1
|
Hour C, Chuon K, Song MC, Shim JG, Cho SG, Kang KW, Kim JH, Jung KH. Unveiling the critical role of K + for xanthorhodopsin expression in E. coli. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112976. [PMID: 39002191 DOI: 10.1016/j.jphotobiol.2024.112976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Xanthorhodopsin (XR), a retinal-binding 7-transmembrane protein isolated from the eubacterium Salinibacter ruber, utilizes two chromophores (retinal and salinixanthin (SAL)) as an outward proton pump and energy-donating carotenoid. However, research on XR has been impeded owing to limitations in achieving heterogeneous expression of stable forms and high production levels of both wild-type and mutants. We successfully expressed wild-type and mutant XRs in Escherichia coli in the presence of K+. Achieving XR expression requires significant K+ and a low inducer concentration. In particular, we highlight the significance of Ser-159 in helix E located near Gly-156 (a carotenoid-binding position) as a critical site for XR expression. Our findings indicate that replacing Ser-159 with a smaller amino acid, alanine, can enhance XR expression in a manner comparable to K+, implying that Ser-159 poses a steric hindrance for pigment formation in XR. In the presence of K+, the proton pumping and photocycle of the wild-type and mutants were characterized and compared; the wild-type result suggests similar properties to the first reported XR isolation from the S. ruber membrane fraction. We propose that the K+ gradient across the cell membrane of S. ruber serves to uphold the membrane potential of the organism and plays a role in the expression of proteins, such as XR, as demonstrated in our study. Our findings deepen the understanding of adaptive protein expression, particularly in halophilic organisms. We highlight salt selection as a promising strategy for improving protein yield and functionality.
Collapse
Affiliation(s)
- Chenda Hour
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Kimleng Chuon
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Myung-Chul Song
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Jin-Gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Shin-Gyu Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea; Research Institute for Basic Science, Sogang University, Seoul, Republic of Korea
| | - Kun-Wook Kang
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Ji-Hyun Kim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea.
| |
Collapse
|
2
|
Saliminasab M, Yamazaki Y, Palmateer A, Harris A, Schubert L, Langner P, Heberle J, Bondar AN, Brown LS. A Proteorhodopsin-Related Photosensor Expands the Repertoire of Structural Motifs Employed by Sensory Rhodopsins. J Phys Chem B 2023; 127:7872-7886. [PMID: 37694950 PMCID: PMC10519204 DOI: 10.1021/acs.jpcb.3c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Microbial rhodopsins are light-activated retinal-binding membrane proteins that perform a variety of ion transport and photosensory functions. They display several cases of convergent evolution where the same function is present in unrelated or very distant protein groups. Here we report another possible case of such convergent evolution, describing the biophysical properties of a new group of sensory rhodopsins. The first representative of this group was identified in 2004 but none of the members had been expressed and characterized. The well-studied haloarchaeal sensory rhodopsins interacting with methyl-accepting Htr transducers are close relatives of the halobacterial proton pump bacteriorhodopsin. In contrast, the sensory rhodopsins we describe here are relatives of proteobacterial proton pumps, proteorhodopsins, but appear to interact with Htr-like transducers likewise, even though they do not conserve the residues important for the interaction of haloarchaeal sensory rhodopsins with their transducers. The new sensory rhodopsins display many unusual amino acid residues, including those around the retinal chromophore; most strikingly, a tyrosine in place of a carboxyl counterion of the retinal Schiff base on helix C. To characterize their unique sequence motifs, we augment the spectroscopy and biochemistry data by structural modeling of the wild-type and three mutants. Taken together, the experimental data, bioinformatics sequence analyses, and structural modeling suggest that the tyrosine/aspartate complex counterion contributes to a complex water-mediated hydrogen-bonding network that couples the protonated retinal Schiff base to an extracellular carboxylic dyad.
Collapse
Affiliation(s)
- Maryam Saliminasab
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yoichi Yamazaki
- Division
of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Alyssa Palmateer
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Andrew Harris
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luiz Schubert
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Pit Langner
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Joachim Heberle
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- University
of Bucharest, Faculty of Physics, Atomiştilor 405, Măgurele 077125, Romania
- Forschungszentrum
Jülich, Institute for Neuroscience and Medicine and Institute
for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Wilhelm-Johnen Straße, 52428 Jülich, Germany
| | - Leonid S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
3
|
Chiu UT, Lee BF, Ko LN, Yang CS, Chao L. Non-Electroneutrality Generated by Bacteriorhodopsin-Incorporated Membranes Enhances the Conductivity of a Gelatin Memory Device. Gels 2023; 9:635. [PMID: 37623090 PMCID: PMC10453721 DOI: 10.3390/gels9080635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
We have previously demonstrated the potential of gelatin films as a memory device, offering a novel approach for writing, reading, and erasing through the manipulation of gelatin structure and bound water content. Here, we discovered that incorporating a bacteriorhodopsin (BR)-lipid membrane into the gelatin devices can further increase the electron conductivity of the polypeptide-bound water network and the ON/OFF ratio of the device by two folds. Our photocurrent measurements show that the BR incorporated in the membrane sandwiched in a gelatin device can generate a net proton flow from the counter side to the deposited side of the membrane. This leads to the establishment of non-electroneutrality on the gelatin films adjacent to the BR-incorporated membrane. Our Raman spectroscopy results show that BR proton pumping in the ON state gelatin device increases the bound water presence and promotes polypeptide unwinding compared to devices without BR. These findings suggest that the non-electroneutrality induced by BR proton pumping can increase the extent of polypeptide unwinding within the gelatin matrix, consequently trapping more bound water within the gelatin-bound water network. The resulting rise in hydrogen bonds could expand electron transfer routes, thereby enhancing the electron conductivity of the memory device in the ON state.
Collapse
Affiliation(s)
- U-Ting Chiu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Bo-Fan Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ling-Ning Ko
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Ling Chao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Yu CH, Wu HY, Lin HS, Yang CS. A conserved Trp residue in HwBR contributes to its unique tolerance toward acidic environments. Biophys J 2022; 121:3136-3145. [PMID: 35808832 PMCID: PMC9463644 DOI: 10.1016/j.bpj.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/10/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Bacteriorhodopsin (BR) is a light-driven outward proton pump found mainly in halophilic archaea. A BR from an archaeon Haloquadratum walsbyi (HwBR) was found to pump protons under more acidic conditions compared with most known BR proteins. The atomic structural study on HwBR unveiled that a pair of hydrogen bonds between the BC and FG loop in its periplasmic region may be a factor in such improved pumping capability. Here, we further investigated the retinal-binding pocket of HwBR and found that Trp94 contributes to the higher acid tolerance. Through single mutations in a BR from Halobacterium salinarum and HwBR, we examined the conserved tryptophan residues in the retinal-binding pocket. Among these residues of HwBR, mutagenesis at Trp94 facing the periplasmic region caused the most significant disruption to optical stability and proton-pumping capability under acidic conditions. The other tryptophan residues of HwBR exerted little impact on both maximum absorption wavelength and pH-dependent proton pumping. Our findings suggest that the residues from Trp94 to the hydrogen bonds at the BC loop confer both optical stability and functionality on the overall protein in low-pH environments.
Collapse
Affiliation(s)
- Cheng-Han Yu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Yu Wu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hong-Syuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
HwMR is a novel magnesium-associated protein. Biophys J 2022; 121:2781-2793. [PMID: 35690905 DOI: 10.1016/j.bpj.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/10/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Microbial rhodopsins (MRho) are vital proteins in Haloarchaea for solar light sensing in extreme living environments. Among them, Haloquadratum walsbyi (Hw) is a species known to survive high MgCl2 concentrations, with a total of three MRhos identified, including a high-acid-tolerance light-driven proton outward pump, HwBR, a chloride-insensitive chloride pump, HwHR, and a functionally unknown HwMR. Here, we showed that HwMR is the sole magnesium-sensitive MRho among all tested MRho proteins from Haloarchaea. We identified at least D84 as one of the key residues mediating such magnesium ion association in HwMR. Sequence analysis and molecular modeling suggested HwMR to have an extra H8 helix in the cytosolic region like those in signal-transduction-type MRho of deltarhodopsin-3 (dR-3) and Anabaena sensory rhodopsin (ASR). Further, HwMR showed a distinctly prolonged M-state formation under a high concentration of Mg2+. On the other hand, an H8 helix truncated mutant preserved photocycle kinetics like the wild type, but it led to missing M-state structure. Our findings clearly suggested not only that HwMR is a novel Mg2+-associated protein but that the association with both Mg2+ and the H8 domain stabilizes M-state formation in HwMR. We conclude that Mg2+ association and H8 are crucial in stabilizing HwMR M state, which is a well-known photoreceptor signaling state.
Collapse
|
6
|
Pao PJ, Hsu MF, Chiang MH, Chen CT, Lee CC, Wang AHJ. Structural basis of an epitope tagging system derived from Haloarcula marismortui bacteriorhodopsin I D94N and its monoclonal antibody GD-26. FEBS J 2021; 289:730-747. [PMID: 34499806 PMCID: PMC9292375 DOI: 10.1111/febs.16184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/12/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023]
Abstract
Specific antibody interactions with short peptides have made epitope tagging systems a vital tool employed in virtually all fields of biological research. Here, we present a novel epitope tagging system comprised of a monoclonal antibody named GD‐26, which recognises the TD peptide (GTGATPADD) derived from Haloarcula marismortui bacteriorhodopsin I (HmBRI) D94N mutant. The crystal structure of the antigen‐binding fragment (Fab) of GD‐26 complexed with the TD peptide was determined to a resolution of 1.45 Å. The TD peptide was found to adopt a 310 helix conformation within the binding cleft, providing a characteristic peptide structure for recognition by GD‐26 Fab. Based on the structure information, polar and nonpolar forces collectively contribute to the strong binding. Attempts to engineer the TD peptide show that the proline residue is crucial for the formation of the 310 helix in order to fit into the binding cleft. Isothermal calorimetry (ITC) reported a dissociation constant KD of 12 ± 2.8 nm, indicating a strong interaction between the TD peptide and GD‐26 Fab. High specificity of GD‐26 IgG to the TD peptide was demonstrated by western blotting, ELISA and immunofluorescence as only TD‐tagged proteins were detected, suggesting the effectiveness of the GD‐26/TD peptide tagging system. In addition to already‐existing epitope tags such as the FLAG tag and the ALFA tag adopting either extended or α‐helix conformations, the unique 310 helix conformation of the TD peptide together with the corresponding monoclonal antibody GD‐26 offers a novel tagging option for research.
Collapse
Affiliation(s)
- Po-Jung Pao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ming-Hui Chiang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Ting Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Verma DK, Chaudhary C, Singh L, Sidhu C, Siddhardha B, Prasad SE, Thakur KG. Isolation and Taxonomic Characterization of Novel Haloarchaeal Isolates From Indian Solar Saltern: A Brief Review on Distribution of Bacteriorhodopsins and V-Type ATPases in Haloarchaea. Front Microbiol 2020; 11:554927. [PMID: 33362726 PMCID: PMC7755889 DOI: 10.3389/fmicb.2020.554927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023] Open
Abstract
Haloarchaea inhabit high salinity environments worldwide. They are a potentially rich source of crucial biomolecules like carotenoids and industrially useful proteins. However, diversity in haloarchaea present in Indian high salinity environments is poorly studied. In the present study, we isolated 12 haloarchaeal strains from hypersaline Kottakuppam, Tamil Nadu solar saltern in India. 16S rRNA based taxonomic characterization of these isolates suggested that nine of them are novel strains that belong to genera Haloarcula, Halomicrobium, and Haloferax. Transmission electron microscopy suggests the polymorphic nature of these haloarchaeal isolates. Most of the haloarchaeal species are known to be high producers of carotenoids. We were able to isolate carotenoids from all these 12 isolates. The UV-Vis spectroscopy-based analysis suggests that bacterioruberin and lycopene are the major carotenoids produced by these isolates. Based on the visual inspection of the purified carotenoids, the isolates were classified into two broad categories i.e., yellow and orange, attributed to the differences in the ratio of bacterioruberin and lycopene as confirmed by the UV-Vis spectral analysis. Using a PCR-based screening assay, we were able to detect the presence of the bacteriorhodopsin gene (bop) in 11 isolates. We performed whole-genome sequencing for three bop positive and one bop negative haloarchaeal isolates. Whole-genome sequencing, followed by pan-genome analysis identified multiple unique genes involved in various biological functions. We also successfully cloned, expressed, and purified functional recombinant bacteriorhodopsin (BR) from one of the isolates using Escherichia coli as an expression host. BR has light-driven proton pumping activity resulting in the proton gradient across the membrane, which is utilized by V-Type ATPases to produce ATP. We analyzed the distribution of bop and other accessory genes involved in functional BR expression and ATP synthesis in all the representative haloarchaeal species. Our bioinformatics-based analysis of all the sequenced members of genus Haloarcula suggests that bop, if present, is usually inserted between the genes coding for B and D subunits of the V-type ATPases operon. This study provides new insights into the genomic variations in haloarchaea and reports expression of new BR variant having good expression in functional form in E. coli.
Collapse
Affiliation(s)
- Dipesh Kumar Verma
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Chetna Chaudhary
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Latika Singh
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Chandni Sidhu
- MTCC-Microbial Type Culture Collection & Gene Bank, Council of Scientific and Industrial Research Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Busi Siddhardha
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Senthil E Prasad
- Biochemical Engineering Research and Process Development Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| |
Collapse
|
8
|
Verma DK, Baral I, Kumar A, Prasad SE, Thakur KG. Discovery of bacteriorhodopsins in Haloarchaeal species isolated from Indian solar salterns: deciphering the role of the N-terminal residues in protein folding and functional expression. Microb Biotechnol 2019; 12:434-446. [PMID: 30648822 PMCID: PMC6465532 DOI: 10.1111/1751-7915.13359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 11/28/2022] Open
Abstract
Interesting optical and photochemical properties make microbial rhodopsin a promising biological material suitable for various applications, but the cost-prohibitive nature of production has limited its commercialization. The aim of this study was to explore the natural biodiversity of Indian solar salterns to isolate natural bacteriorhodopsin (BR) variants that can be functionally expressed in Escherichia coli. In this study, we report the isolation, functional expression and purification of BRs from three pigmented haloarchaea, wsp3 (water sample Pondicherry), wsp5 and K1T isolated from two Indian solar salterns. The results of the 16S rRNA data analysis suggest that wsp3, wsp5 and K1T are novel strains belonging to the genera Halogeometricum, Haloferax and Haloarcula respectively. Overall, the results of our study suggest that 17 N-terminal residues, that were not included in the gene annotation of the close sequence homologues, are essential for functional expression of BRs. The primary sequence, secondary structural content, thermal stability and absorbance spectral properties of these recombinant BRs are similar to those of the previously reported Haloarcula marismortui HmBRI. This study demonstrates the cost-effective, functional expression of BRs isolated from haloarchaeal species using E. coli as an expression host and paves the way for feasibility studies for future applications.
Collapse
Affiliation(s)
- Dipesh Kumar Verma
- Structural Biology LaboratoryG. N. Ramachandran Protein CentreCouncil of Scientific and Industrial Research‐Institute of Microbial Technology (CSIR‐IMTECH)Chandigarh160036India
| | - Ishita Baral
- Biochemical Engineering Research and Process Development CentreCouncil of Scientific and Industrial Research‐Institute of Microbial Technology (CSIR‐IMTECH)Chandigarh160036India
| | - Atul Kumar
- Biochemical Engineering Research and Process Development CentreCouncil of Scientific and Industrial Research‐Institute of Microbial Technology (CSIR‐IMTECH)Chandigarh160036India
| | - Senthil E. Prasad
- Biochemical Engineering Research and Process Development CentreCouncil of Scientific and Industrial Research‐Institute of Microbial Technology (CSIR‐IMTECH)Chandigarh160036India
| | - Krishan Gopal Thakur
- Structural Biology LaboratoryG. N. Ramachandran Protein CentreCouncil of Scientific and Industrial Research‐Institute of Microbial Technology (CSIR‐IMTECH)Chandigarh160036India
| |
Collapse
|
9
|
Chen JL, Lin YC, Fu HY, Yang CS. The Blue-Green Sensory Rhodopsin SRM from Haloarcula marismortui Attenuates Both Phototactic Responses Mediated by Sensory Rhodopsin I and II in Halobacterium salinarum. Sci Rep 2019; 9:5672. [PMID: 30952934 PMCID: PMC6450946 DOI: 10.1038/s41598-019-42193-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/25/2019] [Indexed: 11/10/2022] Open
Abstract
Haloarchaea utilize various microbial rhodopsins to harvest light energy or to mediate phototaxis in search of optimal environmental niches. To date, only the red light-sensing sensory rhodopsin I (SRI) and the blue light-sensing sensory rhodopsin II (SRII) have been shown to mediate positive and negative phototaxis, respectively. In this work, we demonstrated that a blue-green light-sensing (504 nm) sensory rhodopsin from Haloarcula marismortui, SRM, attenuated both positive and negative phototaxis through its sensing region. The H. marismortui genome encodes three sensory rhodopsins: SRI, SRII and SRM. Using spectroscopic assays, we first demonstrated the interaction between SRM and its cognate transducer, HtrM. We then transformed an SRM-HtrM fusion protein into Halobacterium salinarum, which contains only SRI and SRII, and observed that SRM-HtrM fusion protein decreased both positive and negative phototaxis of H. salinarum. Together, our results suggested a novel phototaxis signalling system in H. marismortui comprised of three sensory rhodopsins in which the phototactic response of SRI and SRII were attenuated by SRM.
Collapse
Affiliation(s)
- Jheng-Liang Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Yu-Cheng Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Hsu-Yuan Fu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan.
| |
Collapse
|
10
|
Improved production of bacteriorhodopsin from Halobacterium salinarum through direct amino acid supplement in the basal medium. Extremophiles 2018; 23:133-139. [DOI: 10.1007/s00792-018-1067-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/14/2018] [Indexed: 12/28/2022]
|
11
|
Luo PW, Han HW, Yang CS, Shrestha LK, Ariga K, Hsu SH. Optogenetic Modulation and Reprogramming of Bacteriorhodopsin-Transfected Human Fibroblasts on Self-Assembled Fullerene C60 Nanosheets. ACTA ACUST UNITED AC 2018; 3:e1800254. [PMID: 32627371 DOI: 10.1002/adbi.201800254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/24/2018] [Indexed: 01/10/2023]
Abstract
Fullerenes have unique biocompatibility and photoelectric properties and are candidate materials for biomedical applications. Several cell membrane proteins in nature such as bacteriorhodopsin also have photoelectric properties. Highly expressible bacteriorhodopsin (HEBR) is a novel light-sensitive opsin that has the potential to trigger neural activities through optogenetic modulation. Here, HEBR plasmids are delivered to human fibroblasts and the cells are exposed to C60 fullerene self-assembled 2D nanosheets. Results show that the above approach combined with light stimulation (3 s duration and three times per day) may promote reprogramming and differentiation of human fibroblasts into neural-like cells in 7 d without any neural induction medium. The special photoelectric properties of fullerenes as culture substrates and transfected HEBR on the cell membrane may provide a new optogenetic platform for regulating the location (C60 nanosheet) and time (frequency of light illumination) for human fibroblasts to become neural-like cells, and may be applied to improve neural regeneration in the future.
Collapse
Affiliation(s)
- Pei-Wen Luo
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Hao-Wei Han
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| | - Lok Kumar Shrestha
- Supermolecules Group, WPI Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Katsuhiko Ariga
- Supermolecules Group, WPI Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China
| |
Collapse
|
12
|
Tu CH, Yi HP, Hsieh SY, Lin HS, Yang CS. Overexpression of Different Types of Microbial Rhodopsins with a Highly Expressible Bacteriorhodopsin from Haloarcula marismortui as a Single Protein in E. coli. Sci Rep 2018; 8:14026. [PMID: 30232361 PMCID: PMC6145879 DOI: 10.1038/s41598-018-32399-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/06/2018] [Indexed: 11/09/2022] Open
Abstract
Microbial rhodopsins (M-Rho) are found in Archaea, Bacteria and some species of Eukarya and serve as light-driven ion pumps or mediate phototaxis responses in various biological systems. We previously reported an expression system using a highly expressible mutant, D94N-HmBRI (HEBR) from Haloarcula marismortui, as a leading tag to assist in the expression of membrane proteins that were otherwise difficult to express in E. coli. In this study, we show a universal strategy for the expression of two M-Rho proteins, either the same or different types, as one fusion protein with the HEBR system. One extra transmembrane domain was engineered to the C-terminal of HEBR to express another target M-Rho. The average expression yield in this new system reached a minimum of 2 mg/L culture, and the maximum absorbance of the target M-Rho remained unaltered in the fusion forms. The fusion protein showed a combined absorbance spectrum of a lone HEBR and target M-Rho. The function of the target M-Rho was not affected after examination with functional tests, including the photocycle and proton pumping activity of fusion proteins. In addition, an otherwise unstable sensory rhodopsin, HmSRM, showed the same or even improved stability under various temperatures, salt concentrations, and a wide range of pH conditions. This HEBR platform provides the possibility to construct multi-functional, stoichiometric and color-tuning fusion proteins using M-Rho from haloarchaea.
Collapse
Affiliation(s)
- Cheng-Hong Tu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Hsiu-Ping Yi
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Shiang-Yuan Hsieh
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Hong-Syuan Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan.
| |
Collapse
|
13
|
Hsieh FY, Han HW, Chen XR, Yang CS, Wei Y, Hsu SH. Non-viral delivery of an optogenetic tool into cells with self-healing hydrogel. Biomaterials 2018; 174:31-40. [DOI: 10.1016/j.biomaterials.2018.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 01/04/2023]
|
14
|
Alsafadi D, Khalili FI, Juwhari H, Lahlouh B. Purification and biochemical characterization of photo-active membrane protein bacteriorhodopsin from Haloarcula marismortui, an extreme halophile from the Dead Sea. Int J Biol Macromol 2018; 118:1942-1947. [PMID: 30017983 DOI: 10.1016/j.ijbiomac.2018.07.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 11/25/2022]
Abstract
Bacteriorhodopsin (BR) is an exciting photo-active retinal protein with many potential industrial applications. In this study, BR from the extremely halophilic archaeon Haloarcula marismortui (HmBR) was purified successfully using aqueous two phase extraction method. Absorption spectroscopy analysis showed maximum absorption peak of HmBR retinal protein (λmax) at 415 nm. The purified HmBR was visualized by SDS-PAGE, with a subunit molecular mass of 27 kDa, and its identity was confirmed by resonance Raman spectroscopy, Fourier transform infrared spectroscopy and atomic force microscopy. The effect of pH and salt concentration on the absorption spectrum of HmBR was evaluated. Red-shifted in λmax of HmBR was recorded at acidic condition (pH 5) and HmBR showed remarkable optical activity under high salinity condition. The photoelectric activity of HmBR was evaluated by measuring the DC-voltage generated from HmBR coated on indium tin oxide (ITO) glass when light illumination was applied.
