1
|
Harrington NE, Kottara A, Cagney K, Shepherd MJ, Grimsey EM, Fu T, Hull RC, Chong CE, Baker KS, Childs DZ, Fothergill JL, Chalmers JD, Brockhurst MA, Paterson S. Global genomic diversity of Pseudomonas aeruginosa in bronchiectasis. J Infect 2024; 89:106275. [PMID: 39293722 DOI: 10.1016/j.jinf.2024.106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVES Pseudomonas aeruginosa is the most common pathogen in the bronchiectasis lung, associated with worsened outcomes. P. aeruginosa genomic studies in this context have been limited to single-country, European studies. We aimed to determine strain diversity, adaptation mechanisms, and AMR features to better inform treatment. METHODS P. aeruginosa from 180 bronchiectasis patients in 15 countries, obtained prior to a phase 3, randomised clinical trial (ORBIT-3), were analysed by whole-genome sequencing. Phylogenetic groups and sequence types were determined, and between versus within patient genetic diversity compared using Analysis of Molecular Variance (AMOVA). The frequency of AMR-associated genes and mutations was also determined. RESULTS A total of 2854 P. aeruginosa isolates were analysed, predominantly belonging to phylogenetic group 1 (83%, n = 2359). Genetic diversity was far greater between than within patients, responsible for >99.9% of total diversity (AMOVA: phylogroup 1: df = 145, P < 0.01). Numerous pathways were under selection, some shared with CF (e.g., motility, iron acquisition), some unique to bronchiectasis (e.g., novel efflux pump PA1874). Multidrug resistance features were also frequent. CONCLUSIONS We present a 10-fold increase in the availability of genomic data for P. aeruginosa in bronchiectasis, highlighting key distinctions with cystic fibrosis and potential targets for future treatments.
Collapse
Affiliation(s)
- N E Harrington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 3BX, UK.
| | - A Kottara
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, M13 9NT, UK
| | - K Cagney
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 3BX, UK
| | - M J Shepherd
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, M13 9NT, UK
| | - E M Grimsey
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, M13 9NT, UK
| | - T Fu
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, M13 9NT, UK
| | - R C Hull
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - C E Chong
- Department of Genetics, University of Cambridge, CB2 3EH Cambridge, UK
| | - K S Baker
- Department of Genetics, University of Cambridge, CB2 3EH Cambridge, UK
| | - D Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, UK
| | - J L Fothergill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 3BX, UK
| | - J D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - M A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, M13 9NT, UK
| | - S Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 3BX, UK
| |
Collapse
|
2
|
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection 2024; 52:1235-1268. [PMID: 38954392 PMCID: PMC11289218 DOI: 10.1007/s15010-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.
Collapse
Affiliation(s)
- Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
| | - Almudena Fernández-Muñoz
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Oliver A, Rojo-Molinero E, Arca-Suarez J, Beşli Y, Bogaerts P, Cantón R, Cimen C, Croughs PD, Denis O, Giske CG, Graells T, Daniel Huang TD, Iorga BI, Karatuna O, Kocsis B, Kronenberg A, López-Causapé C, Malhotra-Kumar S, Martínez LM, Mazzariol A, Meyer S, Naas T, Notermans DW, Oteo-Iglesias J, Pedersen T, Pirš M, Poeta P, Poirel L, Pournaras S, Sundsfjord A, Szabó D, Tambić-Andrašević A, Vatcheva-Dobrevska R, Vitkauskienė A, Jeannot K. Pseudomonasaeruginosa antimicrobial susceptibility profiles, resistance mechanisms and international clonal lineages: update from ESGARS-ESCMID/ISARPAE Group. Clin Microbiol Infect 2024; 30:469-480. [PMID: 38160753 DOI: 10.1016/j.cmi.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
SCOPE Pseudomonas aeruginosa, a ubiquitous opportunistic pathogen considered one of the paradigms of antimicrobial resistance, is among the main causes of hospital-acquired and chronic infections associated with significant morbidity and mortality. This growing threat results from the extraordinary capacity of P. aeruginosa to develop antimicrobial resistance through chromosomal mutations, the increasing prevalence of transferable resistance determinants (such as the carbapenemases and the extended-spectrum β-lactamases), and the global expansion of epidemic lineages. The general objective of this initiative is to provide a comprehensive update of P. aeruginosa resistance mechanisms, especially for the extensively drug-resistant (XDR)/difficult-to-treat resistance (DTR) international high-risk epidemic lineages, and how the recently approved β-lactams and β-lactam/β-lactamase inhibitor combinations may affect resistance mechanisms and the definition of susceptibility profiles. METHODS To address this challenge, the European Study Group for Antimicrobial Resistance Surveillance (ESGARS) from the European Society of Clinical Microbiology and Infectious Diseases launched the 'Improving Surveillance of Antibiotic-Resistant Pseudomonas aeruginosa in Europe (ISARPAE)' initiative in 2022, supported by the Joint programming initiative on antimicrobial resistance network call and included a panel of over 40 researchers from 18 European Countries. Thus, a ESGARS-ISARPAE position paper was designed and the final version agreed after four rounds of revision and discussion by all panel members. QUESTIONS ADDRESSED IN THE POSITION PAPER To provide an update on (a) the emerging resistance mechanisms to classical and novel anti-pseudomonal agents, with a particular focus on β-lactams, (b) the susceptibility profiles associated with the most relevant β-lactam resistance mechanisms, (c) the impact of the novel agents and resistance mechanisms on the definitions of resistance profiles, and (d) the globally expanding XDR/DTR high-risk lineages and their association with transferable resistance mechanisms. IMPLICATION The evidence presented herein can be used for coordinated epidemiological surveillance and decision making at the European and global level.
Collapse
Affiliation(s)
- Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Estrella Rojo-Molinero
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Arca-Suarez
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Yeşim Beşli
- Department of Medical Microbiology, Amerikan Hastanesi, Istanbul, Turkey
| | - Pierre Bogaerts
- National Center for Antimicrobial Resistance in Gram, CHU UCL Namur, Yvoir, Belgium
| | - Rafael Cantón
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Cansu Cimen
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter D Croughs
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Olivier Denis
- Department of Microbiology, CHU Namur Site-Godinne, Université Catholique de Louvain, Yvoir, Belgium; Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| | - Christian G Giske
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Tíscar Graells
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Family Medicine and Primary Care, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Te-Din Daniel Huang
- National Center for Antimicrobial Resistance in Gram, CHU UCL Namur, Yvoir, Belgium
| | - Bogdan I Iorga
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Onur Karatuna
- EUCAST Development Laboratory, Clinical Microbiology, Central Hospital, Växjö, Sweden
| | - Béla Kocsis
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Andreas Kronenberg
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Luis Martínez Martínez
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Microbiología, Hospital Universitario Reina Sofía, Departamento de Química Agrícola, Edafología y Microbiología, Universidad de Córdoba, e Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Spain
| | - Annarita Mazzariol
- Microbiology and Virology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Sylvain Meyer
- INSERM UMR 1092 and Université of Limoges, Limoges, France
| | - Thierry Naas
- Laboratoire Associé du Centre National de Référence de la Résistance aux Antibiotiques: Entérobactéries Résistantes aux Carbapénèmes, Le Kremlin-Bicêtre, France; Équipe INSERM ReSIST, Faculté de Médecine, Université Paris-Saclay, Paris, France
| | - Daan W Notermans
- Centre for Infectious Disease Control. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jesús Oteo-Iglesias
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Reference and Research Laboratory in Resistance to Antibiotics and Infections Related to Healthcare, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Torunn Pedersen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Mateja Pirš
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Patricia Poeta
- MicroART-Microbiology and Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, Portugal; Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; University of Trás-os-Montes and Alto Douro, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
| | - Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland; University of Fribourg, Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Spyros Pournaras
- Laboratory of Clinical Microbiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Arnfinn Sundsfjord
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway; Research Group on Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Dora Szabó
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary; Human Microbiota Study Group, Semmelweis University-Eötvös Lóránd Research Network, Budapest, Hungary
| | - Arjana Tambić-Andrašević
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, Zagreb, Croatia; School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Astra Vitkauskienė
- Department of Laboratory Medicine, Faculty of Medicine, Medical Academy, Lithuanian University of Health Science, Kaunas, Lithuania
| | - Katy Jeannot
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Besançon, Besançon, France; Laboratoire associé du Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France; Chrono-environnement UMR 6249, CNRS, Université Franche-Comté, Besançon, France
| |
Collapse
|
4
|
Ilyas M, Rahman A, Khan NH, Haroon M, Hussain H, Rehman L, Alam M, Rauf A, Waggas DS, Bawazeer S. Analysis of Germin-like protein genes family in Vitis vinifera (VvGLPs) using various in silico approaches. BRAZ J BIOL 2024; 84:e256732. [DOI: 10.1590/1519-6984.256732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/28/2021] [Indexed: 12/26/2022] Open
Abstract
Abstract Germin-like proteins (GLPs) play an important role against various stresses. Vitis vinifera L. genome contains 7 GLPs; many of them are functionally unexplored. However, the computational analysis may provide important new insight into their function. Currently, physicochemical properties, subcellular localization, domain architectures, 3D structures, N-glycosylation & phosphorylation sites, and phylogeney of the VvGLPs were investigated using the latest computational tools. Their functions were predicted using the Search tool for the retrieval of interacting genes/proteins (STRING) and Blast2Go servers. Most of the VvGLPs were extracellular (43%) in nature but also showed periplasmic (29%), plasma membrane (14%), and mitochondrial- or chloroplast-specific (14%) expression. The functional analysis predicted unique enzymatic activities for these proteins including terpene synthase, isoprenoid synthase, lipoxygenase, phosphate permease, receptor kinase, and hydrolases generally mediated by Mn+ cation. VvGLPs showed similarity in the overall structure, shape, and position of the cupin domain. Functionally, VvGLPs control and regulate the production of secondary metabolites to cope with various stresses. Phylogenetically VvGLP1, -3, -4, -5, and VvGLP7 showed greater similarity due to duplication while VvGLP2 and VvGLP6 revealed a distant relationship. Promoter analysis revealed the presence of diverse cis-regulatory elements among which CAAT box, MYB, MYC, unnamed-4 were common to all of them. The analysis will help to utilize VvGLPs and their promoters in future food programs by developing resistant cultivars against various biotic (Erysiphe necator and in Powdery Mildew etc.) and abiotic (Salt, drought, heat, dehydration, etc.) stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. Alam
- University of Swabi, Pakistan
| | - A. Rauf
- University of Swabi, Pakistan
| | - D. S. Waggas
- Fakeeh College of Medical Sciences, Saudi Arabia
| | | |
Collapse
|
5
|
Giovagnorio F, De Vito A, Madeddu G, Parisi SG, Geremia N. Resistance in Pseudomonas aeruginosa: A Narrative Review of Antibiogram Interpretation and Emerging Treatments. Antibiotics (Basel) 2023; 12:1621. [PMID: 37998823 PMCID: PMC10669487 DOI: 10.3390/antibiotics12111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium renowned for its resilience and adaptability across diverse environments, including clinical settings, where it emerges as a formidable pathogen. Notorious for causing nosocomial infections, P. aeruginosa presents a significant challenge due to its intrinsic and acquired resistance mechanisms. This comprehensive review aims to delve into the intricate resistance mechanisms employed by P. aeruginosa and to discern how these mechanisms can be inferred by analyzing sensitivity patterns displayed in antibiograms, emphasizing the complexities encountered in clinical management. Traditional monotherapies are increasingly overshadowed by the emergence of multidrug-resistant strains, necessitating a paradigm shift towards innovative combination therapies and the exploration of novel antibiotics. The review accentuates the critical role of accurate antibiogram interpretation in guiding judicious antibiotic use, optimizing therapeutic outcomes, and mitigating the propagation of antibiotic resistance. Misinterpretations, it cautions, can inadvertently foster resistance, jeopardizing patient health and amplifying global antibiotic resistance challenges. This paper advocates for enhanced clinician proficiency in interpreting antibiograms, facilitating informed and strategic antibiotic deployment, thereby improving patient prognosis and contributing to global antibiotic stewardship efforts.
Collapse
Affiliation(s)
- Federico Giovagnorio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (F.G.); (S.G.P.)
| | - Andrea De Vito
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Giordano Madeddu
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | | | - Nicholas Geremia
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale “dell’Angelo”, 30174 Venice, Italy
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Civile “S.S. Giovanni e Paolo”, 30122 Venice, Italy
| |
Collapse
|
6
|
Jordana-Lluch E, Barceló IM, Escobar-Salom M, Estévez MA, Zamorano L, Gómez-Zorrilla S, Sendra E, Oliver A, Juan C. The balance between antibiotic resistance and fitness/virulence in Pseudomonas aeruginosa: an update on basic knowledge and fundamental research. Front Microbiol 2023; 14:1270999. [PMID: 37840717 PMCID: PMC10569695 DOI: 10.3389/fmicb.2023.1270999] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The interplay between antibiotic resistance and bacterial fitness/virulence has attracted the interest of researchers for decades because of its therapeutic implications, since it is classically assumed that resistance usually entails certain biological costs. Reviews on this topic revise the published data from a general point of view, including studies based on clinical strains or in vitro-evolved mutants in which the resistance phenotype is seen as a final outcome, i.e., a combination of mechanisms. However, a review analyzing the resistance/fitness balance from the basic research perspective, compiling studies in which the different resistance pathways and respective biological costs are individually approached, was missing. Here we cover this gap, specifically focusing on Pseudomonas aeruginosa, a pathogen that stands out because of its extraordinary capacity for resistance development and for which a considerable number of recent and particular data on the interplay with fitness/virulence have been released. The revised information, split into horizontally-acquired vs. mutation-driven resistance, suggests a great complexity and even controversy in the resistance-fitness/virulence balance in the acute infection context, with results ranging from high costs linked to certain pathways to others that are seemingly cost-free or even cases of resistance mechanisms contributing to increased pathogenic capacities. The elusive mechanistic basis for some enigmatic data, knowledge gaps, and possibilities for therapeutic exploitation are discussed. The information gathered suggests that resistance-fitness/virulence interplay may be a source of potential antipseudomonal targets and thus, this review poses the elementary first step for the future development of these strategies harnessing certain resistance-associated biological burdens.
