1
|
Qian S, Chen G, Li R, Ma Y, Pan L, Wang X, Wang X. Disulfide stress and its role in cardiovascular diseases. Redox Biol 2024; 75:103297. [PMID: 39127015 PMCID: PMC11364009 DOI: 10.1016/j.redox.2024.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of mortality in humans, and oxidative stress plays a pivotal role in disease progression. This phenomenon typically arises from weakening of the cellular antioxidant system or excessive accumulation of peroxides. This review focuses on a specialized form of oxidative stress-disulfide stress-which is triggered by an imbalance in the glutaredoxin and thioredoxin antioxidant systems within the cell, leading to the accumulation of disulfide bonds. The genesis of disulfide stress is usually induced by extrinsic pathological factors that disrupt the thiol-dependent antioxidant system, manifesting as sustained glutathionylation of proteins, formation of abnormal intermolecular disulfide bonds between cysteine-rich proteins, or irreversible oxidation of thiol groups to sulfenic and sulfonic acids. Disulfide stress not only precipitates the collapse of the antioxidant system and the accumulation of reactive oxygen species, exacerbating oxidative stress, but may also initiate cellular inflammation, autophagy, and apoptosis through a cascade of signaling pathways. Furthermore, this review explores the detrimental effects of disulfide stress on the progression of various CVDs including atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, diabetic cardiomyopathy, cardiac hypertrophy, and heart failure. This review also proposes several potential therapeutic avenues to improve the future treatment of CVDs.
Collapse
Affiliation(s)
- Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
| | - Guanyu Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ruixue Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Yinghua Ma
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lin Pan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiaoping Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Department of Human Anatomy and Histoembryology, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Department of Human Anatomy and Histoembryology, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
2
|
Ferrero-Bordera B, Bartel J, van Dijl JM, Becher D, Maaß S. From the outer space to the inner cell: deconvoluting the complexity of Bacillus subtilis disulfide stress responses by redox state and absolute abundance quantification of extracellular, membrane, and cytosolic proteins. Microbiol Spectr 2024; 12:e0261623. [PMID: 38358275 PMCID: PMC10986503 DOI: 10.1128/spectrum.02616-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding cellular mechanisms of stress management relies on omics data as a valuable resource. However, the lack of absolute quantitative data on protein abundances remains a significant limitation, particularly when comparing protein abundances across different cell compartments. In this study, we aimed to gain deeper insights into the proteomic responses of the Gram-positive model bacterium Bacillus subtilis to disulfide stress. We determined proteome-wide absolute abundances, focusing on different sub-cellular locations (cytosol and membrane) as well as the extracellular medium, and combined these data with redox state determination. To quantify secreted proteins in the culture medium, we developed a simple and straightforward protocol for the absolute quantification of extracellular proteins in bacteria. We concentrated extracellular proteins, which are highly diluted in the medium, using StrataClean beads along with a set of standard proteins to determine the extent of the concentration step. The resulting data set provides new insights into protein abundances in different sub-cellular compartments and the extracellular medium, along with a comprehensive proteome-wide redox state determination. Our study offers a quantitative understanding of disulfide stress management, protein production, and secretion in B. subtilis. IMPORTANCE Stress responses play a crucial role in bacterial survival and adaptation. The ability to quantitatively measure protein abundances and redox states in different cellular compartments and the extracellular environment is essential for understanding stress management mechanisms. In this study, we addressed the knowledge gap regarding absolute quantification of extracellular proteins and compared protein concentrations in various sub-cellular locations and in the extracellular medium under disulfide stress conditions. Our findings provide valuable insights into the protein production and secretion dynamics of B. subtilis, shedding light on its stress response strategies. Furthermore, the developed protocol for absolute quantification of extracellular proteins in bacteria presents a practical and efficient approach for future studies in the field. Overall, this research contributes to the quantitative understanding of stress management mechanisms and protein dynamics in B. subtilis, which can be used to enhance bacterial stress tolerance and protein-based biotechnological applications.
Collapse
Affiliation(s)
- Borja Ferrero-Bordera
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dörte Becher
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| |
Collapse
|
3
|
Gurung V, Biswas S, Biswas I. Diverse nature of ClpX degradation motifs in Streptococcus mutans. Microbiol Spectr 2024; 12:e0345723. [PMID: 38051052 PMCID: PMC10782952 DOI: 10.1128/spectrum.03457-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Cytoplasmic Clp-related proteases play a major role in maintaining cellular proteome in bacteria. ClpX/P is one such proteolytic complex that is important for conserving protein homeostasis. In this study, we investigated the role of ClpX/P in Streptococcus mutans, an important oral pathogen. We identified several putative substrates whose cellular levels are regulated by ClpX/P in S. mutans and subsequently discovered several recognition motifs that are critical for degradation. Our study is the first comprehensive analysis of determining ClpX/P motifs in streptococci. We believe that identifying the substrates that are regulated by ClpX/P will enhance our understanding about virulence regulation in this important group of pathogens.
Collapse
Affiliation(s)
- Vivek Gurung
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Saswati Biswas
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
4
|
Zhang Y, Wang Y, Wei W, Wang M, Jia S, Yang M, Ge F. Proteomic analysis of the regulatory networks of ClpX in a model cyanobacterium Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2022; 13:994056. [PMID: 36247581 PMCID: PMC9560874 DOI: 10.3389/fpls.2022.994056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Protein homeostasis is tightly regulated by protein quality control systems such as chaperones and proteases. In cyanobacteria, the ClpXP proteolytic complex is regarded as a representative proteolytic system and consists of a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. However, the functions and molecular mechanisms of ClpX in cyanobacteria remain unclear. This study aimed to decipher the unique contributions and regulatory networks of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We showed that the interruption of clpX led to slower growth, decreased high light tolerance, and impaired photosynthetic cyclic electron transfer. A quantitative proteomic strategy was employed to globally identify ClpX-regulated proteins in Synechocystis cells. In total, we identified 172 differentially expressed proteins (DEPs) upon the interruption of clpX. Functional analysis revealed that these DEPs are involved in diverse biological processes, including glycolysis, nitrogen assimilation, photosynthetic electron transport, ATP-binding cassette (ABC) transporters, and two-component signal transduction. The expression of 24 DEPs was confirmed by parallel reaction monitoring (PRM) analysis. In particular, many hypothetical or unknown proteins were found to be regulated by ClpX, providing new candidates for future functional studies on ClpX. Together, our study provides a comprehensive ClpX-regulated protein network, and the results serve as an important resource for understanding protein quality control systems in cyanobacteria.
Collapse
Affiliation(s)
- Yumeng Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yaqi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shuzhao Jia
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Illigmann A, Thoma Y, Pan S, Reinhardt L, Brötz-Oesterhelt H. Contribution of the Clp Protease to Bacterial Survival and Mitochondrial Homoeostasis. Microb Physiol 2021; 31:260-279. [PMID: 34438398 DOI: 10.1159/000517718] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022]
Abstract
Fast adaptation to environmental changes ensures bacterial survival, and proteolysis represents a key cellular process in adaptation. The Clp protease system is a multi-component machinery responsible for protein homoeostasis, protein quality control, and targeted proteolysis of transcriptional regulators in prokaryotic cells and prokaryote-derived organelles of eukaryotic cells. A functional Clp protease complex consists of the tetradecameric proteolytic core ClpP and a hexameric ATP-consuming Clp-ATPase, several of which can associate with the same proteolytic core. Clp-ATPases confer substrate specificity by recognising specific degradation tags, and further selectivity is conferred by adaptor proteins, together allowing for a fine-tuned degradation process embedded in elaborate regulatory networks. This review focuses on the contribution of the Clp protease system to prokaryotic survival and summarises the current state of knowledge for exemplary bacteria in an increasing degree of interaction with eukaryotic cells. Starting from free-living bacteria as exemplified by a non-pathogenic and a pathogenic member of the Firmicutes, i.e., Bacillus subtilis and Staphylococcus aureus, respectively, we turn our attention to facultative and obligate intracellular bacterial pathogens, i.e., Mycobacterium tuberculosis, Listeria monocytogenes, and Chlamydia trachomatis, and conclude with mitochondria. Under stress conditions, the Clp protease system exerts its pivotal role in the degradation of damaged proteins and controls the timing and extent of the heat-shock response by regulatory proteolysis. Key regulators of developmental programmes like natural competence, motility, and sporulation are also under Clp proteolytic control. In many pathogenic species, the Clp system is required for the expression of virulence factors and essential for colonising the host. In accordance with its evolutionary origin, the human mitochondrial Clp protease strongly resembles its bacterial counterparts, taking a central role in protein quality control and homoeostasis, energy metabolism, and apoptosis in eukaryotic cells, and several cancer cell types depend on it for proliferation.