Collapse
Affiliation(s)
| | - Fawwaz I Khalili
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Hassan Juwhari
- Department of Physics, The University of Jordan, Amman 11942, Jordan
| | - Bashar Lahlouh
- Department of Physics, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
15
|
Complete Genome Sequence of a New Halophilic Archaeon, Haloarcula taiwanensis, Isolated from a Solar Saltern in Southern Taiwan. GENOME ANNOUNCEMENTS 2018; 6:6/5/e01529-17. [PMID: 29437098 PMCID: PMC5794945 DOI: 10.1128/genomea.01529-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the completion of the genome sequence of a new species of haloarchaea, Haloarcula taiwanensis, isolated in southern Taiwan. The 3,721,706-bp genome consisted of chromosome I (2,966,258 bp, 63.6% GC content), chromosome II (525,233 bp, 59.6% GC content), plasmid pNYT1 (129,893 bp, 55.3% GC content), and plasmid pNYT2 (100,322 bp, 55.7% GC content).
Collapse
|
16
|
Abstract
Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins, found in microorganisms belonging to all kingdoms of life, with new members being constantly discovered. Among the MRs are light-driven proton, cation and anion pumps, light-gated cation and anion channels, and various photoreceptors. Due to their abundance and amenability to studies, MRs served as model systems for a great variety of biophysical techniques, and recently found a great application as optogenetic tools. While the basic aspects of microbial rhodopsins functioning have been known for some time, there is still a plenty of unanswered questions. This chapter presents and summarizes the available knowledge, focusing on the functional and structural studies.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
17
|
Claassens NJ, Siliakus MF, Spaans SK, Creutzburg SCA, Nijsse B, Schaap PJ, Quax TEF, van der Oost J. Improving heterologous membrane protein production in Escherichia coli by combining transcriptional tuning and codon usage algorithms. PLoS One 2017; 12:e0184355. [PMID: 28902855 PMCID: PMC5597330 DOI: 10.1371/journal.pone.0184355] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/22/2017] [Indexed: 12/27/2022] Open
Abstract
High-level, recombinant production of membrane-integrated proteins in Escherichia coli is extremely relevant for many purposes, but has also been proven challenging. Here we study a combination of transcriptional fine-tuning in E. coli LEMO21(DE3) with different codon usage algorithms for heterologous production of membrane proteins. The overexpression of 6 different membrane proteins is compared for the wild-type gene codon usage variant, a commercially codon-optimized variant, and a codon-harmonized variant. We show that transcriptional fine-tuning plays a major role in improving the production of all tested proteins. Moreover, different codon usage variants significantly improved production of some of the tested proteins. However, not a single algorithm performed consistently best for the membrane-integrated production of the 6 tested proteins. In conclusion, for improving heterologous membrane protein production in E. coli, the major effect is accomplished by transcriptional tuning. In addition, further improvements may be realized by attempting different codon usage variants, such as codon harmonized variants, which can now be easily generated through our online Codon Harmonizer tool.
Collapse
Affiliation(s)
- Nico J. Claassens
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Melvin F. Siliakus
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sebastiaan K. Spaans
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Tessa E. F. Quax
- Institut für Biologie II, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
18
|
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology. Microbiol Mol Biol Rev 2016; 80:929-54. [PMID: 27630250 DOI: 10.1128/mmbr.00003-16] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes.
Collapse
|
19
|
Nosrati M, Berbasova T, Vasileiou C, Borhan B, Geiger JH. A Photoisomerizing Rhodopsin Mimic Observed at Atomic Resolution. J Am Chem Soc 2016; 138:8802-8. [PMID: 27310917 DOI: 10.1021/jacs.6b03681] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The members of the rhodopsin family of proteins are involved in many essential light-dependent processes in biology. Specific photoisomerization of the protein-bound retinylidene PSB at a specified wavelength range of light is at the heart of all of these systems. Nonetheless, it has been difficult to reproduce in an engineered system. We have developed rhodopsin mimics, using intracellular lipid binding protein family members as scaffolds, to study fundamental aspects of protein/chromophore interactions. Herein we describe a system that specifically isomerizes the retinylidene protonated Schiff base both thermally and photochemically. This isomerization has been characterized at atomic resolution by quantitatively interconverting the isomers in the crystal both thermally and photochemically. This event is accompanied by a large pKa change of the imine similar to the pKa changes observed in bacteriorhodopsin and visual opsins during isomerization.
Collapse
Affiliation(s)
- Meisam Nosrati
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Tetyana Berbasova
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - James H Geiger
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
20
|
Becker EA, Yao AI, Seitzer PM, Kind T, Wang T, Eigenheer R, Shao KSY, Yarov-Yarovoy V, Facciotti MT. A Large and Phylogenetically Diverse Class of Type 1 Opsins Lacking a Canonical Retinal Binding Site. PLoS One 2016; 11:e0156543. [PMID: 27327432 PMCID: PMC4915679 DOI: 10.1371/journal.pone.0156543] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/19/2016] [Indexed: 11/24/2022] Open
Abstract
Opsins are photosensitive proteins catalyzing light-dependent processes across the tree of life. For both microbial (type 1) and metazoan (type 2) opsins, photosensing depends upon covalent interaction between a retinal chromophore and a conserved lysine residue. Despite recent discoveries of potential opsin homologs lacking this residue, phylogenetic dispersal and functional significance of these abnormal sequences have not yet been investigated. We report discovery of a large group of putatively non-retinal binding opsins, present in a number of fungal and microbial genomes and comprising nearly 30% of opsins in the Halobacteriacea, a model clade for opsin photobiology. We report phylogenetic analyses, structural modeling, genomic context analysis and biochemistry, to describe the evolutionary relationship of these recently described proteins with other opsins, show that they are expressed and do not bind retinal in a canonical manner. Given these data, we propose a hypothesis that these abnormal opsin homologs may represent a novel family of sensory opsins which may be involved in taxis response to one or more non-light stimuli. If true, this finding would challenge our current understanding of microbial opsins as a light-specific sensory family, and provides a potential analogy with the highly diverse signaling capabilities of the eukaryotic G-protein coupled receptors (GPCRs), of which metazoan type 2 opsins are a light-specific sub-clade.
Collapse
Affiliation(s)
- Erin A. Becker
- Genome Center, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
- Microbiology Graduate Group, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
| | - Andrew I. Yao
- Genome Center, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
- Department of Biomedical Engineering, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
| | - Phillip M. Seitzer
- Genome Center, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
- Department of Biomedical Engineering, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
- Proteome Software, 1340 SW Bertha Blvd., Portland, Oregon, United States of America
| | - Tobias Kind
- Genome Center, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
| | - Ting Wang
- Genome Center, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
| | - Rich Eigenheer
- California Department of Food and Agriculture, 1220 N St., Sacramento, CA, 95814, United States of America
| | - Katie S. Y. Shao
- William’s College, 880 Main St., Williamstown, MA, 01267, United States of America
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
| | - Marc T. Facciotti
- Genome Center, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
- Microbiology Graduate Group, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
- Department of Biomedical Engineering, One Shields Ave., University of California Davis, Davis, CA, 95616, United States of America
| |
Collapse
|
21
|
Hsu MF, Fu HY, Cai CJ, Yi HP, Yang CS, Wang AHJ. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity. J Biol Chem 2015; 290:29567-77. [PMID: 26483542 PMCID: PMC4705956 DOI: 10.1074/jbc.m115.685065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 11/23/2022] Open
Abstract
Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg82 and Thr201, linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg82–Thr201 hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping.