Collapse
Affiliation(s)
- Elena Jordana-Lluch
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Isabel Mª Barceló
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - María Escobar-Salom
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Miguel A. Estévez
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Silvia Gómez-Zorrilla
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Infectious Diseases Service, Hospital del Mar, Hospital del Mar Research Institute, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelóna (UAB), Barcelona, Spain
| | - Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Hospital del Mar Research Institute, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelóna (UAB), Barcelona, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
7
|
van Charante F, Martínez-Pérez D, Guarch-Pérez C, Courtens C, Sass A, Choińska E, Idaszek J, Van Calenbergh S, Riool M, Zaat SA, Święszkowski W, Coenye T. 3D-printed wound dressings containing a fosmidomycin-derivative prevent Acinetobacter baumannii biofilm formation. iScience 2023; 26:107557. [PMID: 37680458 PMCID: PMC10480667 DOI: 10.1016/j.isci.2023.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/24/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023] Open
Abstract
Acinetobacter baumannii causes a wide range of infections, including wound infections. Multidrug-resistant A. baumannii is a major healthcare concern and the development of novel treatments against these infections is needed. Fosmidomycin is a repurposed antimalarial drug targeting the non-mevalonate pathway, and several derivatives show activity toward A. baumannii. We evaluated the antimicrobial activity of CC366, a fosmidomycin prodrug, against a collection of A. baumannii strains, using various in vitro and in vivo models; emphasis was placed on the evaluation of its anti-biofilm activity. We also developed a 3D-printed wound dressing containing CC366, using melt electrowriting technology. Minimal inhibitory concentrations of CC366 ranged from 1 to 64 μg/mL, and CC366 showed good biofilm inhibitory and moderate biofilm eradicating activity in vitro. CC366 successfully eluted from a 3D-printed dressing, the dressings prevented the formation of A. baumannnii wound biofilms in vitro and reduced A. baumannii infection in an in vivo mouse model.
Collapse
Affiliation(s)
- Frits van Charante
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - David Martínez-Pérez
- Biomaterials, Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| | - Clara Guarch-Pérez
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Charlotte Courtens
- Laboratory of Medicinal Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Emilia Choińska
- Biomaterials, Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| | - Joanna Idaszek
- Biomaterials, Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| | | | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Wojciech Święszkowski
- Biomaterials, Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Genova R, Laborda P, Cuesta T, Martínez JL, Sanz-García F. Collateral Sensitivity to Fosfomycin of Tobramycin-Resistant Mutants of Pseudomonas aeruginosa Is Contingent on Bacterial Genomic Background. Int J Mol Sci 2023; 24:ijms24086892. [PMID: 37108055 PMCID: PMC10138353 DOI: 10.3390/ijms24086892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding the consequences in bacterial physiology of the acquisition of drug resistance is needed to identify and exploit the weaknesses derived from it. One of them is collateral sensitivity, a potentially exploitable phenotype that, unfortunately, is not always conserved among different isolates. The identification of robust, conserved collateral sensitivity patterns is then relevant for the translation of this knowledge into clinical practice. We have previously identified a robust fosfomycin collateral sensitivity pattern of Pseudomonas aeruginosa that emerged in different tobramycin-resistant clones. To go one step further, here, we studied if the acquisition of resistance to tobramycin is associated with robust collateral sensitivity to fosfomycin among P. aeruginosa isolates. To that aim, we analyzed, using adaptive laboratory evolution approaches, 23 different clinical isolates of P. aeruginosa presenting diverse mutational resistomes. Nine of them showed collateral sensitivity to fosfomycin, indicating that this phenotype is contingent on the genetic background. Interestingly, collateral sensitivity to fosfomycin was linked to a larger increase in tobramycin minimal inhibitory concentration. Further, we unveiled that fosA low expression, rendering a higher intracellular accumulation of fosfomycin, and a reduction in the expression of the P. aeruginosa alternative peptidoglycan-recycling pathway enzymes, might be on the basis of the collateral sensitivity phenotype.
Collapse
Affiliation(s)
- Roberta Genova
- Centro Nacional de Biotecnología, CSIC, 28043 Madrid, Spain
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, 28043 Madrid, Spain
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | - Fernando Sanz-García
- Centro Nacional de Biotecnología, CSIC, 28043 Madrid, Spain
- Microbiology Department, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
9
|
Chodkowski JL, Shade A. A coevolution experiment between Flavobacterium johnsoniae and Burkholderia thailandensis reveals parallel mutations that reduce antibiotic susceptibility. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36724091 DOI: 10.1099/mic.0.001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One interference mechanism of bacterial competition is the production of antibiotics. Bacteria exposed to antibiotics can resist antibiotic inhibition through intrinsic or acquired mechanisms. Here, we performed a coevolution experiment to understand the long-term consequences of antibiotic production and antibiotic susceptibility for two environmental bacterial strains. We grew five independent lines of the antibiotic-producing environmental strain, Burkholderia thailandensis E264, and the antibiotic-inhibited environmental strain, Flavobacterium johnsoniae UW101, together and separately on agar plates for 7.5 months (1.5 month incubations), transferring each line five times to new agar plates. We observed that the F. johnsoniae ancestor could tolerate the B. thailandensis-produced antibiotic through efflux mechanisms, but that the coevolved lines had reduced susceptibility. We then sequenced genomes from the coevolved and monoculture F. johnsoniae lines, and uncovered mutational ramifications for the long-term antibiotic exposure. The coevolved genomes from F. johnsoniae revealed four potential mutational signatures of reduced antibiotic susceptibility that were not observed in the evolved monoculture lines. Two mutations were found in tolC: one corresponding to a 33 bp deletion and the other corresponding to a nonsynonymous mutation. A third mutation was observed as a 1 bp insertion coding for a RagB/SusD nutrient uptake protein. The last mutation was a G83R nonsynonymous mutation in acetyl-coA carboxylayse carboxyltransferase subunit alpha (AccA). Deleting the 33 bp from tolC in the F. johnsoniae ancestor reduced antibiotic susceptibility, but not to the degree observed in coevolved lines. Furthermore, the accA mutation matched a previously described mutation conferring resistance to B. thailandensis-produced thailandamide. Analysis of B. thailandensis transposon mutants for thailandamide production revealed that thailandamide was bioactive against F. johnsoniae, but also suggested that additional B. thailandensis-produced antibiotics were involved in the inhibition of F. johnsoniae. This study reveals how multi-generational interspecies interactions, mediated through chemical exchange, can result in novel interaction-specific mutations, some of which may contribute to reductions in antibiotic susceptibility.
Collapse
Affiliation(s)
- John L Chodkowski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.,Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.,Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI 48824, USA.,Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully cedex, France
| |
Collapse
|
10
|
Metabolic Mechanism and Physiological Role of Glycerol 3-Phosphate in Pseudomonas aeruginosa PAO1. mBio 2022; 13:e0262422. [PMID: 36218368 PMCID: PMC9765544 DOI: 10.1128/mbio.02624-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen that is lethal to cystic fibrosis (CF) patients. Glycerol generated during the degradation of phosphatidylcholine, the major lung surfactant in CF patients, could be utilized by P. aeruginosa. Previous studies have indicated that metabolism of glycerol by this bacterium contributes to its adaptation to and persistence in the CF lung environment. Here, we investigated the metabolic mechanisms of glycerol and its important metabolic intermediate glycerol 3-phosphate (G3P) in P. aeruginosa PAO1. We found that G3P homeostasis plays an important role in the growth and virulence factor production of P. aeruginosa PAO1. The G3P accumulation caused by the mutation of G3P dehydrogenase (GlpD) and exogenous glycerol led to impaired growth and reductions in pyocyanin synthesis, motilities, tolerance to oxidative stress, and resistance to kanamycin. Transcriptomic analysis indicates that the growth retardation caused by G3P stress is associated with reduced glycolysis and adenosine triphosphate (ATP) generation. Furthermore, two haloacid dehalogenase-like phosphatases (PA0562 and PA3172) that play roles in the dephosphorylation of G3P in strain PAO1 were identified, and their enzymatic properties were characterized. Our findings reveal the importance of G3P homeostasis and indicate that GlpD, the key enzyme for G3P catabolism, is a potential therapeutic target for the prevention and treatment of infections by this pathogen. IMPORTANCE In view of the intrinsic resistance of Pseudomonas aeruginosa to antibiotics and its potential to acquire resistance to current antibiotics, there is an urgent need to develop novel therapeutic options for the treatment of infections caused by this bacterium. Bacterial metabolic pathways have recently become a focus of interest as potential targets for the development of new antibiotics. In this study, we describe the mechanism of glycerol utilization in P. aeruginosa PAO1, which is an available carbon source in the lung environment. Our results reveal that the homeostasis of glycerol 3-phosphate (G3P), a pivotal intermediate in glycerol catabolism, is important for the growth and virulence factor production of P. aeruginosa PAO1. The mutation of G3P dehydrogenase (GlpD) and the addition of glycerol were found to reduce the tolerance of P. aeruginosa PAO1 to oxidative stress and to kanamycin. The findings highlight the importance of G3P homeostasis and suggest that GlpD is a potential drug target for the treatment of P. aeruginosa infections.
Collapse
|
11
|
Assessment of the Susceptibility of Clinical Gram-Negative and Gram-Positive Bacterial Strains to Fosfomycin and Significance of This Antibiotic in Infection Treatment. Pathogens 2022; 11:pathogens11121441. [PMID: 36558775 PMCID: PMC9786176 DOI: 10.3390/pathogens11121441] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Multidrug resistance of bacteria has prompted intensive development work on new medicines, but also the search for effective options among the oldest antibiotics. Although intravenous fosfomycin (IVFOS) seems to be an interesting proposal, the recommended agar dilution method for susceptibility determination poses a major problem in routine diagnostic testing. As a consequence, there is a lack of comprehensive data on the frequency of isolation of susceptible or resistant strains. This fact triggered the disposition of EUCAST concerning the revision of IVFOS breakpoints (BPs), including withdrawal of BPs for Enterobacterales (excluding E. coli) and coagulase-negative staphylococci. Therefore, the aim of this study was to assess the activity of fosfomycin against numerous clinical strains using recommended methods. Materials and methods: A total of 997 bacterial strains were tested from the following genera: Enterobacterales, Pseudomonas spp., Staphylococcus spp., Acinetobacter spp., and Enterococcus spp., for which there are currently no BPs. The strains were isolated from various clinical materials from patients hospitalized in five hospitals. During the investigation, the recommended agar dilution method was used. Susceptibility to other antibiotics and resistance mechanisms were determined using an automatic method (Phoenix) the disk diffusion method, and E-tests. MIC values of fosfomycin were estimated for all strains and for susceptible and multidrug-resistant (MDR) strains individually. Results: Except for Acinetobacter and Enterococcus, 83% of the strains were susceptible to IVFOS, including the largest percentage of S. aureus and E. coli. Klebsiella spp. turned out to be the least susceptible strains (66%). The highest proportion of susceptibility to fosfomycin was found among strains that were sensitive to other antibiotics (80.9%), and the lowest was found among Gram-negative carbapenemase-producing bacteria (55.6%) and ESBL+ bacteria (61.6%). The MIC evaluation revealed the lowest MIC50 and MIC90 values for S. aureus (0.5 mg/L and 1 mg/L, respectively) and E. coli (4 mg/L and 32 mg/L, respectively). The highest values of MIC50 were found for Acinetobacter spp. (256 mg/L), while the highest values of MIC90 were found for Acinetobacter spp. and Klebsiella spp. (256 mg/L and 512 mg/L, respectively). Conclusions: IVFOS appears to be suitable for the treatment of many infections, including the empirical treatment of polymicrobial infections and those caused by MDR strains, since the sensitivity of the studied strains to this antibiotic in different groups ranged from 66% to as much as 99%. Sensitivity to fosfomycin was also demonstrated by 60% of carbapenem-resistant strains; therefore, IVFOS is one of the few therapeutic options that can be effective against the most resistant Gram-negative rods. In light of the general consultation posted by EUCAST, obtaining data such as IVFOS MIC value distributions may be vital for the decision of implementing fosfomycin into breakpoint tables.
Collapse
|
12
|
Ahmed OB. Detection of Antibiotic Resistance Genes in Pseudomonas aeruginosa by Whole Genome Sequencing. Infect Drug Resist 2022; 15:6703-6709. [PMID: 36425153 PMCID: PMC9680685 DOI: 10.2147/idr.s389959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2023] Open
Abstract
Background Multidrug-resistant Pseudomonas aeruginosa has become a hazard to public health, making medical treatment challenging and ineffective. Whole-genome sequencing for antibiotic susceptibility testing offers a powerful replacement for conventional microbiological methods. Objective The present study evaluated the presence of antibiotic resistance genes in selected clinical strains of P. aeruginosa using whole-genome sequencing for antibiotic susceptibility testing. Results Whole-genome sequencing of P. aeruginosa susceptible to common antibiotics showed the presence of 4 antibiotic resistance gene types, fosA, catB7, blaPAO, and blaOXA-50. Whole genome sequencing of resistant or multidrug-resistant P. aeruginosa showed the presence of multiple ARGs, such as sul1, aac(3)-Ic, blaPAO, blaGES-1, blaGES-5 aph (3')-XV, blaOXA-50, aacA4, catB7, aph(3')-IIb, aadA6, fosA, tet(G), cmlA1, aac(6')Ib-cr, and rmtF. Conclusion The acquisition of antibiotic resistance genes was found to depend on the resistance of Pseudomonas to antibiotics. The strain with the highest resistance to antibiotics had the highest acquisition of antibiotic resistance genes. MDR-P. aeruginosa produces antibiotic resistance genes against aminoglycoside, β-lactam, fluoroquinolones, sulfonamides, phenicol, and fosfomycin antibiotics.