Collapse
Affiliation(s)
- Astrid Illigmann
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Yvonne Thoma
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Stefan Pan
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Laura Reinhardt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Lilge L, Reder A, Tippmann F, Morgenroth F, Grohmann J, Becher D, Riedel K, Völker U, Hecker M, Gerth U. The Involvement of the McsB Arginine Kinase in Clp-Dependent Degradation of the MgsR Regulator in Bacillus subtilis. Front Microbiol 2020; 11:900. [PMID: 32477307 PMCID: PMC7235348 DOI: 10.3389/fmicb.2020.00900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/16/2020] [Indexed: 12/02/2022] Open
Abstract
Regulated ATP-dependent proteolysis is a common feature of developmental processes and plays also a crucial role during environmental perturbations such as stress and starvation. The Bacillus subtilis MgsR regulator controls a subregulon within the stress- and stationary phase σB regulon. After ethanol exposition and a short time-window of activity, MgsR is ClpXP-dependently degraded with a half-life of approximately 6 min. Surprisingly, a protein interaction analysis with MgsR revealed an association with the McsB arginine kinase and an in vivo degradation assay confirmed a strong impact of McsB on MgsR degradation. In vitro phosphorylation experiments with arginine (R) by lysine (K) substitutions in McsB and its activator McsA unraveled all R residues, which are essentially needed for the arginine kinase reaction. Subsequently, site directed mutagenesis of the MgsR substrate was used to substitute all arginine residues with glutamate (R-E) to mimic arginine phosphorylation and to test their influence on MgsR degradation in vivo. It turned out, that especially the R33E and R94/95E residues (RRPI motif), the latter are adjacently located to the two redox-sensitive cysteines in a 3D model, have the potential to accelerate MgsR degradation. These results imply that selective arginine phosphorylation may have favorable effects for Clp dependent degradation of short-living regulatory proteins. We speculate that in addition to its kinase activity and adaptor function for the ClpC ATPase, McsB might also serve as a proteolytic adaptor for the ClpX ATPase in the degradation mechanism of MgsR.
Collapse
Affiliation(s)
- Lars Lilge
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Frank Tippmann
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | - Janice Grohmann
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Michael Hecker
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Ulf Gerth
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Ganguly T, Kajfasz JK, Abranches J, Lemos JA. Regulatory circuits controlling Spx levels in Streptococcus mutans. Mol Microbiol 2020; 114:109-126. [PMID: 32189382 DOI: 10.1111/mmi.14499] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/01/2023]
Abstract
Spx is a major regulator of stress responses in Firmicutes. In Streptococcus mutans, two Spx homologues, SpxA1 and SpxA2, were identified as mediators of oxidative stress responses but the regulatory circuits controlling their levels and activity are presently unknown. Comparison of SpxA1 and SpxA2 protein sequences revealed differences at the C-terminal end, with SpxA1 containing an unusual number of acidic residues. Here, we showed that a green fluorescence protein (GFP) reporter becomes unstable when fused to the last 10 amino acids of SpxA2 but remained stable when fused to the C-terminal acidic tail of SpxA1. Inactivation of clpP or simultaneous inactivation of clpC and clpE stabilized the GFP::SpxA2tail fusion protein. Addition of acidic amino acids to the GFP::SpxA2tail chimera stabilized GFP, while deletion of the acidic residues destabilized GFP::SpxA1tail . Promoter reporter fusions revealed that spxA1 transcription is co-repressed by the metalloregulators PerR and SloR while spxA2 transcription is largely dependent on the envelope stress regulator LiaFSR. In agreement with spxA2 being part of the LiaR regulon, SpxA2 was found to be critical for the growth of S. mutans under envelope stress conditions. Finally, we showed that redox sensing is essential for SpxA1-dependent activation of oxidative stress responses but dispensable for SpxA2-mediated envelope stress responses.
Collapse
Affiliation(s)
- Tridib Ganguly
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Jessica K Kajfasz
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Jacqueline Abranches
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - José A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Panasenko OO, Bezrukov F, Komarynets O, Renzoni A. YjbH Solubility Controls Spx in Staphylococcus aureus: Implication for MazEF Toxin-Antitoxin System Regulation. Front Microbiol 2020; 11:113. [PMID: 32117138 PMCID: PMC7016130 DOI: 10.3389/fmicb.2020.00113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
Bacterial cells respond to environmental stresses by modulating their gene expression and adjusting their proteome. In Staphylococcus aureus, selective degradation by ClpP protease eliminates damaged proteins and regulates the abundance of functional proteins such as many important stress-induced transcriptional regulators. Degradation by ClpP requires the unfolding activity of partner Clp ATPases, such as ClpX and ClpC, and assistance of substrate-specific adaptor proteins such as YjbH and TrfA. Herein, we demonstrated that YjbH is aggregated in response to growth stress stimuli, such as oxidative and antibiotic stresses. In consequence, its function as an adaptor protein is compromised. YjbH controls the degradation of the stress-induced transcriptional regulator, Spx. Aggregated YjbH cannot assist Spx degradation, which results in Spx accumulation. We discovered that depending on the stress stimulus, Spx can be soluble or insoluble, and, consequently, transcriptionally active or inactive. Therefore, Spx accumulation and solubility are key components governing activation of Spx-dependent genes. Spx positively regulates expression of a ClpCP adaptor protein TrfA. TrfA in turn is required for degradation of MazE antitoxin, the unstable component of the MazEF toxin-antitoxin system, that neutralizes the endoribonuclease activity of MazF toxin. Bacterial toxin-antitoxin systems are associated with dormancy and tolerance to antibiotics that are related to chronic and relapsing infections, and it is at present a key unresolved problem in medicine. MazF activity was linked to growth stasis, yet the precise environmental signals that trigger MazE degradation and MazF activation are poorly understood. Here we propose a model where YjbH serves as a sensor of environmental stresses for downstream regulation of MazEF activity. YjbH aggregation, soluble Spx, and TrfA, coordinately control MazE antitoxin levels and consequently MazF toxin activity. This model implies that certain stress conditions culminate in modulation of MazF activity resulting in growth stasis during in vivo infections.
Collapse
Affiliation(s)
- Olesya O Panasenko
- Service of Infectious Diseases, Department of Medical Specialties, University Hospital and Medical School of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fedor Bezrukov
- Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Olga Komarynets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Adriana Renzoni
- Service of Infectious Diseases, Department of Medical Specialties, University Hospital and Medical School of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Hu L, Yang Y, Yan X, Zhang T, Xiang J, Gao Z, Chen Y, Yang S, Fei Q. Molecular Mechanism Associated With the Impact of Methane/Oxygen Gas Supply Ratios on Cell Growth of Methylomicrobium buryatense 5GB1 Through RNA-Seq. Front Bioeng Biotechnol 2020; 8:263. [PMID: 32318556 PMCID: PMC7154130 DOI: 10.3389/fbioe.2020.00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
The methane (CH4)/oxygen (O2) gas supply ratios significantly affect the cell growth and metabolic pathways of aerobic obligate methanotrophs. However, few studies have explored the CH4/O2 ratios of the inlet gas, especially for the CH4 concentrations within the explosion range (5∼15% of CH4 in air). This study thoroughly investigated the molecular mechanisms associated with the impact of different CH4/O2 ratios on cell growth of a model type I methanotroph Methylomicrobium buryatense 5GB1 cultured at five different CH4/O2 supply molar ratios from 0.28 to 5.24, corresponding to CH4 content in gas mixture from 5% to 50%, using RNA-Seq transcriptomics approach. In the batch cultivation, the highest growth rate of 0.287 h-1 was achieved when the CH4/O2 supply molar ratio was 0.93 (15% CH4 in air), and it is crucial to keep the availability of carbon and oxygen levels balanced for optimal growth. At this ratio, genes related to methane metabolism, phosphate uptake system, and nitrogen fixation were significantly upregulated. The results indicated that the optimal CH4/O2 ratio prompted cell growth by increasing genes involved in metabolic pathways of carbon, nitrogen and phosphate utilization in M. buryatense 5GB1. Our findings provided an effective gas supply strategy for methanotrophs, which could enhance the production of key intermediates and enzymes to improve the performance of bioconversion processes using CH4 as the only carbon and energy source. This research also helps identify genes associated with the optimal CH4/O2 ratio for balancing energy metabolism and carbon flux, which could be candidate targets for future metabolic engineering practice.