Collapse
Affiliation(s)
- Min-Feng Hsu
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529 and
| | - Hsu-Yuan Fu
- the Department of Biochemical Science and Technology, College of Life Science, Yen Tjing Ling Industrial Research Institute, and
| | - Chun-Jie Cai
- the Department of Biochemical Science and Technology, College of Life Science
| | - Hsiu-Pin Yi
- the Department of Biochemical Science and Technology, College of Life Science
| | - Chii-Shen Yang
- the Department of Biochemical Science and Technology, College of Life Science, Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Andrew H-J Wang
- From the Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 11529 and
| |
Collapse
|
22
|
Dai G, Kikukawa T, Ihara K, Iwasa T. Microbial rhodopsins of Halorubrum species isolated from Ejinoor salt lake in Inner Mongolia of China. Photochem Photobiol Sci 2015; 14:1974-82. [PMID: 26328780 DOI: 10.1039/c5pp00161g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microbial rhodopsins are photoactive proteins that use a retinal molecule as the photoactive center. Because of structural simplicity and functional diversity, microbial rhodopsins have been an excellent model system for structural biology. In this study, a halophilic archaea that has three microbial rhodopsin-type genes in its genome was isolated from Ejinoor salt lake in Inner Mongolia of China. A sequence of 16S rRNA showed that the strain belongs to Halorubrum genus and named Halorubrum sp. ejinoor (He). The translated amino acid sequences of its microbial rhodopsin-type genes suggest that they are homologs of archaerhodopsin (HeAR), halorhodopsin (HeHR) and sensory rhodopsin II (HeSRII). The mRNAs of three types of genes were detected by RT-PCR and their amounts were investigated by Real-Time RT-PCR. The amount of mRNA of HeSRII was the smallest and the amounts of of HeAR and HeHR were 30 times and 10 times greater than that of HeSRII. The results of light-induced pH changes suggested the presence of a light-driven proton pump and a light-driven chloride ion pump in the membrane vesicles of He. Flash induced absorbance changes of the He membrane fraction indicated that HeAR and HeHR are photoactive and undergo their own photocycles. This study revealed that three microbial rhodopsin-type genes are all expressed in the strain and at least two of them, HeAR and HeHR, are photochemically and physiologically active like BR and HR of Halobacterium salinarum, respectively. To our knowledge, this is the first report of physiological activity of HR-homolog of Halorubrum species.
Collapse
|
23
|
Bratanov D, Balandin T, Round E, Shevchenko V, Gushchin I, Polovinkin V, Borshchevskiy V, Gordeliy V. An Approach to Heterologous Expression of Membrane Proteins. The Case of Bacteriorhodopsin. PLoS One 2015; 10:e0128390. [PMID: 26046789 PMCID: PMC4457421 DOI: 10.1371/journal.pone.0128390] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/24/2015] [Indexed: 12/02/2022] Open
Abstract
Heterologous overexpression of functional membrane proteins is a major bottleneck of structural biology. Bacteriorhodopsin from Halobium salinarum (bR) is a striking example of the difficulties in membrane protein overexpression. We suggest a general approach with a finite number of steps which allows one to localize the underlying problem of poor expression of a membrane protein using bR as an example. Our approach is based on constructing chimeric proteins comprising parts of a protein of interest and complementary parts of a homologous protein demonstrating advantageous expression. This complementary protein approach allowed us to increase bR expression by two orders of magnitude through the introduction of two silent mutations into bR coding DNA. For the first time the high quality crystals of bR expressed in E. Coli were obtained using the produced protein. The crystals obtained with in meso nanovolume crystallization diffracted to 1.67 Å.
Collapse
Affiliation(s)
- Dmitry Bratanov
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Institute of Crystallography, University of Aachen (RWTH), Jägerstrasse 17–19, Aachen, Germany
| | - Taras Balandin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
| | - Ekaterina Round
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Vitaly Shevchenko
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Research-Educational Centre “Bionanophysics”, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Ivan Gushchin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- Research-Educational Centre “Bionanophysics”, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Vitaly Polovinkin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- Research-Educational Centre “Bionanophysics”, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Valentin Borshchevskiy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Research-Educational Centre “Bionanophysics”, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Valentin Gordeliy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- Research-Educational Centre “Bionanophysics”, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- * E-mail:
| |
Collapse
|
24
|
Shevchenko V, Gushchin I, Polovinkin V, Round E, Borshchevskiy V, Utrobin P, Popov A, Balandin T, Büldt G, Gordeliy V. Crystal structure of Escherichia coli-expressed Haloarcula marismortui bacteriorhodopsin I in the trimeric form. PLoS One 2014; 9:e112873. [PMID: 25479443 PMCID: PMC4257550 DOI: 10.1371/journal.pone.0112873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/17/2014] [Indexed: 12/02/2022] Open
Abstract
Bacteriorhodopsins are a large family of seven-helical transmembrane proteins that function as light-driven proton pumps. Here, we present the crystal structure of a new member of the family, Haloarcula marismortui bacteriorhodopsin I (HmBRI) D94N mutant, at the resolution of 2.5 Å. While the HmBRI retinal-binding pocket and proton donor site are similar to those of other archaeal proton pumps, its proton release region is extended and contains additional water molecules. The protein's fold is reinforced by three novel inter-helical hydrogen bonds, two of which result from double substitutions relative to Halobacterium salinarum bacteriorhodopsin and other similar proteins. Despite the expression in Escherichia coli and consequent absence of native lipids, the protein assembles as a trimer in crystals. The unique extended loop between the helices D and E of HmBRI makes contacts with the adjacent protomer and appears to stabilize the interface. Many lipidic hydrophobic tail groups are discernible in the membrane region, and their positions are similar to those of archaeal isoprenoid lipids in the crystals of other proton pumps, isolated from native or native-like sources. All these features might explain the HmBRI properties and establish the protein as a novel model for the microbial rhodopsin proton pumping studies.
Collapse
Affiliation(s)
- Vitaly Shevchenko
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
- Laboratory for advanced studies of membrane proteins, Moscow institute of physics and technology, Dolgoprudniy, Russia
| | - Ivan Gushchin
- Laboratory for advanced studies of membrane proteins, Moscow institute of physics and technology, Dolgoprudniy, Russia
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Vitaly Polovinkin
- Laboratory for advanced studies of membrane proteins, Moscow institute of physics and technology, Dolgoprudniy, Russia
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Ekaterina Round
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Valentin Borshchevskiy
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
- Laboratory for advanced studies of membrane proteins, Moscow institute of physics and technology, Dolgoprudniy, Russia
| | - Petr Utrobin
- Laboratory for advanced studies of membrane proteins, Moscow institute of physics and technology, Dolgoprudniy, Russia
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
| | | | - Taras Balandin
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Georg Büldt
- Laboratory for advanced studies of membrane proteins, Moscow institute of physics and technology, Dolgoprudniy, Russia
| | - Valentin Gordeliy
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
- Laboratory for advanced studies of membrane proteins, Moscow institute of physics and technology, Dolgoprudniy, Russia
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- European Synchrotron Radiation Facility, Grenoble, France
| |
Collapse
|
25
|
Camacho-Córdova DI, Camacho-Ruíz RM, Córdova-López JA, Cervantes-Martínez J. Estimation of bacterioruberin by Raman spectroscopy during the growth of halophilic archaeon Haloarcula marismortui. APPLIED OPTICS 2014; 53:7470-7475. [PMID: 25402913 DOI: 10.1364/ao.53.007470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Halophilic archaea are interesting microorganisms that produce low biomass and metabolites, complicating their quantification. Raman spectroscopy (RS) is a powerful technique, which requires small samples, attractive for using in archaeal research. The objective of this work was the estimation of bacterioruberin content along with Haloarcula marismortui growth and their correlation with biomass concentration. RS was used to detect characteristic bands of bacterioruberin (vibrational modes C═CH, C─C, and C═C) in H. marismortui culture samples. The intensity of Raman spectra in bacterioruberin and the biomass concentration were adequately correlated. The highest production of bacterioruberin occurred at 60 h. RS is revealed as a reliable technique for the estimation of bacterioruberin in the biomass of H. marismortui, which could be considered as a promising qualitative and quantitative technique to assay metabolites in cell cultures.