Collapse
Affiliation(s)
- Omar B Ahmed
- Department of Environmental and Health Research, The Custodian of the Two Holy Mosques Institute of Hajj and Umrah Research, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
13
|
Ortiz-Padilla M, Portillo-Calderón I, Velázquez-Escudero A, Rodríguez-Baño J, Pascual Á, Rodríguez-Martínez JM, Docobo-Pérez F. Effect of Glycerol on Fosfomycin Activity against Escherichia coli. Antibiotics (Basel) 2022; 11:antibiotics11111612. [PMID: 36421256 PMCID: PMC9686493 DOI: 10.3390/antibiotics11111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Fosfomycin is an antimicrobial that inhibits the biosynthesis of peptidoglycan by entering the bacteria through two channels (UhpT and GlpT). Glycerol is clinically used as a treatment for elevated intracranial pressure and induces the expression of glpT in Escherichia coli. Glycerol might offer synergistic activity by increasing fosfomycin uptake. The present study evaluates the use of glycerol at physiological concentrations in combination with fosfomycin against a collection of isogenic mutants of fosfomycin-related genes in E. coli strains. Induction of fosfomycin transporters, susceptibility tests, interaction assays, and time-kill assays were performed. Our results support the notion that glycerol allows activation of the GlpT transporter, but this induction is delayed over time and is not homogeneous across the bacterial population, leading to contradictory results regarding the enhancement of fosfomycin activity. The susceptibility assays showed an increase in fosfomycin activity with glycerol in the disk diffusion assay but not in the agar dilution or broth microdilution assays. Similarly, in the time-kill assays, the effect of glycerol was absent by the emergence of fosfomycin-resistant subpopulations. In conclusion, glycerol may not be a good candidate for use as an adjuvant with fosfomycin.
Collapse
Affiliation(s)
- Miriam Ortiz-Padilla
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41009 Sevilla, Spain
| | - Inés Portillo-Calderón
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41009 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Ana Velázquez-Escudero
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain
| | - Jesús Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41009 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Álvaro Pascual
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41009 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - José Manuel Rodríguez-Martínez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41009 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
- Correspondence: (J.M.R.-M.); (F.D.-P.); Tel.: +34-95-455-6100 (J.M.R.-M. & F.D.-P.)
| | - Fernando Docobo-Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, 41009 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
- Correspondence: (J.M.R.-M.); (F.D.-P.); Tel.: +34-95-455-6100 (J.M.R.-M. & F.D.-P.)
| |
Collapse
|
14
|
Wangchinda W, Rattanaumpawan P. JMM Profile: Fosfomycin: a potential antibiotic for multi- and extensively resistant bacteria. J Med Microbiol 2022; 71. [PMID: 35951643 DOI: 10.1099/jmm.0.001573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fosfomycin (FOF) is the first antimicrobial of the epoxide class. It is commercially available in oral and parenteral formulations. Oral FOF is widely used to treat uncomplicated cystitis in women, while parenteral FOF is extensively utilized for upper urinary tract infections. FOF has a broad-spectrum bactericidal activity with a low risk of cross-resistance to other antimicrobial classes. Therefore, parenteral FOF is increasingly prescribed adjunctive therapy to treat extra-urinary tract infections caused by multidrug-resistant, Gram-negative bacteria.
Collapse
Affiliation(s)
- Walaiporn Wangchinda
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Rd, Bangkoknoi, Bangkok 10700, Thailand
| | - Pinyo Rattanaumpawan
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Rd, Bangkoknoi, Bangkok 10700, Thailand
| |
Collapse
|
15
|
de Oliveira MVD, Furtado RM, da Costa KS, Vakal S, Lima AH. Advances in UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) Covalent Inhibition. Front Mol Biosci 2022; 9:889825. [PMID: 35936791 PMCID: PMC9346081 DOI: 10.3389/fmolb.2022.889825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Peptidoglycan is a cross-linked polymer responsible for maintaining the bacterial cell wall integrity and morphology in Gram-negative and Gram-positive bacteria. The peptidoglycan pathway consists of the enzymatic reactions held in three steps: cytoplasmic, membrane-associated, and periplasmic. The Mur enzymes (MurA-MurF) are involved in a cytoplasmic stage. The UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) enzyme is responsible for transferring the enolpyruvate group from phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine (UNAG) to form UDP-N-acetylglucosamine enolpyruvate (EP-UNAG). Fosfomycin is a natural product analogous to PEP that acts on the MurA target enzyme via binding covalently to the key cysteine residue in the active site. Similar to fosfomycin, other MurA covalent inhibitors have been described with a warhead in their structure that forms a covalent bond with the molecular target. In MurA, the nucleophilic thiolate of Cys115 is pointed as the main group involved in the warhead binding. Thus, in this minireview, we briefly describe the main recent advances in the design of MurA covalent inhibitors.
Collapse
Affiliation(s)
| | - Renan Machado Furtado
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | - Kauê S. da Costa
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Brazil
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Anderson H. Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
- *Correspondence: Anderson H. Lima,
| |
Collapse
|
16
|
Golla VK, Piselli C, Kleinekathöfer U, Benz R. Permeation of Fosfomycin through the Phosphate-Specific Channels OprP and OprO of Pseudomonas aeruginosa. J Phys Chem B 2022; 126:1388-1403. [PMID: 35138863 DOI: 10.1021/acs.jpcb.1c08696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen responsible for many nosocomial infections. It is quite resistant to various antibiotics, caused by the absence of general diffusion pores in the outer membrane. Instead, it contains many substrate-specific channels. Among them are the two phosphate- and pyrophosphate-specific porins OprP and OprO. Phosphonic acid antibiotics such as fosfomycin and fosmidomycin seem to be good candidates for using these channels to enter P. aeruginosa bacteria. Here, we investigated the permeation of fosfomycin through OprP and OprO using electrophysiology and molecular dynamics (MD) simulations. The results were compared to those of the fosmidomycin translocation, for which additional MD simulations were performed. In the electrophysiological approach, we noticed a higher binding affinity of fosfomycin than of fosmidomycin to OprP and OprO. In MD simulations, the ladder of arginine residues and the cluster of lysine residues play an important role in the permeation of fosfomycin through the OprP and OprO channels. Molecular details on the permeation of fosfomycin through OprP and OprO channels were derived from MD simulations and compared to those of fosmidomycin translocation. In summary, this study demonstrates that the selectivity of membrane channels can be employed to improve the permeation of antibiotics into Gram-negative bacteria and especially into resistant P. aeruginosa strains.
Collapse
Affiliation(s)
- Vinaya Kumar Golla
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Claudio Piselli
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
17
|
Laborda P, Martínez JL, Hernando‐Amado S. Convergent phenotypic evolution towards fosfomycin collateral sensitivity of Pseudomonas aeruginosa antibiotic-resistant mutants. Microb Biotechnol 2022; 15:613-629. [PMID: 33960651 PMCID: PMC8867969 DOI: 10.1111/1751-7915.13817] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022] Open
Abstract
The rise of antibiotic resistance and the reduced amount of novel antibiotics support the need of developing novel strategies to fight infections, based on improving the use of the antibiotics we already have. Collateral sensitivity is an evolutionary trade-off associated with the acquisition of antibiotic resistance that can be exploited to tackle this relevant health problem. However, different works have shown that patterns of collateral sensitivity are not always conserved, thus precluding the exploitation of this evolutionary trade-off to fight infections. In this work, we identify a robust pattern of collateral sensitivity to fosfomycin in Pseudomonas aeruginosa antibiotic-resistant mutants, selected by antibiotics belonging to different structural families. We characterize the underlying mechanism of the collateral sensitivity observed, which is a reduced expression of the genes encoding the peptidoglycan-recycling pathway, which preserves the peptidoglycan synthesis in situations where its de novo synthesis is blocked, and a reduced expression of fosA, encoding a fosfomycin-inactivating enzyme. We propose that the identification of robust collateral sensitivity patterns, as well as the understanding of the molecular mechanisms behind these phenotypes, would provide valuable information to design evolution-based strategies to treat bacterial infections.
Collapse
Affiliation(s)
- Pablo Laborda
- Centro Nacional de BiotecnologíaCSICMadrid28049Spain
| | | | | |
Collapse
|
18
|
Park Y, Solhtalab M, Thongsomboon W, Aristilde L. Strategies of organic phosphorus recycling by soil bacteria: acquisition, metabolism, and regulation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:3-24. [PMID: 35001516 PMCID: PMC9306846 DOI: 10.1111/1758-2229.13040] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Critical to meeting cellular phosphorus (P) demand, soil bacteria deploy a number of strategies to overcome limitation in inorganic P (Pi ) in soils. As a significant contributor to P recycling, soil bacteria secrete extracellular enzymes to degrade organic P (Po ) in soils into the readily bioavailable Pi . In addition, several Po compounds can be transported directly via specific transporters and subsequently enter intracellular metabolic pathways. In this review, we highlight the strategies that soil bacteria employ to recycle Po from the soil environment. We discuss the diversity of extracellular phosphatases in soils, the selectivity of these enzymes towards various Po biomolecules and the influence of the soil environmental conditions on the enzyme's activities. Moreover, we outline the intracellular metabolic pathways for Po biosynthesis and transporter-assisted Po and Pi uptake at different Pi availabilities. We further highlight the regulatory mechanisms that govern the production of phosphatases, the expression of Po transporters and the key metabolic changes in P metabolism in response to environmental Pi availability. Due to the depletion of natural resources for Pi , we propose future studies needed to leverage bacteria-mediated P recycling from the large pools of Po in soils or organic wastes to benefit agricultural productivity.
Collapse
Affiliation(s)
- Yeonsoo Park
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Biological and Environmental EngineeringCornell University, Riley‐Robb HallIthacaNY14853USA
| | - Mina Solhtalab
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Biological and Environmental EngineeringCornell University, Riley‐Robb HallIthacaNY14853USA
| | - Wiriya Thongsomboon
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Chemistry, Faculty of ScienceMahasarakham UniversityMahasarakham44150Thailand
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Biological and Environmental EngineeringCornell University, Riley‐Robb HallIthacaNY14853USA
| |
Collapse
|
19
|
Koderi Valappil S, Shetty P, Deim Z, Terhes G, Urbán E, Váczi S, Patai R, Polgár T, Pertics BZ, Schneider G, Kovács T, Rákhely G. Survival Comes at a Cost: A Coevolution of Phage and Its Host Leads to Phage Resistance and Antibiotic Sensitivity of Pseudomonas aeruginosa Multidrug Resistant Strains. Front Microbiol 2021; 12:783722. [PMID: 34925289 PMCID: PMC8678094 DOI: 10.3389/fmicb.2021.783722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 01/12/2023] Open
Abstract
The increasing ineffectiveness of traditional antibiotics and the rise of multidrug resistant (MDR) bacteria have necessitated the revival of bacteriophage (phage) therapy. However, bacteria might also evolve resistance against phages. Phages and their bacterial hosts coexist in nature, resulting in a continuous coevolutionary competition for survival. We have isolated several clinical strains of Pseudomonas aeruginosa and phages that infect them. Among these, the PIAS (Phage Induced Antibiotic Sensitivity) phage belonging to the Myoviridae family can induce multistep genomic deletion in drug-resistant clinical strains of P. aeruginosa, producing a compromised drug efflux system in the bacterial host. We identified two types of mutant lines in the process: green mutants with SNPs (single nucleotide polymorphisms) and smaller deletions and brown mutants with large (∼250 kbp) genomic deletion. We demonstrated that PIAS used the MexXY-OprM system to initiate the infection. P. aeruginosa clogged PIAS phage infection by either modifying or deleting these receptors. The green mutant gaining phage resistance by SNPs could be overcome by evolved PIASs (E-PIASs) with a mutation in its tail-fiber protein. Characterization of the mutant phages will provide a deeper understanding of phage-host interaction. The coevolutionary process continued with large deletions in the same regions of the bacterial genomes to block the (E-)PIAS infection. These mutants gained phage resistance via either complete loss or substantial modifications of the phage receptor, MexXY-OprM, negating its essential role in antibiotic resistance. In vitro and in vivo studies indicated that combined use of PIAS and antibiotics could effectively inhibit P. aeruginosa growth. The phage can either eradicate bacteria or induce antibiotic sensitivity in MDR-resistant clinical strains. We have explored the potential use of combination therapy as an alternative approach against MDR P. aeruginosa infection.
Collapse
Affiliation(s)
| | - Prateek Shetty
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Zoltán Deim
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gabriella Terhes
- Department of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Edit Urbán
- Department of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Sándor Váczi
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Tamás Polgár
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | | | - György Schneider
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Tamás Kovács
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corp., Pécs, Hungary
- Biopesticide Ltd., Pécs, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
| |
Collapse
|
20
|
Differences in fosfomycin resistance mechanisms between Pseudomonas aeruginosa and Enterobacterales. Antimicrob Agents Chemother 2021; 66:e0144621. [PMID: 34807759 DOI: 10.1128/aac.01446-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa presents a serious threat to public health due to its widespread resistance to numerous antibiotics. P. aeruginosa commonly causes nosocomial infections including urinary tract infections (UTI) which have become increasingly difficult to treat. The lack of effective therapeutic agents has renewed interest in fosfomycin, an old drug discovered in the 1960s and approved prior to the rigorous standards now required for drug approval. Fosfomycin has a unique structure and mechanism of action, making it a favorable therapeutic alternative for MDR pathogens that are resistant to other classes of antibiotics. The absence of susceptibility breakpoints for fosfomycin against P. aeruginosa limits its clinical use and interpretation due to extrapolation of breakpoints established for Escherichia coli or Enterobacterales without supporting evidence. Furthermore, fosfomycin use and efficacy for treatment of P. aeruginosa is also limited by both inherent and acquired resistance mechanisms. This narrative review provides an update on currently identified resistance mechanisms to fosfomycin, with a focus on those mediated by P. aeruginosa such as peptidoglycan recycling enzymes, chromosomal Fos enzymes, and transporter mutation. Additional fosfomycin resistance mechanisms exhibited by Enterobacterales including mutations in transporters and associated regulators, plasmid mediated Fos enzymes, kinases, and murA modification, are also summarized and contrasted. These data highlight that different fosfomycin resistance mechanisms may be associated with elevated MIC values in P. aeruginosa compared to Enterobacterales, emphasizing that extrapolation of E. coli breakpoints to P. aeruginosa should be avoided.
