1
|
Ngo L, Weimer J, Sui L, Pickens T, Stourman NV. Periplasmic β-glucosidase BglX from E. coli demonstrates greater activity towards galactose-containing substrates. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 14:76-86. [PMID: 37736388 PMCID: PMC10509532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND The diverse nature of carbohydrate structures and linkages requires a variety of enzymes responsible for sugar degradation. The E. coli periplasmic protein encoded by the bglX gene has been assigned to glycoside hydrolase family 3 and is predicted to function as a β-glucosidase. OBJECTIVES We investigated the catalytic properties of the E. coli protein BglX and identified two functionally important amino acid residues. METHODS The bglX gene was cloned into a pET20b(+) vector, and three mutants, D111N, D287G, and E293Q, were generated using site-directed mutagenesis. Kinetic studies were performed on the wild-type and mutant enzymes. RESULTS Substrate specificity tests indicated that the BglX enzyme hydrolyzes β-glycosidic bonds in nitrophenyl-β-glycosides and demonstrates greater activity towards galactose-containing substrates compared to glucose derivatives. Monomeric glucose and galactose inhibit enzyme activity to a different degree in a substrate-dependent manner. In addition, BglX can hydrolyze lactose but not cellobiose, maltose, or laminarin. Subsequently, E. coli cells overexpressing active BglX have a growth advantage on minimal media supplemented with lactose as a carbon source. Mutation of D287 or D111 residues negatively affected the activity of BglX indicating their involvement in catalysis. Overexpression of BglX by E. coli cells did not increase biofilm formation. CONCLUSIONS The low activity towards glucose-containing substrates and significantly elevated activity towards galactosides suggests that β-glucosidase activity may not be the primary function of the BglX enzyme.
Collapse
Affiliation(s)
- Lorna Ngo
- Department of Chemical and Biological Sciences, Youngstown State University Youngstown, OH 44555, USA
| | - Joshua Weimer
- Department of Chemical and Biological Sciences, Youngstown State University Youngstown, OH 44555, USA
| | - Li Sui
- Department of Chemical and Biological Sciences, Youngstown State University Youngstown, OH 44555, USA
| | - Tara Pickens
- Department of Chemical and Biological Sciences, Youngstown State University Youngstown, OH 44555, USA
| | - Nina V Stourman
- Department of Chemical and Biological Sciences, Youngstown State University Youngstown, OH 44555, USA
| |
Collapse
|
2
|
Baumgart LA, Lee JE, Salamov A, Dilworth DJ, Na H, Mingay M, Blow MJ, Zhang Y, Yoshinaga Y, Daum CG, O'Malley RC. Persistence and plasticity in bacterial gene regulation. Nat Methods 2021; 18:1499-1505. [PMID: 34824476 DOI: 10.1038/s41592-021-01312-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022]
Abstract
Organisms orchestrate cellular functions through transcription factor (TF) interactions with their target genes, although these regulatory relationships are largely unknown in most species. Here we report a high-throughput approach for characterizing TF-target gene interactions across species and its application to 354 TFs across 48 bacteria, generating 17,000 genome-wide binding maps. This dataset revealed themes of ancient conservation and rapid evolution of regulatory modules. We observed rewiring, where the TF sensing and regulatory role is maintained while the arrangement and identity of target genes diverges, in some cases encoding entirely new functions. We further integrated phenotypic information to define new functional regulatory modules and pathways. Finally, we identified 242 new TF DNA binding motifs, including a 70% increase of known Escherichia coli motifs and the first annotation in Pseudomonas simiae, revealing deep conservation in bacterial promoter architecture. Our method provides a versatile tool for functional characterization of genetic pathways in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Leo A Baumgart
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ji Eun Lee
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Asaf Salamov
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David J Dilworth
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hyunsoo Na
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew Mingay
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew J Blow
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yu Zhang
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yuko Yoshinaga
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris G Daum
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ronan C O'Malley
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
3
|
Guharajan S, Chhabra S, Parisutham V, Brewster RC. Quantifying the regulatory role of individual transcription factors in Escherichia coli. Cell Rep 2021; 37:109952. [PMID: 34758318 PMCID: PMC8667592 DOI: 10.1016/j.celrep.2021.109952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Gene regulation often results from the action of multiple transcription factors (TFs) acting at a promoter, obscuring the individual regulatory effect of each TF on RNA polymerase (RNAP). Here we measure the fundamental regulatory interactions of TFs in E. coli by designing synthetic target genes that isolate individual TFs' regulatory effects. Using a thermodynamic model, each TF's regulatory interactions are decoupled from TF occupancy and interpreted as acting through (de)stabilization of RNAP and (de)acceleration of transcription initiation. We find that the contribution of each mechanism depends on TF identity and binding location; regulation immediately downstream of the promoter is insensitive to TF identity, but the same TFs regulate by distinct mechanisms upstream of the promoter. These two mechanisms are uncoupled and can act coherently, to reinforce the observed regulatory role (activation/repression), or incoherently, wherein the TF regulates two distinct steps with opposing effects.
Collapse
Affiliation(s)
- Sunil Guharajan
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shivani Chhabra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vinuselvi Parisutham
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Robert C Brewster
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Clauwaert J, Menschaert G, Waegeman W. Explainability in transformer models for functional genomics. Brief Bioinform 2021; 22:6214646. [PMID: 33834200 PMCID: PMC8425421 DOI: 10.1093/bib/bbab060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of deep learning methods can be largely attributed to the automated extraction of relevant features from raw data. In the field of functional genomics, this generally concerns the automatic selection of relevant nucleotide motifs from DNA sequences. To benefit from automated learning methods, new strategies are required that unveil the decision-making process of trained models. In this paper, we present a new approach that has been successful in gathering insights on the transcription process in Escherichia coli. This work builds upon a transformer-based neural network framework designed for prokaryotic genome annotation purposes. We find that the majority of subunits (attention heads) of the model are specialized towards identifying transcription factors and are able to successfully characterize both their binding sites and consensus sequences, uncovering both well-known and potentially novel elements involved in the initiation of the transcription process. With the specialization of the attention heads occurring automatically, we believe transformer models to be of high interest towards the creation of explainable neural networks in this field.
Collapse
Affiliation(s)
- Jim Clauwaert
- Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Gerben Menschaert
- Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Willem Waegeman
- Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
5
|
Gardette M, Le Hello S, Mariani-Kurkdjian P, Fabre L, Gravey F, Garrivier A, Loukiadis E, Jubelin G. Identification and prevalence of in vivo-induced genes in enterohaemorrhagic Escherichia coli. Virulence 2019; 10:180-193. [PMID: 30806162 PMCID: PMC6550539 DOI: 10.1080/21505594.2019.1582976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/25/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are food-borne pathogens responsible for bloody diarrhoea and renal failure in humans. While Shiga toxin (Stx) is the cardinal virulence factor of EHEC, its production by E. coli is not sufficient to cause disease and many Shiga-toxin producing E. coli (STEC) strains have never been implicated in human infection. So far, the pathophysiology of EHEC infection is not fully understood and more knowledge is needed to characterize the "auxiliary" factors that enable a STEC strain to cause disease in humans. In this study, we applied a recombinase-based in vivo expression technology (RIVET) to the EHEC reference strain EDL933 in order to identify genes specifically induced during the infectious process, using mouse as an infection model. We identified 31 in vivo-induced (ivi) genes having functions related to metabolism, stress adaptive response and bacterial virulence or fitness. Eight of the 31 ivi genes were found to be heterogeneously distributed in EHEC strains circulating in France these last years. In addition, they are more prevalent in strains from the TOP seven priority serotypes and particularly strains carrying significant virulence determinants such as Stx2 and intimin adhesin. This work sheds further light on bacterial determinants over-expressed in vivo during infection that may contribute to the potential of STEC strains to cause disease in humans.
Collapse
Affiliation(s)
- Marion Gardette
- UCA, INRA, UMR454 MEDIS, Clermont-Ferrand, France
- Laboratoire d’écologie microbienne de Lyon, Université de Lyon, CNRS, INRA, UCBL, VetAgro Sup, Marcy l’Etoile, France
| | - Simon Le Hello
- Centre de Référence National des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
- Université de Normandie, EA 2656 GRAM 2.0, UNICAEN, Caen, France
| | - Patricia Mariani-Kurkdjian
- Service de Microbiologie, Centre National de Référence associé Escherichia coli, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Laetitia Fabre
- Centre de Référence National des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
| | - François Gravey
- Centre de Référence National des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
- Université de Normandie, EA 2656 GRAM 2.0, UNICAEN, Caen, France
| | | | - Estelle Loukiadis
- Laboratoire d’écologie microbienne de Lyon, Université de Lyon, CNRS, INRA, UCBL, VetAgro Sup, Marcy l’Etoile, France
- Laboratoire national de référence des E. coli, Université de Lyon, VetAgro Sup, Marcy l’Etoile, France
| | | |
Collapse
|
6
|
Santos-Zavaleta A, Sánchez-Pérez M, Salgado H, Velázquez-Ramírez DA, Gama-Castro S, Tierrafría VH, Busby SJW, Aquino P, Fang X, Palsson BO, Galagan JE, Collado-Vides J. A unified resource for transcriptional regulation in Escherichia coli K-12 incorporating high-throughput-generated binding data into RegulonDB version 10.0. BMC Biol 2018; 16:91. [PMID: 30115066 PMCID: PMC6094552 DOI: 10.1186/s12915-018-0555-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/25/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Our understanding of the regulation of gene expression has benefited from the availability of high-throughput technologies that interrogate the whole genome for the binding of specific transcription factors and gene expression profiles. In the case of widely used model organisms, such as Escherichia coli K-12, the new knowledge gained from these approaches needs to be integrated with the legacy of accumulated knowledge from genetic and molecular biology experiments conducted in the pre-genomic era in order to attain the deepest level of understanding possible based on the available data. RESULTS In this paper, we describe an expansion of RegulonDB, the database containing the rich legacy of decades of classic molecular biology experiments supporting what we know about gene regulation and operon organization in E. coli K-12, to include the genome-wide dataset collections from 32 ChIP and 19 gSELEX publications, in addition to around 60 genome-wide expression profiles relevant to the functional significance of these datasets and used in their curation. Three essential features for the integration of this information coming from different methodological approaches are: first, a controlled vocabulary within an ontology for precisely defining growth conditions; second, the criteria to separate elements with enough evidence to consider them involved in gene regulation from isolated transcription factor binding sites without such support; and third, an expanded computational model supporting this knowledge. Altogether, this constitutes the basis for adequately gathering and enabling the comparisons and integration needed to manage and access such wealth of knowledge. CONCLUSIONS This version 10.0 of RegulonDB is a first step toward what should become the unifying access point for current and future knowledge on gene regulation in E. coli K-12. Furthermore, this model platform and associated methodologies and criteria can be emulated for gathering knowledge on other microbial organisms.
Collapse
Affiliation(s)
- Alberto Santos-Zavaleta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
| | - Mishael Sánchez-Pérez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
| | - Heladia Salgado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
| | | | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
| | - Víctor H. Tierrafría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
| | | | - Patricia Aquino
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts USA
| | - Xin Fang
- Department of Bioengineering, University of California San Diego, La Jolla, California USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California USA
- Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - James E. Galagan
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts USA
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos México
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts USA
| |
Collapse
|
7
|
Nikolaichik Y, Damienikan AU. SigmoID: a user-friendly tool for improving bacterial genome annotation through analysis of transcription control signals. PeerJ 2016; 4:e2056. [PMID: 27257541 PMCID: PMC4888284 DOI: 10.7717/peerj.2056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/29/2016] [Indexed: 02/02/2023] Open
Abstract
The majority of bacterial genome annotations are currently automated and based on a 'gene by gene' approach. Regulatory signals and operon structures are rarely taken into account which often results in incomplete and even incorrect gene function assignments. Here we present SigmoID, a cross-platform (OS X, Linux and Windows) open-source application aiming at simplifying the identification of transcription regulatory sites (promoters, transcription factor binding sites and terminators) in bacterial genomes and providing assistance in correcting annotations in accordance with regulatory information. SigmoID combines a user-friendly graphical interface to well known command line tools with a genome browser for visualising regulatory elements in genomic context. Integrated access to online databases with regulatory information (RegPrecise and RegulonDB) and web-based search engines speeds up genome analysis and simplifies correction of genome annotation. We demonstrate some features of SigmoID by constructing a series of regulatory protein binding site profiles for two groups of bacteria: Soft Rot Enterobacteriaceae (Pectobacterium and Dickeya spp.) and Pseudomonas spp. Furthermore, we inferred over 900 transcription factor binding sites and alternative sigma factor promoters in the annotated genome of Pectobacterium atrosepticum. These regulatory signals control putative transcription units covering about 40% of the P. atrosepticum chromosome. Reviewing the annotation in cases where it didn't fit with regulatory information allowed us to correct product and gene names for over 300 loci.
Collapse
Affiliation(s)
- Yevgeny Nikolaichik
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | | |
Collapse
|
8
|
Ishihama A, Shimada T, Yamazaki Y. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors. Nucleic Acids Res 2016; 44:2058-74. [PMID: 26843427 PMCID: PMC4797297 DOI: 10.1093/nar/gkw051] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/20/2016] [Indexed: 01/25/2023] Open
Abstract
Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, ‘Transcription Profile of Escherichia coli’ (www.shigen.nig.ac.jp/ecoli/tec/).
Collapse
Affiliation(s)
- Akira Ishihama
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo, 184-8584, Japan
| | - Tomohiro Shimada
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuda, Yokohama 226-8503, Japan
| | - Yukiko Yamazaki
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
9
|
Desai SH, Rabinovitch-Deere CA, Fan Z, Atsumi S. Isobutanol production from cellobionic acid in Escherichia coli. Microb Cell Fact 2015; 14:52. [PMID: 25889729 PMCID: PMC4403981 DOI: 10.1186/s12934-015-0232-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background Liquid fuels needed for the global transportation industry can be produced from sugars derived from plant-based lignocellulosics. Lignocellulosics contain a range of sugars, only some of which (such as cellulose) have been shown to be utilizable by microorganisms capable of producing biofuels. Cellobionic acid makes up a small but significant portion of lignocellulosic degradation products, and had not previously been investigated as an utilizable substrate. However, aldonic acids such as cellobionic acid are the primary products of a promising new group of lignocellulosic-degrading enzymes, which makes this compound group worthy of study. Cellobionic acid doesn’t inhibit cellulose degradation enzymes and so its inclusion would increase lignocellulosic degradation efficiency. Also, its use would increase overall product yield from lignocellulose substrate. For these reasons, cellobionic acid has gained increased attention for cellulosic biofuel production. Results This study describes the discovery that Escherichia coli are naturally able to utilize cellobionic acid as a sole carbon source with efficiency comparable to that of glucose and the construction of an E. coli strain able to produce the drop-in biofuel candidate isobutanol from cellobionic acid. The gene primarily responsible for growth of E. coli on cellobionic acid is ascB, a gene previously thought to be cryptic (expressed only after incurring specific mutations in nearby regulatory genes). In addition to AscB, the ascB knockout strain can be complemented by the cellobionic acid phosphorylase from the fungus Neurospora crassa. An E. coli strain engineered to express the isobutanol production pathway was successfully able to convert cellobionic acid into isobutanol. Furthermore, to demonstrate potential application of this strain in a sequential two-step bioprocessing system, E. coli was grown on hydrolysate (that was degraded by a fungus) and was successfully able to produce isobutanol. Conclusions These results demonstrate that cellobionic acid is a viable carbon source for biofuel production. This work suggests that with further optimization, a bacteria-fungus co-culture could be used in decreased-cost biomass-based biofuel production systems.
Collapse
Affiliation(s)
- Shuchi H Desai
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA. .,Microbiology Graduate Group, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| | | | - Zhiliang Fan
- Microbiology Graduate Group, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA. .,Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA. .,Microbiology Graduate Group, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Chen YH, Yang CD, Tseng CP, Huang HD, Ho SY. GeNOSA: inferring and experimentally supporting quantitative gene regulatory networks in prokaryotes. Bioinformatics 2015; 31:2151-8. [DOI: 10.1093/bioinformatics/btv075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 01/30/2015] [Indexed: 11/14/2022] Open
|
11
|
Li YF, Yu Z. Construction and evaluation of a genetic construct for specific detection and measurement of propionate by whole-cell bacteria. Biotechnol Bioeng 2014; 112:280-7. [DOI: 10.1002/bit.25358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Yueh-Fen Li
- Environmental Science Graduate Program; The Ohio State University; Columbus Ohio 43210
| | - Zhongtang Yu
- Environmental Science Graduate Program; The Ohio State University; Columbus Ohio 43210
- Department of Animal Sciences; The Ohio State University; Columbus Ohio 43210
| |
Collapse
|
12
|
Sawisit A, Jantama SS, Kanchanatawee S, Jantama K. Efficient utilization of cassava pulp for succinate production by metabolically engineered Escherichia coli KJ122. Bioprocess Biosyst Eng 2014; 38:175-87. [DOI: 10.1007/s00449-014-1257-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/10/2014] [Indexed: 10/25/2022]
|
13
|
Identification of the set of genes, including nonannotated morA, under the direct control of ModE in Escherichia coli. J Bacteriol 2013; 195:4496-505. [PMID: 23913318 DOI: 10.1128/jb.00304-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
ModE is the molybdate-sensing transcription regulator that controls the expression of genes related to molybdate homeostasis in Escherichia coli. ModE is activated by binding molybdate and acts as both an activator and a repressor. By genomic systematic evolution of ligands by exponential enrichment (SELEX) screening and promoter reporter assays, we have identified a total of nine operons, including the hitherto identified modA, moaA, dmsA, and napF operons, of which six were activated by ModE and three were repressed. In addition, two promoters were newly identified and direct transcription of novel genes, referred to as morA and morB, located on antisense strands of yghW and torY, respectively. The morA gene encodes a short peptide, MorA, with an unusual initiation codon. Surprisingly, overexpression of the morA 5' untranslated region exhibited an inhibitory influence on colony formation of E. coli K-12.
Collapse
|
14
|
Meinhardt S, Manley MW, Becker NA, Hessman JA, Maher LJ, Swint-Kruse L. Novel insights from hybrid LacI/GalR proteins: family-wide functional attributes and biologically significant variation in transcription repression. Nucleic Acids Res 2012; 40:11139-54. [PMID: 22965134 PMCID: PMC3505978 DOI: 10.1093/nar/gks806] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
LacI/GalR transcription regulators have extensive, non-conserved interfaces between their regulatory domains and the 18 amino acids that serve as ‘linkers’ to their DNA-binding domains. These non-conserved interfaces might contribute to functional differences between paralogs. Previously, two chimeras created by domain recombination displayed novel functional properties. Here, we present a synthetic protein family, which was created by joining the LacI DNA-binding domain/linker to seven additional regulatory domains. Despite ‘mismatched’ interfaces, chimeras maintained allosteric response to their cognate effectors. Therefore, allostery in many LacI/GalR proteins does not require interfaces with precisely matched interactions. Nevertheless, the chimeric interfaces were not silent to mutagenesis, and preliminary comparisons suggest that the chimeras provide an ideal context for systematically exploring functional contributions of non-conserved positions. DNA looping experiments revealed higher order (dimer–dimer) oligomerization in several chimeras, which might be possible for the natural paralogs. Finally, the biological significance of repression differences was determined by measuring bacterial growth rates on lactose minimal media. Unexpectedly, moderate and strong repressors showed an apparent induction phase, even though inducers were not provided; therefore, an unknown mechanism might contribute to regulation of the lac operon. Nevertheless, altered growth correlated with altered repression, which indicates that observed functional modifications are significant.
Collapse
Affiliation(s)
- Sarah Meinhardt
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
15
|
Plassmeier J, Persicke M, Pühler A, Sterthoff C, Rückert C, Kalinowski J. Molecular characterization of PrpR, the transcriptional activator of propionate catabolism in Corynebacterium glutamicum. J Biotechnol 2012; 159:1-11. [DOI: 10.1016/j.jbiotec.2011.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 08/25/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
|
16
|
Beisel CL, Updegrove TB, Janson BJ, Storz G. Multiple factors dictate target selection by Hfq-binding small RNAs. EMBO J 2012; 31:1961-74. [PMID: 22388518 DOI: 10.1038/emboj.2012.52] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/08/2012] [Indexed: 11/09/2022] Open
Abstract
Hfq-binding small RNAs (sRNAs) in bacteria modulate the stability and translational efficiency of target mRNAs through limited base-pairing interactions. While these sRNAs are known to regulate numerous mRNAs as part of stress responses, what distinguishes targets and non-targets among the mRNAs predicted to base pair with Hfq-binding sRNAs is poorly understood. Using the Hfq-binding sRNA Spot 42 of Escherichia coli as a model, we found that predictions using only the three unstructured regions of Spot 42 substantially improved the identification of previously known and novel Spot 42 targets. Furthermore, increasing the extent of base-pairing in single or multiple base-pairing regions improved the strength of regulation, but only for the unstructured regions of Spot 42. We also found that non-targets predicted to base pair with Spot 42 lacked an Hfq-binding site, folded into a secondary structure that occluded the Spot 42 targeting site, or had overlapping Hfq-binding and targeting sites. By modifying these features, we could impart Spot 42 regulation on non-target mRNAs. Our results thus provide valuable insights into the requirements for target selection by sRNAs.
Collapse
Affiliation(s)
- Chase L Beisel
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
17
|
Ishihama A. Prokaryotic genome regulation: a revolutionary paradigm. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:485-508. [PMID: 23138451 PMCID: PMC3511978 DOI: 10.2183/pjab.88.485] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/31/2012] [Indexed: 06/01/2023]
Abstract
After determination of the whole genome sequence, the research frontier of bacterial molecular genetics has shifted to reveal the genome regulation under stressful conditions in nature. The gene selectivity of RNA polymerase is modulated after interaction with two groups of regulatory proteins, 7 sigma factors and 300 transcription factors. For identification of regulation targets of transcription factors in Escherichia coli, we have developed Genomic SELEX system and subjected to screening the binding sites of these factors on the genome. The number of regulation targets by a single transcription factor was more than those hitherto recognized, ranging up to hundreds of promoters. The number of transcription factors involved in regulation of a single promoter also increased to as many as 30 regulators. The multi-target transcription factors and the multi-factor promoters were assembled into complex networks of transcription regulation. The most complex network was identified in the regulation cascades of transcription of two master regulators for planktonic growth and biofilm formation.
Collapse
Affiliation(s)
- Akira Ishihama
- Department of Frontier Bioscience and Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo 184-8584, Japan.
| |
Collapse
|
18
|
Belitsky BR. Indirect repression by Bacillus subtilis CodY via displacement of the activator of the proline utilization operon. J Mol Biol 2011; 413:321-36. [PMID: 21840319 DOI: 10.1016/j.jmb.2011.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/22/2011] [Accepted: 08/01/2011] [Indexed: 11/25/2022]
Abstract
Proline is an efficient source of both carbon and nitrogen for many bacterial species. In Bacillus subtilis, the proline utilization pathway, encoded by the putBCP operon, is inducible by proline. Here, we show that this induction is mediated by PutR, a proline-responsive transcriptional activator of the PucR family. When other amino acids are present in the medium, proline utilization is prioritized through transient repression by CodY, a global transcriptional regulator in Gram-positive bacteria that responds to amino acid availability. CodY-mediated repression of the putBCP operon has two novel features. First, repression requires the cooperative binding of CodY to at least two adjacent motifs. Second, though CodY binds to the region that overlaps the putB promoter, repression is due to displacement of PutR rather than competition with RNA polymerase.
Collapse
Affiliation(s)
- Boris R Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
19
|
Tungtur S, Parente DJ, Swint-Kruse L. Functionally important positions can comprise the majority of a protein's architecture. Proteins 2011; 79:1589-608. [PMID: 21374721 DOI: 10.1002/prot.22985] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 12/08/2010] [Accepted: 12/15/2010] [Indexed: 01/13/2023]
Abstract
Concomitant with the genomic era, many bioinformatics programs have been developed to identify functionally important positions from sequence alignments of protein families. To evaluate these analyses, many have used the LacI/GalR family and determined whether positions predicted to be "important" are validated by published experiments. However, we previously noted that predictions do not identify all of the experimentally important positions present in the linker regions of these homologs. In an attempt to reconcile these differences, we corrected and expanded the LacI/GalR sequence set commonly used in sequence/function analyses. Next, a variety of analyses were carried out (1) for the entire LacI/GalR sequence set and (2) for a subset of homologs with functionally-important "YxPxxxAxxL" motifs in their linkers. This strategy was devised to determine whether predictions could be improved by knowledge-based sequence sorting and-for some analyses-did increase the number of linker positions identified. However, two functionally important linker positions were not reliably identified by any analysis. Finally, we compared the new predictions to all known experimental data for E. coli LacI and three homologous linkers. From these, we estimate that >50% of positions are important to the functions of the LacI/GalR homologs. In corollary, neutral positions might occur less frequently and might be easier to detect in sequence analyses. Although analyses have successfully guided mutations that partially exchange protein functions, a better experimental understanding of the sequence/function relationships in protein families would be helpful for uncovering the remaining rules used by nature to evolve new protein functions.
Collapse
Affiliation(s)
- Sudheer Tungtur
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, MSN 3030, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
20
|
Ishihama A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol Rev 2010; 34:628-45. [DOI: 10.1111/j.1574-6976.2010.00227.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Diverse pathways for salicin utilization in Shigella sonnei and Escherichia coli carrying an impaired bgl operon. Arch Microbiol 2010; 192:821-33. [DOI: 10.1007/s00203-010-0610-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/19/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
|
22
|
Teramoto J, Yoshimura SH, Takeyasu K, Ishihama A. A novel nucleoid protein of Escherichia coli induced under anaerobiotic growth conditions. Nucleic Acids Res 2010; 38:3605-18. [PMID: 20156994 PMCID: PMC2887951 DOI: 10.1093/nar/gkq077] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A systematic search was performed for DNA-binding sequences of YgiP, an uncharacterized transcription factor of Escherichia coli, by using the Genomic SELEX. A total of 688 YgiP-binding loci were identified after genome-wide profiling of SELEX fragments with a high-density microarray (SELEX-chip). Gel shift and DNase-I footprinting assays indicated that YgiP binds to multiple sites along DNA probes with a consensus GTTNATT sequence. Atomic force microscope observation indicated that at low concentrations, YgiP associates at various sites on DNA probes, but at high concentrations, YgiP covers the entire DNA surface supposedly through protein–protein contact. The intracellular concentration of YgiP is very low in growing E. coli cells under aerobic conditions, but increases more than 100-fold to the level as high as the major nucleoid proteins under anaerobic conditions. An E. coli mutant lacking ygiP showed retarded growth under anaerobic conditions. High abundance and large number of binding sites together indicate that YgiP is a nucleoid-associated protein with both architectural and regulatory roles as the nucleoid proteins Fis and IHF. We then propose that YgiP is a novel nucleoid protein of E. coli under anaerobiosis and propose to rename it Dan (DNA-binding protein under anaerobic conditions).
Collapse
Affiliation(s)
- Jun Teramoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | | | | | | |
Collapse
|