1
|
Ma D, Xu J, Wu M, Zhang R, Hu Z, Ji CA, Wang Y, Zhang Z, Yu R, Liu X, Yang L, Li G, Shen D, Liu M, Yang Z, Zhang H, Wang P, Zhang Z. Phenazine biosynthesis protein MoPhzF regulates appressorium formation and host infection through canonical metabolic and noncanonical signaling function in Magnaporthe oryzae. THE NEW PHYTOLOGIST 2024; 242:211-230. [PMID: 38326975 PMCID: PMC10940222 DOI: 10.1111/nph.19569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Microbe-produced secondary metabolite phenazine-1-carboxylic acid (PCA) facilitates pathogen virulence and defense mechanisms against competitors. Magnaporthe oryzae, a causal agent of the devastating rice blast disease, needs to compete with other phyllosphere microbes and overcome host immunity for successful colonization and infection. However, whether M. oryzae produces PCA or it has any other functions remains unknown. Here, we found that the MoPHZF gene encodes the phenazine biosynthesis protein MoPhzF, synthesizes PCA in M. oryzae, and regulates appressorium formation and host virulence. MoPhzF is likely acquired through an ancient horizontal gene transfer event and has a canonical function in PCA synthesis. In addition, we found that PCA has a role in suppressing the accumulation of host-derived reactive oxygen species (ROS) during infection. Further examination indicated that MoPhzF recruits both the endoplasmic reticulum membrane protein MoEmc2 and the regulator of G-protein signaling MoRgs1 to the plasma membrane (PM) for MoRgs1 phosphorylation, which is a critical regulatory mechanism in appressorium formation and pathogenicity. Collectively, our studies unveiled a canonical function of MoPhzF in PCA synthesis and a noncanonical signaling function in promoting appressorium formation and host infection.
Collapse
Affiliation(s)
- Danying Ma
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayun Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruiming Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhao Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang-an Ji
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziqi Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixiang Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Datar PM, Joshi SY, Deshmukh SA, Marsh ENG. Probing the role of protein conformational changes in the mechanism of prenylated-FMN-dependent phenazine-1-carboxylic acid decarboxylase. J Biol Chem 2024; 300:105621. [PMID: 38176649 PMCID: PMC10850782 DOI: 10.1016/j.jbc.2023.105621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Phenazine-1-carboxylic acid decarboxylase (PhdA) is a prenylated-FMN-dependent (prFMN) enzyme belonging to the UbiD family of decarboxylases. Many UbiD-like enzymes catalyze (de)carboxylation reactions on aromatic rings and conjugated double bonds and are potentially valuable industrial catalysts. We have investigated the mechanism of PhdA using a slow turnover substrate, 2,3-dimethylquinoxaline-5-carboxylic acid (DQCA). Detailed analysis of the pH dependence and solvent deuterium isotope effects associated with the reaction uncovered unusual kinetic behavior. At low substrate concentrations, a substantial inverse solvent isotope effect (SIE) is observed on Vmax/KM of ∼ 0.5 when reaction rates of DQCA in H2O and D2O are compared. Under the same conditions, a normal SIE of 4.15 is measured by internal competition for proton transfer to the product. These apparently contradictory results indicate that the SIE values report on different steps in the mechanism. A proton inventory analysis of the reaction under Vmax/KM and Vmax conditions points to a "medium effect" as the source of the inverse SIE. Molecular dynamics simulations of the effect of D2O on PhdA structure support that D2O reduces the conformational lability of the enzyme and results in a more compact structure, akin to the active, "closed" conformer observed in crystal structures of some UbiD-like enzymes. Consistent with the simulations, PhdA was found to be more stable in D2O and to bind DQCA more tightly, leading to the observed rate enhancement under Vmax/KM conditions.
