmful environmental effects. Cultivating H. perforatum with crop-associated beneficial rhizobacteria can reconcile such concerns. Based on a combinatorial in vitro, in vivo plant growth-promotion assay and in silico prediction of plant growth-promoting traits, here we recommend two H. perforatum-associated PGPR, Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18, to extrapolate as functional bioinoculants for H. perforatum sustainable cultivation.
Collapse
Affiliation(s)
- Yog Raj
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anil Kumar
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sareeka Kumari
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakshak Kumar
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Bromfield ESP, Cloutier S, Hynes MF. Ensifer canadensis sp. nov. strain T173 T isolated from Melilotus albus (sweet clover) in Canada possesses recombinant plasmid pT173b harbouring symbiosis and type IV secretion system genes apparently acquired from Ensifer medicae. Front Microbiol 2023; 14:1195755. [PMID: 37389331 PMCID: PMC10306167 DOI: 10.3389/fmicb.2023.1195755] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
A bacterial strain, designated T173T, was previously isolated from a root-nodule of a Melilotus albus plant growing in Canada and identified as a novel Ensifer lineage that shared a clade with the non-symbiotic species, Ensifer adhaerens. Strain T173T was also previously found to harbour a symbiosis plasmid and to elicit root-nodules on Medicago and Melilotus species but not fix nitrogen. Here we present data for the genomic and taxonomic description of strain T173T. Phylogenetic analyses including the analysis of whole genome sequences and multiple locus sequence analysis (MLSA) of 53 concatenated ribosome protein subunit (rps) gene sequences confirmed placement of strain T173T in a highly supported lineage distinct from named Ensifer species with E. morelensis Lc04T as the closest relative. The highest digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values of genome sequences of strain T173T compared with closest relatives (35.7 and 87.9%, respectively) are well below the respective threshold values of 70% and 95-96% for bacterial species circumscription. The genome of strain T173T has a size of 8,094,229 bp with a DNA G + C content of 61.0 mol%. Six replicons were detected: a chromosome (4,051,102 bp) and five plasmids harbouring plasmid replication and segregation (repABC) genes. These plasmids were also found to possess five apparent conjugation systems based on analysis of TraA (relaxase), TrbE/VirB4 (part of the Type IV secretion system (T4SS)) and TraG/VirD4 (coupling protein). Ribosomal RNA operons encoding 16S, 23S, and 5S rRNAs that are usually restricted to bacterial chromosomes were detected on plasmids pT173d and pT173e (946,878 and 1,913,930 bp, respectively) as well as on the chromosome of strain T173T. Moreover, plasmid pT173b (204,278 bp) was found to harbour T4SS and symbiosis genes, including nodulation (nod, noe, nol) and nitrogen fixation (nif, fix) genes that were apparently acquired from E. medicae by horizontal transfer. Data for morphological, physiological and symbiotic characteristics complement the sequence-based characterization of strain T173T. The data presented support the description of a new species for which the name Ensifer canadensis sp. nov. is proposed with strain T173T (= LMG 32374T = HAMBI 3766T) as the species type strain.
Collapse
Affiliation(s)
- Eden S. P. Bromfield
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Michael F. Hynes
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Ortiz Charneco G, Kelleher P, Buivydas A, Dashko S, de Waal PP, van Peij NNME, Roberts RJ, Mahony J, van Sinderen D. Delineation of a lactococcal conjugation system reveals a restriction-modification evasion system. Microb Biotechnol 2023; 16:1250-1263. [PMID: 36942662 DOI: 10.1111/1751-7915.14221] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 03/23/2023] Open
Abstract
Plasmid pUC11B is a 49.3-kb plasmid harboured by the fermented meat isolate Lactococcus lactis subsp. lactis UC11. Among other features, pUC11B encodes a pMRC01-like conjugation system and tetracycline-resistance. In this study, we demonstrate that this plasmid can be conjugated at high frequencies to recipient strains. Mutational analysis of the 22 genes encompassing the presumed pUC11B conjugation cluster revealed the presence of several genes with essential conjugation functions, as well as a gene, trsR, encoding a putative transcriptional repressor of this conjugation cluster. Furthermore, plasmid pUC11B encodes an anti-restriction protein, TrsAR, which facilitates higher conjugation frequencies when pUC11B is transferred into recipient strains containing Type II or Type III RM systems. These findings demonstrate how RM mechanisms can be circumvented when they act as a biological barrier for conjugation events.
