1
|
Elafify M, Liao X, Feng J, Ahn J, Ding T. Biofilm formation in food industries: Challenges and control strategies for food safety. Food Res Int 2024; 190:114650. [PMID: 38945629 DOI: 10.1016/j.foodres.2024.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Various pathogens have the ability to grow on food matrices and instruments. This grow may reach to form biofilms. Bacterial biofilms are community of microorganisms embedded in extracellular polymeric substances (EPSs) containing lipids, DNA, proteins, and polysaccharides. These EPSs provide a tolerance and favorable living condition for microorganisms. Biofilm formations could not only contribute a risk for food safety but also have negative impacts on healthcare sector. Once biofilms form, they reveal resistances to traditional detergents and disinfectants, leading to cross-contamination. Inhibition of biofilms formation and abolition of mature biofilms is the main target for controlling of biofilm hazards in the food industry. Some novel eco-friendly technologies such as ultrasound, ultraviolet, cold plasma, magnetic nanoparticles, different chemicals additives as vitamins, D-amino acids, enzymes, antimicrobial peptides, and many other inhibitors provide a significant value on biofilm inhibition. These anti-biofilm agents represent promising tools for food industries and researchers to interfere with different phases of biofilms including adherence, quorum sensing molecules, and cell-to-cell communication. This perspective review highlights the biofilm formation mechanisms, issues associated with biofilms, environmental factors influencing bacterial biofilm development, and recent strategies employed to control biofilm-forming bacteria in the food industry. Further studies are still needed to explore the effects of biofilm regulation in food industries and exploit more regulation strategies for improving the quality and decreasing economic losses.
Collapse
Affiliation(s)
- Mahmoud Elafify
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Xinyu Liao
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Juhee Ahn
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Tian Ding
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Niemiec MJ, Kapitan M, Himmel M, Döll K, Krüger T, Köllner TG, Auge I, Kage F, Alteri CJ, Mobley HL, Monsen T, Linde S, Nietzsche S, Kniemeyer O, Brakhage AA, Jacobsen ID. Augmented Enterocyte Damage During Candida albicans and Proteus mirabilis Coinfection. Front Cell Infect Microbiol 2022; 12:866416. [PMID: 35651758 PMCID: PMC9149288 DOI: 10.3389/fcimb.2022.866416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
The human gut acts as the main reservoir of microbes and a relevant source of life-threatening infections, especially in immunocompromised patients. There, the opportunistic fungal pathogen Candida albicans adapts to the host environment and additionally interacts with residing bacteria. We investigated fungal-bacterial interactions by coinfecting enterocytes with the yeast Candida albicans and the Gram-negative bacterium Proteus mirabilis resulting in enhanced host cell damage. This synergistic effect was conserved across different P. mirabilis isolates and occurred also with non-albicans Candida species and C. albicans mutants defective in filamentation or candidalysin production. Using bacterial deletion mutants, we identified the P. mirabilis hemolysin HpmA to be the key effector for host cell destruction. Spatially separated coinfections demonstrated that synergism between Candida and Proteus is induced by contact, but also by soluble factors. Specifically, we identified Candida-mediated glucose consumption and farnesol production as potential triggers for Proteus virulence. In summary, our study demonstrates that coinfection of enterocytes with C. albicans and P. mirabilis can result in increased host cell damage which is mediated by bacterial virulence factors as a result of fungal niche modification via nutrient consumption and production of soluble factors. This supports the notion that certain fungal-bacterial combinations have the potential to result in enhanced virulence in niches such as the gut and might therefore promote translocation and dissemination.
Collapse
Affiliation(s)
- Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
| | - Maximilian Himmel
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Kristina Döll
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Tobias G. Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Isabel Auge
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Franziska Kage
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Christopher J. Alteri
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Harry L.T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Tor Monsen
- Department Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Susanne Linde
- Center for Electron Microscopy, University Hospital, Jena, Germany
| | - Sandor Nietzsche
- Center for Electron Microscopy, University Hospital, Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Axel A. Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- *Correspondence: Ilse D. Jacobsen,
| |
Collapse
|
3
|
Yersinia pestis Plasminogen Activator. Biomolecules 2020; 10:biom10111554. [PMID: 33202679 PMCID: PMC7696990 DOI: 10.3390/biom10111554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
The Gram-negative bacterium Yersinia pestis causes plague, a fatal flea-borne anthropozoonosis, which can progress to aerosol-transmitted pneumonia. Y. pestis overcomes the innate immunity of its host thanks to many pathogenicity factors, including plasminogen activator, Pla. This factor is a broad-spectrum outer membrane protease also acting as adhesin and invasin. Y. pestis uses Pla adhesion and proteolytic capacity to manipulate the fibrinolytic cascade and immune system to produce bacteremia necessary for pathogen transmission via fleabite or aerosols. Because of microevolution, Y. pestis invasiveness has increased significantly after a single amino-acid substitution (I259T) in Pla of one of the oldest Y. pestis phylogenetic groups. This mutation caused a better ability to activate plasminogen. In paradox with its fibrinolytic activity, Pla cleaves and inactivates the tissue factor pathway inhibitor (TFPI), a key inhibitor of the coagulation cascade. This function in the plague remains enigmatic. Pla (or pla) had been used as a specific marker of Y. pestis, but its solitary detection is no longer valid as this gene is present in other species of Enterobacteriaceae. Though recovering hosts generate anti-Pla antibodies, Pla is not a good subunit vaccine. However, its deletion increases the safety of attenuated Y. pestis strains, providing a means to generate a safe live plague vaccine.
Collapse
|
4
|
Liu C, Sun D, Zhu J, Liu J, Liu W. The Regulation of Bacterial Biofilm Formation by cAMP-CRP: A Mini-Review. Front Microbiol 2020; 11:802. [PMID: 32528421 PMCID: PMC7247823 DOI: 10.3389/fmicb.2020.00802] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
Biofilms are communities of microorganisms that live in a self-produced extracellular matrix in order to survive in hostile environments. Second messengers, such as c-di-GMP and cAMP, participate in the regulation of biofilm formation. c-di-GMP is a major molecule that is involved in modulating the bacterial transition between a planktonic lifestyle and biofilm formation. Aside from regulating carbon catabolism repression in most bacteria, cAMP has also been found to mediate biofilm formation in many bacteria. Although the underlying mechanisms of biofilm formation mediated by cAMP-CRP have been well-investigated in several bacteria, the regulatory pathways of cAMP-CRP are still poorly understood compared to those of c-di-GMP. Moreover, some bacteria appear to form biofilm in response to changes in carbon source type or concentration. However, the relationship between the carbon metabolisms and biofilm formation remains unclear. This mini-review provides an overview of the cAMP-CRP-regulated pathways involved in biofilm formation in some bacteria. This information will benefit future investigations of the underlying mechanisms that connect between biofilm formation with nutrient metabolism, as well as the cross-regulation between multiple second messengers.
Collapse
Affiliation(s)
- Cong Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Di Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jingrong Zhu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jiawen Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Weijie Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
5
|
Ritzert JT, Minasov G, Embry R, Schipma MJ, Satchell KJF. The Cyclic AMP Receptor Protein Regulates Quorum Sensing and Global Gene Expression in Yersinia pestis during Planktonic Growth and Growth in Biofilms. mBio 2019; 10:e02613-19. [PMID: 31744922 PMCID: PMC6867900 DOI: 10.1128/mbio.02613-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Cyclic AMP (cAMP) receptor protein (Crp) is an important transcriptional regulator of Yersinia pestis Expression of crp increases during pneumonic plague as the pathogen depletes glucose and forms large biofilms within lungs. To better understand control of Y. pestis Crp, we determined a 1.8-Å crystal structure of the protein-cAMP complex. We found that compared to Escherichia coli Crp, C helix amino acid substitutions in Y. pestis Crp did not impact the cAMP dependency of Crp to bind DNA promoters. To investigate Y. pestis Crp-regulated genes during plague pneumonia, we performed RNA sequencing on both wild-type and Δcrp mutant bacteria growing in planktonic and biofilm states in minimal media with glucose or glycerol. Y. pestis Crp was found to dramatically alter expression of hundreds of genes in a manner dependent upon carbon source and growth state. Gel shift assays confirmed direct regulation of the malT and ptsG promoters, and Crp was then linked to Y. pestis growth on maltose as a sole carbon source. Iron regulation genes ybtA and fyuA were found to be indirectly regulated by Crp. A new connection between carbon source and quorum sensing was revealed as Crp was found to regulate production of acyl-homoserine lactones (AHLs) through direct and indirect regulation of genes for AHL synthetases and receptors. AHLs were subsequently identified in the lungs of Y. pestis-infected mice when crp expression was highest in Y. pestis biofilms. Thus, in addition to the well-studied pla gene, other Crp-regulated genes likely have important functions during plague infection.IMPORTANCE Bacterial pathogens have evolved extensive signaling pathways to translate environmental signals into changes in gene expression. While Crp has long been appreciated for its role in regulating metabolism of carbon sources in many bacterial species, transcriptional profiling has revealed that this protein regulates many other aspects of bacterial physiology. The plague pathogen Y. pestis requires this global regulator to survive in blood, skin, and lungs. During disease progression, this organism adapts to changes within these niches. In addition to regulating genes for metabolism of nonglucose sugars, we found that Crp regulates genes for virulence, metal acquisition, and quorum sensing by direct or indirect mechanisms. Thus, this single transcriptional regulator, which responds to changes in available carbon sources, can regulate multiple critical behaviors for causing disease.
Collapse
Affiliation(s)
- Jeremy T Ritzert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - George Minasov
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ryan Embry
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois, USA
| | - Matthew J Schipma
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
Champion PA, Shrout JD. The 24th Annual Midwest Microbial Pathogenesis Meeting. J Bacteriol 2018; 200:e000950-18. [PMID: 29483166 PMCID: PMC5952387 DOI: 10.1128/jb.00095-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 24th Annual Midwest Microbial Pathogenesis Conference (MMPC) was held at the University of Notre Dame from August 25-27, 2017. The conference provided an opportunity for scientists from the Midwest to discuss new advances in microbial pathogenesis, including how pathogens promote disease, and how they interact with each other, the microbiome and the host. This commentary highlights the MMPC history, the topics presented at the conference and the reports in this issue.
Collapse
Affiliation(s)
- Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua D. Shrout
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|