Collapse
|
21
|
Lianou DT, Petinaki E, Cripps PJ, Gougoulis DA, Michael CK, Tsilipounidaki K, Skoulakis A, Katsafadou AI, Vasileiou NGC, Giannoulis T, Voidarou C, Mavrogianni VS, Caroprese M, Fthenakis GC. Antibiotic Resistance of Staphylococci from Bulk-Tank Milk of Sheep Flocks: Prevalence, Patterns, Association with Biofilm Formation, Effects on Milk Quality, and Risk Factors. BIOLOGY 2021; 10:biology10101016. [PMID: 34681114 PMCID: PMC8533144 DOI: 10.3390/biology10101016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This work investigated the presence of staphylococci resistant to antibiotics in the raw milk produced in sheep farms, which is intended for human consumption, in an extensive study performed throughout Greece. In 31% of flocks, staphylococci resistant to at least one antibiotic were recovered; in 12% of flocks, staphylococci resistant to at least three different antibiotic classes were found. Factors potentially associated with recovery of resistant isolates were the lack of experience by farmers (<5 years), the period immediately post lambing, and the intensive management system applied in the flocks. Abstract The objectives of this work were to study prevalence and characteristics of resistance to antibiotics of staphylococcal isolates from the bulk-tank milk of sheep flocks across Greece, to assess possible associations of the presence of antibiotic resistance with the quality of milk in these flocks and to evaluate flock-related factors potentially associated with antibiotic resistance among these isolates. A cross-sectional study was performed in 325 sheep flocks in Greece. Bulk-tank milk samples were collected for bacteriological examination; staphylococcal isolates were evaluated for resistance to 20 antibiotics. Oxacillin-resistant staphylococcal isolates, isolates resistant to any antibiotic, and multi-resistant isolates were recovered from 8.0%, 30.5%, and 12.0% of flocks, respectively. Of 232 isolates, 11.6% were resistant to oxacillin, 46.1% were resistant to at least one antibiotic, and 16.4% were multi-resistant. Resistance was seen more frequently among coagulase-negative (50.6%) than among Staphylococcus aureus (31.5%) isolates. Resistance was more frequent against penicillin and ampicillin (34.1% of isolates), clindamycin (17.7%), and fosfomycin (14.2%). An association was found between biofilm formation by staphylococci and resistance to fosfomycin. For recovery of oxacillin-resistant isolates, the lack of experience by farmers emerged as a significant factor; respective factors for the isolation of staphylococci resistant to any antibiotic or multi-resistant isolates were the early stage of the lactation period (0th–1st month) and the intensive management system applied in the flocks, respectively.
Collapse
Affiliation(s)
- Daphne T. Lianou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.); (P.J.C.); (D.A.G.); (C.K.M.); (V.S.M.)
| | - Efthymia Petinaki
- University Hospital of Larissa, 41110 Larissa, Greece; (E.P.); (K.T.); (A.S.)
| | - Peter J. Cripps
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.); (P.J.C.); (D.A.G.); (C.K.M.); (V.S.M.)
| | - Dimitris A. Gougoulis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.); (P.J.C.); (D.A.G.); (C.K.M.); (V.S.M.)
| | - Charalambia K. Michael
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.); (P.J.C.); (D.A.G.); (C.K.M.); (V.S.M.)
| | | | - Anargyros Skoulakis
- University Hospital of Larissa, 41110 Larissa, Greece; (E.P.); (K.T.); (A.S.)
| | | | - Natalia G. C. Vasileiou
- Faculty of Animal Science, University of Thessaly, 41110 Larissa, Greece; (N.G.C.V.); (T.G.)
| | - Themis Giannoulis
- Faculty of Animal Science, University of Thessaly, 41110 Larissa, Greece; (N.G.C.V.); (T.G.)
| | | | - Vasia S. Mavrogianni
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.); (P.J.C.); (D.A.G.); (C.K.M.); (V.S.M.)
| | - Mariangela Caroprese
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy;
| | - George C. Fthenakis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (D.T.L.); (P.J.C.); (D.A.G.); (C.K.M.); (V.S.M.)
- Correspondence:
| |
Collapse
|
22
|
Abbott IJ, Mouton JW, Peleg AY, Meletiadis J. Pharmacokinetic/pharmacodynamic analysis of oral fosfomycin against Enterobacterales, Pseudomonas aeruginosa and Enterococcus spp. in an in vitro bladder infection model: impact on clinical breakpoints. J Antimicrob Chemother 2021; 76:3201-3211. [PMID: 34473271 DOI: 10.1093/jac/dkab313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/23/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Fosfomycin is an established treatment for uncomplicated urinary tract infections (UTIs), yet evidence supporting susceptibility breakpoints is limited. We examine the UTI susceptibility criteria. METHODS Fosfomycin susceptibility, heteroresistance and in vitro growth in a bladder infection model, after a single 3 g dose of oral fosfomycin, were bridged to human pharmacokinetics with pharmacokinetic/pharmacodynamic and Monte Carlo analyses. Data from common uropathogens (24 Escherichia coli, 20 Klebsiella pneumoniae, 4 Enterobacter cloacae, 14 Pseudomonas aeruginosa, 8 Enterococcus faecalis and 8 Enterococcus faecium) were compared and analysed to ascertain species-specific PTA. RESULTS Glucose-6-phosphate (G6P) increased MICs of E. coli, K. pneumoniae and E. cloacae (median 2-fold dilutions 3-5), but not of P. aeruginosa and Enterococcus. Atypical E. coli lacking G6P potentiation were killed in the bladder infection model despite high MICs (32-128 mg/L). Fosfomycin heteroresistance was uncommon in E. coli (MIC > 2 mg/L) but was detected in the majority of K. pneumoniae (MIC > 1 mg/L) and P. aeruginosa (MIC >8 mg/L). For these species, baseline heteroresistance was a strong predictor for treatment failure in the model. No heteroresistance was found in Enterococcus. The fAUC/MIC targets for stasis were 1935, 3393, 9968, 2738 and 283 for typical E. coli, K. pneumoniae, E. cloacae, P. aeruginosa and E. faecalis, respectively (synthetic human urine medium alone promoted a 1 log10 kill in E. faecium). A >95% PTA for stasis was only found at MIC ≤ epidemiological cut-off (ECOFF) for E. coli (4 mg/L). For other species, PTAs were low for WT populations. CONCLUSIONS With the exception of E. coli, fosfomycin is a poor target for other uropathogen species. A reduction in oral fosfomycin UTI breakpoints is supported.
Collapse
Affiliation(s)
- Iain J Abbott
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Research and Development Unit, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Anton Y Peleg
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Joseph Meletiadis
- Department of Medical Microbiology and Infectious Diseases, Research and Development Unit, Erasmus Medical Centre, Rotterdam, The Netherlands.,Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Haidari, Athens, Greece
| |
Collapse
|
23
|
Fosfomycin and nitrofurantoin: classic antibiotics and perspectives. J Antibiot (Tokyo) 2021; 74:547-558. [PMID: 34244614 DOI: 10.1038/s41429-021-00444-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Antibiotics are essential molecules for the treatment and prophylaxis of many infectious diseases. However, drugs that combat microbial infections can become a human health threat due to their high and often indiscriminate consumption, considered one of the factors of antimicrobial resistance (AMR) emergence. The AMR crisis, the decrease in new drug development by the pharmaceutical industry, and reduced economic incentives for research have all reduced the options for treating infections, and new strategies are necessary, including the return of some traditional but "forgotten" antibiotics. However, prescriptions for these older drugs including nitrofurantoin and oral fosfomycin, have been based on the results of pioneer studies, and the limited knowledge generated 50-70 years ago may not be enough. To avoid harming patients and further increasing multidrug resistance, systematic evaluation is required, mainly for the drugs prescribed for community-acquired infections, such as urinary tract infections (UTI). Therefore, this review has the objective of reporting the use of two classic drugs from the nitrofuran and phosphonic acid classes for UTI control nowadays. Furthermore, we also explore new approaches used for these antibiotics, including new combination regimes for spectral amplification, and the prospects for reducing bacterial resistance in the fight against bacteria responsible for UTI.
Collapse
|
24
|
Abbott IJ, van Gorp E, Wijma RA, Dekker J, Croughs PD, Meletiadis J, Mouton JW, Peleg AY. Efficacy of single and multiple oral doses of fosfomycin against Pseudomonas aeruginosa urinary tract infections in a dynamic in vitro bladder infection model. J Antimicrob Chemother 2021; 75:1879-1888. [PMID: 32361749 DOI: 10.1093/jac/dkaa127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We used a dynamic bladder infection in vitro model with synthetic human urine (SHU) to examine fosfomycin exposures to effectively kill, or prevent emergence of resistance, among Pseudomonas aeruginosa isolates. METHODS Dynamic urinary fosfomycin concentrations after 3 g oral fosfomycin were simulated, comparing single and multiple (daily for 7 days) doses. Pharmacodynamic response of 16 P. aeruginosa (MIC range 1 to >1024 mg/L) were examined. Baseline disc diffusion susceptibility, broth microdilution MIC and detection of heteroresistance were assessed. Pathogen kill and emergence of resistance over 72 h following a single dose, and over 216 h following daily dosing for 7 days, were investigated. The fAUC0-24/MIC associated with stasis and 1, 2 and 3 log10 kill were determined. RESULTS Pre-exposure high-level resistant (HLR) subpopulations were detected in 11/16 isolates after drug-free incubation in the bladder infection model. Five of 16 isolates had >2 log10 kill after single dose, reducing to 2/16 after seven doses. Post-exposure HLR amplification occurred in 8/16 isolates following a single dose and in 11/16 isolates after seven doses. Baseline MIC ≥8 mg/L with an HLR subpopulation predicted post-exposure emergence of resistance following the multiple doses. A PK/PD target of fAUC0-24/MIC >5000 was associated with 3 log10 kill at 72 h and 7 day-stasis. CONCLUSIONS Simulated treatment of P. aeruginosa urinary tract infections with oral fosfomycin was ineffective, despite exposure to high urinary concentrations and repeated daily doses for 7 days. Emergence of resistance was observed in the majority of isolates and worsened following prolonged therapy. Detection of a baseline resistant subpopulation predicted treatment failure.
Collapse
Affiliation(s)
- Iain J Abbott
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elke van Gorp
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rixt A Wijma
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Jordy Dekker
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter D Croughs
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Haidari, Athens, Greece
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
25
|
Leite GC, Perdigão-Neto LV, Ruedas Martins RC, Rizek C, Levin AS, Costa SF. Genetic factors involved in fosfomycin resistance of multidrug-resistant Acinetobacter baumannii. INFECTION GENETICS AND EVOLUTION 2021; 93:104943. [PMID: 34051359 DOI: 10.1016/j.meegid.2021.104943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
The treatment of infections caused by A. baumannii is a challenge and fosfomycin has been used as a combination therapy. Moreover, data regarding the fosfomycin resistance mechanism is scarce. The goals of this study were to evaluate fosfomycin susceptibility in polyclonal multi-resistant A. baumannii isolates and characterize the fosfomycin resistance. We analyzed 32 A. baumannii isolates from a Brazilian bacterial collection, followed by their minimum inhibitory concentration (MIC), and whole-genome sequence to detect fosfomycin resistance genes. The isolates showed a fosfomycin MIC ranging from 32 to ≥256 mg/L. All isolates were negative for fosA and fosB genes, and four isolates carried the fosX gene. Two different metabolic pathways that form peptidoglycan precursors were identified. Mutations were observed in the adenylate cyclase gene. All A. baumannii isolates studied showed Val132Ala substitutions in MurA. The analysis showed different ways that may lead to the intrinsic fosfomycin-resistance of A. baumannii, such as alterations on the glycerol-3-phosphate transporter system caused by adenylate cyclase mutations; and a possible connection of cell wall recycling by different metabolic pathways.
Collapse
Affiliation(s)
- Gleice C Leite
- Department of Infectious Diseases, University of São Paulo, São Paulo, SP 05403-000, Brazil; Laboratory of Medical Investigation 49 (LIM-49), University of São Paulo, São Paulo, SP 05403-000, Brazil
| | - Lauro V Perdigão-Neto
- Department of Infectious Diseases, University of São Paulo, São Paulo, SP 05403-000, Brazil; Laboratory of Medical Investigation 49 (LIM-49), University of São Paulo, São Paulo, SP 05403-000, Brazil
| | - Roberta C Ruedas Martins
- Department of Infectious Diseases, University of São Paulo, São Paulo, SP 05403-000, Brazil; Laboratory of Medical Investigation 49 (LIM-49), University of São Paulo, São Paulo, SP 05403-000, Brazil
| | - Camila Rizek
- Laboratory of Medical Investigation 49 (LIM-49), University of São Paulo, São Paulo, SP 05403-000, Brazil
| | - Anna Sara Levin
- Department of Infectious Diseases, University of São Paulo, São Paulo, SP 05403-000, Brazil
| | - Silvia F Costa
- Department of Infectious Diseases, University of São Paulo, São Paulo, SP 05403-000, Brazil; Laboratory of Medical Investigation 49 (LIM-49), University of São Paulo, São Paulo, SP 05403-000, Brazil; Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
26
|
Prajapati JD, Kleinekathöfer U, Winterhalter M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem Rev 2021; 121:5158-5192. [PMID: 33724823 DOI: 10.1021/acs.chemrev.0c01213] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous successes in the field of antibiotic discovery seen in the previous century, infectious diseases have remained a leading cause of death. More specifically, pathogenic Gram-negative bacteria have become a global threat due to their extraordinary ability to acquire resistance against any clinically available antibiotic, thus urging for the discovery of novel antibacterial agents. One major challenge is to design new antibiotics molecules able to rapidly penetrate Gram-negative bacteria in order to achieve a lethal intracellular drug accumulation. Protein channels in the outer membrane are known to form an entry route for many antibiotics into bacterial cells. Up until today, there has been a lack of simple experimental techniques to measure the antibiotic uptake and the local concentration in subcellular compartments. Hence, rules for translocation directly into the various Gram-negative bacteria via the outer membrane or via channels have remained elusive, hindering the design of new or the improvement of existing antibiotics. In this review, we will discuss the recent progress, both experimentally as well as computationally, in understanding the structure-function relationship of outer-membrane channels of Gram-negative pathogens, mainly focusing on the transport of antibiotics.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
27
|
Moore MP, Lamont IL, Williams D, Paterson S, Kukavica-Ibrulj I, Tucker NP, Kenna DTD, Turton JF, Jeukens J, Freschi L, Wee BA, Loman NJ, Holden S, Manzoor S, Hawkey P, Southern KW, Walshaw MJ, Levesque RC, Fothergill JL, Winstanley C. Transmission, adaptation and geographical spread of the Pseudomonas aeruginosa Liverpool epidemic strain. Microb Genom 2021; 7:mgen000511. [PMID: 33720817 PMCID: PMC8190615 DOI: 10.1099/mgen.0.000511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
The Liverpool epidemic strain (LES) is an important transmissible clonal lineage of Pseudomonas aeruginosa that chronically infects the lungs of people with cystic fibrosis (CF). Previous studies have focused on the genomics of the LES in a limited number of isolates, mostly from one CF centre in the UK, and from studies highlighting identification of the LES in Canada. Here we significantly extend the current LES genome database by genome sequencing 91 isolates from multiple CF centres across the UK, and we describe the comparative genomics of this large collection of LES isolates from the UK and Canada. Phylogenetic analysis revealed that the 145 LES genomes analysed formed a distinct clonal lineage when compared with the wider P. aeruginosa population. Notably, the isolates formed two clades: one associated with isolates from Canada, and the other associated with UK isolates. Further analysis of the UK LES isolates revealed clustering by clinic geography. Where isolates clustered closely together, the association was often supported by clinical data linking isolates or patients. When compared with the earliest known isolate, LESB58 (from 1988), many UK LES isolates shared common loss-of-function mutations, such as in genes gltR and fleR. Other loss-of-function mutations identified in previous studies as common adaptations during CF chronic lung infections were also identified in multiple LES isolates. Analysis of the LES accessory genome (including genomic islands and prophages) revealed variations in the carriage of large genomic regions, with some evidence for shared genomic island/prophage complement according to clinic location. Our study reveals divergence and adaptation during the spread of the LES, within the UK and between continents.