Collapse
Affiliation(s)
| | - Philip Kelleher
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Andrius Buivydas
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sofia Dashko
- DSM Food and Beverage, Center for Food Innovation, Delft, The Netherlands
| | - Paul P de Waal
- DSM Food and Beverage, Center for Food Innovation, Delft, The Netherlands
| | | | | | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Guzmán-Herrador DL, Fernández-Gómez A, Llosa M. Recruitment of heterologous substrates by bacterial secretion systems for transkingdom translocation. Front Cell Infect Microbiol 2023; 13:1146000. [PMID: 36949816 PMCID: PMC10025392 DOI: 10.3389/fcimb.2023.1146000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Bacterial secretion systems mediate the selective exchange of macromolecules between bacteria and their environment, playing a pivotal role in processes such as horizontal gene transfer or virulence. Among the different families of secretion systems, Type III, IV and VI (T3SS, T4SS and T6SS) share the ability to inject their substrates into human cells, opening up the possibility of using them as customized injectors. For this to happen, it is necessary to understand how substrates are recruited and to be able to engineer secretion signals, so that the transmembrane machineries can recognize and translocate the desired substrates in place of their own. Other factors, such as recruiting proteins, chaperones, and the degree of unfolding required to cross through the secretion channel, may also affect transport. Advances in the knowledge of the secretion mechanism have allowed heterologous substrate engineering to accomplish translocation by T3SS, and to a lesser extent, T4SS and T6SS into human cells. In the case of T4SS, transport of nucleoprotein complexes adds a bonus to its biotechnological potential. Here, we review the current knowledge on substrate recognition by these secretion systems, the many examples of heterologous substrate translocation by engineering of secretion signals, and the current and future biotechnological and biomedical applications derived from this approach.
Collapse
|
10
|
Ashrafi S, Kuzmanović N, Patz S, Lohwasser U, Bunk B, Spröer C, Lorenz M, Elhady A, Frühling A, Neumann-Schaal M, Verbarg S, Becker M, Thünen T. Two New Rhizobiales Species Isolated from Root Nodules of Common Sainfoin (Onobrychis viciifolia) Show Different Plant Colonization Strategies. Microbiol Spectr 2022; 10:e0109922. [PMID: 36005754 PMCID: PMC9603459 DOI: 10.1128/spectrum.01099-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/04/2022] [Indexed: 12/30/2022] Open
Abstract
Root nodules of legume plants are primarily inhabited by rhizobial nitrogen-fixing bacteria. Here, we propose two new Rhizobiales species isolated from root nodules of common sainfoin (Onobrychis viciifolia), as shown by core-gene phylogeny, overall genome relatedness indices, and pan-genome analysis. Mesorhizobium onobrychidis sp. nov. actively induces nodules and achieves atmospheric nitrogen and carbon dioxide fixation. This species appears to be depleted in motility genes and is enriched in genes for direct effects on plant growth performance. Its genome reveals functional and plant growth-promoting signatures, like a large unique chromosomal genomic island with high density of symbiotic genetic traits. Onobrychidicola muellerharveyae gen. nov. sp. nov. is described as a type species of the new genus Onobrychidicola in Rhizobiaceae. This species comprises unique genetic features and plant growth-promoting traits (PGPTs), which strongly indicate its function in biotic stress reduction and motility. We applied a newly developed bioinformatics approach for in silico prediction of PGPTs (PGPT-Pred), which supports the different lifestyles of the two new species and the plant growth-promoting performance of M. onobrychidis in the greenhouse trial. IMPORTANCE The intensive use of chemical fertilizers has a variety of negative effects on the environment. Increased utilization of biological nitrogen fixation (BNF) is one way to mitigate those negative impacts. In order to optimize BNF, suitable candidates for different legume species are required. Despite intensive search for new rhizobial bacteria associated with legumes, no new rhizobia have recently been identified from sainfoin (Onobrychis viciifolia). Here, we report on the discovery of two new rhizobial species associated with sainfoin, which are of high importance for the host and may help to increase sustainability in agricultural practices. We employed the combination of in silico prediction and in planta experiments, which is an effective way to detect promising plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Samad Ashrafi
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Nemanja Kuzmanović
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Braunschweig, Germany
| | - Sascha Patz
- University of Tübingen, Institute for Bioinformatics and Medical Informatics, Algorithms in Bioinformatics, Tübingen, Germany
| | - Ulrike Lohwasser
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Genebank Department, Seeland, Germany
| | - Boyke Bunk
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Maria Lorenz
- Technische Universität Braunschweig, Braunschweig, Germany
| | - Ahmed Elhady
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Anja Frühling
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Susanne Verbarg
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Matthias Becker
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, Braunschweig, Germany
| | - Torsten Thünen
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Braunschweig, Germany
| |
Collapse
|
11
|
Abstract
Bacterial type IV secretion systems (T4SSs) are a versatile group of nanomachines that can horizontally transfer DNA through conjugation and deliver effector proteins into a wide range of target cells. The components of T4SSs in gram-negative bacteria are organized into several large subassemblies: an inner membrane complex, an outer membrane core complex, and, in some species, an extracellular pilus. Cryo-electron tomography has been used to define the structures of T4SSs in intact bacteria, and high-resolution structural models are now available for isolated core complexes from conjugation systems, the Xanthomonas citri T4SS, the Helicobacter pylori Cag T4SS, and the Legionella pneumophila Dot/Icm T4SS. In this review, we compare the molecular architectures of these T4SSs, focusing especially on the structures of core complexes. We discuss structural features that are shared by multiple T4SSs as well as evolutionary strategies used for T4SS diversification. Finally, we discuss how structural variations among T4SSs may confer specialized functional properties.