Collapse
Affiliation(s)
- Lizhen Hu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tianqing Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jing Xiang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Zixi Gao
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
- *Correspondence: Shihui Yang,
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi’an Jiaotong University, Xi’an, China
- Qiang Fei,
| |
Collapse
|
10
|
Rojas-Tapias DF, Helmann JD. Roles and regulation of Spx family transcription factors in Bacillus subtilis and related species. Adv Microb Physiol 2019; 75:279-323. [PMID: 31655740 DOI: 10.1016/bs.ampbs.2019.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacillus subtilis Spx is the prototype for a large family of redox-responsive transcription factors found in many bacteria, most notably those from the phylum Firmicutes. Unusually for a transcription factor, B. subtilis Spx protein modulates gene expression by binding as a monomer to the αCTD domain of RNA polymerase (RNAP), and only interacts with DNA during subsequent promoter engagement. B. subtilis Spx drives the expression of a large regulon in response to proteotoxic conditions, such as heat and disulfide stress, as well as cell wall stress. Here, we review the detailed mechanisms that control the expression, stability, and activity of Spx in response to a variety of stress conditions. We also summarize current knowledge regarding Spx homologs in other Firmicutes, the environmental conditions in which those homologs are activated, and their biological role.
Collapse
Affiliation(s)
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
Identification of Novel Spx Regulatory Pathways in Bacillus subtilis Uncovers a Close Relationship between the CtsR and Spx Regulons. J Bacteriol 2019; 201:JB.00151-19. [PMID: 30962353 DOI: 10.1128/jb.00151-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
In Bacillus subtilis, the Spx transcription factor controls a large regulon in response to disulfide, heat, and cell wall stresses. The regulatory mechanisms that activate the Spx regulon are remarkably complex and involve changes in transcription, proteolysis, and posttranslational modifications. To identify genes involved in Spx regulation, we performed a transposon screen for mutations affecting expression of trxB, an Spx-dependent gene. Inactivation of ctsR, encoding the regulator of the Clp proteases, reduced trxB expression and lowered Spx levels. This effect required ClpP, but involved ClpC rather than the ClpX unfoldase. Moreover, cells lacking McsB, a dual function arginine kinase and ClpCP adaptor, largely reverted the ctsR phenotype and increased trxB expression. The role of McsB appears to involve its kinase activity, since loss of the YwlE phosphoarginine phosphatase also led to reduced trxB expression. Finally, we show that Spx is itself a regulator of the ctsR operon. Altogether, this work provides evidence for a role of CtsR regulon members ClpC, ClpP, and McsB in Spx regulation and identifies a new feedback pathway associated with Spx activity in B. subtilis IMPORTANCE In Bacillus subtilis, the Spx transcription factor is proteolytically unstable, and protein stabilization figures prominently in the induction of the Spx regulon in response to oxidative and cell envelope stresses. ClpXP is largely, but not entirely, responsible for Spx instability. Here, we identify ClpCP as the protease that degrades Spx under conditions that antagonize the ClpXP pathway. Spx itself contributes to activation of the ctsR operon, which encodes ClpC as well as the McsB arginine kinase and protease adaptor, thereby providing a negative feedback mechanism. Genetic studies reveal that dysregulation of the CtsR regulon or inactivation of the YwlE phosphoarginine phosphatase decreases Spx activity through mechanisms involving both protein degradation and posttranslational modification.
Collapse
|
12
|
Schäfer H, Heinz A, Sudzinová P, Voß M, Hantke I, Krásný L, Turgay K. Spx, the central regulator of the heat and oxidative stress response in B. subtilis, can repress transcription of translation-related genes. Mol Microbiol 2018; 111:514-533. [PMID: 30480837 DOI: 10.1111/mmi.14171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Spx is a Bacillus subtilis transcription factor that interacts with the alpha subunits of RNA polymerase. It can activate the thiol stress response regulon and interfere with the activation of many developmental processes. Here, we show that Spx is a central player orchestrating the heat shock response by up-regulating relevant stress response genes as revealed by comparative transcriptomic experiments. Moreover, these experiments revealed the potential of Spx to inhibit transcription of translation-related genes. By in vivo and in vitro experiments, we confirmed that Spx can inhibit transcription from rRNA. This inhibition depended mostly on UP elements and the alpha subunits of RNA polymerase. However, the concurrent up-regulation activity of stress genes by Spx, but not the inhibition of translation related genes, was essential for mediating stress response and antibiotic tolerance under the applied stress conditions. The observed inhibitory activity might be compensated in vivo by additional stress response processes interfering with translation. Nevertheless, the impact of Spx on limiting translation becomes apparent under conditions with high cellular Spx levels. Interestingly, we observed a subpopulation of stationary phase cells that contains raised Spx levels, which may contribute to growth inhibition and a persister-like behaviour of this subpopulation during outgrowth.
Collapse
Affiliation(s)
- Heinrich Schäfer
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Anja Heinz
- Institute of Biology-Microbiology, Freie Universität Berlin, Königin-Luise-Str. 12-16, D-14195, Berlin, Germany
| | - Petra Sudzinová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Michelle Voß
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Ingo Hantke
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Libor Krásný
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Kürşad Turgay
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| |
Collapse
|
13
|
Rojas-Tapias DF, Helmann JD. Stabilization of Bacillus subtilis Spx under cell wall stress requires the anti-adaptor protein YirB. PLoS Genet 2018; 14:e1007531. [PMID: 30001325 PMCID: PMC6057675 DOI: 10.1371/journal.pgen.1007531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/24/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Spx is a global transcriptional regulator present in low-GC Gram-positive bacteria, including the model bacterium Bacillus subtilis and various human pathogens. In B. subtilis, activation of Spx occurs in response to disulfide stress. We recently reported, however, that induction of Spx also occurs in response to cell wall stress, and that the molecular events that result in its activation under both stress conditions are mechanistically different. Here, we demonstrate that, in addition to up-regulation of spx transcription through the alternative sigma factor σM, full and timely activation of Spx-regulated genes by cell wall stress requires Spx stabilization by the anti-adaptor protein YirB. YirB is itself transcriptionally induced under cell wall stress, but not disulfide stress, and this induction requires the CssRS two-component system, which responds to both secretion stress and cell wall antibiotics. The yirB gene is repressed by YuxN, a divergently transcribed TetR family repressor, and CssR~P acts as an anti-repressor. Collectively, our results identify a physiological role for the YirB anti-adaptor protein and show that induction of the Spx regulon under disulfide and cell wall stress occurs through largely independent pathways. Bacillus subtilis Spx is the founding member of a large family of redox-stress sensing transcriptional regulatory proteins, and Spx orthologs are important for oxidative stress and virulence in several Gram-positive pathogens. Spx controls a large regulon in response to disulfide stress. Disulfide stress induces the Spx regulon through post-translational events that involve both stabilization of Spx against proteolysis and protein oxidation. We previously reported that genes in the Spx regulon are also induced in response to antibiotics that target the synthesis of the bacterial cell wall. Interestingly, we show that this induction is mechanistically distinct from disulfide stress as it involves transcriptional induction of spx by an alternative sigma factor. We show here that stabilization of Spx also requires a novel anti-adaptor protein, YirB, which prevents Spx degradation by binding to and inhibiting the activity of the adaptor protein YjbH. Induction of spx and Spx stabilization are both required for full and timely induction of the genes in the Spx regulon in response to cell wall stress. We further show that induction of the genes in the Spx regulon in response to either cell wall stress or disulfide stress takes place through largely independent pathways.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
14
|
Rojas-Tapias DF, Helmann JD. Induction of the Spx regulon by cell wall stress reveals novel regulatory mechanisms in Bacillus subtilis. Mol Microbiol 2018; 107:659-674. [PMID: 29271514 DOI: 10.1111/mmi.13906] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022]
Abstract
The transcription factor Spx is the master regulator of the disulfide stress response in Bacillus subtilis. Intriguingly, the activation of Spx by diamide relies entirely on posttranslational regulatory events in spite of the complex transcriptional control of the spx gene. Here, we show that cell wall stress, but not membrane stress, also results in induction of the Spx regulon. Remarkably, two major differences were found regarding the mechanism of induction of Spx under cell wall stress in comparison to disulfide stress. First, transcriptional induction of the spx gene from a σM -dependent promoter is required for accumulation of Spx in response to cell wall stress. Second, activation of the Spx regulon during cell wall stress is not accompanied by oxidation of the Spx disulfide switch. Finally, we demonstrate that cells lacking Spx have increased sensitivity toward antibiotics inhibiting both early and late steps in peptidoglycan synthesis, suggesting that the Spx regulon plays an important adaptive role in the cell wall stress response. This study expands the functional role of the Spx regulon and reveals novel regulatory mechanisms that result in induction of Spx in B. subtilis.