Collapse
Affiliation(s)
- Matthew P. Moore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Present address: Nuffield Department of Health, University of Oxford, UK
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - David Williams
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Irena Kukavica-Ibrulj
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Nicholas P. Tucker
- Strathclyde Institute of Pharmacy & Biomedical Sciences. University of Strathclyde, Glasgow, UK
| | | | - Jane F. Turton
- National Infection Service, Public Health England, London, UK
| | - Julie Jeukens
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Luca Freschi
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
- Present address: Harvard Medical School, Boston, MA, USA
| | - Bryan A. Wee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Present address: Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Nicholas J. Loman
- Institute for Microbiology & Infection, University of Birmingham, Birmingham, UK
| | - Stephen Holden
- Nottingham University Hospitals NHS Trust, Nottingham, UK
- Present address: MSD Research Laboratories, Two Pancras Square, London, UK
| | - Susan Manzoor
- University Hospitals Birmingham, Heartlands Hospital, Bordesley Green East, Birmingham, UK
| | - Peter Hawkey
- Institute for Microbiology & Infection, University of Birmingham, Birmingham, UK
- Present address: University of Birmingham Microbiome Treatment Centre, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | - Roger C. Levesque
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Joanne L. Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
28
|
Piselli C, Benz R. Fosmidomycin transport through the phosphate-specific porins OprO and OprP of Pseudomonas aeruginosa. Mol Microbiol 2021; 116:97-108. [PMID: 33561903 DOI: 10.1111/mmi.14693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 01/08/2023]
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen, responsible for many hospital-acquired infections. The bacterium is quite resistant toward many antibiotics, in particular because of the fine-tuned permeability of its outer membrane (OM). General diffusion outer membrane pores are quite rare in this organism. Instead, its OM contains many substrate-specific porins. Their expression is varying according to growth conditions and virulence. Phosphate limitations, as well as pathogenicity factors, result in the induction of the two mono- and polyphosphate-specific porins, OprP and OprO, respectively, together with an inner membrane uptake mechanism and a periplasmic binding protein. These outer membrane channels could serve as outer membrane pathways for the uptake of phosphonates. Among them are not only herbicides, but also potent antibiotics, such as fosfomycin and fosmidomycin. In this study, we investigated the interaction between OprP and OprO and fosmidomycin in detail. We could demonstrate that fosmidomycin is able to bind to the phosphate-specific binding site inside the two porins. The inhibition of chloride conductance of OprP and OprO by fosmidomycin is considerably less than that of phosphate or diphosphate, but it can be measured in titration experiments of chloride conductance and also in single-channel experiments. The results suggest that fosmidomycin transport across the OM of P. aeruginosa occurs through OprP and OprO. Our data with the ones already known in the literature show that phosphonic acid-containing antibiotics are in general good candidates to treat the infections of P. aeruginosa at the very beginning through a favorable OM transport system.
Collapse
Affiliation(s)
- Claudio Piselli
- Department of Life Sciences and Chemistry, Focus Health, Jacobs University Bremen, Bremen, Germany
| | - Roland Benz
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Glucose-6-Phosphate Acts as an Extracellular Signal of SagS To Modulate Pseudomonas aeruginosa c-di-GMP Levels, Attachment, and Biofilm Formation. mSphere 2021; 6:6/1/e01231-20. [PMID: 33568456 PMCID: PMC8544897 DOI: 10.1128/msphere.01231-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In Pseudomonas aeruginosa, the orphan two-component sensor SagS contributes both to transition to biofilm formation and to biofilm cells gaining their heightened tolerance to antimicrobials. However, little is known about the identity of the signals or conditions sensed by SagS to induce the switch to the sessile, drug-tolerant mode of growth. Using a modified Biolog phenotype assay to screen for compounds that modulate attachment in a SagS-dependent manner, we identified glucose-6-phosphate to enhance attachment in a manner dependent on the glucose-6-phosphate concentration and SagS. The stimulatory effect was not limited to the attachment since glucose-6-phosphate likewise enhanced biofilm formation and also enhanced the expression of select biofilm marker genes. Moreover, exposure to glucose-6-phosphate coincided with decreased swarming motility but increased cellular cyclic-di-GMP (c-di-GMP) levels in biofilms. No such response was noted for compounds modulating attachment and biofilm formation in a manner independent of SagS. Modulation of c-di-GMP in response to glucose-6-phosphate was due to the diguanylate cyclase NicD, with NicD also being required for enhanced biofilm formation. The latter was independent of the sensory domain of NicD but dependent on NicD activity, SagS, and the interaction between NicD and SagS. Our findings indicate that glucose-6-phosphate likely mimics a signal or conditions sensed by SagS to activate its motile-sessile switch function. In addition, our findings provide new insight into the interfaces between the ligand-mediated two-component system signaling pathway and c-di-GMP levels.IMPORTANCE Pathogens sense and respond to signals and cues present in their environment, including host-derived small molecules to modulate the expression of their virulence repertoire. Here, we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa responds to glucose-6-phosphate. Since glucose-6-phosphate is primarily made available due to cell lysis, it is likely that glucose-6-phosphate represents a cross-kingdom cell-to-cell signal that enables P. aeruginosa to adapt to the (nutrient-poor) host environment by enhancing biofilm formation, cyclic-di-GMP, and the expression of genes linked to biofilm formation in a concentration- and SagS-dependent manner.
Collapse
|
30
|
Coward C, Dharmalingham G, Abdulle O, Avis T, Beisken S, Breidenstein E, Carli N, Figueiredo L, Jones D, Khan N, Malara S, Martins J, Nagalingam N, Turner K, Wain J, Williams D, Powell D, Mason C. High-density transposon libraries utilising outward-oriented promoters identify mechanisms of action and resistance to antimicrobials. FEMS Microbiol Lett 2020; 367:fnaa185. [PMID: 33186989 PMCID: PMC7735965 DOI: 10.1093/femsle/fnaa185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/11/2020] [Indexed: 01/07/2023] Open
Abstract
The use of bacterial transposon mutant libraries in phenotypic screens is a well-established technique for determining which genes are essential or advantageous for growth in conditions of interest. Standard, inactivating, transposon libraries cannot give direct information about genes whose over-expression gives a selective advantage. We report the development of a system wherein outward-oriented promoters are included in mini-transposons, generation of transposon mutant libraries in Escherichia coli and Pseudomonas aeruginosa and their use to probe genes important for growth under selection with the antimicrobial fosfomycin, and a recently-developed leucyl-tRNA synthase inhibitor. In addition to the identification of known mechanisms of action and resistance, we identify the carbon-phosphorous lyase complex as a potential resistance liability for fosfomycin in E. coli and P. aeruginosa. The use of this technology can facilitate the development of novel mechanism-of-action antimicrobials that are urgently required to combat the increasing threat worldwide from antimicrobial-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Chris Coward
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Gopujara Dharmalingham
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Omar Abdulle
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Tim Avis
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Stephan Beisken
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Elena Breidenstein
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Natasha Carli
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Luis Figueiredo
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - David Jones
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Nawaz Khan
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Sara Malara
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Joana Martins
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Nabeetha Nagalingam
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Keith Turner
- Quadram Institute, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - John Wain
- Quadram Institute, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - David Williams
- Nanna Therapeutics, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - David Powell
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Clive Mason
- Summit Therapeutics plc, The Merrifield Centre, 12 Rosemary Lane, Cambridge, CB1 3LQ, UK
| |
Collapse
|
31
|
Cattoir V, Pourbaix A, Magnan M, Chau F, de Lastours V, Felden B, Fantin B, Guérin F. Novel Chromosomal Mutations Responsible for Fosfomycin Resistance in Escherichia coli. Front Microbiol 2020; 11:575031. [PMID: 33193186 PMCID: PMC7607045 DOI: 10.3389/fmicb.2020.575031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Fosfomycin resistance in Escherichia coli results from chromosomal mutations or acquisition of plasmid-mediated genes. Because these mechanisms may be absent in some resistant isolates, we aimed at decipher the genetic basis of fosfomycin resistance in E. coli. Different groups of isolates were studied: fosfomycin-resistant mutants selected in vitro from E. coli CFT073 (MIC = 1 mg/L) and two groups (wildtype and non-wildtype) of E. coli clinical isolates. Single-nucleotide allelic replacement was performed to confirm the implication of novel mutations into resistance. Induction of uhpT expression by glucose-6-phosphate (G6P) was assessed by RT-qPCR. The genome of all clinical isolates was sequenced by MiSeq (Illumina). Two first-step mutants were obtained in vitro from CFT073 (MICs, 128 mg/L) with single mutations: G469R in uhpB (M3); F384L in uhpC (M4). Second-step mutants (MICs, 256 mg/L) presented additional mutations: R282V in galU (M7 from M3); Q558∗ in lon (M8 from M4). Introduction of uhpB or uhpC mutations by site-directed mutagenesis conferred a 128-fold increase in fosfomycin MICs, whereas single mutations in galU or lon were only responsible for a 2-fold increase. Also, these mutations abolished the induction of uhpT expression by G6P. All 14 fosfomycin-susceptible clinical isolates (MICs, 0.5-8 mg/L) were devoid of any mutation. At least one genetic change was detected in all but one fosfomycin-resistant clinical isolates (MICs, 32 - >256 mg/L) including 8, 17, 18, 5, and 8 in uhpA, uhpB, uhpC, uhpT, and glpT genes, respectively. In conclusion, novel mutations in uhpB and uhpC are associated with fosfomycin resistance in E. coli clinical isolates.
Collapse
Affiliation(s)
- Vincent Cattoir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France.,Centre National de Référence sur la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France.,Inserm, Bacterial Regulatory RNAs and Medicine - UMR_S 1230, Rennes, France
| | | | - Mélanie Magnan
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France
| | - Françoise Chau
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France
| | - Victoire de Lastours
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Brice Felden
- Inserm, Bacterial Regulatory RNAs and Medicine - UMR_S 1230, Rennes, France
| | - Bruno Fantin
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - François Guérin
- CHU de Caen, Service de Microbiologie, Caen, France.,Université de Caen Normandie, EA4655, Caen, France
| |
Collapse
|
32
|
Chen L, Ou B, Zhang M, Chou CH, Chang SK, Zhu G. Coexistence of Fosfomycin Resistance Determinant fosA and fosA3 in Enterobacter cloacae Isolated from Pets with Urinary Tract Infection in Taiwan. Microb Drug Resist 2020; 27:415-423. [PMID: 32667841 DOI: 10.1089/mdr.2020.0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To analyze the characteristics of fosA and fosA3 in Enterobacter cloacae isolated from aspirated and catheterized urine culture specimens of companion pets in Taiwan. A total of 19 E. cloacae isolates from pets with urinary tract infection were screened for the presence of fosA, fosA3, and fosC2 and for the genetic context of them by PCR amplification and sequencing. The transferability, resistance phenotypes, plasmid replicon typing properties and genetic environments of fosA- and/or fosA3-positive strains were characterized. Five E. cloacae isolates were positive for fosA and three coharbored fosA and fosA3. No fosC determinant was detected. Transconjugants of fosA3 were successfully acquired, while the acquisition of fosA transconjugants was failed. The minimum inhibitory concentrations (MICs) of the three fosA3-positive isolates and their transconjugants were ≥256 mg/L, whereas the MICs of the five fosA-positive isolates ranged from 64 mg/L to 256 mg/L. Three plasmid replicons (InCFrepB, InCL/M, and InCHI2) were identified in fosA- and fosA3-positive E. cloacae isolates. Different genetic contexts lay in the downstream region of fosA and fosA3, respectively. Eight distinct patterns based on the similarity value of more than 80% were typed for all the 8 fosA-positive isolates. In conclusion, the fosA concomitant with fosA3 were found in E. cloacae isolates. The fosA3 not only exhibits stronger activity of inactivating fosfomycin than fosA but also possesses stronger potential to spread than fosA. Different genetic backgrounds exist in these fosA- and fosA3-positive isolates, and different mobile elements may confer the dissemination of fosA and fosA3.
Collapse
Affiliation(s)
- Lin Chen
- School of Veterinary Medicine, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Bingming Ou
- College of Life Science, Zhaoqing University, Zhaoqing, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Minyu Zhang
- College of Life Science, Zhaoqing University, Zhaoqing, China
| | - Chung-Hsi Chou
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Kuang Chang
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Xu W, Chen T, Wang H, Zeng W, Wu Q, Yu K, Xu Y, Zhang X, Zhou T. Molecular Mechanisms and Epidemiology of Fosfomycin Resistance in Staphylococcus aureus Isolated From Patients at a Teaching Hospital in China. Front Microbiol 2020; 11:1290. [PMID: 32670230 PMCID: PMC7332539 DOI: 10.3389/fmicb.2020.01290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a major cause of hospital- and community-acquired infections placing a significant burden on the healthcare system. With the widespread of multidrug-resistant bacteria and the lack of effective antibacterial drugs, fosfomycin has gradually attracted attention as an "old drug." Thus, investigating the resistance mechanisms and epidemiology of fosfomycin-resistant S. aureus is an urgent requirement. In order to investigate the mechanisms of resistance, 11 fosfomycin-resistant S. aureus isolates were analyzed by PCR and sequencing. The genes, including fosA, fosB, fosC, fosD, fosX, and tet38, as well as mutations in murA, glpT, and uhpT were identified. Quantitative real-time PCR (qRT-PCR) was conducted to evaluate the expression of the target enzyme gene murA and the efflux pump gene tet38 under the selection pressure of fosfomycin. Furthermore, multilocus sequence typing (MLST) identified a novel sequence type (ST 5708) of S. aureus strains. However, none of the resistant strains carried fosA, fosB, fosC, fosD, and fosX genes in the current study, and 12 distinct mutations were detected in the uhpT (3), glpT (4), and murA (5) genes. qRT-PCR revealed an elevated expression of the tet38 gene when exposed to increasing concentration of fosfomycin among 8 fosfomycin-resistant S. aureus strains and reference strain ATCC 29213. MLST analysis categorized the 11 strains into 9 STs. Thus, the mutations in the uhpT, glpT, and murA genes might be the primary mechanisms underlying fosfomycin resistance, and the overexpression of efflux pump gene tet38 may play a major role in the fosfomycin resistance in these isolates.
Collapse
Affiliation(s)
- Wenya Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huihui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiliang Zeng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Qing Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaihang Yu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Ye Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiucai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Papp-Wallace KM, Zeiser ET, Becka SA, Park S, Wilson BM, Winkler ML, D'Souza R, Singh I, Sutton G, Fouts DE, Chen L, Kreiswirth BN, Ellis-Grosse EJ, Drusano GL, Perlin DS, Bonomo RA. Ceftazidime-Avibactam in Combination With Fosfomycin: A Novel Therapeutic Strategy Against Multidrug-Resistant Pseudomonas aeruginosa. J Infect Dis 2020; 220:666-676. [PMID: 31099835 DOI: 10.1093/infdis/jiz149] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
Previously, by targeting penicillin-binding protein 3, Pseudomonas-derived cephalosporinase (PDC), and MurA with ceftazidime-avibactam-fosfomycin, antimicrobial susceptibility was restored among multidrug-resistant (MDR) Pseudomonas aeruginosa. Herein, ceftazidime-avibactam-fosfomycin combination therapy against MDR P. aeruginosa clinical isolate CL232 was further evaluated. Checkerboard susceptibility analysis revealed synergy between ceftazidime-avibactam and fosfomycin. Accordingly, the resistance elements present and expressed in P. aeruginosa were analyzed using whole-genome sequencing and transcriptome profiling. Mutations in genes that are known to contribute to β-lactam resistance were identified. Moreover, expression of blaPDC, the mexAB-oprM efflux pump, and murA were upregulated. When fosfomycin was administered alone, the frequency of mutations conferring resistance was high; however, coadministration of fosfomycin with ceftazidime-avibactam yielded a lower frequency of resistance mutations. In a murine infection model using a high bacterial burden, ceftazidime-avibactam-fosfomycin significantly reduced the P. aeruginosa colony-forming units (CFUs), by approximately 2 and 5 logs, compared with stasis and in the vehicle-treated control, respectively. Administration of ceftazidime-avibactam and fosfomycin separately significantly increased CFUs, by approximately 3 logs and 1 log, respectively, compared with the number at stasis, and only reduced CFUs by approximately 1 log and 2 logs, respectively, compared with the number in the vehicle-treated control. Thus, the combination of ceftazidime-avibactam-fosfomycin was superior to either drug alone. By employing a "mechanism-based approach" to combination chemotherapy, we show that ceftazidime-avibactam-fosfomycin has the potential to offer infected patients with high bacterial burdens a therapeutic hope against infection with MDR P. aeruginosa that lack metallo-β-lactamases.
Collapse
Affiliation(s)
- Krisztina M Papp-Wallace
- Research Service, Louis Stokes Cleveland VA Medical Center.,Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio.,Department of Biochemistry, Case Western Reserve University (CWRU), Cleveland, Ohio.,Center for Proteomics and Bioinformatics, Case Western Reserve University (CWRU), Cleveland, Ohio
| | - Elise T Zeiser
- Research Service, Louis Stokes Cleveland VA Medical Center
| | - Scott A Becka
- Research Service, Louis Stokes Cleveland VA Medical Center
| | - Steven Park
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey
| | - Brigid M Wilson
- Research Service, Louis Stokes Cleveland VA Medical Center.,Geriatric Research Education and Clinical Center, Louis Stokes Cleveland VA Medical Center.,Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio
| | | | | | | | | | | | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey
| | - Barry N Kreiswirth
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey
| | | | - George L Drusano
- Institute for Therapeutic Innovation, University of Florida, Orlando
| | - David S Perlin
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland VA Medical Center.,Medical Service, Louis Stokes Cleveland VA Medical Center.,Geriatric Research Education and Clinical Center, Louis Stokes Cleveland VA Medical Center.,Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio.,Department of Biochemistry, Case Western Reserve University (CWRU), Cleveland, Ohio.,Center for Proteomics and Bioinformatics, Case Western Reserve University (CWRU), Cleveland, Ohio.,Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio.,Department of Pharmacology, Case Western Reserve University (CWRU), Cleveland, Ohio.,CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio
| |
Collapse
|
35
|
Campos ACDC, Andrade NL, Couto N, Mutters NT, de Vos M, Rosa ACDP, Damasco PV, Lo Ten Foe JR, Friedrich AW, Chlebowicz-Flissikowska MA, Rossen JWA. Characterization of fosfomycin heteroresistance among multidrug-resistant Escherichia coli isolates from hospitalized patients in Rio de Janeiro, Brazil. J Glob Antimicrob Resist 2020; 22:584-593. [PMID: 32389792 DOI: 10.1016/j.jgar.2020.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/06/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Urinary tract infections (UTIs) caused by multidrug-resistant Escherichia coli have become a major medical concern. Old antibiotics such as fosfomycin have become an alternative therapeutic option due to their effectiveness and, as a result, fosfomycin is now used as a first-line drug for the treatment of UTIs in many countries. Despite low resistance rates, fosfomycin heteroresistance, defined as a phenomenon where subpopulations of bacteria are resistant to high antibiotic concentrations whereas most of the bacteria are susceptible, is an underestimated problem. METHODS The frequency of heteroresistance in E. coli isolated from hospitalized patients in Brazil and its effect on susceptibility of E. coli in biofilms was studied and the isolates were molecularly characterized to reveal the mechanisms behind their fosfomycin heteroresistance using whole-genome sequencing. RESULTS A higher frequency of fosfomycin heteroresistance compared with other studies was found. In biofilms, most heteroresistant isolates were less sensitive to fosfomycin than control isolates and showed overexpression of metabolic genes thereby increasing their survival rate. Molecular characterization showed that some resistant subpopulations derived from heteroresistant isolates had a defect in their fosfomycin uptake system caused by mutations in transporter and regulatory genes, whereas others overexpressed the murA gene. None to minor effects on bacterial fitness were observed. Oxidative stress protection, virulence and metabolic genes were differentially expressed in resistant subpopulations and heteroresistant isolates. CONCLUSION Frequent detection of heteroresistance in UTIs may play a role in the failure of antibiotic treatments and should therefore be more carefully diagnosed.
Collapse
Affiliation(s)
- Ana Carolina da C Campos
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Inmunologia e Parasitologia, Boulevard 28 de Setembro, 77 - Vila Isabel, RJ-20551-030, Rio de Janeiro, Brazil; University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Nathália L Andrade
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Inmunologia e Parasitologia, Boulevard 28 de Setembro, 77 - Vila Isabel, RJ-20551-030, Rio de Janeiro, Brazil
| | - Natacha Couto
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Nico T Mutters
- Heidelberg University Hospital, Center for Infectious Diseases, Medical Microbiology and Hygiene, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Marjon de Vos
- University of Groningen, Institute for Evolutionary Life Sciences, Linnaeusborg 5(th) floor, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Ana Cláudia de P Rosa
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Inmunologia e Parasitologia, Boulevard 28 de Setembro, 77 - Vila Isabel, RJ-20551-030, Rio de Janeiro, Brazil
| | - Paulo V Damasco
- Universidade do Estado do Rio de Janeiro, Departamento de Doenças Infecciosas e Parasitárias, Boulevard 28 de Setembro, 77 - Vila Isabel, RJ-20551-030, Rio de Janeiro, Brazil; Universidade Federal do Estado do Rio de Janeiro, Departamento de Doenças Infecciosas e Parasitárias, R. Voluntários da Pátria, 107 - Botafogo, RJ- 22270-000, Rio de Janeiro, Brazil
| | - Jerome R Lo Ten Foe
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Alex W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Monika A Chlebowicz-Flissikowska
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - John W A Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
36
|
Rao RT, Sivakumar N, Jayakumar K. Analyses of Livestock-Associated Staphylococcus aureus Pan-Genomes Suggest Virulence Is Not Primary Interest in Evolution of Its Genome. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 23:224-236. [PMID: 31009331 DOI: 10.1089/omi.2019.0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is not only part of normal flora but also an opportunistic pathogen relevant to microbial genomics, public health, and veterinary medicine. In addition to being a well-known human pathogen, S. aureus causes various infections in economically important livestock animals such as cows, sheep, goats, and pigs. There are very few studies that have examined the pan-genome of S. aureus or the host-specific strains' pan-genomes. We report on livestock-associated S. aureus' (LA-SA) pan-genome and suggest that virulence is not the primary interest in evolution of its genome. LA-SA' complete genomes were retrieved from the NCBI and pan-genome was constructed by high-speed Roary pipeline. The pan-genome size was 4637 clusters, whereas 42.46% of the pan-genome was associated with the core genome. We found 1268 genes were associated with the strain-unique genome, and the remaining 1432 cluster with the accessory genome. COG (clusters of orthologous group of proteins) analysis of the core genes revealed 34% of clusters related to metabolism responsible for amino acid and inorganic ion transport (COG categories E and P), followed by carbohydrate metabolism (category G). Virulent gene analysis revealed the core genes responsible for antiphagocytosis and iron uptake. The fluidity of pan-genome was calculated as 0.082 ± 0.025. Importantly, the positive selection analysis suggested a slower rate of evolution among the LA-SA genomes. We call for comparative microbial and pan-genome research between human and LA-SA that can help further understand the evolution of virulence and thus inform future microbial diagnostics and drug discovery.
Collapse
Affiliation(s)
- Relangi Tulasi Rao
- 1 Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Natesan Sivakumar
- 2 Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Kannan Jayakumar
- 1 Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
37
|
Abbott IJ, van Gorp E, Wijma RA, Meletiadis J, Mouton JW, Peleg AY. Evaluation of pooled human urine and synthetic alternatives in a dynamic bladder infection in vitro model simulating oral fosfomycin therapy. J Microbiol Methods 2020; 171:105861. [PMID: 32035114 DOI: 10.1016/j.mimet.2020.105861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
The impact of the bladder environment on fosfomycin activity and treatment response is uncertain. Standard laboratory media does not reflect the biomatrix of urine, where limited nutritional factors are important for growth and antimicrobial kill rates. We compared fosfomycin activity against Enterobacteriaceae in laboratory media, human urine and synthetic alternatives. Sixteen clinical isolates (8-Escherichia coli, 4-Enterobacter cloacae, 4-Klebsiella pneumoniae) were studied with broth microdilution (BMD) susceptibility, static time-kill assays and dynamic testing in a bladder infection model simulating a 3 g oral fosfomycin dose. Mueller-Hinton broth (MHB) with and without 25 mg/L glucose-6-phosphate (G6P), pooled midstream urine (MSU), pooled 24 h urine collection (24 U), artificial urine medium (AUM) and synthetic human urine (SHU) were compared. BMD susceptibility, bacterial growth and response to static fosfomycin concentrations in urine were best matched with SHU and were distinctly different when tested in MHB with G6P. Fosfomycin exposure in the bladder infection model was accurately reproduced (bias 4.7 ± 6.2%). Under all media conditions, 8 isolates (2-E. coli, 2-E. cloacae, 4-K. pneumoniae) re-grew and 4 isolates (4-E. coli) were killed. The remaining isolates (2-E. coli, 2-E. cloacae) re-grew variably in urine and synthetic media. Agar dilution MIC failed to predict re-growth, whereas BMD MIC in media without G6P performed better. Emergence of resistance was restricted in synthetic media. Overall, SHU provided the best substitute for urine for in vitro modelling of antimicrobial treatment of uropathogens, and these data have broader utility for improved preclinical testing of antimicrobials for urinary tract infections.