Collapse
Affiliation(s)
- Michael J. Sheedlo
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Timothy L. Cover
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
12
|
Boluk G, Arizala D, Dobhal S, Zhang J, Hu J, Alvarez AM, Arif M. Genomic and Phenotypic Biology of Novel Strains of Dickeya zeae Isolated From Pineapple and Taro in Hawaii: Insights Into Genome Plasticity, Pathogenicity, and Virulence Determinants. FRONTIERS IN PLANT SCIENCE 2021; 12:663851. [PMID: 34456933 PMCID: PMC8386352 DOI: 10.3389/fpls.2021.663851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/30/2021] [Indexed: 05/04/2023]
Abstract
Dickeya zeae, a bacterial plant pathogen of the family Pectobacteriaceae, is responsible for a wide range of diseases on potato, maize, rice, banana, pineapple, taro, and ornamentals and significantly reduces crop production. D. zeae causes the soft rot of taro (Colocasia esculenta) and the heart rot of pineapple (Ananas comosus). In this study, we used Pacific Biosciences single-molecule real-time (SMRT) sequencing to sequence two high-quality complete genomes of novel strains of D. zeae: PL65 (size: 4.74997 MB; depth: 701x; GC: 53.6%) and A5410 (size: 4.7792 MB; depth: 558x; GC: 53.5%) isolated from economically important Hawaiian crops, taro, and pineapple, respectively. Additional complete genomes of D. zeae representing three additional hosts (philodendron, rice, and banana) and other species used for a taxonomic comparison were retrieved from the NCBI GenBank genome database. Genomic analyses indicated the truncated type III and IV secretion systems (T3SS and T4SS) in the taro strain, which only harbored one and two genes of T3SS and T4SS, respectively, and showed high heterogeneity in the type VI secretion system (T6SS). Unlike strain EC1, which was isolated from rice and recently reclassified as D. oryzae, neither the genome PL65 nor A5410 harbors the zeamine biosynthesis gene cluster, which plays a key role in virulence of other Dickeya species. The percentages of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the two genomes were 94.47 and 57.00, respectively. In this study, we compared the major virulence factors [plant cell wall-degrading extracellular enzymes and protease (Prt)] produced by D. zeae strains and evaluated the virulence on taro corms and pineapple leaves. Both strains produced Prts, pectate lyases (Pels), and cellulases but no significant quantitative differences were observed (p > 0.05) between the strains. All the strains produced symptoms on taro corms and pineapple leaves, but the strain PL65 produced symptoms more rapidly than others. Our study highlights the genetic constituents of pathogenicity determinants and genomic heterogeneity that will help to understand the virulence mechanisms and aggressiveness of this plant pathogen.
Collapse
Affiliation(s)
- Gamze Boluk
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Shefali Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Jingxin Zhang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - John Hu
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Anne M. Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
13
|
Cover TL. Tracking bacterial effector protein delivery into host cells. Mol Microbiol 2021; 116:724-728. [PMID: 34250669 DOI: 10.1111/mmi.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Bacterial Type IV secretion systems (T4SSs) are a functionally heterogeneous group of nanomachines that can deliver substrates into a wide range of target cells. The Helicobacter pylori Cag T4SS has an important role in the pathogenesis of gastric cancer. CagA, the only effector protein known to be secreted by the H. pylori Cag T4SS, enters human gastric cells and causes alterations in intracellular signaling that are linked to cancer pathogenesis. Understanding the molecular mechanisms by which CagA is delivered into gastric cells has been hindered by the lack of robust methods for monitoring this process. A publication in this issue of Molecular Microbiology describes a split luciferase assay for monitoring T4SS-mediated translocation of CagA into host cells. The use of this translocation reporter allowed the quantification of CagA translocation in real-time assays, thereby facilitating the analysis of the kinetics of CagA delivery. This system also allowed the tracking of several types of CagA fusion proteins and confirmed that protein unfolding is important for secretion by the Cag T4SS. This commentary discusses T4SS-dependent delivery of H. pylori CagA into host cells and the use of the split luciferase system for monitoring bacterial protein secretion and delivery into target cells.
Collapse
Affiliation(s)
- Timothy L Cover
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
14
|
Ortiz Charneco G, Kelleher P, Buivydas A, Streekstra H, van Themaat EVL, de Waal PP, Mahony J, van Sinderen D. Genetic Dissection of a Prevalent Plasmid-Encoded Conjugation System in Lactococcus lactis. Front Microbiol 2021; 12:680920. [PMID: 34122391 PMCID: PMC8194271 DOI: 10.3389/fmicb.2021.680920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/20/2021] [Indexed: 01/02/2023] Open
Abstract
Plasmid pNP40, which was first identified nearly 40 years ago in Lactococcus lactis subsp. lactis biovar diacetylactis DRC3, encodes functions such as heavy metal-, bacteriophage-, and nisin-resistance, as well as plasmid transfer ability by conjugation. Here, we report an optimized conjugation protocol for this plasmid, yielding a transfer frequency that is approximately 4,000-fold higher than those previously reported in literature, while we also observed high-frequency plasmid co-mobilization. Individual mutations in 18 genes that encompass the presumed conjugation cluster of pNP40 were generated using ssDNA recombineering to evaluate the role of each gene in the conjugation process. A possible transcriptional repressor of this conjugation cluster, the product of the traR gene, was identified in this manner. This mutational analysis, paired with bioinformatic predictions as based on sequence and structural similarities, allowed us to generate a preliminary model of the pNP40 conjugation machinery.
Collapse
Affiliation(s)
| | - Philip Kelleher
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Andrius Buivydas
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | | | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Chauhan D, Shames SR. Pathogenicity and Virulence of Legionella: Intracellular replication and host response. Virulence 2021; 12:1122-1144. [PMID: 33843434 PMCID: PMC8043192 DOI: 10.1080/21505594.2021.1903199] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacteria of the genus Legionella are natural pathogens of amoebae that can cause a severe pneumonia in humans called Legionnaires’ Disease. Human disease results from inhalation of Legionella-contaminated aerosols and subsequent bacterial replication within alveolar macrophages. Legionella pathogenicity in humans has resulted from extensive co-evolution with diverse genera of amoebae. To replicate intracellularly, Legionella generates a replication-permissive compartment called the Legionella-containing vacuole (LCV) through the concerted action of hundreds of Dot/Icm-translocated effector proteins. In this review, we present a collective overview of Legionella pathogenicity including infection mechanisms, secretion systems, and translocated effector function. We also discuss innate and adaptive immune responses to L. pneumophila, the implications of Legionella genome diversity and future avenues for the field.
Collapse
Affiliation(s)
- Deepika Chauhan
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | | |
Collapse
|
16
|
Mak H, Thurston TLM. Interesting Biochemistries in the Structure and Function of Bacterial Effectors. Front Cell Infect Microbiol 2021; 11:608860. [PMID: 33718265 PMCID: PMC7943720 DOI: 10.3389/fcimb.2021.608860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial effector proteins, delivered into host cells by specialized multiprotein secretion systems, are a key mediator of bacterial pathogenesis. Following delivery, they modulate a range of host cellular processes and functions. Strong selective pressures have resulted in bacterial effectors evolving unique structures that can mimic host protein biochemical activity or enable novel and distinct biochemistries. Despite the protein structure-function paradigm, effectors from different bacterial species that share biochemical activities, such as the conjugation of ubiquitin to a substrate, do not necessarily share structural or sequence homology to each other or the eukaryotic proteins that carry out the same function. Furthermore, some bacterial effectors have evolved structural variations to known protein folds which enable different or additional biochemical and physiological functions. Despite the overall low occurrence of intrinsically disordered proteins or regions in prokaryotic proteomes compared to eukaryotes proteomes, bacterial effectors appear to have adopted intrinsically disordered regions that mimic the disordered regions of eukaryotic signaling proteins. In this review, we explore examples of the diverse biochemical properties found in bacterial effectors that enable effector-mediated interference of eukaryotic signaling pathways and ultimately support pathogenesis. Despite challenges in the structural and functional characterisation of effectors, recent progress has been made in understanding the often unusual and fascinating ways in which these virulence factors promote pathogenesis. Nevertheless, continued work is essential to reveal the array of remarkable activities displayed by effectors.
Collapse
Affiliation(s)
| | - Teresa L. M. Thurston
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes (Basel) 2020; 11:genes11111239. [PMID: 33105635 PMCID: PMC7690428 DOI: 10.3390/genes11111239] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial conjugation, also referred to as bacterial sex, is a major horizontal gene transfer mechanism through which DNA is transferred from a donor to a recipient bacterium by direct contact. Conjugation is universally conserved among bacteria and occurs in a wide range of environments (soil, plant surfaces, water, sewage, biofilms, and host-associated bacterial communities). Within these habitats, conjugation drives the rapid evolution and adaptation of bacterial strains by mediating the propagation of various metabolic properties, including symbiotic lifestyle, virulence, biofilm formation, resistance to heavy metals, and, most importantly, resistance to antibiotics. These properties make conjugation a fundamentally important process, and it is thus the focus of extensive study. Here, we review the key steps of plasmid transfer by conjugation in Gram-negative bacteria, by following the life cycle of the F factor during its transfer from the donor to the recipient cell. We also discuss our current knowledge of the extent and impact of conjugation within an environmentally and clinically relevant bacterial habitat, bacterial biofilms.
Collapse
|
18
|
Kim H, Kubori T, Yamazaki K, Kwak MJ, Park SY, Nagai H, Vogel JP, Oh BH. Structural basis for effector protein recognition by the Dot/Icm Type IVB coupling protein complex. Nat Commun 2020; 11:2623. [PMID: 32457311 PMCID: PMC7251119 DOI: 10.1038/s41467-020-16397-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/27/2020] [Indexed: 01/25/2023] Open
Abstract
The Legionella pneumophila Dot/Icm type IVB secretion system (T4BSS) is extremely versatile, translocating ~300 effector proteins into host cells. This specialized secretion system employs the Dot/Icm type IVB coupling protein (T4CP) complex, which includes IcmS, IcmW and LvgA, that are known to selectively assist the export of a subclass of effectors. Herein, the crystal structure of a four-subunit T4CP subcomplex bound to the effector protein VpdB reveals an interaction between LvgA and a linear motif in the C-terminus of VpdB. The same binding interface of LvgA also interacts with the C-terminal region of three additional effectors, SidH, SetA and PieA. Mutational analyses identified a FxxxLxxxK binding motif that is shared by VpdB and SidH, but not by SetA and PieA, showing that LvgA recognizes more than one type of binding motif. Together, this work provides a structural basis for how the Dot/Icm T4CP complex recognizes effectors, and highlights the multiple substrate-binding specificities of its adaptor subunit.
Collapse
Affiliation(s)
- Hyunmin Kim
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kohei Yamazaki
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.,Veterinary Public Health, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Mi-Jeong Kwak
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,CKD Research Institute, Yongin, Gyeonggi, 16995, Republic of Korea
| | - Suk-Youl Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Joseph P Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
19
|
Heilers JH, Reiners J, Heller EM, Golzer A, Smits SHJ, van der Does C. DNA processing by the MOBH family relaxase TraI encoded within the gonococcal genetic island. Nucleic Acids Res 2019; 47:8136-8153. [PMID: 31276596 PMCID: PMC6736028 DOI: 10.1093/nar/gkz577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 11/26/2022] Open
Abstract
Relaxases of the MOBH family are often found on large plasmids, genetic islands and integrative conjugative elements. Many members of this family contain an N-terminal relaxase domain (TraI_2) followed by a disordered middle part and a C-terminal domain of unknown function (TraI_2_C). The TraI_2 domain contains two putative metal-binding motifs, an HD domain motif and an alternative 3H motif. TraI, encoded within the gonococcal genetic island of Neisseria gonorrhoeae, is the prototype of the MOBH family. SAXS experiments showed that TraI_2 and TraI_2_C form globular structures separated by an extended middle domain. The TraI_2 domain cleaves oriT-ssDNA in a site-specific Mn2+ or Co2+ dependent manner. The minimal oriT encompasses 50 nucleotides, requires an inverted repeat 3′ of the nic-site and several nucleotides around nic for efficient cleavage. Surprisingly, no stable covalent relaxase-DNA intermediate was observed. Mutagenesis of conserved tyrosines showed that cleavage was abolished in the Y212A mutant, whereas the Y212F and Y212H mutants retained residual activity. The HD and the alternative 3H motifs were essential for cleavage and the HD domain residues D162 and D267 for metal ion binding. We propose that the active site binds two metal ions, one in a high-affinity and one in a low-affinity site.