Collapse
|
26
|
Tsai FK, Fu HY, Yang CS, Chu LK. Photochemistry of a Dual-Bacteriorhodopsin System in Haloarcula marismortui: HmbRI and HmbRII. J Phys Chem B 2014; 118:7290-301. [DOI: 10.1021/jp503629v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fu-Kuo Tsai
- Department
of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Hsu-Yuan Fu
- Department
of Biochemical Science and Technology, College of Life Science, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chii-Shen Yang
- Department
of Biochemical Science and Technology, College of Life Science, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute
of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Li-Kang Chu
- Department
of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
27
|
Berbasova T, Nosrati M, Vasileiou C, Wang W, Lee KSS, Yapici I, Geiger JH, Borhan B. Rational design of a colorimetric pH sensor from a soluble retinoic acid chaperone. J Am Chem Soc 2013; 135:16111-9. [PMID: 24059243 PMCID: PMC4104655 DOI: 10.1021/ja404900k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reengineering of cellular retinoic acid binding protein II (CRABPII) to be capable of binding retinal as a protonated Schiff base is described. Through rational alterations of the binding pocket, electrostatic perturbations of the embedded retinylidene chromophore that favor delocalization of the iminium charge lead to exquisite control in the regulation of chromophoric absorption properties, spanning the visible spectrum (474-640 nm). The pKa of the retinylidene protonated Schiff base was modulated from 2.4 to 8.1, giving rise to a set of proteins of varying colors and pH sensitivities. These proteins were used to demonstrate a concentration-independent, ratiometric pH sensor.
Collapse
Affiliation(s)
- Tetyana Berbasova
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Meisam Nosrati
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Wenjing Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ipek Yapici
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - James H. Geiger
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
28
|
Wang W, Geiger JH, Borhan B. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength. Bioessays 2013; 36:65-74. [PMID: 24323922 DOI: 10.1002/bies.201300094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
29
|
Weng RR, Shu HW, Chin SW, Kao Y, Chen TW, Liao CC, Tsay YG, Ng WV. OMICS in ecology: systems level analyses of Halobacterium salinarum reveal large-scale temperature-mediated changes and a requirement of CctA for thermotolerance. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 18:65-80. [PMID: 24147786 DOI: 10.1089/omi.2012.0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Halobacterium salinarum is an extremely halophilic archaeon that inhabits high-salinity aqueous environments in which the temperature can range widely, both daily and seasonally. An OMICS analysis of the 37°C and 49°C proteomes and transcriptomes for revealing the biomodules affected by temperature is reported here. Analysis of those genes/proteins displaying dramatic changes provided a clue to the coordinated changes in the expression of genes within five arCOG biological clusters. When proteins that exhibited minor changes in their spectral counts and insignificant p values were also examined, the apparent influence of the elevated temperatures on conserved chaperones, metabolism, translation, and other biomodules became more obvious. For instance, increases in all eight conserved chaperones and three arginine deiminase pathway enzymes and reductions in most tricarboxylic acid (TCA) cycle enzymes and ribosomal proteins suggest that complex system responses occurred as the temperature changed. When the requirement for the four proteins that showed the greatest induction at 49°C was analyzed, only CctA (chaperonin subunit α), but not Hsp5, DpsA, or VNG1187G, was essential for thermotolerance. Environmental stimuli and other perturbations may induce many minor gene expression changes. Simultaneous analysis of the genes exhibiting dramatic or minor changes in expression may facilitate the detection of systems level responses.
Collapse
Affiliation(s)
- Rueyhung Roc Weng
- 1 Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University , Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Claassens NJ, Volpers M, dos Santos VAPM, van der Oost J, de Vos WM. Potential of proton-pumping rhodopsins: engineering photosystems into microorganisms. Trends Biotechnol 2013; 31:633-42. [PMID: 24120288 DOI: 10.1016/j.tibtech.2013.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/19/2013] [Accepted: 08/27/2013] [Indexed: 01/04/2023]
Abstract
A wide range of proton-pumping rhodopsins (PPRs) have been discovered in recent years. Using a synthetic biology approach, PPR photosystems with different features can be easily introduced in nonphotosynthetic microbial hosts. PPRs can provide hosts with the ability to harvest light and drive the sustainable production of biochemicals or biofuels. PPRs use light energy to generate an outward proton flux, and the resulting proton motive force can subsequently power cellular processes. Recently, the introduction of PPRs in microbial production hosts has successfully led to light-driven biotechnological conversions. In this review, we discuss relevant features of natural PPRs, evaluate reported biotechnological applications of microbial production hosts equipped with PPRs, and provide an outlook on future developments.
Collapse
Affiliation(s)
- Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Ser(262) determines the chloride-dependent colour tuning of a new halorhodopsin from Haloquadratum walsbyi. Biosci Rep 2013; 32:501-9. [PMID: 22716305 PMCID: PMC3475450 DOI: 10.1042/bsr20120054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Light is an important environmental signal for all organisms on earth because it is essential for physiological signalling and the regulation of most biological systems. Halophiles found in salt-saturated ponds encode various archaeal rhodopsins and thereby harvest various wavelengths of light either for ion transportation or as sensory mediators. HR (halorhodopsin), one of the microbial rhodopsins, senses yellow light and transports chloride or other halides into the cytoplasm to maintain the osmotic balance during cell growth, and it exists almost ubiquitously in all known halobacteria. To date, only two HRs, isolated from HsHR (Halobacterium salinarum HR) and NpHR (Natronomonas pharaonis HR), have been characterized. In the present study, two new HRs, HmHR (Haloarcula marismortui HR) and HwHR (Haloquadratum walsbyi HR), were functionally overexpressed in Escherichia coli, and the maximum absorbance (λmax) of the purified proteins, the light-driven chloride uptake and the chloride-binding affinity were measured. The results showed them to have similar properties to two HRs reported previously. However, the λmax of HwHR is extremely consistent in a wide range of salt/chloride concentrations, which had not been observed previously. A structural-based sequence alignment identified a single serine residue at 262 in HwHR, which is typically a conserved alanine in all other known HRs. A Ser262 to alanine replacement in HwHR eliminated the chloride-independent colour tuning, whereas an Ala246 to serine mutagenesis in HsHR transformed it to have chloride-independent colour tuning similar to that of HwHR. Thus Ser262 is a key residue for the mechanism of chloride-dependent colour tuning in HwHR.