Collapse
Affiliation(s)
- Iain J Abbott
- Department of Infectious Diseases, The Alfred and Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Elke van Gorp
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Rixt A Wijma
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Haidari, Athens, Greece
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred and Central Clinical School, Monash University, Melbourne, VIC, Australia; Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
38
|
Martínez G, Diéguez SN, Fernández Paggi MB, Riccio MB, Pérez Gaudio DS, Rodríguez E, Amanto FA, Tapia MO, Soraci AL. Effect of fosfomycin, Cynara scolymus extract, deoxynivalenol and their combinations on intestinal health of weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2019; 5:386-395. [PMID: 31890916 PMCID: PMC6920400 DOI: 10.1016/j.aninu.2019.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/19/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
Abstract
Weaning is a challenging stage of pig farming. Animals undergo environmental, social and dietary changes leading to weaning stress syndrome. In order to compensate for the detrimental effects of weaning stress, antibiotics and natural extracts are used as feed additives, sometimes without fully understanding the interactions between them or even with low concentrations of mycotoxins that are frequently present in feed. The aim of this study was to evaluate the effect of fosfomycin (FOS), Cynara scolymus extract (CSE), deoxynivalenol (DON) and their combined administration on intestinal health of weaned piglets. The experiment was designed as a 2 × 2 × 2 factorial arrangement with 3 factors (FOS, CSE and DON treatments), 2 levels each (presence and absence) and 3 repeats. Weaned piglets (n = 24) were randomly divided in groups to receive the different treatments, namely DON administered in diet (50 μg/kg BW), FOS administered into the drinking water (30 mg/kg BW), CSE administered in diet (15 mg/kg BW) and all their combinations. After 15 d, the animals were euthanized and gastrointestinal tract samples were immediately taken to evaluate gastrointestinal pH, Enterobacteriaceae to lactic acid bacteria (E:L) ratio, volatile fatty acid (VFA) concentrations, disaccharidase (lactase, sucrase and maltase) activity, histology (intestinal absorptive area [IAA] and goblet cells count) and mucus ability to adhere pathogenic Escherichia coli. From our results, FOS and CSE treatments, individually or combined, produced a lower E:L ratio, an enhanced production of butyrate, increased disaccharidase activity (particularly maltase), and a greater IAA and goblet cells count along with an increase in pathogenic bacteria adherence to intestinal mucus. Deoxynivalenol did not show interactions with the other factors and its administration produced decreases on VFA, disaccharidase activity and goblet cells count. In conclusion, weaning piglets receiving diets containing FOS, CSE or both exhibited evident beneficial intestinal effects compared to animals receiving diets free from these compounds. On the contrary, the presence of DON at sub-toxic concentrations produced detrimental effects on intestinal health. The knowledge of the physiological and pathological gut changes produced by these compounds contributes to understand their potential productive consequences.
Collapse
Affiliation(s)
- Guadalupe Martínez
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, B7000, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, B7000, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas-CONICET, Buenos Aires, C1425FQB, Argentina
| | - Susana N. Diéguez
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, B7000, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, B7000, Buenos Aires, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, B1900, Buenos Aires, Argentina
| | - María B. Fernández Paggi
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, B7000, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, B7000, Buenos Aires, Argentina
- Área Producción Porcina, Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, B7000, Buenos Aires, Argentina
| | - María B. Riccio
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, B7000, Buenos Aires, Argentina
| | - Denisa S. Pérez Gaudio
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, B7000, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, B7000, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas-CONICET, Buenos Aires, C1425FQB, Argentina
| | - Edgardo Rodríguez
- Área Estadística, Sanidad Animal y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, B7000, Buenos Aires, Argentina
| | - Fabián A. Amanto
- Área Producción Porcina, Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, B7000, Buenos Aires, Argentina
| | - María O. Tapia
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, B7000, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, B7000, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas-CONICET, Buenos Aires, C1425FQB, Argentina
| | - Alejandro L. Soraci
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, B7000, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, B7000, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas-CONICET, Buenos Aires, C1425FQB, Argentina
| |
Collapse
|
39
|
Functional and structural basis of E. coli enolase inhibition by SF2312: a mimic of the carbanion intermediate. Sci Rep 2019; 9:17106. [PMID: 31745118 PMCID: PMC6863902 DOI: 10.1038/s41598-019-53301-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/22/2019] [Indexed: 11/08/2022] Open
Abstract
Many years ago, the natural secondary metabolite SF2312, produced by the actinomycete Micromonospora, was reported to display broad spectrum antibacterial properties against both Gram-positive and Gram-negative bacteria. Recent studies have revealed that SF2312, a natural phosphonic acid, functions as a potent inhibitor of human enolase. The mechanism of SF2312 inhibition of bacterial enolase and its role in bacterial growth and reproduction, however, have remained elusive. In this work, we detail a structural analysis of E. coli enolase bound to both SF2312 and its oxidized imide-form. Our studies support a model in which SF2312 acts as an analog of a high energy intermediate formed during the catalytic process. Biochemical, biophysical, computational and kinetic characterization of these compounds confirm that altering features characteristic of a putative carbanion (enolate) intermediate significantly reduces the potency of enzyme inhibition. When SF2312 is combined with fosfomycin in the presence of glucose-6 phosphate, significant synergy is observed. This suggests the two agents could be used as a potent combination, targeting distinct cellular mechanism for the treatment of bacterial infections. Together, our studies rationalize the structure-activity relationships for these phosphonates and validate enolase as a promising target for antibiotic discovery.
Collapse
|
40
|
Gil-Marqués ML, Moreno-Martínez P, Costas C, Pachón J, Blázquez J, McConnell MJ. Peptidoglycan recycling contributes to intrinsic resistance to fosfomycin in Acinetobacter baumannii. J Antimicrob Chemother 2019; 73:2960-2968. [PMID: 30124902 DOI: 10.1093/jac/dky289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
Background Acinetobacter baumannii is intrinsically resistant to fosfomycin; however, the mechanisms underlying this resistance are poorly understood. Objectives To identify and characterize genes that contribute to intrinsic fosfomycin resistance in A. baumannii. Methods More than 9000 individual transposon mutants of the A. baumannii ATCC 17978 strain (fosfomycin MIC ≥1024 mg/L) were screened to identify mutations conferring increased susceptibility to fosfomycin. In-frame deletion mutants were constructed for the identified genes and their susceptibility to fosfomycin was characterized by MIC determination and growth in the presence of fosfomycin. The effects of these mutations on membrane permeability and peptidoglycan integrity were characterized. Susceptibilities to 21 antibiotics were determined for the mutant strains. Results Screening of the transposon library identified mutants in the ampD and anmK genes, both encoding enzymes of the peptidoglycan recycling pathway, that demonstrated increased susceptibility to fosfomycin. MIC values for in-frame deletion mutants were ≥42-fold (ampD) and ≥8-fold (anmK) lower than those for the parental strain, and growth of the mutant strains in the presence of 32 mg/L fosfomycin was significantly reduced. Neither mutation resulted in increased cell permeability; however, the ampD mutant demonstrated decreased peptidoglycan integrity. Susceptibility to 21 antibiotics was minimally affected by mutations in ampD and anmK. Conclusions This study demonstrates that AmpD and AnmK of the peptidoglycan recycling pathway contribute to intrinsic fosfomycin resistance in A. baumannii, indicating that inhibitors of these enzymes could be used in combination with fosfomycin as a novel treatment approach for MDR A. baumannii.
Collapse
Affiliation(s)
- María Luisa Gil-Marqués
- Clinical Unit of Infectious Diseases, Clinical Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Patricia Moreno-Martínez
- Clinical Unit of Infectious Diseases, Clinical Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Coloma Costas
- Clinical Unit of Infectious Diseases, Clinical Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Jerónimo Pachón
- Clinical Unit of Infectious Diseases, Clinical Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Department of Medicine, University of Seville, Seville, Spain
| | - Jesús Blázquez
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Michael J McConnell
- Clinical Unit of Infectious Diseases, Clinical Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| |
Collapse
|
41
|
Bilal H, Peleg AY, McIntosh MP, Styles IK, Hirsch EB, Landersdorfer CB, Bergen PJ. Elucidation of the pharmacokinetic/pharmacodynamic determinants of fosfomycin activity against Pseudomonas aeruginosa using a dynamic in vitro model. J Antimicrob Chemother 2019; 73:1570-1578. [PMID: 29506207 DOI: 10.1093/jac/dky045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/24/2018] [Indexed: 01/09/2023] Open
Abstract
Objectives To identify the fosfomycin pharmacokinetic (PK)/pharmacodynamic (PD) index (fT>MIC, fAUC/MIC or fCmax/MIC) most closely correlated with activity against Pseudomonas aeruginosa and determine the PK/PD target associated with various extents of bacterial killing and the prevention of emergence of resistance. Methods Dose fractionation was conducted over 24 h in a dynamic one-compartment in vitro PK/PD model utilizing P. aeruginosa ATCC 27853 and two MDR clinical isolates (CR 1005 and CW 7). In total, 35 different dosing regimens were examined across the three strains. Microbiological response was examined by log changes and population analysis profiles. A Hill-type Emax model was fitted to the killing effect data (expressed as the log10 ratio of the area under the cfu/mL curve for treated regimens versus controls). Results Bacterial killing of no more than ∼3 log10 cfu/mL was achieved irrespective of regimen. The fAUC/MIC was the PK/PD index most closely correlated with efficacy (R2 = 0.80). The fAUC/MIC targets required to achieve 1 and 2 log10 reductions in the area under the cfu/mL curve relative to growth control were 489 and 1024, respectively. No regimen was able to suppress the emergence of resistance, and near-complete replacement of susceptible with resistant subpopulations occurred with virtually all regimens. Conclusions Bacterial killing for fosfomycin against P. aeruginosa was most closely associated with the fAUC/MIC. Suppression of fosfomycin-resistant subpopulations could not be achieved even with fosfomycin exposures well above those that can be safely achieved clinically.
Collapse
Affiliation(s)
- Hajira Bilal
- Centre for Medicine Use and Safety, Monash University, Parkville, Victoria, Australia
| | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Michelle P McIntosh
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Elizabeth B Hirsch
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | | | - Phillip J Bergen
- Centre for Medicine Use and Safety, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
42
|
Beaton A, Lood C, Cunningham-Oakes E, MacFadyen A, Mullins AJ, Bestawy WE, Botelho J, Chevalier S, Coleman S, Dalzell C, Dolan SK, Faccenda A, Ghequire MGK, Higgins S, Kutschera A, Murray J, Redway M, Salih T, da Silva AC, Smith BA, Smits N, Thomson R, Woodcock S, Welch M, Cornelis P, Lavigne R, van Noort V, Tucker NP. Community-led comparative genomic and phenotypic analysis of the aquaculture pathogen Pseudomonas baetica a390T sequenced by Ion semiconductor and Nanopore technologies. FEMS Microbiol Lett 2019; 365:4951603. [PMID: 29579234 PMCID: PMC5909648 DOI: 10.1093/femsle/fny069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/21/2018] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas baetica strain a390T is the type strain of this recently described species and here we present its high-contiguity draft genome. To celebrate the 16th International Conference on Pseudomonas, the genome of P. baetica strain a390T was sequenced using a unique combination of Ion Torrent semiconductor and Oxford Nanopore methods as part of a collaborative community-led project. The use of high-quality Ion Torrent sequences with long Nanopore reads gave rapid, high-contiguity and -quality, 16-contig genome sequence. Whole genome phylogenetic analysis places P. baetica within the P. koreensis clade of the P. fluorescens group. Comparison of the main genomic features of P. baetica with a variety of other Pseudomonas spp. suggests that it is a highly adaptable organism, typical of the genus. This strain was originally isolated from the liver of a diseased wedge sole fish, and genotypic and phenotypic analyses show that it is tolerant to osmotic stress and to oxytetracycline.
Collapse
Affiliation(s)
- Ainsley Beaton
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Cédric Lood
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium.,Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium
| | - Edward Cunningham-Oakes
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Park Place, Cardiff CF10 3AX, UK
| | - Alison MacFadyen
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, Scotland, UK
| | - Alex J Mullins
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Park Place, Cardiff CF10 3AX, UK
| | - Walid El Bestawy
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - João Botelho
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228 Porto 4050-313, Portugal
| | - Sylvie Chevalier
- Laboratoire Microbiologie Signaux et Microenvironnement (LMSM), Université de Rouen, 55, rue St Germain, Evreux 27000, France
| | - Shannon Coleman
- Lower Mall Research Station, University of British Columbia, 2259 Lower Mall, Vancouver, BC V6T 1Z4, Canada
| | - Chloe Dalzell
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Stephen K Dolan
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alberto Faccenda
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Maarten G K Ghequire
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium
| | - Steven Higgins
- Department of Plant and Microbial Biology, University of Zürich, Zürich 8008, Switzerland
| | - Alexander Kutschera
- Department of Phytopathology, Center of Life and Food Sciences, Technical University of Munich, Weihenstephan D-85354, Germany
| | - Jordan Murray
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Martha Redway
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Talal Salih
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Ana C da Silva
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Brian A Smith
- School of Plant Sciences, The University of Arizona, P.O. Box 210036, Forbes Building, 303 Tucson, Arizona 85721-0036, USA
| | - Nathan Smits
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium
| | - Ryan Thomson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Stuart Woodcock
- Department of Biological Chemistry, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Pierre Cornelis
- Laboratoire Microbiologie Signaux et Microenvironnement (LMSM), Université de Rouen, 55, rue St Germain, Evreux 27000, France
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, bus 2460, Leuven B-3001, Belgium
| | - Nicholas P Tucker
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| |
Collapse
|
43
|
Migliorini LB, Brüggemann H, de Sales RO, Koga PCM, de Souza AV, Martino MDV, Galhardo RS, Severino P. Mutagenesis Induced by Sub-Lethal Doses of Ciprofloxacin: Genotypic and Phenotypic Differences Between the Pseudomonas aeruginosa Strain PA14 and Clinical Isolates. Front Microbiol 2019; 10:1553. [PMID: 31354657 PMCID: PMC6636244 DOI: 10.3389/fmicb.2019.01553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/21/2019] [Indexed: 01/16/2023] Open
Abstract
Bacterial resistance is a severe threat to global public health. Exposure to sub-lethal concentrations has been considered a major driver of mutagenesis leading to antibiotic resistance in clinical settings. Ciprofloxacin is broadly used to treat infections caused by Pseudomonas aeruginosa, whereas increased mutagenesis induced by sub-lethal concentrations of ciprofloxacin has been reported for the reference strain, PAO1, in vitro. In this study we report increased mutagenesis induced by sub-lethal concentrations of ciprofloxacin for another reference strain, PA14-UCBPP, and lower mutagenesis for clinical isolates when compared to the reference strain. This unexpected result may be associated with missense mutations in imuB and recX, involved in adaptive responses, and the presence of Pyocin S2, which were found in all clinical isolates but not in the reference strain genome. The genetic differences between clinical isolates of P. aeruginosa and the reference PA14-UCBPP, often used to study P. aeruginosa phenotypes in vitro, may be involved in reduced mutagenesis under sub-lethal concentrations of CIP, a scenario that should be further explored for the understanding of bacterial fitness in hospital environments. Moreover, we highlight the presence of a complete umuDC operon in a P. aeruginosa clinical isolate. Even though the presence of umuDC did not contribute to a significant increase in mutagenesis, it highlights the dynamic exchange of genetic material between bacterial species in the hospital environment.