Collapse
Affiliation(s)
- Jan-Hendrik Heilers
- Institute for Biology II, Microbiology, Albert Ludwig University Freiburg, 79104 Freiburg, Germany
| | - Jens Reiners
- Biochemie I, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | - Annika Golzer
- Institute for Biology II, Microbiology, Albert Ludwig University Freiburg, 79104 Freiburg, Germany
| | - Sander H J Smits
- Biochemie I, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Chris van der Does
- Institute for Biology II, Microbiology, Albert Ludwig University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
20
|
Genome-Wide Analyses Revealed Remarkable Heterogeneity in Pathogenicity Determinants, Antimicrobial Compounds, and CRISPR-Cas Systems of Complex Phytopathogenic Genus Pectobacterium. Pathogens 2019; 8:pathogens8040247. [PMID: 31756888 PMCID: PMC6963963 DOI: 10.3390/pathogens8040247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The Pectobacterium genus comprises pectolytic enterobacteria defined as the causal agents of soft rot, blackleg, and aerial stem rot diseases of potato and economically important crops. In this study, we undertook extensive genome-wide comparative analyses of twelve species that conform the Pectobacterium genus. Bioinformatics approaches outlined a low nucleotide identity of P. parmentieri and P. wasabiae with other species, while P. carotovorum subsp. odoriferum was shown to harbor numerous pseudogenes, which suggests low coding capacity and genomic degradation. The genome atlases allowed for distinguishing distinct DNA structures and highlighted suspicious high transcription zones. The analyses unveiled a noteworthy heterogeneity in the pathogenicity determinants. Specifically, phytotoxins, polysaccharides, iron uptake systems, and the type secretion systems III-V were observed in just some species. Likewise, a comparison of gene clusters encoding antimicrobial compounds put in evidence for high conservation of carotovoricin, whereas a few species possessed the phenazine, carbapenem, and carocins. Moreover, three clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) systems: I-E, I-F, and III-A were identified. Surrounding some CRISPR-Cas regions, different toxin and antitoxin systems were found, which suggests bacterial suicide in the case of an immune system failure. Multiple whole-genome alignments shed light on to the presence of a novel cellobiose phosphotransferase system (PTS) exclusive to P. parmenteri, and an unreported T5SS conserved in almost all species. Several regions that were associated with virulence, microbe antagonism, and adaptive immune systems were predicted within genomic islands, which underscored the essential role that horizontal gene transfer has imparted in the dynamic evolution and speciation of Pectobacterium species. Overall, the results decipher the different strategies that each species has developed to infect their hosts, outcompete for food resources, and defend against bacteriophages. Our investigation provides novel genetic insights that will assist in understanding the pathogenic lifestyle of Pectobacterium, a genus that jeopardizes the agriculture sustainability of important crops worldwide.
Collapse
|
21
|
Lacroix B, Citovsky V. Pathways of DNA Transfer to Plants from Agrobacterium tumefaciens and Related Bacterial Species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:231-251. [PMID: 31226020 PMCID: PMC6717549 DOI: 10.1146/annurev-phyto-082718-100101] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genetic transformation of host plants by Agrobacterium tumefaciens and related species represents a unique model for natural horizontal gene transfer. Almost five decades of studying the molecular interactions between Agrobacterium and its host cells have yielded countless fundamental insights into bacterial and plant biology, even though several steps of the DNA transfer process remain poorly understood. Agrobacterium spp. may utilize different pathways for transferring DNA, which likely reflects the very wide host range of Agrobacterium. Furthermore, closely related bacterial species, such as rhizobia, are able to transfer DNA to host plant cells when they are provided with Agrobacterium DNA transfer machinery and T-DNA. Homologs of Agrobacterium virulence genes are found in many bacterial genomes, but only one non-Agrobacterium bacterial strain, Rhizobium etli CFN42, harbors a complete set of virulence genes and can mediate plant genetic transformation when carrying a T-DNA-containing plasmid.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| |
Collapse
|
22
|
Kohler V, Keller W, Grohmann E. Regulation of Gram-Positive Conjugation. Front Microbiol 2019; 10:1134. [PMID: 31191478 PMCID: PMC6540685 DOI: 10.3389/fmicb.2019.01134] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022] Open
Abstract
Type IV Secretion Systems (T4SSs) are membrane-spanning multiprotein complexes dedicated to protein secretion or conjugative DNA transport (conjugation systems) in bacteria. The prototype and best-characterized T4SS is that of the Gram-negative soil bacterium Agrobacterium tumefaciens. For Gram-positive bacteria, only conjugative T4SSs have been characterized in some biochemical, structural, and mechanistic details. These conjugation systems are predominantly encoded by self-transmissible plasmids but are also increasingly detected on integrative and conjugative elements (ICEs) and transposons. Here, we report regulatory details of conjugation systems from Enterococcus model plasmids pIP501 and pCF10, Bacillus plasmid pLS1, Clostridium plasmid pCW3, and staphylococcal plasmid pSK41. In addition, regulation of conjugative processes of ICEs (ICEBs1, ICESt1, ICESt3) by master regulators belonging to diverse repressor families will be discussed. A special focus of this review lies on the comparison of regulatory mechanisms executed by proteins belonging to the RRNPP family. These regulators share a common fold and govern several essential bacterial processes, including conjugative transfer.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Elisabeth Grohmann