Collapse
Affiliation(s)
- Prathamesh M Datar
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Soumil Y Joshi
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
3
|
Iloabuchi K, Spiteller D. Bacillus sp. G2112 Detoxifies Phenazine-1-carboxylic Acid by N5 Glucosylation. Molecules 2024; 29:589. [PMID: 38338334 PMCID: PMC10856480 DOI: 10.3390/molecules29030589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Microbial symbionts of plants constitute promising sources of biocontrol organisms to fight plant pathogens. Bacillus sp. G2112 and Pseudomonas sp. G124 isolated from cucumber (Cucumis sativus) leaves inhibited the plant pathogens Erwinia and Fusarium. When Bacillus sp. G2112 and Pseudomonas sp. G124 were co-cultivated, a red halo appeared around Bacillus sp. G2112 colonies. Metabolite profiling using liquid chromatography coupled to UV and mass spectrometry revealed that the antibiotic phenazine-1-carboxylic acid (PCA) released by Pseudomonas sp. G124 was transformed by Bacillus sp. G2112 to red pigments. In the presence of PCA (>40 µg/mL), Bacillus sp. G2112 could not grow. However, already-grown Bacillus sp. G2112 (OD600 > 1.0) survived PCA treatment, converting it to red pigments. These pigments were purified by reverse-phase chromatography, and identified by high-resolution mass spectrometry, NMR, and chemical degradation as unprecedented 5N-glucosylated phenazine derivatives: 7-imino-5N-(1'β-D-glucopyranosyl)-5,7-dihydrophenazine-1-carboxylic acid and 3-imino-5N-(1'β-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid. 3-imino-5N-(1'β-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid did not inhibit Bacillus sp. G2112, proving that the observed modification constitutes a resistance mechanism. The coexistence of microorganisms-especially under natural/field conditions-calls for such adaptations, such as PCA inactivation, but these can weaken the potential of the producing organism against pathogens and should be considered during the development of biocontrol strategies.
Collapse
Affiliation(s)
- Kenechukwu Iloabuchi
- Department Chemical Ecology/Biological Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany;
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria Nsukka, Obukpa Road, Nsukka 410105, Nigeria
| | - Dieter Spiteller
- Department Chemical Ecology/Biological Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany;
| |
Collapse
|
4
|
Zhu Q, Bai X, Li Q, Zhang M, Hu G, Pan K, Liu H, Ke Z, Hong Q, Qiu J. PcaR, a GntR/FadR Family Transcriptional Repressor Controls the Transcription of Phenazine-1-Carboxylic Acid 1,2-Dioxygenase Gene Cluster in Sphingomonas histidinilytica DS-9. Appl Environ Microbiol 2023; 89:e0212122. [PMID: 37191535 PMCID: PMC10304782 DOI: 10.1128/aem.02121-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
In our previous study, the phenazine-1-carboxylic acid (PCA) 1,2-dioxygenase gene cluster (pcaA1A2A3A4 cluster) in Sphingomonas histidinilytica DS-9 was identified to be responsible for the conversion of PCA to 1,2-dihydroxyphenazine (Ren Y, Zhang M, Gao S, Zhu Q, et al. 2022. Appl Environ Microbiol 88:e00543-22). However, the regulatory mechanism of the pcaA1A2A3A4 cluster has not been elucidated yet. In this study, the pcaA1A2A3A4 cluster was found to be transcribed as two divergent operons: pcaA3-ORF5205 (named A3-5205 operon) and pcaA1A2-ORF5208-pcaA4-ORF5210 (named A1-5210 operon). The promoter regions of the two operons were overlapped. PcaR acts as a transcriptional repressor of the pcaA1A2A3A4 cluster, and it belongs to GntR/FadR family transcriptional regulator. Gene disruption of pcaR can shorten the lag phase of PCA degradation. The results of electrophoretic mobility shift assay and DNase I footprinting showed that PcaR binds to a 25-bp motif in the ORF5205-pcaA1 intergenic promoter region to regulate the expression of two operons. The 25-bp motif covers the -10 region of the promoter of A3-5205 operon and the -35 region and -10 region of the promoter of A1-5210 operon. The TNGT/ANCNA box within the motif was essential for PcaR binding to the two promoters. PCA acted as an effector of PcaR, preventing it from binding to the promoter region and repressing the transcription of the pcaA1A2A3A4 cluster. In addition, PcaR represses its own transcription, and this repression can be relieved by PCA. This study reveals the regulatory mechanism of PCA degradation in strain DS-9, and the identification of PcaR increases the variety of regulatory model of the GntR/FadR-type regulator. IMPORTANCE Sphingomonas histidinilytica DS-9 is a phenazine-1-carboxylic acid (PCA)-degrading strain. The 1,2-dioxygenase gene cluster (pcaA1A2A3A4 cluster, encoding dioxygenase PcaA1A2, reductase PcaA3, and ferredoxin PcaA4) is responsible for the initial degradation step of PCA and widely distributed in Sphingomonads, but its regulatory mechanism has not been investigated yet. In this study, a GntR/FadR-type transcriptional regulator PcaR repressing the transcription of pcaA1A2A3A4 cluster and pcaR gene was identified and characterized. The binding site of PcaR in ORF5205-pcaA1 intergenic promoter region contains a TNGT/ANCNA box, which is important for the binding. These findings enhance our understanding of the molecular mechanism of PCA degradation.
Collapse
Affiliation(s)
- Qian Zhu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Xuekun Bai
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Qian Li
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Mingliang Zhang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Gang Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Kaihua Pan
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Hongfei Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, Zhejiang, People’s Republic of China
| | - Qing Hong
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiguo Qiu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Zhu Q, Pan K, Liu H, Hu J, Li Q, Bai X, Zhang M, Qiu J, Hong Q. Cloning and expression of the phenazine-1-carboxamide hydrolysis gene pzcH and the identification of the key amino acids necessary for its activity. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131924. [PMID: 37379601 DOI: 10.1016/j.jhazmat.2023.131924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Phenazine-1-carboxamide (PCN), a phenazine derivative, can cause toxicity risks to non target organisms. In this study, the Gram-positive bacteria Rhodococcus equi WH99 was found to have the ability to degrade PCN. PzcH, a novel amidase belonging to amidase signature (AS) family, responsible for hydrolyzing PCN to PCA was identified from strain WH99. PzcH shared no similarity with amidase PcnH which can also hydrolyze PCN and belong to the isochorismatase superfamily from Gram-negative bacteria Sphingomonas histidinilytica DS-9. PzcH also showed low similarity (˂ 39%) with other reported amidases. The optimal catalysis temperature and pH of PzcH was 30 °C and 9.0, respectively. The Km and kcat values of PzcH for PCN were 43.52 ± 4.82 μM and 17.028 ± 0.57 s-1, respectively. The molecular docking and point mutation experiment demonstrated that catalytic triad Lys80-Ser155-Ser179 are essential for PzcH to hydrolyze PCN. Strain WH99 can degrade PCN and PCA to reduce their toxicity against the sensitive organisms. This study enhances our understanding of the molecular mechanism of PCN degradation, presents the first report on the key amino acids in PzcH from the Gram-positive bacteria and provides an effective strain in the bioremediation PCN and PCA contaminated environments.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Junqiang Hu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Xuekun Bai
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
6
|
Guo S, Zhao Q, Hu H, Wang W, Bilal M, Fei Q, Zhang X. Metabolic Degradation and Bioactive Derivative Synthesis of Phenazine-1-Carboxylic Acid by Genetically Engineered Pseudomonas chlororaphis HT66. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37247609 DOI: 10.1021/acs.jafc.3c01288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phenazine-1-carboxylic acid (PCA) secreted by Pseudomonas chlororaphis has been commercialized and widely employed as an antifungal pesticide. However, it displays potential hazards to nontarget microorganisms and the environment. Although the PCA degradation characteristics have received extensive attention, the biodegradation efficiency is still insufficient to address the environmental risks. In this study, an engineered Pseudomonas capable of degrading PCA was constructed by introducing heterologous PCA 1,2-dioxygenase (PcaA1A2A3A4). By integrating the PCA degradation module in the chemical mutagenesis mutant P3, 7.94 g/L PCA can be degraded in 60 h, which exhibited the highest PCA degradation efficiency to date and was 35.4-fold higher than that of the PCA natural degraders. Additionally, PCA was converted to 1-methoxyphenazine through structure modification by introducing the functional enzymes PhzSPa and PhzMLa, which has good antifungal activity and environmental compatibility. This work demonstrates new possibilities for developing PCA-derived biopesticides and enables targeted control of the impact of PCA in diverse environments.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Żaczek S, Dybala-Defratyka A. Unravelling interactions between active site residues and DMAP in the initial steps of prenylated flavin mononucleotide biosynthesis catalyzed by PaUbiX. Biochim Biophys Acta Gen Subj 2022; 1866:130247. [PMID: 36162732 DOI: 10.1016/j.bbagen.2022.130247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Prenylated flavin mononucleotide (prFMN) is a recently discovered, heavily modified flavin compound. It is the only known cofactor that enables enzymatic 1,3-dipolar cycloaddition reactions. It is produced by enzymes from the UbiX family, from flavin mononucleotide and either dimethylallyl mono- or diphosphate. prFMN biosynthesis is currently reported to be initiated by protonation of the substrate by Glu140. METHODS Computational chemistry methods are applied herein - Constant pH MD, classical MD simulations, and QM cluster optimizations. RESULTS Glu140 competes for a single proton with Lys129 prior to prFMN biosynthesis, but it is the latter that adopted a protonated state. Once the prenyl-FMN adduct is formed, Glu140 occurs in a protonated state far more often, while the occupancy of protonated Lys129 does not change. Lys129, Glu140, and Arg122 seem to play a key role in either stabilizing or protonating DMAP phosphate group within the PaUbiX active site throughout initial steps of prFMN biosynthesis. CONCLUSIONS The role of Lys129 in the functioning of PaUbiX is reported for the first time. Glu140 is unlikely to act as a proton donor in prFMN biosynthesis. Instead, Lys129 and Arg122 fulfil this role. Glu140 still plays a role in contributing to hydrogen-bond network. This behavior is most likely conserved throughout the UbiX family due to the structural similarity of the active sites of those proteins. SIGNIFICANCE Mechanistic insights into a crucial biochemical process, the biosynthesis of prFMN, are provided. This study, although purely computational, extends and perfectly complements the knowledge obtained in classical laboratory experiments.
Collapse
Affiliation(s)
- Szymon Żaczek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Agnieszka Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
8
|
The Novel Amidase PcnH Initiates the Degradation of Phenazine-1-Carboxamide in Sphingomonas histidinilytica DS-9. Appl Environ Microbiol 2022; 88:e0054322. [PMID: 35579476 PMCID: PMC9195955 DOI: 10.1128/aem.00543-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phenazines are an important class of secondary metabolites and are primarily named for their heterocyclic phenazine cores, including phenazine-1-carboxylic acid (PCA) and its derivatives, such as phenazine-1-carboxamide (PCN) and pyocyanin (PYO). Although several genes involved in the degradation of PCA and PYO have been reported so far, the genetic foundations of PCN degradation remain unknown. In this study, a PCN-degrading bacterial strain, Sphingomonas histidinilytica DS-9, was isolated. The gene pcnH, encoding a novel amidase responsible for the initial step of PCN degradation, was cloned by genome comparison and subsequent experimental validation. PcnH catalyzed the hydrolysis of the amide bond of PCN to produce PCA, which shared low identity (only 26 to 33%) with reported amidases. The Km and kcat values of PcnH for PCN were 33.22 ± 5.70 μM and 18.71 ± 0.52 s-1, respectively. PcnH has an Asp-Lys-Cys motif, which is conserved among amidases of the isochorismate hydrolase-like (IHL) superfamily. The replacement of Asp37, Lys128, and Cys163 with alanine in PcnH led to the complete loss of enzymatic activity. Furthermore, the genes pcaA1A2A3A4 and pcnD were found to encode PCA 1,2-dioxygenase and 1,2-dihydroxyphenazine (2OHPC) dioxygenase, which were responsible for the subsequent degradation steps of PCN. The PCN-degradative genes were highly conserved in some bacteria of the genus Sphingomonas, with slight variations in the sequence identities. IMPORTANCE Phenazines have been widely acknowledged as a natural antibiotic for more than 150 years, but their degradation mechanisms are still not completely elucidated. Compared with the studies on the degradation mechanism of PCA and PYO, little is known regarding PCN degradation by far. Previous studies have speculated that its initial degradation step may be catalyzed by an amidase, but no further studies have been conducted. This study identified a novel amidase, PcnH, that catalyzed the hydrolysis of PCN to PCA. In addition, the PCA 1,2-dioxygenase PcaA1A2A3A4 and 2OHPC dioxygenase PcnD were also found to be involved in the subsequent degradation steps of PCN in S. histidinilytica DS-9. And the genes responsible for PCN catabolism are highly conserved in some strains of Sphingomonas. These results deepen our understanding of the PCN degradation mechanism.
Collapse
|
9
|
A Review of Pyrene Bioremediation Using Mycobacterium Strains in a Different Matrix. FERMENTATION 2022. [DOI: 10.3390/fermentation8060260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polycyclic aromatic hydrocarbons are compounds with 2 or more benzene rings, and 16 of them have been classified as priority pollutants. Among them, pyrene has been found in higher concentrations than recommended, posing a threat to the ecosystem. Many bacterial strains have been identified as pyrene degraders. Most of them belong to Gram-positive strains such as Mycobacterium sp. and Rhodococcus sp. These strains were enriched and isolated from several sites contaminated with petroleum products, such as fuel stations. The bioremediation of pyrene via Mycobacterium strains is the main objective of this review. The scattered data on the degradation efficiency, formation of pyrene metabolites, bio-toxicity of pyrene and its metabolites, and proposed degradation pathways were collected in this work. The study revealed that most of the Mycobacterium strains were capable of degrading pyrene efficiently. The main metabolites of pyrene were 4,5-dihydroxy pyrene, phenanthrene-4,5-dicarboxylate, phthalic acid, and pyrene-4,5-dihydrodiol. Some metabolites showed positive results for the Ames mutagenicity prediction test, such as 1,2-phenanthrenedicarboxylic acid, 1-hydroxypyrene, 4,5-dihydropyrene, 4-phenanthrene-carboxylic acid, 3,4-dihydroxyphenanthrene, monohydroxy pyrene, and 9,10-phenanthrenequinone. However, 4-phenanthrol showed positive results for experimental and prediction tests. This study may contribute to enhancing the bioremediation of pyrene in a different matrix.
Collapse
|
10
|
Datar PM, Marsh ENG. Decarboxylation of Aromatic Carboxylic Acids by the Prenylated-FMN-dependent Enzyme Phenazine-1-carboxylic Acid Decarboxylase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Dar D, Thomashow LS, Weller DM, Newman DK. Global landscape of phenazine biosynthesis and biodegradation reveals species-specific colonization patterns in agricultural soils and crop microbiomes. eLife 2020; 9:59726. [PMID: 32930660 PMCID: PMC7591250 DOI: 10.7554/elife.59726] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023] Open
Abstract
Phenazines are natural bacterial antibiotics that can protect crops from disease. However, for most crops it is unknown which producers and specific phenazines are ecologically relevant, and whether phenazine biodegradation can counter their effects. To better understand their ecology, we developed and environmentally-validated a quantitative metagenomic approach to mine for phenazine biosynthesis and biodegradation genes, applying it to >800 soil and plant-associated shotgun-metagenomes. We discover novel producer-crop associations and demonstrate that phenazine biosynthesis is prevalent across habitats and preferentially enriched in rhizospheres, whereas biodegrading bacteria are rare. We validate an association between maize and Dyella japonica, a putative producer abundant in crop microbiomes. D. japonica upregulates phenazine biosynthesis during phosphate limitation and robustly colonizes maize seedling roots. This work provides a global picture of phenazines in natural environments and highlights plant-microbe associations of agricultural potential. Our metagenomic approach may be extended to other metabolites and functional traits in diverse ecosystems.
Collapse
Affiliation(s)
- Daniel Dar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Linda S Thomashow
- Wheat Health, Genetics and Quality Research Unit, USDA Agricultural Research Service, Pullman, United States
| | - David M Weller
- Wheat Health, Genetics and Quality Research Unit, USDA Agricultural Research Service, Pullman, United States
| | - Dianne K Newman
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
12
|
Abstract
The reversible (de)carboxylation of unsaturated carboxylic acids is carried out by the UbiX-UbiD system, ubiquitously present in microbes. The biochemical basis of this challenging reaction has recently been uncovered by the discovery of the UbiD cofactor, prenylated FMN (prFMN). This heavily modified flavin is synthesized by the flavin prenyltransferase UbiX, which catalyzes the non-metal dependent prenyl transfer from dimethylallyl(pyro)phosphate (DMAP(P)) to the flavin N5 and C6 positions, creating a fourth non-aromatic ring. Following prenylation, prFMN undergoes oxidative maturation to form the iminium species required for UbiD activity. prFMNiminium acts as a prostethic group and is bound via metal ion mediated interactions between UbiD and the prFMNiminium phosphate moiety. The modified isoalloxazine ring is place adjacent to the E(D)-R-E UbiD signature sequent motif. The fungal ferulic acid decarboxylase Fdc from Aspergillus niger has emerged as a UbiD-model system, and has yielded atomic level insight into the prFMNiminium mediated (de)carboxylation. A wealth of data now supports a mechanism reliant on reversible 1,3 dipolar cycloaddition between substrate and cofactor for this enzyme. This poses the intriguing question whether a similar mechanism is used by all UbiD enzymes, especially those that act as carboxylases on inherently more difficult substrates such as phenylphosphate or benzene/naphthalene. Indeed, considerable variability in terms of oligomerization, domain motion and active site structure is now reported for the UbiD family.
Collapse
Affiliation(s)
- Annica Saaret
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Arune Balaikaite
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - David Leys
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
13
|
Wang H, Liu X, Wu C, Zhang M, Ke Z, Jiang W, Zhou Y, Qiu J, Hong Q. An angular dioxygenase gene cluster responsible for the initial phenazine-1-carboxylic acid degradation step in Rhodococcus sp. WH99 can protect sensitive organisms from toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135726. [PMID: 31837849 DOI: 10.1016/j.scitotenv.2019.135726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
A bacterial strain, Rhodococcus sp. WH99, capable of degrading phenazine-1-carboxylic acid (PCA) was isolated and characterized. Genome comparison revealed that a 21499-bp DNA fragment containing a putative angular dioxygenase gene cluster consisting of the dioxygenase-, ferredoxin reductase- and ferredoxin-encoding genes (pzcA1A2, pzcC and pzcD) is missed in the PCA degradation-deficient mutant WH99M. The pzcA1A2CD genes were expressed in Escherichia coli respectively and hydroxylation of PCA to 1,2-dihydroxyphenazine occurred in vitro only when all components were present. However, in vivo analyses showed that pzcA1A2 and pzcD were indispensable for PCA degradation, while PzcC can be partially replaced by other ferredoxin reductases. Hydroxylation of PCA not only initiates degradation of PCA in strain WH99 but also provides protection to sensitive organisms that would otherwise be inhibited by PCA toxicity. This study illustrates a new initial PCA degradation step in Gram-positive bacteria and enhances our understanding of the genes responsible for PCA hydroxylation, thus enabling targeted studies on protection by PCA degradation in diverse environments.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xiaoan Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Chenglong Wu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
14
|
Payer SE, Faber K, Glueck SM. Non-Oxidative Enzymatic (De)Carboxylation of (Hetero)Aromatics and Acrylic Acid Derivatives. Adv Synth Catal 2019; 361:2402-2420. [PMID: 31379472 PMCID: PMC6644310 DOI: 10.1002/adsc.201900275] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/16/2019] [Indexed: 12/20/2022]
Abstract
The utilization of carbon dioxide as a C1-building block for the production of valuable chemicals has recently attracted much interest. Whereas chemical CO2 fixation is dominated by C-O and C-N bond forming reactions, the development of novel concepts for the carboxylation of C-nucleophiles, which leads to the formation of carboxylic acids, is highly desired. Beside transition metal catalysis, biocatalysis has emerged as an attractive method for the highly regioselective (de)carboxylation of electron-rich (hetero)aromatics, which has been recently further expanded to include conjugated α,β-unsaturated (acrylic) acid derivatives. Depending on the type of substrate, different classes of enzymes have been explored for (i) the ortho-carboxylation of phenols catalyzed by metal-dependent ortho-benzoic acid decarboxylases and (ii) the side-chain carboxylation of para-hydroxystyrenes mediated by metal-independent phenolic acid decarboxylases. Just recently, the portfolio of bio-carboxylation reactions was complemented by (iii) the para-carboxylation of phenols and the decarboxylation of electron-rich heterocyclic and acrylic acid derivatives mediated by prenylated FMN-dependent decarboxylases, which is the main focus of this review. Bio(de)carboxylation processes proceed under physiological reaction conditions employing bicarbonate or (pressurized) CO2 when running in the energetically uphill carboxylation direction. Aiming to facilitate the application of these enzymes in preparative-scale biotransformations, their catalytic mechanism and substrate scope are analyzed in this review.
Collapse
Affiliation(s)
- Stefan E. Payer
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Kurt Faber
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Silvia M. Glueck
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| |
Collapse
|
15
|
Leys D. Flavin metamorphosis: cofactor transformation through prenylation. Curr Opin Chem Biol 2018; 47:117-125. [PMID: 30326424 DOI: 10.1016/j.cbpa.2018.09.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 11/28/2022]
Abstract
Prenylated flavin (prFMN) is a recently discovered cofactor that underpins catalysis in the ubiquitous microbial UbiDX system. UbiX acts as a flavin prenyltransferase while UbiD is a prFMN-dependent reversible (de)carboxylase. The extensive modification of flavin by prenylation, and the consecutive oxidation to the prFMNiminium azomethine ylide, leads to cofactor metamorphosis. While prFMN is no longer able to perform N5-based classical flavin chemistry, it is capable of forming cycloadducts with dipolarophiles, long-lived C4a-based radical species as well as undergoing extensive light driven isomerization. An ever-expanding range of distinct prFMN forms hints at the possibility of novel prFMN driven biochemistry yet to be discovered.
Collapse
Affiliation(s)
- David Leys
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street Manchester, M1 7DN, UK.
| |
Collapse
|