Collapse
|
32
|
Fu HY, Yi HP, Lu YH, Yang CS. Insight into a single halobacterium using a dual-bacteriorhodopsin system with different functionally optimized pH ranges to cope with periplasmic pH changes associated with continuous light illumination. Mol Microbiol 2013; 88:551-61. [DOI: 10.1111/mmi.12208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Hsu-Yuan Fu
- Department of Biochemical Science and Technology; College of Life Science; National Taiwan University; No. 1, Sec. 4, Roosevelt Rd. Taipei Taiwan 10617
| | - Hsiu-Ping Yi
- Department of Biochemical Science and Technology; College of Life Science; National Taiwan University; No. 1, Sec. 4, Roosevelt Rd. Taipei Taiwan 10617
| | - Yen-Hsu Lu
- Department of Biochemical Science and Technology; College of Life Science; National Taiwan University; No. 1, Sec. 4, Roosevelt Rd. Taipei Taiwan 10617
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology; College of Life Science; National Taiwan University; No. 1, Sec. 4, Roosevelt Rd. Taipei Taiwan 10617
- Institute of Biotechnology; College of Bio-Resources and Agriculture; National Taiwan University; No. 1, Sec. 4, Roosevelt Rd. Taipei Taiwan 10617
| |
Collapse
|
33
|
Riedel T, Gómez-Consarnau L, Tomasch J, Martin M, Jarek M, González JM, Spring S, Rohlfs M, Brinkhoff T, Cypionka H, Göker M, Fiebig A, Klein J, Goesmann A, Fuhrman JA, Wagner-Döbler I. Genomics and physiology of a marine flavobacterium encoding a proteorhodopsin and a xanthorhodopsin-like protein. PLoS One 2013; 8:e57487. [PMID: 23526944 PMCID: PMC3587595 DOI: 10.1371/journal.pone.0057487] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/22/2013] [Indexed: 01/10/2023] Open
Abstract
Proteorhodopsin (PR) photoheterotrophy in the marine flavobacterium Dokdonia sp. PRO95 has previously been investigated, showing no growth stimulation in the light at intermediate carbon concentrations. Here we report the genome sequence of strain PRO95 and compare it to two other PR encoding Dokdonia genomes: that of strain 4H-3-7-5 which shows the most similar genome, and that of strain MED134 which grows better in the light under oligotrophic conditions. Our genome analysis revealed that the PRO95 genome as well as the 4H-3-7-5 genome encode a protein related to xanthorhodopsins. The genomic environment and phylogenetic distribution of this gene suggest that it may have frequently been recruited by lateral gene transfer. Expression analyses by RT-PCR and direct mRNA-sequencing showed that both rhodopsins and the complete β-carotene pathway necessary for retinal production are transcribed in PRO95. Proton translocation measurements showed enhanced proton pump activity in response to light, supporting that one or both rhodopsins are functional. Genomic information and carbon source respiration data were used to develop a defined cultivation medium for PRO95, but reproducible growth always required small amounts of yeast extract. Although PRO95 contains and expresses two rhodopsin genes, light did not stimulate its growth as determined by cell numbers in a nutrient poor seawater medium that mimics its natural environment, confirming previous experiments at intermediate carbon concentrations. Starvation or stress conditions might be needed to observe the physiological effect of light induced energy acquisition.
Collapse
Affiliation(s)
- Thomas Riedel
- Helmholtz-Centre for Infection Research, Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hsu MF, Yu TF, Chou CC, Fu HY, Yang CS, Wang AHJ. Using Haloarcula marismortui bacteriorhodopsin as a fusion tag for enhancing and visible expression of integral membrane proteins in Escherichia coli. PLoS One 2013; 8:e56363. [PMID: 23457558 PMCID: PMC3574148 DOI: 10.1371/journal.pone.0056363] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/08/2013] [Indexed: 01/12/2023] Open
Abstract
Membrane proteins are key targets for pharmacological intervention because of their vital functions. Structural and functional studies of membrane proteins have been severely hampered because of the difficulties in producing sufficient quantities of properly folded and biologically active proteins. Here we generate a high-level expression system of integral membrane proteins in Escherichia coli by using a mutated bacteriorhodopsin (BR) from Haloarcula marismortui (HmBRI/D94N) as a fusion partner. A purification strategy was designed by incorporating a His-tag on the target membrane protein for affinity purification and an appropriate protease cleavage site to generate the final products. The fusion system can be used to detect the intended target membrane proteins during overexpression and purification either with the naked eye or by directly monitoring their characteristic optical absorption. In this study, we applied this approach to produce two functional integral membrane proteins, undecaprenyl pyrophosphate phosphatase and carnitine/butyrobetaine antiporter with significant yield enhancement. This technology could facilitate the development of a high-throughput strategy to screen for conditions that improve the yield of correctly folded target membrane proteins. Other robust BRs can also be incorporated in this system.
Collapse
Affiliation(s)
- Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Tsung-Fu Yu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Cheng Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Hsu-Yuan Fu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
- * E-mail: (CSY); (AHJW)
| | - Andrew H. J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- * E-mail: (CSY); (AHJW)
| |
Collapse
|
35
|
Fu HY, Lu YH, Yi HP, Yang CS. A transducer for microbial sensory rhodopsin that adopts GTG as a start codon is identified in Haloarcula marismortui. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 121:15-22. [PMID: 23474528 DOI: 10.1016/j.jphotobiol.2013.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/17/2013] [Accepted: 02/04/2013] [Indexed: 11/17/2022]
Abstract
Microbial sensory rhodopsins are known to mediate phototaxis, and all of the known sensory rhodopsins execute this function with a specific cognate transducer that has two-transmembrane (2-TM) regions. In the genome of Haloarcula marismortui, a total of six rhodopsin genes were annotated, and we previously showed three of them to be the ion type and suggested the other three as sensory type, even though the candidate transducer gene, htr, for HmSRI was missing the 2-TM region that is found in all of the other known transducers. Here we showed this htr gene featured a preceding 2-TM region when the alternative start codon GTG located 291 nucleotides upstream of the original annotated open reading frame (ORF) was introduced and it is named as htrI in this study. Overexpression of HmHtrI exhibited it existed as a membrane protein and several biophysical assays confirmed it functionally interacted with HmSRI. Together with our previous reverse-transcriptase-PCR results and phototaxis measurements, the new ORF of original predicted soluble htr gene product was a membrane protein with a 2-TM region, HmHtrI; and it serves as the cognate transducer for HmSRI. HmHtrI therefore is the first transducer for the sensory rhodopsin adopted start codon other than ATG.
Collapse
Affiliation(s)
- Hsu-Yuan Fu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, 1, Roosevelt Rd., Sec. 4, 10617 Taipei, Taiwan.
| | | | | | | |
Collapse
|
36
|
Ito H, Sumii M, Kawanabe A, Fan Y, Furutani Y, Brown LS, Kandori H. Comparative FTIR study of a new fungal rhodopsin. J Phys Chem B 2012; 116:11881-9. [PMID: 22973982 DOI: 10.1021/jp306993a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteriorhodopsin (BR) is a light-driven proton pump of halophilic Archaea , and BR-like proton-pumping rhodopsins have been discovered in Bacteria and Eucarya as well. Leptosphaeria rhodopsin (LR) and Phaeosphaeria Rhodopsin 2 (PhaeoRD2) are both fungal rhodopsins in such a functional class, even though they belong to different branches of the phylogenetic tree. In this study, we compared light-induced structural changes in the K, L, and M photointermediates for PhaeoRD2, LR, and BR using low-temperature Fourier transform infrared (FTIR) spectroscopy. We observed a strongly hydrogen-bonded water molecule in PhaeoRD2 (water O-D stretch in D(2)O at 2258 cm(-1)) as well as in LR and BR. This observation provided additional experimental evidence to the concept that strongly hydrogen-bonded water molecule is the functional determinant of light-driven proton pumping. The difference FTIR spectra for all the K, L, and M states are surprisingly similar between PhaeoRD2 and LR, but not for BR. PhaeoRD2 is more homologous to LR than to BR, but the difference is small. The amino acid identities between PhaeoRD2 and LR, and between PhaeoRD2 and BR are 34.5% and 30.2%, respectively. In addition, the amino acids uniquely identical for the fungal rhodopsins are located rather far from the retinal chromophore. In fact, the amino acid identities within 4 Å from retinal are the same among PhaeoRD2, LR, and BR. For more than 100 amino acids located within 12 Å from retinal, the identities are 48.7% between PhaeoRD2 and LR, 46.0% between PhaeoRD2 and BR, and 47.8% between LR and BR. These results suggest that protein core structures are equally different among the three rhodopsins. Thus, the identical FTIR spectra between PhaeoRD2 and LR (but not BR), even for the K state, indicate that fungal rhodopsins possess some common structural motif and dynamics not obvious from the amino acid sequences.
Collapse
Affiliation(s)
- Hiroyasu Ito
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Lynch EA, Langille MGI, Darling A, Wilbanks EG, Haltiner C, Shao KSY, Starr MO, Teiling C, Harkins TT, Edwards RA, Eisen JA, Facciotti MT. Sequencing of seven haloarchaeal genomes reveals patterns of genomic flux. PLoS One 2012; 7:e41389. [PMID: 22848480 PMCID: PMC3404096 DOI: 10.1371/journal.pone.0041389] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/20/2012] [Indexed: 12/13/2022] Open
Abstract
We report the sequencing of seven genomes from two haloarchaeal genera, Haloferax and Haloarcula. Ease of cultivation and the existence of well-developed genetic and biochemical tools for several diverse haloarchaeal species make haloarchaea a model group for the study of archaeal biology. The unique physiological properties of these organisms also make them good candidates for novel enzyme discovery for biotechnological applications. Seven genomes were sequenced to ∼20×coverage and assembled to an average of 50 contigs (range 5 scaffolds-168 contigs). Comparisons of protein-coding gene compliments revealed large-scale differences in COG functional group enrichment between these genera. Analysis of genes encoding machinery for DNA metabolism reveals genera-specific expansions of the general transcription factor TATA binding protein as well as a history of extensive duplication and horizontal transfer of the proliferating cell nuclear antigen. Insights gained from this study emphasize the importance of haloarchaea for investigation of archaeal biology.
Collapse
Affiliation(s)
- Erin A. Lynch
- Microbiology Graduate Group, University of California Davis, Davis, California, United States of America
| | | | - Aaron Darling
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Elizabeth G. Wilbanks
- Microbiology Graduate Group, University of California Davis, Davis, California, United States of America
| | - Caitlin Haltiner
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
- Department of Forensic Science, University of California Davis, Davis, California, United States of America
| | - Katie S. Y. Shao
- Davis Senior High School, Davis, California, United States of America
| | - Michael O. Starr
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Clotilde Teiling
- 454 Life Sciences, a Roche Company, Branford, Connecticut, United States of America
| | | | - Robert A. Edwards
- Department of Computer Science, San Diego State University, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
- Division of Mathematics and Computer Science, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Jonathan A. Eisen
- Microbiology Graduate Group, University of California Davis, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- * E-mail: (MTF); (JAE)
| | - Marc T. Facciotti
- Microbiology Graduate Group, University of California Davis, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- * E-mail: (MTF); (JAE)
| |
Collapse
|
38
|
Holterhues J, Bordignon E, Klose D, Rickert C, Klare JP, Martell S, Li L, Engelhard M, Steinhoff HJ. The signal transfer from the receptor NpSRII to the transducer NpHtrII is not hampered by the D75N mutation. Biophys J 2011; 100:2275-82. [PMID: 21539797 DOI: 10.1016/j.bpj.2011.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/17/2011] [Accepted: 03/16/2011] [Indexed: 11/28/2022] Open
Abstract
Sensory rhodopsin II (NpSRII) is a phototaxis receptor of Natronomonas pharaonis that performs its function in complex with its cognate transducer (NpHtrII). Upon light activation NpSRII triggers by means of NpHtrII a signal transduction chain homologous to the two component system in eubacterial chemotaxis. The D75N mutant of NpSRII, which lacks the blue-shifted M intermediate and therefore exhibits a significantly faster photocycle compared to the wild-type, mediates normal phototaxis responses demonstrating that deprotonation of the Schiff base is not a prerequisite for transducer activation. Using site-directed spin labeling and time resolved electron paramagnetic-resonance spectroscopy, we show that the mechanism revealed for activation of the wild-type complex, namely an outward tilt motion of the cytoplasmic part of the receptor helix F and a concomitant rotation of the transmembrane transducer helix TM2, is also valid for the D75N variant. Apparently, the D75N mutation shifts the ground state conformation of NpSRII-D75N and its cognate transducer into the direction of the signaling state.
Collapse
|
39
|
Dyall-Smith ML, Pfeiffer F, Klee K, Palm P, Gross K, Schuster SC, Rampp M, Oesterhelt D. Haloquadratum walsbyi: limited diversity in a global pond. PLoS One 2011; 6:e20968. [PMID: 21701686 PMCID: PMC3119063 DOI: 10.1371/journal.pone.0020968] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/14/2011] [Indexed: 12/03/2022] Open
Abstract
Background Haloquadratum walsbyi commonly dominates the microbial flora of hypersaline waters. Its cells are extremely fragile squares requiring >14%(w/v) salt for growth, properties that should limit its dispersal and promote geographical isolation and divergence. To assess this, the genome sequences of two isolates recovered from sites at near maximum distance on Earth, were compared. Principal Findings Both chromosomes are 3.1 MB in size, and 84% of each sequence was highly similar to the other (98.6% identity), comprising the core sequence. ORFs of this shared sequence were completely synteneic (conserved in genomic orientation and order), without inversion or rearrangement. Strain-specific insertions/deletions could be precisely mapped, often allowing the genetic events to be inferred. Many inferred deletions were associated with short direct repeats (4–20 bp). Deletion-coupled insertions are frequent, producing different sequences at identical positions. In cases where the inserted and deleted sequences are homologous, this leads to variant genes in a common synteneic background (as already described by others). Cas/CRISPR systems are present in C23T but have been lost in HBSQ001 except for a few spacer remnants. Numerous types of mobile genetic elements occur in both strains, most of which appear to be active, and with some specifically targetting others. Strain C23T carries two ∼6 kb plasmids that show similarity to halovirus His1 and to sequences nearby halovirus/plasmid gene clusters commonly found in haloarchaea. Conclusions Deletion-coupled insertions show that Hqr. walsbyi evolves by uptake and precise integration of foreign DNA, probably originating from close relatives. Change is also driven by mobile genetic elements but these do not by themselves explain the atypically low gene coding density found in this species. The remarkable genome conservation despite the presence of active systems for genome rearrangement implies both an efficient global dispersal system, and a high selective fitness for this species.
Collapse
Affiliation(s)
- Mike L Dyall-Smith
- Department of Membrane Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chu LJ, Yang H, Shih P, Kao Y, Tsai YS, Chen J, Huang G, Weng RR, Ting YS, Fang X, von Haller PD, Goodlett DR, Ng WV. Metabolic capabilities and systems fluctuations in Haloarcula marismortui revealed by integrative genomics and proteomics analyses. J Proteome Res 2011; 10:3261-73. [PMID: 21598921 DOI: 10.1021/pr200290x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 1310 Haloarcula marismortui proteins identified from mid-log and late-log phase soluble and membrane proteomes were analyzed in metabolic and cellular process networks to predict the available systems and systems fluctuations upon environmental stresses. When the connected metabolic reactions with identified proteins were examined, the availability of a number of metabolic pathways and a highly connected amino acid metabolic network were revealed. Quantitative spectral count analyses suggested 300 or more proteins might have expression changes in late-log phase. Among these, integrative network analyses indicated approximately 106 were metabolic proteins that might have growth-phase dependent changes. Interestingly, a large proportion of proteins in affected biomodules had the same trend of changes in spectral counts. Disregard the magnitude of changes, we had successfully predicted and validated the expression changes of nine genes including the rimK, gltCP, rrnAC0132, and argC in lysine biosynthesis pathway which were downregulated in late-log phase. This study had not only revealed the expressed proteins but also the availability of biological systems in two growth phases, systems level changes in response to the stresses in late-log phase, cellular locations of identified proteins, and the likely regulated genes to facilitate further analyses in the postgenomic era.
Collapse
Affiliation(s)
- Lichieh Julie Chu
- Institute of Biotechnology in Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|