- Life Sciences and Technology, Beuth University of Applied Sciences Berlin, Berlin, Germany
| |
Collapse
|
23
|
Abstract
The bacterial type IV secretion systems (T4SSs) are a functionally diverse superfamily of secretion systems found in many species of bacteria. Collectively, the T4SSs translocate DNA and monomeric and multimeric protein substrates to bacterial and eukaryotic cell types. T4SSs are composed of two large subfamilies, the conjugation machines and the effector translocators that transmit their cargoes through establishment of direct donor-target cell contacts, and a third small subfamily capable of importing or exporting substrates from or to the milieu. This review summarizes recent mechanistic and structural findings that are shedding new light on how T4SSs have evolved such functional diversity. Translocation signals are now known to be located C terminally or embedded internally in structural folds; these signals in combination with substrate-associated adaptor proteins mediate the docking of specific substrate repertoires to cognate VirD4-like receptors. For the Legionella pneumophila Dot/Icm system, recent work has elucidated the structural basis for adaptor-dependent substrate loading onto the VirD4-like DotL receptor. Advances in definition of T4SS machine structures now allow for detailed comparisons of nanomachines closely related to the Agrobacterium tumefaciens VirB/VirD4 T4SS with those more distantly related, e.g., the Dot/Icm and Helicobacter pylori Cag T4SSs. Finally, it is increasingly evident that T4SSs have evolved a variety of mechanisms dependent on elaboration of conjugative pili, membrane tubes, or surface adhesins to establish productive contacts with target cells. T4SSs thus have evolved extreme functional diversity through a plethora of adaptations impacting substrate selection, machine architecture, and target cell binding.
Collapse
|
24
|
Wagner A, Tittes C, Dehio C. Versatility of the BID Domain: Conserved Function as Type-IV-Secretion-Signal and Secondarily Evolved Effector Functions Within Bartonella-Infected Host Cells. Front Microbiol 2019; 10:921. [PMID: 31130928 PMCID: PMC6509941 DOI: 10.3389/fmicb.2019.00921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/11/2019] [Indexed: 11/13/2022] Open
Abstract
Bartonella spp. are facultative intracellular pathogens that infect a wide range of mammalian hosts including humans. In order to subvert cellular functions and the innate immune response of their hosts, these pathogens utilize a VirB/VirD4 type-IV-secretion (T4S) system to translocate Bartonella effector proteins (Beps) into host cells. Crucial for this process is the Bep intracellular delivery (BID) domain that together with a C-terminal stretch of positively charged residues constitutes a bipartite T4S signal. This function in T4S is evolutionarily conserved with BID domains present in bacterial toxins and relaxases. Strikingly, some BID domains of Beps have evolved secondary functions to modulate host cell and innate immune pathways in favor of Bartonella infection. For instance, BID domains mediate F-actin-dependent bacterial internalization, inhibition of apoptosis, or modulate cell migration. Recently, crystal structures of three BID domains from different Beps have been solved, revealing a conserved fold formed by a four-helix bundle topped with a hook. While the conserved BID domain fold might preserve its genuine role in T4S, the highly variable surfaces characteristic for BID domains may facilitate secondary functions. In this review, we summarize our current knowledge on evolutionary and structural traits as well as functional aspects of the BID domain with regard to T4S and pathogenesis.
Collapse
Affiliation(s)
| | - Colin Tittes
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
25
|
Waksman G. From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective. EMBO Rep 2019; 20:embr.201847012. [PMID: 30602585 PMCID: PMC6362355 DOI: 10.15252/embr.201847012] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022] Open
Abstract
Conjugation is the process by which bacteria exchange genetic materials in a unidirectional manner from a donor cell to a recipient cell. The discovery of conjugation signalled the dawn of genetics and molecular biology. In Gram-negative bacteria, the process of conjugation is mediated by a large membrane-embedded machinery termed "conjugative type IV secretion (T4S) system", a large injection nanomachine, which together with a DNA-processing machinery termed "the relaxosome" and a large extracellular tube termed "pilus" orchestrates directional DNA transfer. Here, the focus is on past and latest research in the field of conjugation and T4S systems in Gram-negative bacteria, with an emphasis on the various questions and debates that permeate the field from a mechanistic perspective.
Collapse
Affiliation(s)
- Gabriel Waksman
- Institute of Structural and Molecular Biology, UCL and Birkbeck, London, UK
| |
Collapse
|
26
|
Mary C, Baron C. Bases moléculaires de l’infection de plantes parAgrobacterium tumefaciensvia un système de sécrétion de type IV. Biochem Cell Biol 2018; 97:215-223. [PMID: 30142282 DOI: 10.1139/bcb-2018-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Agrobacterium tumefaciens is a well studied phytopathogen given its various applications for deciphering host-pathogen interactions, bacterial communication, and capacity to transfer DNA fragments into host cells via a membrane protein system, the type IV secretion system (T4SS). T4SS mechanism is similar to the one responsible for antibiotic resistance gene transmission, and new knowledge gained could be applied to other organisms using such a mechanism. As well, A. tumefaciens is of economic importance in biotechnology due to its capacity to generate genetically modified plants. Agrobacterium tumefaciens harbours a plasmid known as Ti plasmid encoding T4SS function genes used for transferring genetic information and plant colonization. In this review, the authors describe the molecular basis of infection, from detection of host signals, to the description of different regions of Ti plasmid key to infection, ending with substrate transfer through bacterial wall. [Journal translation].
Collapse
Affiliation(s)
- Charline Mary
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Christian Baron
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
27
|
Rapisarda C, Tassinari M, Gubellini F, Fronzes R. Using Cryo-EM to Investigate Bacterial Secretion Systems. Annu Rev Microbiol 2018; 72:231-254. [PMID: 30004822 DOI: 10.1146/annurev-micro-090817-062702] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial secretion systems are responsible for releasing macromolecules to the extracellular milieu or directly into other cells. These membrane complexes are associated with pathogenicity and bacterial fitness. Understanding of these large assemblies has exponentially increased in the last few years thanks to electron microscopy. In fact, a revolution in this field has led to breakthroughs in characterizing the structures of secretion systems and other macromolecular machineries so as to obtain high-resolution images of complexes that could not be crystallized. In this review, we give a brief overview of structural advancements in the understanding of secretion systems, focusing in particular on cryo-electron microscopy, whether tomography or single-particle analysis. We describe how such techniques have contributed to knowledge of the mechanism of macromolecule secretion in bacteria and the impact they will have in the future.
Collapse
Affiliation(s)
- Chiara Rapisarda
- Structure et Fonction des Nanomachines Bactériennes, Institut Européen de Chimie et Biologie, 33607 Pessac, France; , .,CNRS UMR5234, Université de Bordeaux, 33076 Bordeaux, France
| | - Matteo Tassinari
- Institut Pasteur, Unité de Microbiologie Structurale, 75724 Paris, France; .,CNRS UMR3528, Institut Pasteur, 75015 Paris, France
| | - Francesca Gubellini
- Institut Pasteur, Unité de Microbiologie Structurale, 75724 Paris, France; .,CNRS UMR3528, Institut Pasteur, 75015 Paris, France
| | - Rémi Fronzes
- Structure et Fonction des Nanomachines Bactériennes, Institut Européen de Chimie et Biologie, 33607 Pessac, France; , .,CNRS UMR5234, Université de Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
28
|
Lorenzo-Díaz F, Fernández-López C, Guillén-Guío B, Bravo A, Espinosa M. Relaxase MobM Induces a Molecular Switch at Its Cognate Origin of Transfer. Front Mol Biosci 2018; 5:17. [PMID: 29600250 PMCID: PMC5863519 DOI: 10.3389/fmolb.2018.00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
The MOBV1 family of relaxases is broadly distributed in plasmids and other mobile genetic elements isolated from staphylococci, enterococci, and streptococci. The prototype of this family is protein MobM encoded by the streptococcal promiscuous plasmid pMV158. MobM cleaves the phosphodiester bond of a specific dinucleotide within the origin of transfer (oriT) to initiate conjugative transfer. Differently from other relaxases, MobM and probably other members of the family, cleaves its target single-stranded DNA through a histidine residue rather than the commonly used tyrosine. The oriT of the MOBV1 family differs from other well-known conjugative systems since it has sequences with three inverted repeats, which were predicted to generate three mutually-exclusive hairpins on supercoiled DNA. In this work, such hypothesis was evaluated through footprinting experiments on supercoiled plasmid DNA. We have found a change in hairpin extrusion mediated by protein MobM. This conformational change involves a shift from the main hairpin generated on “naked” DNA to a different hairpin in which the nick site is positioned in a single-stranded configuration. Our results indicate that the oriTpMV158 acts as a molecular switch in which, depending on the inverted repeat recognized by MobM, pMV158 mobilization could be turned “on” or “off.”
Collapse
Affiliation(s)
- Fabián Lorenzo-Díaz
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Beatriz Guillén-Guío
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Alicia Bravo
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | |
Collapse
|