1
|
Shang W, Lichtenberg E, Mlesnita AM, Wilde A, Koch HG. The contribution of mRNA targeting to spatial protein localization in bacteria. FEBS J 2024; 291:4639-4659. [PMID: 38226707 DOI: 10.1111/febs.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
About 30% of all bacterial proteins execute their function outside of the cytosol and must be inserted into or translocated across the cytoplasmic membrane. This requires efficient targeting systems that recognize N-terminal signal sequences in client proteins and deliver them to protein transport complexes in the membrane. While the importance of these protein transport machineries for the spatial organization of the bacterial cell is well documented in multiple studies, the contribution of mRNA targeting and localized translation to protein transport is only beginning to emerge. mRNAs can exhibit diverse subcellular localizations in the bacterial cell and can accumulate at sites where new protein is required. This is frequently observed for mRNAs encoding membrane proteins, but the physiological importance of membrane enrichment of mRNAs and the consequences it has for the insertion of the encoded protein have not been explored in detail. Here, we briefly highlight some basic concepts of signal sequence-based protein targeting and describe in more detail strategies that enable the monitoring of mRNA localization in bacterial cells and potential mechanisms that route mRNAs to particular positions within the cell. Finally, we summarize some recent developments that demonstrate that mRNA targeting and localized translation can sustain membrane protein insertion under stress conditions when the protein-targeting machinery is compromised. Thus, mRNA targeting likely acts as a back-up strategy and complements the canonical signal sequence-based protein targeting.
Collapse
Affiliation(s)
- Wenkang Shang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | | | - Andreea Mihaela Mlesnita
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| | - Annegret Wilde
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| |
Collapse
|
2
|
Ma T, Li X, Montalbán-López M, Wu X, Zheng Z, Mu D. Effect of the Membrane Insertase YidC on the Capacity of Lactococcus lactis to Secret Recombinant Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23320-23332. [PMID: 39382634 DOI: 10.1021/acs.jafc.4c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Lactococcus lactis is a crucial food-grade cell factory for secreting valuable peptides and proteins primarily via the Sec-dependent pathway. YidC, a membrane insertase, facilitates protein insertion into the lipid membrane for the translocation. However, the mechanistic details of how YidC affects protein secretion in L. lactis remain elusive. This study investigates the effects of deleting yidC1/yidC2 on L. lactis phenotypes and protein secretion. Compared to the original strain, deleting yidC2 significantly decreased the relative biomass, electroporation efficiency, and F-ATP activity by 25%, 47%, and 33%, respectively, and weakened growth and stress resistance, whereas deleting yidC1 had a minimal impact. The absence of either yidC1 or yidC2 reduced target proteins secretion. Meanwhile, there is a considerable alteration in the transcription levels of genes involved in the secretion pathway, with secY transcription increasing over 135-fold. Our results provide a theoretical foundation for further improving target protein secretion and investigating the YidC function.
Collapse
Affiliation(s)
- Tiange Ma
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Xingjiang Li
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
- Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China
| | - Manuel Montalbán-López
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Xuefeng Wu
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Dongdong Mu
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
- Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China
| |
Collapse
|
3
|
Marimuthu SCV, Murugesan J, Babkiewicz E, Maszczyk P, Sankaranarayanan M, Thangamariappan E, Rosy JC, Ram Kumar Pandian S, Kunjiappan S, Balakrishnan V, Sundar K. Pharmacoinformatics-Based Approach for Uncovering the Quorum-Quenching Activity of Phytocompounds against the Oral Pathogen, Streptococcus mutans. Molecules 2023; 28:5514. [PMID: 37513386 PMCID: PMC10383507 DOI: 10.3390/molecules28145514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Streptococcus mutans, a gram-positive oral pathogen, is the primary causative agent of dental caries. Biofilm formation, a critical characteristic of S. mutans, is regulated by quorum sensing (QS). This study aimed to utilize pharmacoinformatics techniques to screen and identify effective phytochemicals that can target specific proteins involved in the quorum sensing pathway of S. mutans. A computational approach involving homology modeling, model validation, molecular docking, and molecular dynamics (MD) simulation was employed. The 3D structures of the quorum sensing target proteins, namely SecA, SMU1784c, OppC, YidC2, CiaR, SpaR, and LepC, were modeled using SWISS-MODEL and validated using a Ramachandran plot. Metabolites from Azadirachta indica (Neem), Morinda citrifolia (Noni), and Salvadora persica (Miswak) were docked against these proteins using AutoDockTools. MD simulations were conducted to assess stable interactions between the highest-scoring ligands and the target proteins. Additionally, the ADMET properties of the ligands were evaluated using SwissADME and pkCSM tools. The results demonstrated that campesterol, meliantrol, stigmasterol, isofucosterol, and ursolic acid exhibited the strongest binding affinity for CiaR, LepC, OppC, SpaR, and Yidc2, respectively. Furthermore, citrostadienol showed the highest binding affinity for both SMU1784c and SecA. Notably, specific amino acid residues, including ASP86, ARG182, ILE179, GLU143, ASP237, PRO101, and VAL84 from CiaR, LepC, OppC, SecA, SMU1784c, SpaR, and YidC2, respectively, exhibited significant interactions with their respective ligands. While the docking study indicated favorable binding energies, the MD simulations and ADMET studies underscored the substantial binding affinity and stability of the ligands with the target proteins. However, further in vitro studies are necessary to validate the efficacy of these top hits against S. mutans.
Collapse
Affiliation(s)
| | - Jayaprabhakaran Murugesan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland
- Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani 333031, India
| | | | - Joseph Christina Rosy
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | | | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Vanavil Balakrishnan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Krishnan Sundar
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| |
Collapse
|
4
|
Ackermann B, Dünschede B, Pietzenuk B, Justesen BH, Krämer U, Hofmann E, Günther Pomorski T, Schünemann D. Chloroplast Ribosomes Interact With the Insertase Alb3 in the Thylakoid Membrane. FRONTIERS IN PLANT SCIENCE 2021; 12:781857. [PMID: 35003166 PMCID: PMC8733628 DOI: 10.3389/fpls.2021.781857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Members of the Oxa1/YidC/Alb3 protein family are involved in the insertion, folding, and assembly of membrane proteins in mitochondria, bacteria, and chloroplasts. The thylakoid membrane protein Alb3 mediates the chloroplast signal recognition particle (cpSRP)-dependent posttranslational insertion of nuclear-encoded light harvesting chlorophyll a/b-binding proteins and participates in the biogenesis of plastid-encoded subunits of the photosynthetic complexes. These subunits are cotranslationally inserted into the thylakoid membrane, yet very little is known about the molecular mechanisms underlying docking of the ribosome-nascent chain complexes to the chloroplast SecY/Alb3 insertion machinery. Here, we show that nanodisc-embedded Alb3 interacts with ribosomes, while the homolog Alb4, also located in the thylakoid membrane, shows no ribosome binding. Alb3 contacts the ribosome with its C-terminal region and at least one additional binding site within its hydrophobic core region. Within the C-terminal region, two conserved motifs (motifs III and IV) are cooperatively required to enable the ribosome contact. Furthermore, our data suggest that the negatively charged C-terminus of the ribosomal subunit uL4c is involved in Alb3 binding. Phylogenetic analyses of uL4 demonstrate that this region newly evolved in the green lineage during the transition from aquatic to terrestrial life.
Collapse
Affiliation(s)
- Bernd Ackermann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Björn Pietzenuk
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Bo Højen Justesen
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Mishra S, Brady LJ. The Cytoplasmic Domains of Streptococcus mutans Membrane Protein Insertases YidC1 and YidC2 Confer Unique Structural and Functional Attributes to Each Paralog. Front Microbiol 2021; 12:760873. [PMID: 34795653 PMCID: PMC8595059 DOI: 10.3389/fmicb.2021.760873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Integral and membrane-anchored proteins are pivotal to survival and virulence of the dental pathogen, Streptococcus mutans. The bacterial chaperone/insertase, YidC, contributes to membrane protein translocation. Unlike Escherichia coli, most Gram-positive bacteria contain two YidC paralogs. Herein, we evaluated structural features that functionally delineate S. mutans YidC1 and YidC2. Bacterial YidCs contain five transmembrane domains (TMD), two cytoplasmic loops, and a cytoplasmic tail. Because S. mutans YidC1 (SmYidC1) and YidC2 (SmYidC2) cytoplasmic domains (CD) are less well conserved than are TMD, we engineered ectopic expression of the 14 possible YidC1-YidC2 CD domain swap combinations. Growth and stress tolerance of each was compared to control strains ectopically expressing unmodified yidC1 or yidC2. Acid and osmotic stress sensitivity are associated with yidC2 deletion. Sensitivity to excess zinc was further identified as a ΔyidC1 phenotype. Overall, YidC1 tolerated CD substitutions better than YidC2. Preferences toward particular CD combinations suggested potential intramolecular interactions. In silico analysis predicted salt-bridges between C1 and C2 loops of YidC1, and C1 loop and C-terminal tail of YidC2, respectively. Mutation of contributing residues recapitulated ΔyidC1- and ΔyidC2-associated phenotypes. Taken together, this work revealed the importance of cytoplasmic domains in distinct functional attributes of YidC1 and YidC2, and identified key residues involved in interdomain interactions.
Collapse
Affiliation(s)
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
EloR interacts with the lytic transglycosylase MltG at midcell in Streptococcus pneumoniae R6. J Bacteriol 2021; 203:JB.00691-20. [PMID: 33558392 PMCID: PMC8092159 DOI: 10.1128/jb.00691-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The ellipsoid shape of Streptococcus pneumoniae is determined by the synchronized actions of the elongasome and the divisome, which have the task of creating a protective layer of peptidoglycan (PG) enveloping the cell membrane. The elongasome is necessary for expanding PG in the longitudinal direction whereas the divisome synthesizes the PG that divides one cell into two. Although there is still little knowledge about how these two modes of PG synthesis are coordinated, it was recently discovered that two RNA-binding proteins called EloR and KhpA are part of a novel regulatory pathway controlling elongation in S. pneumoniae EloR and KhpA form a complex that work closely with the Ser/Thr kinase StkP to regulate cell elongation. