1
|
Wasilewska M, Derylo-Marczewska A, Marczewski AW. Comprehensive Studies of Adsorption Equilibrium and Kinetics for Selected Aromatic Organic Compounds on Activated Carbon. Molecules 2024; 29:2038. [PMID: 38731529 PMCID: PMC11085397 DOI: 10.3390/molecules29092038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
This work presents a comprehensive analysis of the adsorption of selected aromatic organic compounds on activated carbons. Both the equilibrium and kinetics of adsorption were studied using UV-Vis spectrophotometry. The influence of a number of factors: pH, contact time, presence of an accompanying substance, adsorbate concentration, as well as the mass and size of adsorbent grains, on the adsorption process from aqueous solutions was investigated. Phenol, 2-nitrophenol, 3-nitrophenol, 4-nitrophenol and methylene blue (as an accompanying substance) were selected as adsorbates. GAC 1240W and RIAA activated carbons were used as adsorbents. The equilibrium data were analyzed using the generalized Langmuir isotherm equation (R2 = 0.912-0.996). Adsorption rate data were fitted using a multi-exponential kinetic equation (1 - R2 = (1.0 × 10-6)-(8.2 × 10-4)). As an additional parameter, the half-time was also used to present the influence of selected factors on the adsorption kinetics. An increase in the amount of adsorption was demonstrated with increasing contact time as well as with decreasing solution pH and adsorbent grain size. For selected systems, an increase in the adsorption rate was observed with increasing adsorbate concentration, adsorbent mass and at lower pH values. In some cases, the presence of an accompanying substance also resulted in an increase in adsorption kinetics. In the tested experimental systems, optimal conditions for adsorption were established (T = 298 K, pH = 2, contact time: 7 days, grain diameter: >0.5 mm and the ratio of the mass of the adsorbent to the volume of the adsorbate solution: 1 g/L). Additionally, the acid-base properties (potentiometric titration), morphology (SEM) and structure (TEM) of the used adsorbents were also examined.
Collapse
Affiliation(s)
- Małgorzata Wasilewska
- Department of Physical Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | - Anna Derylo-Marczewska
- Department of Physical Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | | |
Collapse
|
2
|
Baye AF, Bandal HA, Kim H. FeC x-coated biochar nanosheets as efficient bifunctional catalyst for electrochemical detection and reduction of 4-nitrophenol. ENVIRONMENTAL RESEARCH 2024; 246:118071. [PMID: 38163546 DOI: 10.1016/j.envres.2023.118071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/10/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Herein, we present the exceptional performance of FeCx-coated carbon sheets (FC) derived from the pyrolysis of waste biomass as a bifunctional catalyst for electrochemical detection and catalytic reduction of 4-nitrophenol (4-NP). Despite having a lower surface area, larger particle size, and lesser N content, the FC material prepared at a calcination temperature of 900 °C (FC900) outperforms the other samples. Deeper investigations revealed that the FC900 efficiently facilitates the charge transfer process and enhances the diffusion rate of 4-NP, leading to increased surface coverage of 4-NP on the surface of FC900. Additionally, relatively weaker interactions between 4-NP and FC900 allow the facile adsorption and desorption of reaction intermediates. Due to the synergetic interplay of these factors, FC900 exhibited a linear response to changes in 4-NP concentration from 1 μM to 100 μM with a low limit of detection (LOD) of 84 nM (S/N = 3) and high sensitivity of 12.15 μA μM-1 cm-2. Importantly, it selectively detects 4-NP in the presence of five times more concentrated 2-aminophenol, 4-aminophenol, catechol, resorcinol, and hydroquinone and ten times more concentrated metal salts such as Na2SO4. NaNO3, KCl, CuCl2, and CaCl2. Moreover, FC900 can accurately detect micromolar levels of 4-NP in river water with high recovery values (99.8-103.5 %). In addition, FC900 exhibited outstanding catalytic activity in reducing 4-NP to 4-aminophenol (4-AP), achieving complete conversion within 8 min with a high-rate constant of 0.42 min-1. FC900 also shows high recyclability in six consecutive catalytic reactions due to Fe magnetic property.
Collapse
Affiliation(s)
- Anteneh F Baye
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - Harshad A Bandal
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| |
Collapse
|
3
|
Liu Y, Yamamoto T, Kohaya N, Yamamoto K, Okano K, Sumiyoshi T, Hasegawa Y, Lau PCK, Iwaki H. Cloning of two gene clusters involved in the catabolism of 2,4-dinitrophenol by Paraburkholderia sp. strain KU-46 and characterization of the initial DnpAB enzymes and a two-component monooxygenases DnpC1C2. J Biosci Bioeng 2023; 136:223-231. [PMID: 37344279 DOI: 10.1016/j.jbiosc.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Little is currently known about the metabolism of the industrial pollutant 2,4-dinitrophenol (DNP), particularly among gram-negative bacteria. In this study, we identified two non-contiguous genetic loci spanning 22 kb of Paraburkholderia (formerly Burkholderia) sp. strain KU-46. Additionally, we characterized four key initial genes (dnpA, dnpB, and dnpC1C2) responsible for DNP degradation, providing molecular and biochemical evidence for the degradation of DNP via the formation of 4-nitrophenol (NP), a pathway that is unique among DNP utilizing bacteria. Reverse transcription polymerase chain reaction (PCR) analysis indicated that dnpA, which encodes the initial hydride transferase, and dnpB which encodes a nitrite-eliminating enzyme, were induced by DNP and organized in an operon. Moreover, we purified DnpA and DnpB from recombinant Escherichia coli to demonstrate their effect on the transformation of DNP to NP through the formation of a hydride-Meisenheimer complex of DNP, designated as H--DNP. The function of DnpB appears new since all homologs of the DnpB sequences in the protein database are annotated as putative nitrate ABC transporter substrate-binding proteins. The gene cluster responsible for the degradation of DNP after NP formation was designated dnpC1C2DXFER, and DnpC1 and DnpC2 were functionally characterized as the FAD reductase and oxygenase components of the two-component DNP monooxygenase, respectively. By elucidating the hqdA1A2BCD gene cluster, we are now able to delineate the final degradation pathway of hydroquinone to β-ketoadipate before it enters the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Yaxuan Liu
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Taisei Yamamoto
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Nozomi Kohaya
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Kota Yamamoto
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Kenji Okano
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Takaaki Sumiyoshi
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Yoshie Hasegawa
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Peter C K Lau
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Hiroaki Iwaki
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
4
|
Li S, Tang Y, Tang L, Yan X, Xiao J, Xiang H, Wu Q, Yu R, Jin Y, Yu J, Xu N, Wu C, Wang S, Wang C, Chen Q. Preliminary study on the effect of catabolite repression gene knockout on p-nitrophenol degradation in Pseudomonas putida DLL-E4. PLoS One 2022; 17:e0278503. [PMID: 36459525 PMCID: PMC9718395 DOI: 10.1371/journal.pone.0278503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
P-nitrophenol (PNP) is a carcinogenic, teratogenic, and mutagenic compound that can cause serious harm to the environment. A strain of Pseudomonas putida DLL-E4, can efficiently degrade PNP in a complex process that is influenced by many factors. Previous studies showed that the expression level of pnpA, a key gene involved in PNP degradation, was upregulated significantly and the degradation of PNP was obviously accelerated in the presence of glucose. In addition, the expression of crc, crcY, and crcZ, key genes involved in catabolite repression, was downregulated, upregulated, and upregulated, respectively. To investigate the effect of the carbon catabolite repression (CCR) system on PNP degradation, the crc, crcY, and crcZ genes were successfully knocked out by conjugation experiments. Our results showed that the knockout of crc accelerated PNP degradation but slowed down the cell growth. However, the knockout of crcY or crcZ alone accelerated PNP degradation when PNP as the sole carbon source, but that knockout slowed down PNP degradation when glucose was added. The results indicate that the CCR system is involved in the regulation of PNP degradation, and further work is required to determine the details of the specific regulatory mechanism.
Collapse
Affiliation(s)
- Shuang Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Yichao Tang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Lingran Tang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Xuanyu Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Jiali Xiao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Huijun Xiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Qing Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Ruqi Yu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Yushi Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Jingyu Yu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Nuo Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Chu Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Shengqin Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Chuanhua Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Qiongzhen Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
5
|
Zharikova NV, Korobov VV, Zhurenko EI. Flavin-Dependent Monooxygenases Involved in Bacterial Degradation of Chlorophenols. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
The Catabolic System of Acetovanillone and Acetosyringone in Sphingobium sp. Strain SYK-6 Useful for Upgrading Aromatic Compounds Obtained through Chemical Lignin Depolymerization. Appl Environ Microbiol 2022; 88:e0072422. [PMID: 35938864 PMCID: PMC9397112 DOI: 10.1128/aem.00724-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acetovanillone is a major aromatic monomer produced in oxidative/base-catalyzed lignin depolymerization. However, the production of chemical products from acetovanillone has not been explored due to the lack of information on the microbial acetovanillone catabolic system. Here, the acvABCDEF genes were identified as specifically induced genes during the growth of Sphingobium sp. strain SYK-6 cells with acetovanillone and these genes were essential for SYK-6 growth on acetovanillone and acetosyringone (a syringyl-type acetophenone derivative). AcvAB and AcvF produced in Escherichia coli phosphorylated acetovanillone/acetosyringone and dephosphorylated the phosphorylated acetovanillone/acetosyringone, respectively. AcvCDE produced in Sphingobium japonicum UT26S carboxylated the reaction products generated from acetovanillone/acetosyringone by AcvAB and AcvF into vanilloyl acetic acid/3-(4-hydroxy-3,5-dimethoxyphenyl)-3-oxopropanoic acid. To demonstrate the feasibility of producing cis,cis-muconic acid from acetovanillone, a metabolic modification on a mutant of Pseudomonas sp. strain NGC7 that accumulates cis,cis-muconic acid from catechol was performed. The resulting strain expressing vceA and vceB required for converting vanilloyl acetic acid to vanillic acid and aroY encoding protocatechuic acid decarboxylase in addition to acvABCDEF successfully converted 1.2 mM acetovanillone to approximately equimolar cis,cis-muconic acid. Our results are expected to help improve the yield and purity of value-added chemical production from lignin through biological funneling. IMPORTANCE In the alkaline oxidation of lignin, aromatic aldehydes (vanillin, syringaldehyde, and p-hydroxybenzaldehyde), aromatic acids (vanillic acid, syringic acid, and p-hydroxybenzoic acid), and acetophenone-related compounds (acetovanillone, acetosyringone, and 4'-hydroxyacetophenone) are produced as major aromatic monomers. Also, base-catalyzed depolymerization of guaiacyl lignin resulted in vanillin, vanillic acid, guaiacol, and acetovanillone as primary aromatic monomers. To date, microbial catabolic systems of vanillin, vanillic acid, and guaiacol have been well characterized, and the production of value-added chemicals from them has also been explored. However, due to the lack of information on the microbial acetovanillone and acetosyringone catabolic system, chemical production from acetovanillone and acetosyringone has not been achieved. This study elucidated the acetovanillone/acetosyringone catabolic system and demonstrates the potential of using these genes for the production of value-added chemicals from these compounds.
Collapse
|
7
|
Cheng M, Chen D, Parales RE, Jiang J. Oxygenases as Powerful Weapons in the Microbial Degradation of Pesticides. Annu Rev Microbiol 2022; 76:325-348. [PMID: 35650666 DOI: 10.1146/annurev-micro-041320-091758] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxygenases, which catalyze the reductive activation of O2 and incorporation of oxygen atoms into substrates, are widely distributed in aerobes. They function by switching the redox states of essential cofactors that include flavin, heme iron, Rieske non-heme iron, and Fe(II)/α-ketoglutarate. This review summarizes the catalytic features of flavin-dependent monooxygenases, heme iron-dependent cytochrome P450 monooxygenases, Rieske non-heme iron-dependent oxygenases, Fe(II)/α-ketoglutarate-dependent dioxygenases, and ring-cleavage dioxygenases, which are commonly involved in pesticide degradation. Heteroatom release (hydroxylation-coupled hetero group release), aromatic/heterocyclic ring hydroxylation to form ring-cleavage substrates, and ring cleavage are the main chemical fates of pesticides catalyzed by these oxygenases. The diversity of oxygenases, specificities for electron transport components, and potential applications of oxygenases are also discussed. This article summarizes our current understanding of the catalytic mechanisms of oxygenases and a framework for distinguishing the roles of oxygenases in pesticide degradation. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Minggen Cheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| | - Dian Chen
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California, USA
| | - Jiandong Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| |
Collapse
|
8
|
Pimviriyakul P, Pholert P, Somjitt S, Choowongkomon K. Role of conserved arginine in
HadA
monooxygenase for
4‐nitrophenol
and
4‐chlorophenol
detoxification. Proteins 2022; 90:1291-1302. [DOI: 10.1002/prot.26312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science Kasetsart University Chatuchak Bangkok Thailand
| | - Patipan Pholert
- Department of Biochemistry, Faculty of Science Kasetsart University Chatuchak Bangkok Thailand
| | - Supamas Somjitt
- Department of Biochemistry, Faculty of Science Kasetsart University Chatuchak Bangkok Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science Kasetsart University Chatuchak Bangkok Thailand
| |
Collapse
|
9
|
Kamba S, Ogura A, Miura Y, Hasegawa M. Enrichment of Uncommon Bacteria in Soil by Fractionation Using a Metal Mesh Device. ANAL SCI 2021; 37:1295-1300. [PMID: 33678730 DOI: 10.2116/analsci.21p042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The use of a metal mesh device (MMD) as a precision bacterial separation filter is described. The MMD uses a structure in which identically shaped pores are arranged in a thin metal membrane. Four types of MMD with different pore sizes were used to fractionate bacteria in two types of soil. Through metagenomic analysis, the distribution of bacteria in the soil samples and in each MMD fraction was examined. In addition, eight types of previously described organic compound-degrading bacteria were used to evaluate the method, and changes in their composition following MMD fractionation were investigated. It was found that MMD fractions were enriched for all eight bacteria when compared with the initial sample. These results suggest that bacterial fractionation using MMD can enrich bacteria occurring at low frequencies in environmental samples.
Collapse
Affiliation(s)
| | - Atsushi Ogura
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology
| | | | - Makoto Hasegawa
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology
| |
Collapse
|
10
|
Ortiz-Hernández ML, Gama-Martínez Y, Fernández-López M, Castrejón-Godínez ML, Encarnación S, Tovar-Sánchez E, Salazar E, Rodríguez A, Mussali-Galante P. Transcriptomic analysis of Burkholderia cenocepacia CEIB S5-2 during methyl parathion degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42414-42431. [PMID: 33813711 DOI: 10.1007/s11356-021-13647-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Methyl parathion (MP) is a highly toxic organophosphorus pesticide associated with water, soil, and air pollution events. The identification and characterization of microorganisms capable of biodegrading pollutants are an important environmental task for bioremediation of pesticide impacted sites. The strain Burkholderia cenocepacia CEIB S5-2 is a bacterium capable of efficiently hydrolyzing MP and biodegrade p-nitrophenol (PNP), the main MP hydrolysis product. Due to the high PNP toxicity over microbial living forms, the reports on bacterial PNP biodegradation are scarce. According to the genomic data, the MP- and PNP-degrading ability observed in B. cenocepacia CEIB S5-2 is related to the presence of the methyl parathion-degrading gene (mpd) and the gene cluster pnpABA'E1E2FDC, which include the genes implicated in the PNP degradation. In this work, the transcriptomic analysis of the strain in the presence of MP revealed the differential expression of 257 genes, including all genes implicated in the PNP degradation, as well as a set of genes related to the sensing of environmental changes, the response to stress, and the degradation of aromatic compounds, such as translational regulators, membrane transporters, efflux pumps, and oxidative stress response genes. These findings suggest that these genes play an important role in the defense against toxic effects derived from the MP and PNP exposure. Therefore, B. cenocepacia CEIB S5-2 has a great potential for application in pesticide bioremediation approaches due to its biodegradation capabilities and the differential expression of genes for resistance to MP and PNP.
Collapse
Affiliation(s)
- Ma Laura Ortiz-Hernández
- Misión Sustentabilidad México A.C., Priv. Laureles 6, Col. Chamilpa, C.P 62210, Cuernavaca, Morelos, México
| | - Yitzel Gama-Martínez
- Centro de Investigación en Biotecnología, Laboratorio de Investigaciones Ambientales, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, México
| | - Maikel Fernández-López
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P 62209, Cuernavaca, Morelos, México
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P 62209, Cuernavaca, Morelos, México
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P 62210, Cuernavaca, Morelos, México
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P 62209, Cuernavaca, Morelos, México
| | - Emmanuel Salazar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P 62210, Cuernavaca, Morelos, México
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Laboratorio de Investigaciones Ambientales, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, México.
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Laboratorio de Investigaciones Ambientales, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, México.
| |
Collapse
|
11
|
Zhou Y, Ke Z, Ye H, Hong M, Xu Y, Zhang M, Jiang W, Hong Q. Hydrolase CehA and a Novel Two-Component 1-Naphthol Hydroxylase CehC1C2 are Responsible for the Two Initial Steps of Carbaryl Degradation in Rhizobium sp. X9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14739-14747. [PMID: 33264024 DOI: 10.1021/acs.jafc.0c03845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbaryl is a widely used carbamate pesticide in agriculture. The strain Rhizobium sp. X9 possesses the typical carbaryl degradation pathway in which carbaryl is mineralized via 1-naphthol, salicylate, and gentisate. In this study, we cloned a carbaryl hydrolase gene cehA and a novel two-component 1-naphthol hydroxylase gene cehC1C2. CehA mediates carbaryl hydrolysis to 1-naphthol and CehC1, an FMNH2 or FADH2-dependent monooxygenase belonging to the HpaB superfamily, and hydroxylates 1-naphthol in the presence of reduced nicotinamide-adenine dinucleotide (FMN)/flavin adenine dinucleotide (FAD), and the reductase CehC2. CehC1 has the highest amino acid similarity (58%) with the oxygenase component of a two-component 4-nitrophenol 2-monooxygenase, while CehC2 has the highest amino acid similarity (46%) with its reductase component. CehC1C2 could utilize both FAD and FMN as the cofactor during the hydroxylation, although higher catalytic activity was observed with FAD as the cofactor. The optimal molar ratio of CehC1 to CehC2 was 2:1. The Km and Kcat/Km values of CehC1 for 1-naphthol were 74.71 ± 16.07 μM and (8.29 ± 2.44) × 10-4 s-1·μM-1, respectively. Moreover, the enzyme activities and substrate spectrum between CehC1C2 and previously reported 1-naphthol hydroxylase McbC were compared. The results suggested that McbC had a higher 1-naphthol hydroxylation activity, while CehC1C2 had a broader substrate spectrum.
Collapse
Affiliation(s)
- Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Hangting Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mengting Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yifei Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
12
|
Min J, Xu L, Fang S, Chen W, Hu X. Microbial degradation kinetics and molecular mechanism of 2,6-dichloro-4-nitrophenol by a Cupriavidus strain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113703. [PMID: 31818627 DOI: 10.1016/j.envpol.2019.113703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/03/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
2,6-Dichloro-4-nitrophenol (2,6-DCNP) is an emerging chlorinated nitroaromatic pollutant, and its fate in the environment is an important question. However, microorganisms with the ability to utilize 2,6-DCNP have not been reported. In this study, Cupriavidus sp. CNP-8 having been previously reported to degrade various halogenated nitrophenols, was verified to be also capable of degrading 2,6-DCNP. Biodegradation kinetics assay showed that it degraded 2,6-DCNP with the specific growth rate of 0.124 h-1, half saturation constant of 0.038 mM and inhibition constant of 0.42 mM. Real-time quantitative PCR analyses indicated that the hnp gene cluster was involved in the catabolism of 2,6-DCNP. The hnpA and hnpB gene products were purified to homogeneity by Ni-NTA chromatography. Enzymatic assays showed that HnpAB, a FAD-dependent two-component monooxygenase, converted 2,6-DCNP to 6-chlorohydroxyquinol with a Km of 3.9 ± 1.4 μM and a kcat/Km of 0.12 ± 0.04 μΜ-1 min-1. As the oxygenase component encoding gene, hnpA is necessary for CNP-8 to grow on 2,6-DCNP by gene knockout and complementation. The phylogenetic analysis showed that the hnp cluster originated from the cluster involved in the catabolism of chlorophenols rather than nitrophenols. To our knowledge, CNP-8 is the first bacterium with the ability to utilize 2,6-DCNP, and this study fills a gap in the microbial degradation mechanism of this pollutant at the molecular, biochemical and genetic levels. Moreover, strain CNP-8 could degrade three chlorinated nitrophenols rapidly from the synthetic wastewater, indicating its potential in the bioremediation of chlorinated nitrophenols polluted environments.
Collapse
Affiliation(s)
- Jun Min
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lingxue Xu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; College of Life Science of Yantai University, Yantai, China
| | - Suyun Fang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weiwei Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
13
|
Chenprakhon P, Wongnate T, Chaiyen P. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases. Protein Sci 2020; 28:8-29. [PMID: 30311986 DOI: 10.1002/pro.3525] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Many flavoenzymes catalyze hydroxylation of aromatic compounds especially phenolic compounds have been isolated and characterized. These enzymes can be classified as either single-component or two-component flavin-dependent hydroxylases (monooxygenases). The hydroxylation reactions catalyzed by the enzymes in this group are useful for modifying the biological properties of phenolic compounds. This review aims to provide an in-depth discussion of the current mechanistic understanding of representative flavin-dependent monooxygenases including 3-hydroxy-benzoate 4-hydroxylase (PHBH, a single-component hydroxylase), 3-hydroxyphenylacetate 4-hydroxylase (HPAH, a two-component hydroxylase), and other monooxygenases which catalyze reactions in addition to hydroxylation, including 2-methyl-3-hydroxypyridine-5-carboxylate oxygenase (MHPCO, a single-component enzyme that catalyzes aromatic-ring cleavage), and HadA monooxygenase (a two-component enzyme that catalyzes additional group elimination reaction). These enzymes have different unique structural features which dictate their reactivity toward various substrates and influence their ability to stabilize flavin intermediates such as C4a-hydroperoxyflavin. Understanding the key catalytic residues and the active site environments important for governing enzyme reactivity will undoubtedly facilitate future work in enzyme engineering or enzyme redesign for the development of biocatalytic methods for the synthesis of valuable compounds.
Collapse
Affiliation(s)
- Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 14000, Thailand
| |
Collapse
|
14
|
Levy-Booth DJ, Fetherolf MM, Stewart GR, Liu J, Eltis LD, Mohn WW. Catabolism of Alkylphenols in Rhodococcus via a Meta-Cleavage Pathway Associated With Genomic Islands. Front Microbiol 2019; 10:1862. [PMID: 31481940 PMCID: PMC6710988 DOI: 10.3389/fmicb.2019.01862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/29/2019] [Indexed: 01/01/2023] Open
Abstract
The bacterial catabolism of aromatic compounds has considerable promise to convert lignin depolymerization products to commercial chemicals. Alkylphenols are a key class of depolymerization products whose catabolism is not well-elucidated. We isolated Rhodococcus rhodochrous EP4 on 4-ethylphenol and applied genomic and transcriptomic approaches to elucidate alkylphenol catabolism in EP4 and Rhodococcus jostii RHA1. RNA-Seq and RT-qPCR revealed a pathway encoded by the aphABCDEFGHIQRS genes that degrades 4-ethylphenol via the meta-cleavage of 4-ethylcatechol. This process was initiated by a two-component alkylphenol hydroxylase, encoded by the aphAB genes, which were upregulated ~3,000-fold. Purified AphAB from EP4 had highest specific activity for 4-ethylphenol and 4-propylphenol (~2,000 U/mg) but did not detectably transform phenol. Nevertheless, a ΔaphA mutant in RHA1 grew on 4-ethylphenol by compensatory upregulation of phenol hydroxylase genes (pheA1-3). Deletion of aphC, encoding an extradiol dioxygenase, prevented growth on 4-alkylphenols but not phenol. Disruption of pcaL in the β-ketoadipate pathway prevented growth on phenol but not 4-alkylphenols. Thus, 4-alkylphenols are catabolized exclusively via meta-cleavage in rhodococci while phenol is subject to ortho-cleavage. A putative genomic island encoding aph genes was identified in EP4 and several other rhodococci. Overall, this study identifies a 4-alkylphenol pathway in rhodococci, demonstrates key enzymes involved, and presents evidence that the pathway is encoded in a genomic island. These advances are of particular importance for wide-ranging industrial applications of rhodococci, including upgrading of lignocellulose biomass.
Collapse
Affiliation(s)
- David J Levy-Booth
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Morgan M Fetherolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Gordon R Stewart
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Jie Liu
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Molecular and biochemical characterization of 2-chloro-4-nitrophenol degradation via the 1,2,4-benzenetriol pathway in a Gram-negative bacterium. Appl Microbiol Biotechnol 2019; 103:7741-7750. [DOI: 10.1007/s00253-019-09994-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
16
|
Khan A, Chen Z, Zhao S, Ni H, Pei Y, Xu R, Ling Z, Salama ES, Liu P, Li X. Micro-aeration in anode chamber promotes p-nitrophenol degradation and electricity generation in microbial fuel cell. BIORESOURCE TECHNOLOGY 2019; 285:121291. [PMID: 30999190 DOI: 10.1016/j.biortech.2019.03.130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Biodegradation of recalcitrant organic compounds in microbial fuel cell (MFC) is limited, due to its strong electron affinity and persisted in anaerobic condition. In this study, Pseudomonas monteilii LZU-3 degraded p-nitrophenol (PNP) and generated current at 100 mg L-1 of PNP in anode MFC with the addition of oxygen. The highest PNP degradation was 4, 37.75, and 99.89% in anaerobic, aerobic, and aerated anode of MFC respectively, at 7 h. The maximum voltage generation in aerated anode was 183 mV, which was comparatively higher than aerobic (150 mV) and anaerobic (68 mV). The qRT-PCR results confirmed that the oxygenase genes in strain LZU-3 were up-regulated from 17.51 to 39.39-fold at 1.6-4.5 mg L-1 of oxygen concentrations resulted in PNP degradation in anode MFC. This study demonstrated that supplementation of oxygen into the anode MFC might be a potential approach for biodegradation of recalcitrant compounds and electricity generation.
Collapse
Affiliation(s)
- Aman Khan
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Zhengjun Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, PR China
| | - Shuai Zhao
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Hongyuhang Ni
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Yaxin Pei
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Rong Xu
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Zhenmin Ling
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Pu Liu
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, Gansu, PR China
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, Gansu, PR China.
| |
Collapse
|
17
|
|
18
|
Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M. Biodegradation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9: Overexpression of amidohydrolase induced by pyrene and BaP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:813-821. [PMID: 30253363 DOI: 10.1016/j.scitotenv.2018.09.192] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
A Gram-positive bacterium, Rhodococcus wratislaviensis strain 9, completely degraded 280 μM of phenanthrene, 40% of 50 μM pyrene or 28% of 40 μM benzo[a]pyrene (BaP), each supplemented in M9 medium, within 7 days. PCR screening with gene-specific primers indicated that the strain 9 harbors genes which code for 2,3-dihydroxybiphenyl 1,2-dioxygenase (bphC), 4-nitrophenol 2-monooxygenase component B (npcB) as well as oxygenase component (nphA1), 4-hydroxybenzoate 3-monooxygenase (phbH), extradiol dioxygenase (edo), and naphthalene dioxygenase (ndo), all of which are largely implicated in biodegradation of several aromatic hydrocarbons. An orthogonal design experiment revealed that BaP biodegradation was greatly enhanced by surfactants such as Tween 80, Triton X-100 and linoleic acid, suggesting that bioavailability is the major limiting factor in bacterial metabolism of BaP. Both pyrene and BaP induced the overexpression of amidohydrolase, a metallo-dependent hydrolase, possibly involved in their biodegradation by strain 9. The up-regulation of amidohydrolase gene induced by BaP, in particular, was also confirmed by semi-quantitative RT-PCR. Catechol 2,3-dioxygenase and the large subunit of ndo, but not amidohydrolase, accumulated when the strain 9 was grown on phenanthrene. To our knowledge, this is the first report on overexpression of amidohydrolase and its possible implication in bacterial degradation of high-molecular weight PAHs.
Collapse
Affiliation(s)
- Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan NSW 2308, Australia, and CRC CARE, Newcastle University LPO, PO Box 18, Callaghan, NSW 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur 515055, India
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan NSW 2308, Australia, and CRC CARE, Newcastle University LPO, PO Box 18, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan NSW 2308, Australia, and CRC CARE, Newcastle University LPO, PO Box 18, Callaghan, NSW 2308, Australia.
| |
Collapse
|
19
|
Sengupta K, Swain MT, Livingstone PG, Whitworth DE, Saha P. Genome Sequencing and Comparative Transcriptomics Provide a Holistic View of 4-Nitrophenol Degradation and Concurrent Fatty Acid Catabolism by Rhodococcus sp. Strain BUPNP1. Front Microbiol 2019; 9:3209. [PMID: 30662435 PMCID: PMC6328493 DOI: 10.3389/fmicb.2018.03209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/11/2018] [Indexed: 12/03/2022] Open
Abstract
Rhodococcus sp.strain BUPNP1 can utilize the priority environmental pollutant 4-nitrophenol (4-NP) as its sole source of carbon and energy. In this study, genome and transcriptome sequencing were used to gain mechanistic insights into 4-NP degradation. The draft BUPNP1 genome is 5.56 Mbp and encodes 4,963 proteins, which are significantly enriched in hypothetical proteins compared to other Rhodococcus sp. A novel 4-NP catabolic 43 gene cluster “nph” was identified that encodes all the genes required for the conversion of 4-NP into acetyl-CoA and succinate, via 4-nitrocatechol. The cluster also encodes pathways for the catabolism of other diverse aromatic compounds. Comparisons between BUPN1 growing on either 4-NP or glucose resulted in significant changes in the expression of many nph cluster genes, and, during 4-NP growth, a loss of lipid inclusions. Moreover, fatty acid degradation/synthesis genes were found within the nph cluster, suggesting fatty acids may be concurrently catabolised with 4-NP. A holistic model for the action of the nph gene cluster is proposed which incorporates genetic architecture, uptake and metabolism of aromatic compounds, enzymatic activities and transcriptional regulation. The model provides testable hypotheses for further biochemical investigations into the genes of the nph cluster, for potential exploitation in bioremediation.
Collapse
Affiliation(s)
- Kriti Sengupta
- Department of Microbiology, Burdwan University, Bardhaman, India
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Paul G Livingstone
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - David E Whitworth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Pradipta Saha
- Department of Microbiology, Burdwan University, Bardhaman, India
| |
Collapse
|
20
|
Zhang H, Yu T, Wang Y, Li J, Wang G, Ma Y, Liu Y. 4-Chlorophenol Oxidation Depends on the Activation of an AraC-Type Transcriptional Regulator, CphR, in Rhodococcus sp. Strain YH-5B. Front Microbiol 2018; 9:2481. [PMID: 30405555 PMCID: PMC6205950 DOI: 10.3389/fmicb.2018.02481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 11/13/2022] Open
Abstract
4-Chlorophenol (4-CP) oxidation plays an essential role in the detoxification of 4-CP. However, oxidative regulation of 4-CP at the genetic and biochemical levels has not yet been studied. To explore the regulation mechanism of 4-CP oxidation, a novel gene cluster, cphRA2A1, involved in biodegradation of 4-CP was identified and cloned from Rhodococcus sp. strain YH-5B by genome walking. The sequence analysis showed that the cphRA2A1 gene cluster encoded an AraC-type transcriptional regulator and a two-component monooxygenase enzyme, while quantitative real-time PCR analysis further revealed that cphR was constitutively expressed and positively regulated the transcription of cphA2A1 genes in response to 4-CP or phenol, as evidenced by gene knockout and complementation experiments. Through the transcriptional fusion of the mutated cphA2A1 promoter with the lacZ gene, it was found that the CphR regulator binding sites had two 15-bp imperfect direct repeats (TGCA-N6-GGNTA) at -35 to -69 upstream of the cphA2A1 transcriptional start site. Notably, the sub-motifs at the -46 to -49 positions played a critical role in the appropriate interaction with the CphR dimer. In addition, it was confirmed that the monooxygenase subunits CphA1 and CphA2, which were purified by His-tag affinity chromatography, were able to catalyze the conversion of 4-CP to 4-chlorocatechol, suggesting that strain YH-5B could degrade 4-CP via the 4-chlorocatechol pathway. This study enhances our understanding of the genetic and biochemical diversity in the transcriptional regulation of 4-CP oxidation in Gram-positive bacteria.
Collapse
Affiliation(s)
- Hui Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ting Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yiran Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jie Li
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Guangli Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
21
|
Pimviriyakul P, Surawatanawong P, Chaiyen P. Oxidative dehalogenation and denitration by a flavin-dependent monooxygenase is controlled by substrate deprotonation. Chem Sci 2018; 9:7468-7482. [PMID: 30319747 PMCID: PMC6180312 DOI: 10.1039/c8sc01482e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Enzymes that are capable of detoxifying halogenated phenols (HPs) and nitrophenols (NPs) are valuable for bioremediation and waste biorefining. HadA monooxygenase was found to perform dual functions of oxidative dehalogenation (hydroxylation plus halide elimination) and denitration (hydroxylation plus nitro elimination). Rate constants associated with individual steps of HadA reactions with phenol, halogenated phenols and nitrophenols were measured using combined transient kinetic approaches of stopped-flow absorbance/fluorescence and rapid-quench flow techniques. Density functional theory was used to calculate the thermodynamic and electronic parameters associated with hydroxylation and group elimination steps. These parameters were correlated with the rate constants of hydroxylation, group elimination, and overall product formation to identify factors controlling individual steps. The results indicated that the hydroxylation rate constant is higher when the pK a of the phenolic group is lower, i.e. it is more easily deprotonated, but not higher when the energy gap between the E LUMO of the C4a-hydroperoxy-FAD intermediate and the E HOMO of the phenolate substrate is lower. These data suggest that the substrate deprotonation has a higher energy barrier than the -OH transfer, and thus controls the hydroxylation step. For the group elimination, the process is controlled by the ability of the C-X bond to break. For the overall product formation (hydroxylation and group elimination combined), this analysis showed that the rate constant of product formation is dependent on the pK a value of the substrate, indicating that the overall reaction is controlled by substrate deprotonation. This step also likely has the highest energy barrier and thus controls the overall process of oxidative dehalogenation and denitration by HadA. This report is the first to identify a key mechanistic factor controlling the enzymatic processes of oxidative dehalogenation and denitration.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- School of Biomolecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wangchan Valley , Rayong , 21210 , Thailand .
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology , Faculty of Science , Mahidol University , Bangkok , 10400 , Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry , Faculty of Science , Mahidol University , Bangkok , 10400 , Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wangchan Valley , Rayong , 21210 , Thailand .
| |
Collapse
|
22
|
Pimviriyakul P, Chaiyen P. A complete bioconversion cascade for dehalogenation and denitration by bacterial flavin-dependent enzymes. J Biol Chem 2018; 293:18525-18539. [PMID: 30282807 DOI: 10.1074/jbc.ra118.005538] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/29/2018] [Indexed: 12/17/2022] Open
Abstract
Halogenated phenol and nitrophenols are toxic compounds that are widely accumulated in the environment. Enzymes in the had operon from the bacterium Ralstonia pickettii DTP0602 have the potential for application as biocatalysts in the degradation of many of these toxic chemicals. HadA monooxygenase previously was identified as a two-component reduced FAD (FADH-)-utilizing monooxygenase with dual activities of dehalogenation and denitration. However, the partner enzymes of HadA, that is, the flavin reductase and quinone reductase that provide the FADH- for HadA and reduce quinone to hydroquinone, remain to be identified. In this report, we overexpressed and purified the flavin reductases, HadB and HadX, to investigate their functional and catalytic properties. Our results indicated that HadB is an FMN-dependent quinone reductase that converts the quinone products from HadA to hydroquinone compounds that are more stable and can be assimilated by downstream enzymes in the pathway. Transient kinetics indicated that HadB prefers NADH and menadione as the electron donor and acceptor, respectively. We found that HadX is an FAD-bound flavin reductase, which can generate FADH- for HadA to catalyze dehalogenation or denitration reactions. Thermodynamic and transient kinetic experiments revealed that HadX prefers to bind FAD over FADH- and that HadX can transfer FADH- from HadX to HadA via free diffusion. Moreover, HadX rapidly catalyzed NADH-mediated reduction of flavin and provided the FADH- for a monooxygenase of a different system. Combination of all three flavin-dependent enzymes, i.e. HadA/HadB/HadX, reconstituted an effective dehalogenation and denitration cascade, which may be useful for future bioremediation applications.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- From the School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210 and.,the Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 14000, Thailand
| | - Pimchai Chaiyen
- From the School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210 and
| |
Collapse
|
23
|
Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. BIOLOGY 2018; 7:biology7030042. [PMID: 30072664 PMCID: PMC6165268 DOI: 10.3390/biology7030042] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
Flavoprotein monooxygenases create valuable compounds that are of high interest for the chemical, pharmaceutical, and agrochemical industries, among others. Monooxygenases that use flavin as cofactor are either single- or two-component systems. Here we summarize the current knowledge about two-component flavin adenine dinucleotide (FAD)-dependent monooxygenases and describe their biotechnological relevance. Two-component FAD-dependent monooxygenases catalyze hydroxylation, epoxidation, and halogenation reactions and are physiologically involved in amino acid metabolism, mineralization of aromatic compounds, and biosynthesis of secondary metabolites. The monooxygenase component of these enzymes is strictly dependent on reduced FAD, which is supplied by the reductase component. More and more representatives of two-component FAD-dependent monooxygenases have been discovered and characterized in recent years, which has resulted in the identification of novel physiological roles, functional properties, and a variety of biocatalytic opportunities.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - George Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Karl-Heinz van Pée
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Dirk Tischler
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| |
Collapse
|
24
|
Heine T, Zimmerling J, Ballmann A, Kleeberg SB, Rückert C, Busche T, Winkler A, Kalinowski J, Poetsch A, Scholtissek A, Oelschlägel M, Schmidt G, Tischler D. On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2. Appl Environ Microbiol 2018; 84:e00154-18. [PMID: 29475871 PMCID: PMC5930330 DOI: 10.1128/aem.00154-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 02/05/2023] Open
Abstract
Among bacteria, only a single styrene-specific degradation pathway has been reported so far. It comprises the activity of styrene monooxygenase, styrene oxide isomerase, and phenylacetaldehyde dehydrogenase, yielding phenylacetic acid as the central metabolite. The alternative route comprises ring-hydroxylating enzymes and yields vinyl catechol as central metabolite, which undergoes meta-cleavage. This was reported to be unspecific and also allows the degradation of benzene derivatives. However, some bacteria had been described to degrade styrene but do not employ one of those routes or only parts of them. Here, we describe a novel "hybrid" degradation pathway for styrene located on a plasmid of foreign origin. As putatively also unspecific, it allows metabolizing chemically analogous compounds (e.g., halogenated and/or alkylated styrene derivatives). Gordonia rubripertincta CWB2 was isolated with styrene as the sole source of carbon and energy. It employs an assembled route of the styrene side-chain degradation and isoprene degradation pathways that also funnels into phenylacetic acid as the central metabolite. Metabolites, enzyme activity, genome, transcriptome, and proteome data reinforce this observation and allow us to understand this biotechnologically relevant pathway, which can be used for the production of ibuprofen.IMPORTANCE The degradation of xenobiotics by bacteria is not only important for bioremediation but also because the involved enzymes are potential catalysts in biotechnological applications. This study reveals a novel degradation pathway for the hazardous organic compound styrene in Gordonia rubripertincta CWB2. This study provides an impressive illustration of horizontal gene transfer, which enables novel metabolic capabilities. This study presents glutathione-dependent styrene metabolization in an (actino-)bacterium. Further, the genomic background of the ability of strain CWB2 to produce ibuprofen is demonstrated.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Anne Ballmann
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Christian Rückert
- Technologieplattform Genomik, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Tobias Busche
- Technologieplattform Genomik, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Anika Winkler
- Technologieplattform Genomik, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Jörn Kalinowski
- Technologieplattform Genomik, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, United Kingdom
| | - Anika Scholtissek
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Gert Schmidt
- Institut für Keramik, Glas- und Baustofftechnik, TU Bergakademie Freiberg, Freiberg, Germany
| | - Dirk Tischler
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Subashchandrabose SR, Venkateswarlu K, Krishnan K, Naidu R, Lockington R, Megharaj M. Rhodococcus wratislaviensis strain 9: An efficient p-nitrophenol degrader with a great potential for bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:176-183. [PMID: 29306813 DOI: 10.1016/j.jhazmat.2017.12.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/09/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
A Gram-positive bacterium, Rhodococcus wratislaviensis strain 9, was isolated from groundwater contaminated with nitrophenolics and trichloroethene following enrichment culture technique. The cells of strain 9 grown on LB broth (uninduced) degraded 720 μM p-nitrophenol (PNP) within 12 h, and utilized as a source of carbon and energy. Orthogonal experimental design analysis to determine optimal conditions for biodegradation of PNP showed that pH had a significant positive effect (P ≤ .05) on bacterial degradation of PNP, while glucose, di- and tri-nitrophenols exhibited significant negative effect. Cell-free extracts obtained from PNP-grown culture that contained 20 μg mL-1 protein degraded 90% of 720 μM PNP within 5 h of incubation. Two-dimensional protein analysis revealed differential expression of the oxygenase component of PNP monooxygenase and an elongation factor Tu in PNP-grown cells, but not in those grown on glucose. The strain 9 remediated laboratory wastewater containing 900 μM PNP efficiently within 14 h, indicating its great potential in bioremediation of PNP-contaminated waters.
Collapse
Affiliation(s)
- Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 18, Callaghan NSW 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Professor of Microbiology, Sri Krishnadevaraya University, Anantapur 515055, India
| | - Kannan Krishnan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 18, Callaghan NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 18, Callaghan NSW 2308, Australia
| | - Robin Lockington
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 18, Callaghan NSW 2308, Australia.
| |
Collapse
|
26
|
Transcriptional control of the phenol hydroxylase gene phe of Corynebacterium glutamicum by the AraC-type regulator PheR. Microbiol Res 2018; 209:14-20. [DOI: 10.1016/j.micres.2018.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/23/2018] [Accepted: 02/03/2018] [Indexed: 11/20/2022]
|
27
|
von Tesmar A, Hoffmann M, Abou Fayad A, Hüttel S, Schmitt V, Herrmann J, Müller R. Biosynthesis of the Klebsiella oxytoca Pathogenicity Factor Tilivalline: Heterologous Expression, in Vitro Biosynthesis, and Inhibitor Development. ACS Chem Biol 2018; 13:812-819. [PMID: 29389112 DOI: 10.1021/acschembio.7b00990] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tilvalline is a pyrrolo[4,2]benzodiazepine derivative produced by the pathobiont Klebsiella oxytoca and is the causative toxin in antibiotic associated hemorrhagic colitis (AAHC). Heterologous expression of the tilivalline biosynthetic gene cluster along with in vitro reconstitution of the respective NRPS (NpsA, ThdA, NpsB) was employed to reveal a nonenzymatic indole incorporation via a spontaneous Friedel-Crafts-like alkylation reaction. Furthermore, the heterologous system was used to generate novel tilivalline derivatives by supplementation of respective anthranilate and indole precursors. Finally, it could be shown that salicylic and acetylsalicylic acid inhibit the biosynthesis of tilivalline in K. oxytoca liquid culture, presumably by blocking the peptidyl carrier protein ThdA, pointing toward a potential application in combination therapy to prevent or alleviate the symptoms of AAHC.
Collapse
Affiliation(s)
- Alexander von Tesmar
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Michael Hoffmann
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Antoine Abou Fayad
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Stephan Hüttel
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Viktoria Schmitt
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
28
|
Ma X, Wu Y, Devaramani S, Zhang C, Niu Q, Ibrahim Shinger M, Li W, Shan D, Lu X. Preparation of GO-COOH/AuNPs/ZnAPTPP nanocomposites based on the π-π conjugation: Efficient interface for low-potential photoelectrochemical sensing of 4-nitrophenol. Talanta 2017; 178:962-969. [PMID: 29136924 DOI: 10.1016/j.talanta.2017.09.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/13/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023]
Abstract
The GO-COOH/AuNPs/ZnAPTPP nanocomposites were constructed using zinc monoamino porphyrin (ZnAPTPP) through π-π conjugation with carboxylated graphene oxide (GO-COOH) loaded with Au nanoparticles (AuNPs). Prepared materials were characterized by 1H NMR spectra, UV-vis absorption spectroscopy and electrochemical impedance spectroscopy. ITO electrode surface was modified with the prepared nanocomposites showed a good photocurrent response when the bias potential, -0.1V was applied. Nanocomposites modified ITO electrode exhibited good photo-response to the 4-nitrophenol (4-NP). ZnAPTPP were excited from HOMO to LUMO under light irradiation, the photoexcited electrons injected into the conduction band of GO-COOH, and then transferred to AuNPs further to the ITO. The presence of GO-COOH and AuNPs improved the separation of photogenerated charges due to their synergetic effect and excellent conductivity. Externally added 4-NP scavenges the photogenerated holes i.e. it acts as a sacrificial electron donor thereby it enhances the photocurrent of the system. Based on this interaction, a novel method for photoelectrochemical detection of 4-NP was developed with a linear range from 0.1 to 15nmol/L (r = 0.996) and detection limit of 0.04nmol/L (S/N = 3). Proposed method is simple and sensitive and this was successfully applied for the quantification 4-NP in river water sample matrices.
Collapse
Affiliation(s)
- Xiaofang Ma
- Key Laboratory of Bioelectrochemistry & Environmental analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; Northwest Yongxin Group Co., Ltd., Lanzhou 730046, Gansu, China
| | - Yali Wu
- Key Laboratory of Bioelectrochemistry & Environmental analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Samrat Devaramani
- Key Laboratory of Bioelectrochemistry & Environmental analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Caizhong Zhang
- Key Laboratory of Bioelectrochemistry & Environmental analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Qixia Niu
- Key Laboratory of Bioelectrochemistry & Environmental analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Mahgoub Ibrahim Shinger
- Key Laboratory of Bioelectrochemistry & Environmental analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wenqi Li
- Key Laboratory of Bioelectrochemistry & Environmental analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Duoliang Shan
- Key Laboratory of Bioelectrochemistry & Environmental analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
29
|
Wang JP, Zhang WM, Chao HJ, Zhou NY. PnpM, a LysR-Type Transcriptional Regulator Activates the Hydroquinone Pathway in para-Nitrophenol Degradation in Pseudomonas sp. Strain WBC-3. Front Microbiol 2017; 8:1714. [PMID: 28959240 PMCID: PMC5603801 DOI: 10.3389/fmicb.2017.01714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/24/2017] [Indexed: 11/17/2022] Open
Abstract
A LysR-type transcriptional regulator (LTTR), PnpR, has previously been shown to activate the transcription of operons pnpA, pnpB, and pnpCDEFG for para-nitrophenol (PNP) degradation in Pseudomonas sp. strain WBC-3. Further preliminary evidence suggested the possible presence of an LTTR additional binding site in the promoter region of pnpCDEFG. In this study, an additional LTTR PnpM, which shows 44% homology to PnpR, was determined to activate the expression of pnpCDEFG. Interestingly, a pnpM-deleted WBC-3 strain was unable to grow on PNP but accumulating hydroquinone (HQ), which is the catabolic product from PNP degradation by PnpAB and the substrate for PnpCD. Through electrophoretic mobility shift assays (EMSAs) and promoter activity detection, only PnpR was involved in the activation of pnpA and pnpB, but both PnpR and PnpM were involved in the activation of pnpCDEFG. DNase I footprinting analysis suggested that PnpR and PnpM shared the same DNA-binding regions of 27 bp in the pnpCDEFG promoter. In the presence of PNP, the protection region increased to 39 bp by PnpR and to 38 bp by PnpM. Our data suggested that both PnpR and PnpM were involved in activating pnpCDEFG expression, in which PNP rather than the substrate hydroquinone for PnpCD is the inducer. Thus, during the PNP catabolism in Pseudomonas sp. strain WBC-3, pnpA and pnpB operons for the initial two reactions were controlled by PnpR, while the third operon (pnpCDEFG) for HQ degradation was activated by PnpM and PnpR. This study builds upon our previous findings and shows that two LTTRs PnpR and PnpM are involved in the transcriptional activation of these three catabolic operons. Specifically, our identification that an LTTR, PnpM, regulates pnpCDEFG expression provides new insights in an intriguing regulation system of PNP catabolism that is controlled by two regulators.
Collapse
Affiliation(s)
- Jin-Pei Wang
- Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China.,University of Chinese Academy of SciencesBeijing, China
| | - Wen-Mao Zhang
- Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China
| | - Hong-Jun Chao
- Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China
| | - Ning-Yi Zhou
- Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
30
|
von Tesmar A, Hoffmann M, Pippel J, Fayad AA, Dausend-Werner S, Bauer A, Blankenfeldt W, Müller R. Total Biosynthesis of the Pyrrolo[4,2]benzodiazepine Scaffold Tomaymycin on an In Vitro Reconstituted NRPS System. Cell Chem Biol 2017; 24:1216-1227.e8. [PMID: 28890318 DOI: 10.1016/j.chembiol.2017.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 08/01/2017] [Indexed: 11/25/2022]
Abstract
In vitro reconstitution and biochemical analysis of natural product biosynthetic pathways remains a challenging endeavor, especially if megaenzymes of the nonribosomal peptide synthetase (NRPS) type are involved. In theory, all biosynthetic steps may be deciphered using mass spectrometry (MS)-based analyses of both the carrier protein-coupled intermediates and the free intermediates. We here report the "total biosynthesis" of the pyrrolo[4,2]benzodiazepine scaffold tomaymycin using an in vitro reconstituted NRPS system. Proteoforms were analyzed by liquid chromatography (LC)-MS to decipher every step of the biosynthesis on its respective megasynthetase with up to 170 kDa in size. To the best of our knowledge, this is the first report of a comprehensive analysis of virtually all chemical steps involved in the biosynthesis of nonribosomally synthesized natural products. The study includes experiments to determine substrate specificities of the corresponding A-domains in competition assays by analyzing the adenylation step as well as the transfer to the respective carrier protein domain.
Collapse
Affiliation(s)
- Alexander von Tesmar
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Institute for Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Michael Hoffmann
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Institute for Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Jan Pippel
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Antoine Abou Fayad
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Institute for Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Stefan Dausend-Werner
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Institute for Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, R&D Therapeutic Area Infectious Diseases, Industriepark Höchst G878, 65926 Frankfurt am Main, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Rolf Müller
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Institute for Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|
31
|
Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives. World J Microbiol Biotechnol 2017; 33:174. [DOI: 10.1007/s11274-017-2339-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/01/2017] [Indexed: 11/26/2022]
|
32
|
Heine T, Scholtissek A, Westphal AH, van Berkel WJH, Tischler D. N-terminus determines activity and specificity of styrene monooxygenase reductases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1770-1780. [PMID: 28888693 DOI: 10.1016/j.bbapap.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/10/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Styrene monooxygenases (SMOs) are two-enzyme systems that catalyze the enantioselective epoxidation of styrene to (S)-styrene oxide. The FADH2 co-substrate of the epoxidase component (StyA) is supplied by an NADH-dependent flavin reductase (StyB). The genome of Rhodococcus opacus 1CP encodes two SMO systems. One system, which we define as E1-type, displays homology to the SMO from Pseudomonas taiwanensis VLB120. The other system, originally reported as a fused system (RoStyA2B), is defined as E2-type. Here we found that E1-type RoStyB is inhibited by FMN, while RoStyA2B is known to be active with FMN. To rationalize the observed specificity of RoStyB for FAD, we generated an artificial reductase, designated as RoStyBart, in which the first 22 amino acid residues of RoStyB were joined to the reductase part of RoStyA2B, while the oxygenase part (A2) was removed. RoStyBart mainly purified as apo-protein and mimicked RoStyB in being inhibited by FMN. Pre-incubation with FAD yielded a turnover number at 30°C of 133.9±3.5s-1, one of the highest rates observed for StyB reductases. RoStyBart holo-enzyme switches to a ping-pong mechanism and fluorescence analysis indicated for unproductive binding of FMN to the second (co-substrate) binding site. In summary, it is shown for the first time that optimization of the N-termini of StyB reductases allows the evolution of their activity and specificity.
Collapse
Affiliation(s)
- Thomas Heine
- Environmental Microbiology, Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany; Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Anika Scholtissek
- Environmental Microbiology, Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany; Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Environmental Microbiology, Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany.
| |
Collapse
|
33
|
Kang C, Yang JW, Cho W, Kwak S, Park S, Lim Y, Choe JW, Kim HS. Oxidative biodegradation of 4-chlorophenol by using recombinant monooxygenase cloned and overexpressed from Arthrobacter chlorophenolicus A6. BIORESOURCE TECHNOLOGY 2017; 240:123-129. [PMID: 28343861 DOI: 10.1016/j.biortech.2017.03.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 05/06/2023]
Abstract
In this study, cphC-I and cphB, encoding a putative two-component flavin-diffusible monooxygenase (TC-FDM) complex, were cloned from Arthrobacter chlorophenolicus A6. The corresponding enzymes were overexpressed to assess the feasibility of their utilization for the oxidative decomposition of 4-chlorophenol (4-CP). Soluble CphC-I was produced at a high level (∼50%), and subsequently purified. Since CphB was expressed in an insoluble form, a flavin reductase, Fre, cloned from Escherichia coli was used as an alternative reductase. CphC-I utilized cofactor FADH2, which was reduced by Fre for the hydroxylation of 4-CP. This recombinant enzyme complex exhibited a higher specific activity for the oxidation of 4-CP (45.34U/mg-protein) than that exhibited by CphC-I contained in cells (0.18U/mg-protein). The Michaelis-Menten kinetic parameters were determined as: vmax=223.3μM·min-1, KM=249.4μM, and kcat/KM=0.052min-1·μM-1. These results could be useful for the development of a new biochemical remediation technique based on enzymatic agents catalyzing the degradation of phenolic contaminants.
Collapse
Affiliation(s)
- Christina Kang
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jun Won Yang
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Wooyoun Cho
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seonyeong Kwak
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sungyoon Park
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yejee Lim
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jae Wan Choe
- Civil Engineering, Gwangju University, 277 Hyodeok-ro, Nam-gu, Gwanju 61743, Republic of Korea
| | - Han S Kim
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
34
|
Characterization of methyl parathion degradation by a Burkholderia zhejiangensis strain, CEIB S4-3, isolated from agricultural soils. Biodegradation 2017; 28:351-367. [DOI: 10.1007/s10532-017-9801-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/04/2017] [Indexed: 11/27/2022]
|
35
|
Pimviriyakul P, Thotsaporn K, Sucharitakul J, Chaiyen P. Kinetic Mechanism of the Dechlorinating Flavin-dependent Monooxygenase HadA. J Biol Chem 2017; 292:4818-4832. [PMID: 28159841 DOI: 10.1074/jbc.m116.774448] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/30/2017] [Indexed: 01/26/2023] Open
Abstract
The accumulation of chlorophenols (CPs) in the environment, due to their wide use as agrochemicals, has become a serious environmental problem. These organic halides can be degraded by aerobic microorganisms, where the initial steps of various biodegradation pathways include an oxidative dechlorinating process in which chloride is replaced by a hydroxyl substituent. Harnessing these dechlorinating processes could provide an opportunity for environmental remediation, but detailed catalytic mechanisms for these enzymes are not yet known. To close this gap, we now report transient kinetics and product analysis of the dechlorinating flavin-dependent monooxygenase, HadA, from the aerobic organism Ralstonia pickettii DTP0602, identifying several mechanistic properties that differ from other enzymes in the same class. We first overexpressed and purified HadA to homogeneity. Analyses of the products from single and multiple turnover reactions demonstrated that HadA prefers 4-CP and 2-CP over CPs with multiple substituents. Stopped-flow and rapid-quench flow experiments of HadA with 4-CP show the involvement of specific intermediates (C4a-hydroperoxy-FAD and C4a-hydroxy-FAD) in the reaction, define rate constants and the order of substrate binding, and demonstrate that the hydroxylation step occurs prior to chloride elimination. The data also identify the non-productive and productive paths of the HadA reactions and demonstrate that product formation is the rate-limiting step. This is the first elucidation of the kinetic mechanism of a two-component flavin-dependent monooxygenase that can catalyze oxidative dechlorination of various CPs, and as such it will serve as the basis for future investigation of enzyme variants that will be useful for applications in detoxifying chemicals hazardous to human health.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- From the Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400 and
| | - Kittisak Thotsaporn
- the Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10300, Thailand
| | - Jeerus Sucharitakul
- the Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10300, Thailand
| | - Pimchai Chaiyen
- From the Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400 and
| |
Collapse
|
36
|
A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell. Biosens Bioelectron 2016; 85:860-868. [DOI: 10.1016/j.bios.2016.06.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/27/2016] [Accepted: 06/04/2016] [Indexed: 11/13/2022]
|
37
|
Min J, Lu Y, Hu X, Zhou NY. Biochemical Characterization of 3-Methyl-4-nitrophenol Degradation in Burkholderia sp. Strain SJ98. Front Microbiol 2016; 7:791. [PMID: 27252697 PMCID: PMC4879640 DOI: 10.3389/fmicb.2016.00791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/09/2016] [Indexed: 11/24/2022] Open
Abstract
Several strains have been reported to grow on 3-methyl-4-nitrophenol (3M4NP), the primary breakdown product of the excessively used insecticide fenitrothion. However, the microbial degradation of 3M4NP at molecular and biochemical levels remains unknown. Here, methyl-1,4-benzoquinone (MBQ) and methylhydroquinone (MHQ), rather than catechol proposed previously, were identified as the intermediates before ring cleavage during 3M4NP degradation by Burkholderia sp. strain SJ98. Real-time quantitative PCR analysis indicated that the pnpABA1CDEF cluster involved in para-nitrophenol (PNP) and 2-chloro-4-nitrophenol (2C4NP) catabolism was also likely responsible for 3M4NP degradation in this strain. Purified PNP 4-monooxygenase (PnpA) is able to catalyze the monooxygenation of 3M4NP to MBQ and exhibited an apparent Km value of 20.3 ± 2.54 μM for 3M4NP, and pnpA is absolutely necessary for the catabolism of 3M4NP by gene knock-out and complementation. PnpB, a 1,4-benzoquinone reductase catalyzes the reduction of MBQ to MHQ, and also found to enhance PnpA activity in vitro in the conversion of 3M4NP to MBQ. By sequential catalysis assays, PnpCD, PnpE, and PnpF were likely involved in the lower pathway of 3M4NP catabolism. Although NpcCD, NpcE, and NpcF are able to catalyze the sequential conversion of MHQ in vitro, these enzymes are unlikely involved in 3M4NP catabolism because their coding genes were not upregulated by 3M4NP induction in vivo. These results revealed that the enzymes involved in PNP and 2C4NP catabolism were also responsible for 3M4NP degradation in strain SJ98. This fills a gap in our understanding of the microbial degradation of 3M4NP at molecular and biochemical levels and also provides another example to illustrate the adaptive flexibility in microbial catabolism for structurally similar compounds.
Collapse
Affiliation(s)
- Jun Min
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai, China
| | - Yang Lu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
38
|
Chen Q, Tu H, Huang F, Wang Y, Dong W, Wang W, Li Z, Wang F, Cui Z. Impact of pnpR, a LysR-type regulator-encoding gene, on the cellular processes of Pseudomonas putida DLL-E4. FEMS Microbiol Lett 2016; 363:fnw110. [PMID: 27190157 DOI: 10.1093/femsle/fnw110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 11/14/2022] Open
Abstract
LysR-type transcriptional regulators (LTTRs) regulate various cellular processes in bacteria. pnpR is an LTTR-encoding gene involved in the regulation of hydroquinone (HQ) degradation, and its effects on the cellular processes of Pseudomonas putida DLL-E4 were investigated at the physiological, biochemical and molecular levels. Reverse transcription polymerase chain reaction revealed that pnpR positively regulated its own expression and that of the pnpC1C2DECX1X2 operon; additionally, pnpR partially regulated the expression of pnpA when P. putida was grown on para-nitrophenol (PNP) or HQ. Strains DLL-E4 and DLL-ΔpnpR exhibited similar cellular morphologies and growth rates. Transcriptome analysis revealed that pnpR regulated the expression of genes in addition to those involved in PNP degradation. A total of 20 genes were upregulated and 19 genes were downregulated by at least 2-fold in strain DLL-ΔpnpR relative to strain DLL-E4. Bioinformatic analysis revealed putative PnpR-binding sites located in the upstream regions of genes involved in PNP degradation, carbon catabolite repression and other cellular processes. The utilization of L-aspartic acid, L-histidine, L-pyroglutamic acid, L-serine, γ-aminobutyric acid, D,L-lactic acid, D-saccharic acid, succinic acid and L-alaninamide was increased at least 1.3-fold in strain DLL-ΔpnpR as shown by BIOLOG assays, indicating that pnpR plays a potential negative regulation role in the utilization of carbon sources.
Collapse
Affiliation(s)
- Qiongzhen Chen
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Hui Tu
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fei Huang
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yicheng Wang
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Weiliang Dong
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 211800, P.R. China
| | - Wenhui Wang
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, P.R. China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
39
|
Characterization of para-Nitrophenol-Degrading Bacterial Communities in River Water by Using Functional Markers and Stable Isotope Probing. Appl Environ Microbiol 2015. [PMID: 26209677 DOI: 10.1128/aem.01794-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA-listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [(13)C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations.
Collapse
|
40
|
Nešvera J, Rucká L, Pátek M. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants. ADVANCES IN APPLIED MICROBIOLOGY 2015; 93:107-60. [PMID: 26505690 DOI: 10.1016/bs.aambs.2015.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phenol and its derivatives (alkylphenols, halogenated phenols, nitrophenols) are natural or man-made aromatic compounds that are ubiquitous in nature and in human-polluted environments. Many of these substances are toxic and/or suspected of mutagenic, carcinogenic, and teratogenic effects. Bioremediation of the polluted soil and water using various bacteria has proved to be a promising option for the removal of these compounds. In this review, we describe a number of peripheral pathways of aerobic and anaerobic catabolism of various natural and xenobiotic phenolic compounds, which funnel these substances into a smaller number of central catabolic pathways. Finally, the metabolites are used as carbon and energy sources in the citric acid cycle. We provide here the characteristics of the enzymes that convert the phenolic compounds and their catabolites, show their genes, and describe regulatory features. The genes, which encode these enzymes, are organized on chromosomes and plasmids of the natural bacterial degraders in various patterns. The accumulated data on similarities and the differences of the genes, their varied organization, and particularly, an astonishingly broad range of intricate regulatory mechanism may be read as an exciting adventurous book on divergent evolutionary processes and horizontal gene transfer events inscribed in the bacterial genomes. In the end, the use of this wealth of bacterial biodegradation potential and the manipulation of its genetic basis for purposes of bioremediation is exemplified. It is envisioned that the integrated high-throughput techniques and genome-level approaches will enable us to manipulate systems rather than separated genes, which will give birth to systems biotechnology.
Collapse
Affiliation(s)
- Jan Nešvera
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Lenka Rucká
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
41
|
Paca J, Halecky M, Karlova P, Gelbicova T, Kozliak E. Interactions among mononitrophenol isomers during biodegradation of their mixtures. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:109-118. [PMID: 25560256 DOI: 10.1080/10934529.2014.975038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Continuous aerobic biodegradation of 4-NP, 3-NP and 2-NP mixture was monitored in a packed bed reactor in simulated wastewater with a mixed microbial culture immobilized on expanded slate. Substrate loading was varied by increasing the concentration of one isomer while keeping the other two at constant levels, all at a constant residence time of 60 min. At large concentrations, all of the individual NP isomers suppressed the degradation rates of the other isomers at steady state; however, the observed patterns and threshold concentrations were different for all three substrates. As a result, conditions were determined for stable and efficient removal of NP mixtures. Changes of the biofilm composition during a long-term operation were identified.
Collapse
Affiliation(s)
- Jan Paca
- a Institute of Chemical Technology, Department of Biotechnology , Prague , Czech Republic
| | | | | | | | | |
Collapse
|
42
|
Transcriptional activation of multiple operons involved in para-nitrophenol degradation by Pseudomonas sp. Strain WBC-3. Appl Environ Microbiol 2014; 81:220-30. [PMID: 25326309 DOI: 10.1128/aem.02720-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strain WBC-3 utilizes para-nitrophenol (PNP) as a sole carbon and energy source. The genes involved in PNP degradation are organized in the following three operons: pnpA, pnpB, and pnpCDEFG. How the expression of the genes is regulated is unknown. In this study, an LysR-type transcriptional regulator (LTTR) is identified to activate the expression of the genes in response to the specific inducer PNP. While the LTTR coding gene pnpR was found to be not physically linked to any of the three catabolic operons, it was shown to be essential for the growth of strain WBC-3 on PNP. Furthermore, PnpR positively regulated its own expression, which is different from the function of classical LTTRs. A regulatory binding site (RBS) with a 17-bp imperfect palindromic sequence (GTT-N11-AAC) was identified in all pnpA, pnpB, pnpC, and pnpR promoters. Through electrophoretic mobility shift assays and mutagenic analyses, this motif was proven to be necessary for PnpR binding. This consensus motif is centered at positions approximately -55 bp relative to the four transcriptional start sites (TSSs). RBS integrity was required for both high-affinity PnpR binding and transcriptional activation of pnpA, pnpB, and pnpR. However, this integrity was essential only for high-affinity PnpR binding to the promoter of pnpCDEFG and not for its activation. Intriguingly, unlike other LTTRs studied, no changes in lengths of the PnpR binding regions of the pnpA and pnpB promoters were observed after the addition of the inducer PNP in DNase I footprinting.
Collapse
|
43
|
A mechanistic study on SMOB-ADP1: an NADH:flavin oxidoreductase of the two-component styrene monooxygenase of Acinetobacter baylyi ADP1. Arch Microbiol 2014; 196:829-45. [PMID: 25116410 DOI: 10.1007/s00203-014-1022-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
Two styrene monooxygenase types, StyA/StyB and StyA1/StyA2B, have been described each consisting of an epoxidase and a reductase. A gene fusion which led to the chimeric reductase StyA2B and the occurrence in different phyla are major differences. Identification of SMOA/SMOB-ADP1 of Acinetobacter baylyi ADP1 may enlighten the gene fusion event since phylogenetic analysis indicated both proteins to be more related to StyA2B than to StyA/StyB. SMOB-ADP1 is classified like StyB and StyA2B as HpaC-like reductase. Substrate affinity and turnover number of the homo-dimer SMOB-ADP1 were determined for NADH (24 µM, 64 s(-1)) and FAD (4.4 µM, 56 s(-1)). SMOB-ADP1 catalysis follows a random sequential mechanism, and FAD fluorescence is quenched upon binding to SMOB-ADP1 (K d = 1.8 µM), which clearly distinguishes that reductase from StyB of Pseudomonas. In summary, this study confirmes made assumptions and provides phylogenetic and biochemical data for the differentiation of styrene monooxygenase-related flavin reductases.
Collapse
|
44
|
The gene cluster for para-nitrophenol catabolism is responsible for 2-chloro-4-nitrophenol degradation in Burkholderia sp. strain SJ98. Appl Environ Microbiol 2014; 80:6212-22. [PMID: 25085488 DOI: 10.1128/aem.02093-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia sp. strain SJ98 (DSM 23195) utilizes 2-chloro-4-nitrophenol (2C4NP) or para-nitrophenol (PNP) as a sole source of carbon and energy. Here, by genetic and biochemical analyses, a 2C4NP catabolic pathway different from those of all other 2C4NP utilizers was identified with chloro-1,4-benzoquinone (CBQ) as an intermediate. Reverse transcription-PCR analysis showed that all of the pnp genes in the pnpABA1CDEF cluster were located in a single operon, which is significantly different from the genetic organization of all other previously reported PNP degradation gene clusters, in which the structural genes were located in three different operons. All of the Pnp proteins were purified to homogeneity as His-tagged proteins. PnpA, a PNP 4-monooxygenase, was found to be able to catalyze the monooxygenation of 2C4NP to CBQ. PnpB, a 1,4-benzoquinone reductase, has the ability to catalyze the reduction of CBQ to chlorohydroquinone. Moreover, PnpB is also able to enhance PnpA activity in vitro in the conversion of 2C4NP to CBQ. Genetic analyses indicated that pnpA plays an essential role in the degradation of both 2C4NP and PNP by gene knockout and complementation. In addition to being responsible for the lower pathway of PNP catabolism, PnpCD, PnpE, and PnpF were also found to be likely involved in that of 2C4NP catabolism. These results indicated that the catabolism of 2C4NP and that of PNP share the same gene cluster in strain SJ98. These findings fill a gap in our understanding of the microbial degradation of 2C4NP at the molecular and biochemical levels.
Collapse
|
45
|
Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii. Appl Microbiol Biotechnol 2014; 98:8267-79. [DOI: 10.1007/s00253-014-5881-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
|
46
|
Arora PK, Srivastava A, Singh VP. Bacterial degradation of nitrophenols and their derivatives. JOURNAL OF HAZARDOUS MATERIALS 2014; 266:42-59. [PMID: 24374564 DOI: 10.1016/j.jhazmat.2013.12.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 11/22/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
This review intends to provide an overview of bacterial degradation of nitrophenols (NPs) and their derivatives. The main scientific focus is on biochemical and genetic characterization of bacterial degradation of NPs. Other aspects such as bioremediation and chemotaxis correlated with biodegradation of NPs are also discussed. This review will increase our current understanding of bacterial degradation of NPs and their derivatives.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India.
| | - Alok Srivastava
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Pal Singh
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| |
Collapse
|
47
|
Genes involved in degradation of para-nitrophenol are differentially arranged in form of non-contiguous gene clusters in Burkholderia sp. strain SJ98. PLoS One 2013; 8:e84766. [PMID: 24376843 PMCID: PMC3871574 DOI: 10.1371/journal.pone.0084766] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/18/2013] [Indexed: 11/19/2022] Open
Abstract
Biodegradation of para-Nitrophenol (PNP) proceeds via two distinct pathways, having 1,2,3-benzenetriol (BT) and hydroquinone (HQ) as their respective terminal aromatic intermediates. Genes involved in these pathways have already been studied in different PNP degrading bacteria. Burkholderia sp. strain SJ98 degrades PNP via both the pathways. Earlier, we have sequenced and analyzed a ~41 kb fragment from the genomic library of strain SJ98. This DNA fragment was found to harbor all the lower pathway genes; however, genes responsible for the initial transformation of PNP could not be identified within this fragment. Now, we have sequenced and annotated the whole genome of strain SJ98 and found two ORFs (viz., pnpA and pnpB) showing maximum identity at amino acid level with p-nitrophenol 4-monooxygenase (PnpM) and p-benzoquinone reductase (BqR). Unlike the other PNP gene clusters reported earlier in different bacteria, these two ORFs in SJ98 genome are physically separated from the other genes of PNP degradation pathway. In order to ascertain the identity of ORFs pnpA and pnpB, we have performed in-vitro assays using recombinant proteins heterologously expressed and purified to homogeneity. Purified PnpA was found to be a functional PnpM and transformed PNP into benzoquinone (BQ), while PnpB was found to be a functional BqR which catalyzed the transformation of BQ into hydroquinone (HQ). Noticeably, PnpM from strain SJ98 could also transform a number of PNP analogues. Based on the above observations, we propose that the genes for PNP degradation in strain SJ98 are arranged differentially in form of non-contiguous gene clusters. This is the first report for such arrangement for gene clusters involved in PNP degradation. Therefore, we propose that PNP degradation in strain SJ98 could be an important model system for further studies on differential evolution of PNP degradation functions.
Collapse
|
48
|
Function of a glutamine synthetase-like protein in bacterial aniline oxidation via γ-glutamylanilide. J Bacteriol 2013; 195:4406-14. [PMID: 23893114 DOI: 10.1128/jb.00397-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter sp. strain YAA has five genes (atdA1 to atdA5) involved in aniline oxidation as a part of the aniline degradation gene cluster. From sequence analysis, the five genes were expected to encode a glutamine synthetase (GS)-like protein (AtdA1), a glutamine amidotransferase-like protein (AtdA2), and an aromatic compound dioxygenase (AtdA3, AtdA4, and AtdA5) (M. Takeo, T. Fujii, and Y. Maeda, J. Ferment. Bioeng. 85:17-24, 1998). A recombinant Pseudomonas strain harboring these five genes quantitatively converted aniline into catechol, demonstrating that catechol is the major oxidation product from aniline. To elucidate the function of the GS-like protein AtdA1 in aniline oxidation, we purified it from recombinant Escherichia coli harboring atdA1. The purified AtdA1 protein produced gamma-glutamylanilide (γ-GA) quantitatively from aniline and l-glutamate in the presence of ATP and MgCl2. This reaction was identical to glutamine synthesis by GS, except for the use of aniline instead of ammonia as the substrate. Recombinant Pseudomonas strains harboring the dioxygenase genes (atdA3 to atdA5) were unable to degrade aniline but converted γ-GA into catechol, indicating that γ-GA is an intermediate to catechol and a direct substrate for the dioxygenase. Unexpectedly, a recombinant Pseudomonas strain harboring only atdA2 hydrolyzed γ-GA into aniline, reversing the γ-GA formation by AtdA1. Deletion of atdA2 from atdA1 to atdA5 caused γ-GA accumulation from aniline in recombinant Pseudomonas cells and inhibited the growth of a recombinant Acinetobacter strain on aniline, suggesting that AtdA2 prevents γ-GA accumulation that is harmful to the host cell.
Collapse
|
49
|
Khan F, Pal D, Vikram S, Cameotra SS. Metabolism of 2-chloro-4-nitroaniline via novel aerobic degradation pathway by Rhodococcus sp. strain MB-P1. PLoS One 2013; 8:e62178. [PMID: 23614030 PMCID: PMC3629101 DOI: 10.1371/journal.pone.0062178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/18/2013] [Indexed: 11/21/2022] Open
Abstract
2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Deepika Pal
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Surendra Vikram
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Swaranjit Singh Cameotra
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
- * E-mail:
| |
Collapse
|
50
|
Isolation and characterization of a novel Rhodococcus strain with switchable carbonyl reductase and para-acetylphenol hydroxylase activities. ACTA ACUST UNITED AC 2013; 40:11-20. [DOI: 10.1007/s10295-012-1199-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/10/2012] [Indexed: 12/22/2022]
Abstract
Abstract
In the search for an effective biocatalyst for the reduction of acetophenones with unprotected hydroxy group on the benzene ring, a microorganism, which reduced para-acetylphenol to S-(−)-1-(para-hydroxyphenyl)ethanol under anaerobic conditions, was isolated from soil samples and the 16S rDNA study showed that it was phylogenetically affiliated with species of the genus Rhodococcus and was most similar to Rhodococcus pyridinivorans. Unexpectedly, this strain also hydroxylated para-acetylphenol to give 4-acetylcatechol in presence of oxygen, possessing para-acetylphenol hydroxylase activity. While the reduction of para-acetylphenol had an optimal reaction pH at 7 and a broad optimal temperature range (35–45 °C), the hydroxylation reached the maximum conversion at the pH range of 7–8 and 35 °C. This study identified for the first time a Rhodococcus strain with para-acetylphenol hydroxylase activity, which also contains highly enantioselective carbonyl reductase activity with potential applications for the asymmetric reduction of these less-explored but important ketones such as α-aminoacetophenone, 3′-hydroxyacetophenone and 4′-hydroxyacetophenone. The para-acetylphenol hydroxylase and carbonyl reductase activity are switchable by the reaction conditions.
Collapse
|