Collapse
Affiliation(s)
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
15
|
Miller JM, Chaudhary H, Marsee JD. Phylogenetic analysis predicts structural divergence for proteobacterial ClpC proteins. J Struct Biol 2017; 201:52-62. [PMID: 29129755 DOI: 10.1016/j.jsb.2017.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022]
Abstract
Regulated proteolysis is required in all organisms for the removal of misfolded or degradation-tagged protein substrates in cellular quality control pathways. The molecular machines that catalyze this process are known as ATP-dependent proteases with examples that include ClpAP and ClpCP. Clp/Hsp100 subunits form ring-structures that couple the energy of ATP binding and hydrolysis to protein unfolding and subsequent translocation of denatured protein into the compartmentalized ClpP protease for degradation. Copies of the clpA, clpC, clpE, clpK, and clpL genes are present in all characterized bacteria and their gene products are highly conserved in structure and function. However, the evolutionary relationship between these proteins remains unclear. Here we report a comprehensive phylogenetic analysis that suggests divergent evolution yielded ClpA from an ancestral ClpC protein and that ClpE/ClpL represent intermediates between ClpA/ClpC. This analysis also identifies a group of proteobacterial ClpC proteins that are likely not functional in regulated proteolysis. Our results strongly suggest that bacterial ClpC proteins should not be assumed to all function identically due to the structural differences identified here.
Collapse
Affiliation(s)
- Justin M Miller
- Middle Tennessee State University, Department of Chemistry, 1301 East Main Street, Murfreesboro, TN 37132, United States.
| | - Hamza Chaudhary
- Middle Tennessee State University, Department of Chemistry, 1301 East Main Street, Murfreesboro, TN 37132, United States
| | - Justin D Marsee
- Middle Tennessee State University, Department of Chemistry, 1301 East Main Street, Murfreesboro, TN 37132, United States
| |
Collapse
|
16
|
Elsholz AKW, Birk MS, Charpentier E, Turgay K. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis. Front Mol Biosci 2017; 4:44. [PMID: 28748186 PMCID: PMC5506225 DOI: 10.3389/fmolb.2017.00044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/15/2017] [Indexed: 12/20/2022] Open
Abstract
Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.
Collapse
Affiliation(s)
- Alexander K W Elsholz
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Marlene S Birk
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany.,The Laboratory for Molecular Infection Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden.,Humboldt UniversityBerlin, Germany
| | - Kürşad Turgay
- Faculty of Natural Sciences, Institute of Microbiology, Leibniz UniversitätHannover, Germany
| |
Collapse
|
17
|
Strain-Dependent Recognition of a Unique Degradation Motif by ClpXP in Streptococcus mutans. mSphere 2016; 1:mSphere00287-16. [PMID: 27981232 PMCID: PMC5143411 DOI: 10.1128/msphere.00287-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 01/02/2023] Open
Abstract
Regulated proteolysis in bacteria is an important biological process that maintains protein homeostasis. ClpXP, an intracellular proteolytic complex, is the primary protease that is responsible for protein turnover. While the substrates for ClpXP were identified in Escherichia coli, the substrates for vast majority of bacteria are currently unknown. In this study, we identified a unique substrate for ClpXP-mediated degradation in Streptococcus mutans, a dental pathogen. We also found that a small motif composed of 3 amino acids is sufficient for ClpXP-mediated degradation. Identification of this motif will clearly help us to understand the pathogenesis of this organism and other related pathogens. Streptococcus mutans, a dental pathogen, has a remarkable ability to cope with environmental stresses. Under stress conditions, cytoplasmic proteases play a major role in controlling the stability of regulatory proteins and preventing accumulation of damaged and misfolded proteins. ClpXP, a well-conserved cytoplasmic proteolytic system, is crucial in maintaining cellular homeostasis in bacteria. ClpX is primarily responsible for recognition of substrates and subsequent translocation of unfolded substrates into the ClpP proteolytic compartment for degradation. In Escherichia coli, ClpX recognizes distinct motifs present at the C-terminal end of target proteins. However, recognition sequences for ClpXP in other bacteria, including S. mutans, are not known. In this study, using two-dimensional (2D) polyacrylamide gel electrophoresis (PAGE) analysis, we have identified several putative substrates for S. mutans ClpXP. SsbA, which encodes a small DNA binding protein, is one such substrate that is degraded by ClpXP. By sequential deletions, we found that the last 3 C-terminal amino acids, LPF, are sufficient for ClpXP-mediated degradation. Addition of LPF at the C-terminal end of green fluorescent protein (GFP) rendered the protein completely degradable by ClpXP. Alterations of this tripeptide motif impeded ClpXP-mediated degradation. However, recognition of LPF by ClpXP is highly specific to some S. mutans strains (UA159, UA130, and N3209) since not all S. mutans strains recognize the motif. We speculate that an adaptor protein is involved in either substrate recognition or substrate degradation by ClpXP. Nevertheless, this is the first report of a unique recognition sequence for ClpXP in streptococci. IMPORTANCE Regulated proteolysis in bacteria is an important biological process that maintains protein homeostasis. ClpXP, an intracellular proteolytic complex, is the primary protease that is responsible for protein turnover. While the substrates for ClpXP were identified in Escherichia coli, the substrates for vast majority of bacteria are currently unknown. In this study, we identified a unique substrate for ClpXP-mediated degradation in Streptococcus mutans, a dental pathogen. We also found that a small motif composed of 3 amino acids is sufficient for ClpXP-mediated degradation. Identification of this motif will clearly help us to understand the pathogenesis of this organism and other related pathogens.
Collapse
|
18
|
Molière N, Hoßmann J, Schäfer H, Turgay K. Role of Hsp100/Clp Protease Complexes in Controlling the Regulation of Motility in Bacillus subtilis. Front Microbiol 2016; 7:315. [PMID: 27014237 PMCID: PMC4793158 DOI: 10.3389/fmicb.2016.00315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022] Open
Abstract
The Hsp100/Clp protease complexes of Bacillus subtilis ClpXP and ClpCP are involved in the control of many interconnected developmental and stress response regulatory networks, including competence, redox stress response, and motility. Here we analyzed the role of regulatory proteolysis by ClpXP and ClpCP in motility development. We have demonstrated that ClpXP acts on the regulation of motility by controlling the levels of the oxidative and heat stress regulator Spx. We obtained evidence that upon oxidative stress Spx not only induces the thiol stress response, but also transiently represses the transcription of flagellar genes. Furthermore, we observed that in addition to the known impact of ClpCP via the ComK/FlgM-dependent pathway, ClpCP also affects flagellar gene expression via modulating the activity and levels of the global regulator DegU-P. This adds another layer to the intricate involvement of Clp mediated regulatory proteolysis in different gene expression programs, which may allow to integrate and coordinate different signals for a better-adjusted response to the changing environment of B. subtilis cells.
Collapse
Affiliation(s)
- Noël Molière
- Naturwissenschaftliche Fakultät, Institut für Mikrobiologie, Leibniz Universität HannoverHannover, Germany; Institut für Biologie-Mikrobiologie, Freie Universität BerlinBerlin, Germany
| | - Jörn Hoßmann
- Institut für Biologie-Mikrobiologie, Freie Universität Berlin Berlin, Germany
| | - Heinrich Schäfer
- Naturwissenschaftliche Fakultät, Institut für Mikrobiologie, Leibniz Universität Hannover Hannover, Germany
| | - Kürşad Turgay
- Naturwissenschaftliche Fakultät, Institut für Mikrobiologie, Leibniz Universität HannoverHannover, Germany; Institut für Biologie-Mikrobiologie, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
19
|
Mijakovic I, Grangeasse C, Turgay K. Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiol Rev 2016; 40:398-417. [PMID: 26926353 DOI: 10.1093/femsre/fuw003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/02/2016] [Indexed: 12/31/2022] Open
Abstract
Protein modifications not only affect protein homeostasis but can also establish new cellular protein functions and are important components of complex cellular signal sensing and transduction networks. Among these post-translational modifications, protein phosphorylation represents the one that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein modification and homeostasis in all cellular life.
Collapse
Affiliation(s)
- Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Christophe Grangeasse
- Unité Microbiologie Moléculaire et Biochimie Structurale, UMR 5086-CNRS/ Université Lyon 1, Lyon 69367, France
| | - Kürşad Turgay
- Institut für Mikrobiologie, Leibniz Universität Hannover, D-30419 Hannover, Germany
| |
Collapse
|
20
|
Hillion M, Antelmann H. Thiol-based redox switches in prokaryotes. Biol Chem 2016; 396:415-44. [PMID: 25720121 DOI: 10.1515/hsz-2015-0102] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/05/2015] [Indexed: 12/12/2022]
Abstract
Bacteria encounter reactive oxygen species (ROS) as a consequence of the aerobic life or as an oxidative burst of activated neutrophils during infections. In addition, bacteria are exposed to other redox-active compounds, including hypochloric acid (HOCl) and reactive electrophilic species (RES) such as quinones and aldehydes. These reactive species often target the thiol groups of cysteines in proteins and lead to thiol-disulfide switches in redox-sensing regulators to activate specific detoxification pathways and to restore the redox balance. Here, we review bacterial thiol-based redox sensors that specifically sense ROS, RES and HOCl via thiol-based mechanisms and regulate gene transcription in Gram-positive model bacteria and in human pathogens, such as Staphylococcus aureus and Mycobacterium tuberculosis. We also pay particular attention to emerging widely conserved HOCl-specific redox regulators that have been recently characterized in Escherichia coli. Different mechanisms are used to sense and respond to ROS, RES and HOCl by 1-Cys-type and 2-Cys-type thiol-based redox sensors that include versatile thiol-disulfide switches (OxyR, OhrR, HypR, YodB, NemR, RclR, Spx, RsrA/RshA) or alternative Cys phosphorylations (SarZ, MgrA, SarA), thiol-S-alkylation (QsrR), His-oxidation (PerR) and methionine oxidation (HypT). In pathogenic bacteria, these redox-sensing regulators are often important virulence regulators and required for adapation to the host immune defense.
Collapse
|
21
|
Deepa SS, Bhaskaran S, Ranjit R, Qaisar R, Nair BC, Liu Y, Walsh ME, Fok WC, Van Remmen H. Down-regulation of the mitochondrial matrix peptidase ClpP in muscle cells causes mitochondrial dysfunction and decreases cell proliferation. Free Radic Biol Med 2016; 91:281-92. [PMID: 26721594 PMCID: PMC5584630 DOI: 10.1016/j.freeradbiomed.2015.12.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 12/22/2022]
Abstract
The caseinolytic peptidase P (ClpP) is the endopeptidase component of the mitochondrial matrix ATP-dependent ClpXP protease. ClpP degrades unfolded proteins to maintain mitochondrial protein homeostasis and is involved in the initiation of the mitochondrial unfolded protein response (UPR(mt)). Outside of an integral role in the UPR(mt), the cellular function of ClpP is not well characterized in mammalian cells. To investigate the role of ClpP in mitochondrial function, we generated C2C12 muscle cells that are deficient in ClpP using siRNA or stable knockdown using lentiviral transduction. Reduction of ClpP levels by ~70% in C2C12 muscle cells resulted in a number of mitochondrial alterations including reduced mitochondrial respiration and reduced oxygen consumption rate in response to electron transport chain (ETC) complex I and II substrates. The reduction in ClpP altered mitochondrial morphology, changed the expression level of mitochondrial fission protein Drp1 and blunted UPR(mt) induction. In addition, ClpP deficient cells showed increased generation of reactive oxygen species (ROS) and decreased membrane potential. At the cellular level, reduction of ClpP impaired myoblast differentiation, cell proliferation and elevated phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) suggesting an inhibition of translation. Our study is the first to define the effects of ClpP deficiency on mitochondrial function in muscle cells in vitro. In addition, we have uncovered novel effects of ClpP on mitochondrial morphology, cell proliferation and protein translation pathways in muscle cells.
Collapse
Affiliation(s)
- Sathyaseelan S Deepa
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Rizwan Qaisar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Binoj C Nair
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuhong Liu
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Michael E Walsh
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Wilson C Fok
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Oklahoma City VA Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
22
|
Prestel E, Noirot P, Auger S. Genome-wide identification of Bacillus subtilis Zur-binding sites associated with a Zur box expands its known regulatory network. BMC Microbiol 2015; 15:13. [PMID: 25649915 PMCID: PMC4324032 DOI: 10.1186/s12866-015-0345-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/13/2015] [Indexed: 11/10/2022] Open
Abstract
Background The Bacillus subtilis Zur transcription factor recognizes a specific DNA motif, the Zur box, to repress expression of genes in response to zinc availability. Although several Zur-regulated genes are well characterized, a genome-wide mapping of Zur-binding sites is needed to define further the set of genes directly regulated by this protein. Results Using chromatin immunoprecipitation coupled with hybridization to DNA tiling arrays (ChIP-on-chip), we reported the identification of 80 inter- and intragenic chromosomal sites bound by Zur. Seven Zur-binding regions constitute the Zur primary regulon while 35 newly identified targets were associated with a predicted Zur box. Using transcriptional fusions an intragenic Zur box was showed to promote a full Zur-mediated repression when placed within a promoter region. In addition, intragenic Zur boxes appeared to mediate a transcriptional cis-repressive effect (4- to 9-fold) but the function of Zur at these sites remains unclear. Zur binding to intragenic Zur boxes could prime an intricate mechanisms of regulation of the transcription elongation, possibly with other transcriptional factors. However, the disruption of zinc homeostasis in Δzur cells likely affects many cellular processes masking direct Zur-dependent effects. Finally, most Zur-binding sites were located near or within genes responsive to disulfide stress. These findings expand the potential Zur regulon and reveal unknown interconnections between zinc and redox homeostasis regulatory networks. Conclusions Our findings considerably expand the potential Zur regulon, and reveal a new level of complexity in Zur binding to its targets via a Zur box motif and via a yet unknown mechanism that remains to be characterized. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0345-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric Prestel
- INRA, UMR1319 Micalis, F-78352, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78352, Jouy-en-Josas, France.
| | - Philippe Noirot
- INRA, UMR1319 Micalis, F-78352, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78352, Jouy-en-Josas, France.
| | - Sandrine Auger
- INRA, UMR1319 Micalis, F-78352, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78352, Jouy-en-Josas, France.
| |
Collapse
|
23
|
Shiwa Y, Yoshikawa H, Tanaka T, Ogura M. Bacillus subtilis degSU operon is regulated by the ClpXP-Spx regulated proteolysis system. J Biochem 2014; 157:321-30. [PMID: 25433860 DOI: 10.1093/jb/mvu076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/15/2014] [Indexed: 11/12/2022] Open
Abstract
The DegS-DegU two-component regulatory system regulates many cellular events in Bacillus subtilis. Genes for DegSU constitutes an operon directed by the P1 promoter and downstream degU is autoregulated via the P3 promoter activated by phosphorylated DegU. In the Gram-positive bacteria, Spx plays a major role in the protection system against oxidative stresses as a transcriptional regulator. Spx is a substrate of the ATP-dependent ClpXP protease. It regulates diamide-stress regulon in addition to many genes with unknown functions. We have found that null mutations for clpX and clpP, which encode the subunits for the protease ClpXP, enhanced the DegU level through activation of the P1 promoter. We isolated four suppressors for the clpP-enhancing effect. Whole-genome sequencing of the suppressors revealed that two have a point mutation in spx and the rest have a deletion of spx. The clpP-enhancing effect on degS-lacZ expression was abolished in the spx disruptant. These results show that the degSU operon is a new target of Spx-mediated positive regulation. Furthermore, we found that the P1 promoter was induced by glucose and that this induction was greatly reduced in the spx mutant. These results suggested that Spx-mediated glucose induction at the P1 promoter.
Collapse
Affiliation(s)
- Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Tokyo 156-8502, Japan and Institute of Oceanic Research and Development, Tokai University, 3-20-1 Orido-Shimizu, Shizuoka 424-8610, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Tokyo 156-8502, Japan and Institute of Oceanic Research and Development, Tokai University, 3-20-1 Orido-Shimizu, Shizuoka 424-8610, Japan
| | - Teruo Tanaka
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Tokyo 156-8502, Japan and Institute of Oceanic Research and Development, Tokai University, 3-20-1 Orido-Shimizu, Shizuoka 424-8610, Japan
| | - Mitsuo Ogura
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Tokyo 156-8502, Japan and Institute of Oceanic Research and Development, Tokai University, 3-20-1 Orido-Shimizu, Shizuoka 424-8610, Japan
| |
Collapse
|
24
|
Engman J, von Wachenfeldt C. Regulated protein aggregation: a mechanism to control the activity of the ClpXP adaptor protein YjbH. Mol Microbiol 2014; 95:51-63. [PMID: 25353645 DOI: 10.1111/mmi.12842] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2014] [Indexed: 11/28/2022]
Abstract
Bacteria use stress response pathways to activate diverse target genes to react to a variety of stresses. The Bacillus subtilis Spx protein is a global transcriptional regulator that controls expression of more than 140 genes and operons in response to thiol-specific oxidative stress. Under nonstress conditions the concentration of Spx is kept low by proteolysis catalyzed by the ClpXP complex. Spx protein levels increase in response to disulfide stress and decrease when the cells cope with the stress. The cytosolic adaptor protein YjbH is required to target Spx for efficient proteolysis by ClpXP. We demonstrate that YjbH aggregates in response to disulfide stress, that is, the YjbH protein is soluble under nonstressed conditions and destabilized during stress leading to aggregation. Stress conditions (heat and ethanol) that cause severe perturbations in protein stability/folding also induced aggregation of YjbH and led to induction of Spx. By heterologous expression of a less aggregation prone YjbH homolog Spx induction was abolished. Thus we show that moderation of YjbH solubility is an important mechanism of signal transduction and represents a new mechanism of controlling the activity of adaptor proteins.
Collapse
Affiliation(s)
- Jakob Engman
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | | |
Collapse
|
25
|
|
26
|
Chan CM, Hahn E, Zuber P. Adaptor bypass mutations of Bacillus subtilis spx suggest a mechanism for YjbH-enhanced proteolysis of the regulator Spx by ClpXP. Mol Microbiol 2014; 93:426-38. [PMID: 24942655 DOI: 10.1111/mmi.12671] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 12/28/2022]
Abstract
The global regulator, Spx, is under proteolytic control exerted by the adaptor YjbH and ATP-dependent protease ClpXP in Bacillus subtilis. While YjbH is observed to bind the Spx C-terminus, YjbH shows little affinity for ClpXP, indicating adaptor activity that does not operate by tethering. Chimeric proteins derived from B. subtilis AbrB and the Spx C-terminus showed that a 28-residue C-terminal section of Spx (AbrB28), but not the last 12 or 16 residues (AbrB12, AbrB16), was required for YjbH interaction and for ClpXP proteolysis, although the rate of AbrB28 proteolysis was not affected by YjbH addition. The result suggested that the YjbH-targeted 28 residue segment of the Spx C-terminus bears a ClpXP-recognition element(s) that is hidden in the intact Spx protein. Residue substitutions in the conserved helix α6 of the C-terminal region generated Spx substrates that were degraded by ClpXP at accelerated rates compared to wild-type Spx, and showed reduced dependency on the YjbH activity. The residue substitutions also weakened the interaction between Spx and YjbH. The results suggest a model in which YjbH, through interaction with residues of helix α6, exposes the C-terminus of Spx for recognition and proteolysis by ClpXP.
Collapse
Affiliation(s)
- Chio Mui Chan
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA
| | | | | |
Collapse
|
27
|
Moreno ML, Escobar J, Izquierdo-Álvarez A, Gil A, Pérez S, Pereda J, Zapico I, Vento M, Sabater L, Marina A, Martínez-Ruiz A, Sastre J. Disulfide stress: a novel type of oxidative stress in acute pancreatitis. Free Radic Biol Med 2014; 70:265-77. [PMID: 24456905 DOI: 10.1016/j.freeradbiomed.2014.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/26/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022]
Abstract
Glutathione oxidation and protein glutathionylation are considered hallmarks of oxidative stress in cells because they reflect thiol redox status in proteins. Our aims were to analyze the redox status of thiols and to identify mixed disulfides and targets of redox signaling in pancreas in experimental acute pancreatitis as a model of acute inflammation associated with glutathione depletion. Glutathione depletion in pancreas in acute pancreatitis is not associated with any increase in oxidized glutathione levels or protein glutathionylation. Cystine and homocystine levels as well as protein cysteinylation and γ-glutamyl cysteinylation markedly rose in pancreas after induction of pancreatitis. Protein cysteinylation was undetectable in pancreas under basal conditions. Targets of disulfide stress were identified by Western blotting, diagonal electrophoresis, and proteomic methods. Cysteinylated albumin was detected. Redox-sensitive PP2A and tyrosine protein phosphatase activities diminished in pancreatitis and this loss was abrogated by N-acetylcysteine. According to our findings, disulfide stress may be considered a specific type of oxidative stress in acute inflammation associated with protein cysteinylation and γ-glutamylcysteinylation and oxidation of the pair cysteine/cystine, but without glutathione oxidation or changes in protein glutathionylation. Two types of targets of disulfide stress were identified: redox buffers, such as ribonuclease inhibitor or albumin, and redox-signaling thiols, which include thioredoxin 1, APE1/Ref1, Keap1, tyrosine and serine/threonine phosphatases, and protein disulfide isomerase. These targets exhibit great relevance in DNA repair, cell proliferation, apoptosis, endoplasmic reticulum stress, and inflammatory response. Disulfide stress would be a specific mechanism of redox signaling independent of glutathione redox status involved in inflammation.
Collapse
Affiliation(s)
- Mari-Luz Moreno
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Javier Escobar
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain; Division of Neonatology, University Hospital Materno-Infantil La Fe, 46026 Valencia, Spain
| | - Alicia Izquierdo-Álvarez
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Anabel Gil
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Salvador Pérez
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Javier Pereda
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Inés Zapico
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Máximo Vento
- Division of Neonatology, University Hospital Materno-Infantil La Fe, 46026 Valencia, Spain
| | - Luis Sabater
- Department of Surgery, University Clinic Hospital, University of Valencia, 46010 Valencia, Spain
| | - Anabel Marina
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Juan Sastre
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain.
| |
Collapse
|
28
|
Runde S, Molière N, Heinz A, Maisonneuve E, Janczikowski A, Elsholz AKW, Gerth U, Hecker M, Turgay K. The role of thiol oxidative stress response in heat-induced protein aggregate formation during thermotolerance in Bacillus subtilis. Mol Microbiol 2014; 91:1036-52. [PMID: 24417481 DOI: 10.1111/mmi.12521] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2014] [Indexed: 11/30/2022]
Abstract
Using Bacillus subtilis as a model organism, we investigated thermotolerance development by analysing cell survival and in vivo protein aggregate formation in severely heat-shocked cells primed by a mild heat shock. We observed an increased survival during severe heat stress, accompanied by a strong reduction of heat-induced cellular protein aggregates in cells lacking the ClpXP protease. We could demonstrate that the transcription factor Spx, a regulatory substrate of ClpXP, is critical for the prevention of protein aggregate formation because its regulon encodes redox chaperones, such as thioredoxin, required for protection against thiol-specific oxidative stress. Consequently B. subtilis cells grown in the absence of oxygen were more protected against severe heat shock and much less protein aggregates were detected compared to aerobically grown cells. The presented results indicate that in B. subtilis Spx and its regulon plays not only an important role for oxidative but also for heat stress response and thermotolerance development. In addition, our experiments suggest that the protection of misfolded proteins from thiol oxidation during heat shock can be critical for the prevention of cellular protein aggregation in vivo.
Collapse
Affiliation(s)
- Stephanie Runde
- Institut für Biologie - Mikrobiologie, Freie Universität Berlin, D-14195, Berlin, Germany; Institut für Mikrobiologie, Leibniz Universität Hannover, D-30167, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim HS, Caswell CC, Foreman R, Roop RM, Crosson S. The Brucella abortus general stress response system regulates chronic mammalian infection and is controlled by phosphorylation and proteolysis. J Biol Chem 2013; 288:13906-16. [PMID: 23546883 DOI: 10.1074/jbc.m113.459305] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Virulence of pathogenic bacteria is often determined by their ability to adapt to stress. RESULTS The Brucella abortus general stress response (GSR) system is required for chronic mammalian infection and is regulated by phosphorylation and proteolysis. CONCLUSION The B. abortus GSR signaling pathway has multiple layers of post-translational control and is a determinant of chronic infection. SIGNIFICANCE This study provides new, molecular level insight into chronic Brucella infection. Brucella spp. are adept at establishing a chronic infection in mammals. We demonstrate that core components of the α-proteobacterial general stress response (GSR) system, PhyR and σ(E1), are required for Brucella abortus stress survival in vitro and maintenance of chronic murine infection in vivo. ΔphyR and ΔrpoE1 null mutants exhibit decreased survival under acute oxidative and acid stress but are not defective in infection of primary murine macrophages or in initial colonization of BALB/c mouse spleens. However, ΔphyR and ΔrpoE1 mutants are attenuated in spleens beginning 1 month postinfection. Thus, the B. abortus GSR system is dispensable for colonization but is required to maintain chronic infection. A genome-scale analysis of the B. abortus GSR regulon identified stress response genes previously linked to virulence and genes that affect immunomodulatory components of the cell envelope. These data support a model in which the GSR system affects both stress survival and the interface between B. abortus and the host immune system. We further demonstrate that PhyR proteolysis is a unique feature of GSR control in B. abortus. Proteolysis of PhyR provides a mechanism to avoid spurious PhyR protein interactions that inappropriately activate GSR-dependent transcription. We conclude that the B. abortus GSR system regulates acute stress adaptation and long term survival within a mammalian host and that PhyR proteolysis is a novel regulatory feature in B. abortus that ensures proper control of GSR transcription.
Collapse
Affiliation(s)
- Hye-Sook Kim
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
The soil-dwelling bacterium Bacillus subtilis is widely used as a model organism to study the Gram-positive branch of Bacteria. A variety of different developmental pathways, such as endospore formation, genetic competence, motility, swarming and biofilm formation, have been studied in this organism. These processes are intricately connected and regulated by networks containing e.g. alternative sigma factors, two-component systems and other regulators. Importantly, in some of these regulatory networks the activity of important regulatory factors is controlled by proteases. Furthermore, together with chaperones, the same proteases constitute the cellular protein quality control (PQC) network, which plays a crucial role in protein homeostasis and stress tolerance of this organism. In this review, we will present the current knowledge on regulatory and general proteolysis in B. subtilis and discuss its involvement in developmental pathways and cellular stress management.
Collapse
Affiliation(s)
- Noël Molière
- Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany,
| | | |
Collapse
|
31
|
Bonnet M, Stegmann M, Maglica Ž, Stiegeler E, Weber-Ban E, Hennecke H, Mesa S. FixK2, a key regulator inBradyrhizobium japonicum, is a substrate for the protease ClpAP in vitro. FEBS Lett 2012. [DOI: 10.1016/j.febslet.2012.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Rochat T, Nicolas P, Delumeau O, Rabatinová A, Korelusová J, Leduc A, Bessières P, Dervyn E, Krásny L, Noirot P. Genome-wide identification of genes directly regulated by the pleiotropic transcription factor Spx in Bacillus subtilis. Nucleic Acids Res 2012; 40:9571-83. [PMID: 22904090 PMCID: PMC3479203 DOI: 10.1093/nar/gks755] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transcriptional regulator Spx plays a key role in maintaining the redox homeostasis of Bacillus subtilis cells exposed to disulfide stress. Defects in Spx were previously shown to lead to differential expression of numerous genes but direct and indirect regulatory effects could not be distinguished. Here we identified 283 discrete chromosomal sites potentially bound by the Spx–RNA polymerase (Spx–RNAP) complex using chromatin immunoprecipitation of Spx. Three quarters of these sites were located near Sigma(A)-dependent promoters, and upon diamide treatment, the fraction of the Spx–RNAP complex increased in parallel with the number and occupancy of DNA sites. Correlation of Spx–RNAP-binding sites with gene differential expression in wild-type and Δspx strains exposed or not to diamide revealed that 144 transcription units comprising 275 genes were potentially under direct Spx regulation. Spx-controlled promoters exhibited an extended −35 box in which nucleotide composition at the −43/−44 positions strongly correlated with observed activation. In vitro transcription confirmed activation by oxidized Spx of seven newly identified promoters, of which one was also activated by reduced Spx. Our study globally characterized the Spx regulatory network, revealing its role in the basal expression of some genes and its complex interplay with other stress responses.
Collapse
|
33
|
Reder A, Pöther DC, Gerth U, Hecker M. The modulator of the general stress response, MgsR, ofBacillus subtilisis subject to multiple and complex control mechanisms. Environ Microbiol 2012; 14:2838-50. [DOI: 10.1111/j.1462-2920.2012.02829.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Chan CM, Garg S, Lin AA, Zuber P. Geobacillus thermodenitrificans YjbH recognizes the C-terminal end of Bacillus subtilis Spx to accelerate Spx proteolysis by ClpXP. MICROBIOLOGY-SGM 2012; 158:1268-1278. [PMID: 22343351 DOI: 10.1099/mic.0.057661-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proteolytic control can govern the levels of specific regulatory factors, such as Spx, a transcriptional regulator of the oxidative stress response in Gram-positive bacteria. Under oxidative stress, Spx concentration is elevated and upregulates transcription of genes that function in the stress response. When stress is alleviated, proteolysis of Spx catalysed by ClpXP reduces Spx concentration. Proteolysis is enhanced by the substrate recognition factor YjbH, which possesses a His-Cys-rich region at its N terminus. However, mutations that generate H12A, C13A, H14A, H16A and C31/34A residue substitutions in the N terminus of Bacillus subtilis YjbH (BsYjbH) do not affect functionality in Spx proteolytic control in vivo and in vitro. Because of difficulties in obtaining soluble BsYjbH, the Geobacillus thermodenitrificans yjbH gene was cloned, which yielded soluble GtYjbH protein. Despite its lack of a His-Cys-rich region, GtYjbH complements a B. subtilis yjbH null mutant, and shows high activity in vitro when combined with ClpXP and Spx in an approximately 30 : 1 (ClpXP/Spx : GtYjbH) molar ratio. In vitro interaction experiments showed that Spx and the protease-resistant Spx(DD) (in which the last two residues of Spx are replaced with two Asp residues) bind to GtYjbH, but deletion of 12 residues from the Spx C terminus (SpxΔC) significantly diminished interaction and proteolytic degradation, indicating that the C terminus of Spx is important for YjbH recognition. These experiments also showed that Spx, but not GtYjbH, interacts with ClpX. Kinetic measurements for Spx proteolysis by ClpXP in the presence and absence of GtYjbH suggest that YjbH overcomes non-productive Spx-ClpX interaction, resulting in rapid degradation.
Collapse
Affiliation(s)
- Chio Mui Chan
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, 20000 NW Walker Rd, Beaverton, OR 97006, USA
| | - Saurabh Garg
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, 20000 NW Walker Rd, Beaverton, OR 97006, USA
| | - Ann A Lin
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, 20000 NW Walker Rd, Beaverton, OR 97006, USA
| | - Peter Zuber
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, 20000 NW Walker Rd, Beaverton, OR 97006, USA
| |
Collapse
|
35
|
Ogura M. ZnuABC and ZosA zinc transporters are differently involved in competence development in Bacillus subtilis. ACTA ACUST UNITED AC 2011; 150:615-25. [DOI: 10.1093/jb/mvr098] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
YjbH-enhanced proteolysis of Spx by ClpXP in Bacillus subtilis is inhibited by the small protein YirB (YuzO). J Bacteriol 2011; 193:2133-40. [PMID: 21378193 DOI: 10.1128/jb.01350-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Spx protein of Bacillus subtilis is a global regulator of the oxidative stress response. Spx concentration is controlled at the level of proteolysis by the ATP-dependent protease ClpXP and a substrate-binding protein, YjbH, which interacts with Spx. A yeast two-hybrid screen was carried out using yjbH as bait to uncover additional substrates or regulators of YjbH activity. Of the several genes identified in the screen, one encoded a small protein, YirB (YuzO), which elevated Spx concentration and activity in vivo when overproduced from an isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible yirB construct. Pulldown experiments using extracts of B. subtilis cells producing a His-tagged YirB showed that native YjbH interacts with YirB in B. subtilis. Pulldown experiments using affinity-tagged Spx showed that YirB inhibited YjbH interaction with Spx. In vitro, YjbH-mediated proteolysis of Spx by ClpXP was inhibited by YirB. The activity of YirB is similar to that of the antiadaptor proteins that were previously shown to reduce proteolysis of a specific ClpXP substrate by interacting with a substrate-binding protein.
Collapse
|
37
|
Elsholz AKW, Hempel K, Pöther DC, Becher D, Hecker M, Gerth U. CtsR inactivation during thiol-specific stress in low GC, Gram+ bacteria. Mol Microbiol 2011; 79:772-85. [DOI: 10.1111/j.1365-2958.2010.07489.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Kallifidas D, Thomas D, Doughty P, Paget MSB. The sigmaR regulon of Streptomyces coelicolor A32 reveals a key role in protein quality control during disulphide stress. MICROBIOLOGY-SGM 2010; 156:1661-1672. [PMID: 20185507 DOI: 10.1099/mic.0.037804-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diamide is an artificial disulphide-generating electrophile that mimics an oxidative shift in the cellular thiol-disulphide redox state (disulphide stress). The Gram-positive bacterium Streptomyces coelicolor senses and responds to disulphide stress through the sigma(R)-RsrA system, which comprises an extracytoplasmic function (ECF) sigma factor and a redox-active anti-sigma factor. Known targets that aid in the protection and recovery from disulphide stress include the thioredoxin system and genes involved in producing the major thiol buffer mycothiol. Here we determine the global response to diamide in wild-type and sigR mutant backgrounds to understand the role of sigma(R) in this response and to reveal additional regulatory pathways that allow cells to cope with disulphide stress. In addition to thiol oxidation, diamide was found to cause protein misfolding and aggregation, which elicited the induction of the HspR heat-shock regulon. Although this response is sigma(R)-independent, sigma(R) does directly control Clp and Lon ATP-dependent AAA(+) proteases, which may partly explain the reduced ability of a sigR mutant to resolubilize protein aggregates. sigma(R) also controls msrA and msrB methionine sulphoxide reductase genes, implying that sigma(R)-RsrA is responsible for the maintenance of both cysteine and methionine residues during oxidative stress. This work shows that the sigma(R)-RsrA system plays a more significant role in protein quality control than previously realized, and emphasizes the importance of controlling the cellular thiol-disulphide redox balance.
Collapse
Affiliation(s)
- Dimitris Kallifidas
- Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Derek Thomas
- Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Phillip Doughty
- Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Mark S B Paget
- Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
39
|
Nakano MM, Lin A, Zuber CS, Newberry KJ, Brennan RG, Zuber P. Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase alpha subunit. PLoS One 2010; 5:e8664. [PMID: 20084284 PMCID: PMC2801614 DOI: 10.1371/journal.pone.0008664] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 12/19/2009] [Indexed: 12/20/2022] Open
Abstract
Background Spx, an ArsC (arsenate reductase) family member, is a global transcriptional regulator of the microbial stress response and is highly conserved amongst Gram-positive bacteria. Bacillus subtilis Spx protein exerts positive and negative control of transcription through its interaction with the C-terminal domain of the RNA polymerase (RNAP) α subunit (αCTD). Spx activates trxA (thioredoxin) and trxB (thioredoxin reductase) in response to thiol stress, and bears an N-terminal C10XXC13 redox disulfide center that is oxidized in active Spx. Methodology/Principal Findings The structure of mutant SpxC10S showed a change in the conformation of helix α4. Amino acid substitutions R60E and K62E within and adjacent to helix α4 conferred defects in Spx-activated transcription but not Spx-dependent repression. Electrophoretic mobility-shift assays showed αCTD interaction with trxB promoter DNA, but addition of Spx generated a supershifted complex that was disrupted in the presence of reductant (DTT). Interaction of αCTD/Spx complex with promoter DNA required the cis-acting elements -45AGCA-42 and -34AGCG-31 of the trxB promoter. The SpxG52R mutant, defective in αCTD binding, did not interact with the αCTD-trxB complex. SpxR60E not only failed to complex with αCTD-trxB, but also disrupted αCTD-trxB DNA interaction. Conclusions/Significance The results show that Spx and αCTD form a complex that recognizes the promoter DNA of an Spx-controlled gene. A conformational change during oxidation of Spx to the disulfide form likely alters the structure of Spx α helix α4, which contains residues that function in transcriptional activation and αCTD/Spx-promoter interaction. The results suggest that one of these residues, R60 of the α4 region of oxidized Spx, functions in αCTD/Spx-promoter contact but not in αCTD interaction.
Collapse
Affiliation(s)
- Michiko M. Nakano
- Department of Science & Engineering, School of Medicine, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Ann Lin
- Department of Science & Engineering, School of Medicine, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Cole S. Zuber
- Department of Science & Engineering, School of Medicine, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Kate J. Newberry
- Department of Biochemistry and Molecular Biology, University of Texas, M. D. Anderson Cancer Center, Texas, United States of America
| | - Richard G. Brennan
- Department of Biochemistry and Molecular Biology, University of Texas, M. D. Anderson Cancer Center, Texas, United States of America
| | - Peter Zuber
- Department of Science & Engineering, School of Medicine, Oregon Health & Science University, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
40
|
Turlan C, Prudhomme M, Fichant G, Martin B, Gutierrez C. SpxA1, a novel transcriptional regulator involved in X-state (competence) development in Streptococcus pneumoniae. Mol Microbiol 2009; 73:492-506. [PMID: 19627499 DOI: 10.1111/j.1365-2958.2009.06789.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae is a naturally transformable human pathogen. Genome and phylogenetic analyses uncovered two Spx-like global transcriptional regulators, SpxA1 and SpxA2, encoded by S. pneumoniae. spxA1 and spxA2 are not essential, but their simultaneous inactivation is lethal. SpxA1 represses transcription of the early competence operon comCDE and thereby negatively regulates the initiation of the X-state (competence). The molecular basis of this repression could be similar to that of SpxA of Bacillus subtilis, involving a specific interaction with the alpha subunit of RNA polymerase. S. pneumoniae lacks an SOS-like stress response and the X-state is proposed to be a general stress response mechanism in this species. In light of this, SpxA1-dependent repression could act to sense environmental or metabolic stresses and prevent launching of the X-state in the absence of stress.
Collapse
Affiliation(s)
- Catherine Turlan
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaire, F31000 Toulouse, France
| | | | | | | | | |
Collapse
|
41
|
The YjbH protein of Bacillus subtilis enhances ClpXP-catalyzed proteolysis of Spx. J Bacteriol 2008; 191:1268-77. [PMID: 19074380 DOI: 10.1128/jb.01289-08] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The global transcriptional regulator Spx of Bacillus subtilis is controlled at several levels of the gene expression process. It is maintained at low concentrations during unperturbed growth by the ATP-dependent protease ClpXP. Under disulfide stress, Spx concentration increases due in part to a reduction in ClpXP-catalyzed proteolysis. Recent studies of Larsson and coworkers (Mol. Microbiol. 66:669-684, 2007) implicated the product of the yjbH gene as being necessary for the proteolytic control of Spx. In the present study, yeast two-hybrid analysis and protein-protein cross-linking showed that Spx interacts with YjbH. YjbH protein was shown to enhance the proteolysis of Spx in reaction mixtures containing ClpXP protease but not ClpCP protease. An N-terminal truncated form of YjbH with a deletion of residues 1 to 24 (YjbH(Delta1-24)) showed no proteolysis enhancement activity. YjbH is specific for Spx as it did not accelerate proteolysis of the ClpXP substrate green fluorescent protein (GFP)-SsrA, a GFP derivative with a C-terminal SsrA tag that is recognized by ClpXP. Using inductively coupled plasma atomic emission spectroscopy and 4-(2-pyridylazo) resorcinol release experiments, YjbH was found to contain zinc atoms. Zinc analysis of YjbH(Delta1-24) revealed that the N-terminal histidine-rich region is indispensable for the coordination of at least one Zn atom. A Zn atom coordinated by the N-terminal region was rapidly released from the protein upon treatment with a strong oxidant. In conclusion, YjbH is proposed to be an adaptor for ClpXP-catalyzed Spx degradation, and a model of YjbH redox control involving Zn dissociation is presented.
Collapse
|
42
|
Mitrophanov AY, Groisman EA. Signal integration in bacterial two-component regulatory systems. Genes Dev 2008; 22:2601-11. [PMID: 18832064 DOI: 10.1101/gad.1700308] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two-component systems (TCSs) and phosphorelays are key mediators of bacterial signal transduction. The signals activating these systems promote the phosphorylated state of a response regulator, which is generally the form that carries out specific functions such as binding to DNA and catalysis of biochemical reactions. An emerging class of proteins-termed TCS connectors-modulate the output of TCSs by affecting the phosphorylation state of response regulators. TCS connectors use different mechanisms of action for signal integration, as well as in the coordination and fine-tuning of cellular processes. Present in both Gram-positive and Gram-negative bacteria, TCS connectors are critical for a variety of physiological functions including sporulation, competence, antibiotic resistance, and the transition to stationary phase.
Collapse
Affiliation(s)
- Alexander Y Mitrophanov
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|