Collapse
Affiliation(s)
- Letícia Busato Migliorini
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| | | | - Romario Oliveira de Sales
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| | | | - Andrea Vieira de Souza
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| | | | - Rodrigo S Galhardo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Patricia Severino
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| |
Collapse
|
44
|
Resistance to Two Vinylglycine Antibiotic Analogs Is Conferred by Inactivation of Two Separate Amino Acid Transporters in Erwinia amylovora. J Bacteriol 2019; 201:JB.00658-18. [PMID: 30745372 DOI: 10.1128/jb.00658-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/04/2019] [Indexed: 11/20/2022] Open
Abstract
Erwinia amylovora is the causal agent of fire blight of apple and pear trees. Several bacteria have been shown to produce antibiotics that antagonize E. amylovora, including pantocins, herbicolins, dapdiamides, and the vinylglycines, 4-formylaminooxyvinylglycine (FVG) and 4-aminoethoxyvinylglycine (AVG). Pantoea ananatis BRT175 was previously shown to exhibit antibiotic activity against E. amylovora via the production of Pantoea natural product 1 (PNP-1), later shown to be FVG; however, exposure of E. amylovora to FVG results in spontaneously resistant mutants. To identify the mechanism of resistance, we used genome variant analysis on spontaneous FVG-resistant mutants of E. amylovora and identified null mutations in the l-asparagine permease gene ansP Heterologous expression of ansP in normally resistant Escherichia coli was sufficient to impart FVG susceptibility, suggesting that FVG is imported through this permease. Because FVG and AVG are structurally similar, we hypothesized that resistance to AVG would also be conferred through inactivation of ansP; however, ansP mutants were not resistant to AVG. We found that spontaneously resistant Ea321 mutants also arise in the presence of AVG, with whole-genome variant analysis revealing that resistance was due to inactivation of the arginine ABC transporter permease subunit gene artQ Heterologous expression of the predicted lysE-like transporter encoded within the Pantoea ananatis BRT175 FVG biosynthetic cluster, which is likely responsible for antibiotic export, was sufficient to confer resistance to both FVG and AVG. This work highlights the important roles of amino acid transporters in antibiotic import into bacteria and the potential utility of antimicrobial amino acid analogs as antibiotics.IMPORTANCE The related antibiotics formylaminooxyvinylglycine (FVG) and aminoethoxyvinylglycine (AVG) have been shown to have activity against the fire blight pathogen Erwinia amylovora; however, E. amylovora can develop spontaneous resistance to these antibiotics. By comparing the genomes of mutants to those of the wild type, we found that inactivation of the l-asparagine transporter conferred resistance to FVG, while inactivation of the l-arginine transporter conferred resistance to AVG. We also show that the transporter encoded by the FVG biosynthetic cluster can confer resistance to both FVG and AVG. Our work indicates the important role that amino acid transporters play in the import of antibiotics and highlights the possible utility in designer antibiotics that enter the bacterial cell through amino acid transporters.
Collapse
|
45
|
Bai X, Liu S, Zhao J, Cheng Y, Zhang H, Hu B, Zhang L, Shi Q, Zhang Z, Wu T, Luo G, Lian S, Xu S, Wang J, Zhang W, Yan X. Epidemiology and molecular characterization of the antimicrobial resistance of Pseudomonas aeruginosa in Chinese mink infected by hemorrhagic pneumonia. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2019; 83:122-132. [PMID: 31097874 PMCID: PMC6450165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/08/2018] [Indexed: 06/09/2023]
Abstract
Hemorrhagic pneumonia in mink is a fatal disease caused by Pseudomonas aeruginosa. Very little is known about P. aeruginosa in relation to genotype and the mechanisms underlying antimicrobial resistance in mink. A total of 110 P. aeruginosa samples were collected from mink from Chinese mink farms between 2007 and 2015. Samples underwent molecular genotyping using pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST), antimicrobial susceptibility and its mechanism were investigated at the molecular level. The PFGE identified 73 unique types and 15 clusters, while MLST identified 43 (7 new) sequence types (ST) and 12 sequence type clonal complexes (STCC). Sequence types and PFGE showed persistence of endemic clones in cities Wendeng (Shandong, China) and Dalian (Liaoning, China), even in different timelines. The MLST also revealed the gene correlation of the mink P. aeruginosa across different time and place. The ST1058 (n = 14), ST882 (n = 11), and ST2442 (n = 10) were the predominant types, among which ST1058 was the only one found both in Shandong province and Dalian (Liaoning, China). The MLST for P. aeruginosa infection in mink was highly associated with that in humans and other animals, implying possible transmission events. A small proportion of mink exhibited drug resistance to P. aeruginosa (9/69, 13%) with resistance predominantly to fluoroquinolone, aminoglycoside, and β-lactamase. Eight strains had mutations in the quinolone-resistance determining regions (QRDR). High proportions (65%; 72/110) of the fosA gene and 2 types of glpt deletion for fosmycin were detected. Furthermore, in the whole genome sequence of one multidrug resistant strain, we identified 27 genes that conferred resistance to 14 types of drugs.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Siguo Liu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Jianjun Zhao
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Yuening Cheng
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Hailing Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Bo Hu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Lei Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Qiumei Shi
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Zhiqiang Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Tonglei Wu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Guoliang Luo
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Shizhen Lian
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Shujuan Xu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Jianke Wang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Wanjiang Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| | - Xijun Yan
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, (Bai, Zhao, Cheng, H. Zhang, Hu, L. Zhang, Luo, Lian, Xu, Wang, Yan); State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, (Liu, W. Zhang); Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China (Shi, Z. Zhang, Wu)
| |
Collapse
|
46
|
Aghamali M, Sedighi M, Zahedi Bialvaei A, Mohammadzadeh N, Abbasian S, Ghafouri Z, Kouhsari E. Fosfomycin: mechanisms and the increasing prevalence of resistance. J Med Microbiol 2019; 68:11-25. [PMID: 30431421 DOI: 10.1099/jmm.0.000874] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There are challenges regarding increased global rates of microbial resistance and the emergence of new mechanisms that result in microorganisms becoming resistant to antimicrobial drugs. Fosfomycin is a broad-spectrum bactericidal antibiotic effective against Gram-negative and certain Gram-positive bacteria, such as Staphylococci, that interfere with cell wall synthesis. During the last 40 years, fosfomycin has been evaluated in a wide range of applications and fields. Although numerous studies have been done in this area, there remains limited information regarding the prevalence of resistance. Therefore, in this review, we focus on the available data concerning the mechanisms and increasing resistance regarding fosfomycin.
Collapse
Affiliation(s)
- Mina Aghamali
- 1Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Sedighi
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abed Zahedi Bialvaei
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Mohammadzadeh
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Abbasian
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ghafouri
- 3Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Kouhsari
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Cattoir V, Guérin F. How is fosfomycin resistance developed in Escherichia coli? Future Microbiol 2018; 13:1693-1696. [PMID: 30526061 DOI: 10.2217/fmb-2018-0294] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Vincent Cattoir
- Université de Rennes 1, Inserm U1230, Rennes, France.,CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France.,CNR de la Résistance aux Antibiotiques, Rennes, France
| | - François Guérin
- CHU de Caen, Service de Microbiologie, Caen, France.,Université de Caen Normandie, EA4655, Caen, France
| |
Collapse
|
48
|
Pusic P, Sonnleitner E, Krennmayr B, Heitzinger DA, Wolfinger MT, Resch A, Bläsi U. Harnessing Metabolic Regulation to Increase Hfq-Dependent Antibiotic Susceptibility in Pseudomonas aeruginosa. Front Microbiol 2018; 9:2709. [PMID: 30473687 PMCID: PMC6237836 DOI: 10.3389/fmicb.2018.02709] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/23/2018] [Indexed: 01/04/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is responsible for ~ 10% of hospital-acquired infections worldwide. It is notorious for its high level resistance toward many antibiotics, and the number of multi-drug resistant clinical isolates is steadily increasing. A better understanding of the molecular mechanisms underlying drug resistance is crucial for the development of novel antimicrobials and alternative strategies such as enhanced sensitization of bacteria to antibiotics in use. In P. aeruginosa several uptake channels for amino-acids and carbon sources can serve simultaneously as entry ports for antibiotics. The respective genes are often controlled by carbon catabolite repression (CCR). We have recently shown that Hfq in concert with Crc acts as a translational repressor during CCR. This function is counteracted by the regulatory RNA CrcZ, which functions as a decoy to abrogate Hfq-mediated translational repression of catabolic genes. Here, we report an increased susceptibility of P. aeruginosa hfq deletion strains to different classes of antibiotics. Transcriptome analyses indicated that Hfq impacts on different mechanisms known to be involved in antibiotic susceptibility, viz import and efflux, energy metabolism, cell wall and LPS composition as well as on the c-di-GMP levels. Furthermore, we show that sequestration of Hfq by CrcZ, which was over-produced or induced by non-preferred carbon-sources, enhances the sensitivity toward antibiotics. Thus, controlled synthesis of CrcZ could provide a means to (re)sensitize P. aeruginosa to different classes of antibiotics.
Collapse
Affiliation(s)
- Petra Pusic
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Elisabeth Sonnleitner
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Beatrice Krennmayr
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Dorothea A. Heitzinger
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | | | - Armin Resch
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Oladeinde A, Cook K, Orlek A, Zock G, Herrington K, Cox N, Plumblee Lawrence J, Hall C. Hotspot mutations and ColE1 plasmids contribute to the fitness of Salmonella Heidelberg in poultry litter. PLoS One 2018; 13:e0202286. [PMID: 30169497 PMCID: PMC6118388 DOI: 10.1371/journal.pone.0202286] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Heidelberg (S. Heidelberg) is a clinically-important serovar linked to food-borne illness, and commonly isolated from poultry. Investigations of a large, multistate outbreak in the USA in 2013 identified poultry litter (PL) as an important extra-intestinal environment that may have selected for specific S. Heidelberg strains. Poultry litter is a mixture of bedding materials and chicken excreta that contains chicken gastrointestinal (GI) bacteria, undigested feed, feathers, and other materials of chicken origin. In this study, we performed a series of controlled laboratory experiments which assessed the microevolution of two S. Heidelberg strains (SH-2813 and SH-116) in PL previously used to raise 3 flocks of broiler chickens. The strains are closely related at the chromosome level, differing from the reference genome by 109 and 89 single nucleotide polymorphisms/InDels, respectively. Whole genome sequencing was performed on 86 isolates recovered after 0, 1, 7 and 14 days of microevolution in PL. Only strains carrying an IncX1 (37kb), 2 ColE1 (4 and 6kb) and 1 ColpVC (2kb) plasmids survived more than 7 days in PL. Competition experiments showed that carriage of these plasmids was associated with increased fitness. This increased fitness was associated with an increased copy number of IncX1 and ColE1 plasmids. Further, all Col plasmid-bearing strains had hotspot mutations in 37 loci on the chromosome and in 3 loci on the IncX1 plasmid. Additionally, we observed a decrease in susceptibility to tobramycin, kanamycin, gentamicin, neomycin and fosfomycin for Col plasmid-bearing strains. Our study demonstrates how positive selection from poultry litter can change the evolutionary path of S. Heidelberg.
Collapse
Affiliation(s)
- Adelumola Oladeinde
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Kimberly Cook
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Alex Orlek
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Greg Zock
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Kyler Herrington
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Nelson Cox
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Jodie Plumblee Lawrence
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| | - Carolina Hall
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States of America
| |
Collapse
|
50
|
Hirakawa H, Kurabayashi K, Tanimoto K, Tomita H. Oxygen Limitation Enhances the Antimicrobial Activity of Fosfomycin in Pseudomonas aeruginosa Following Overexpression of glpT Which Encodes Glycerol-3-Phosphate/Fosfomycin Symporter. Front Microbiol 2018; 9:1950. [PMID: 30186264 PMCID: PMC6110920 DOI: 10.3389/fmicb.2018.01950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
Fosfomycin is resurfacing as a "last resort drug" to treat infections caused by multidrug resistant pathogens. This drug has a remarkable benefit in that its activity increases under oxygen-limited conditions unlike other commonly used antimicrobials such as β-lactams, fluoroquinolones and aminoglycosides. Especially, utility of fosfomycin has being evaluated with particular interest to treat chronic biofilm infections caused by Pseudomonas aeruginosa because it often encounters anaerobic situations. Here, we showed that P. aeruginosa PAO1, commonly used in many laboratories, becomes more susceptible to fosfomycin when grown anaerobically, and studied on how fosfomycin increases its activity under anaerobic conditions. Results of transport assay and gene expression study indicated that PAO1 cells grown anaerobically exhibit a higher expression of glpT encoding a glycerol-3-phosphate transporter which is responsible for fosfomycin uptake, then lead to increased intracellular accumulation of the drug. Elevated expression of glpT in anaerobic cultures depended on ANR, a transcriptional regulator that is activated under anaerobic conditions. Purified ANR protein bound to the DNA fragment from glpT region upstream, suggesting it is an activator of glpT gene expression. We found that increased susceptibility to fosfomycin was also observed in a clinical isolate which has a promoted biofilm phenotype and its glpT and anr genes are highly conserved with those of PAO1. We conclude that increased antibacterial activity of fosfomycin to P. aeruginosa under anaerobic conditions is attributed to elevated expression of GlpT following activation of ANR, then leads to increased uptake of the drug.
Collapse
Affiliation(s)
- Hidetada Hirakawa
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kumiko Kurabayashi
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Koichi Tanimoto
- Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|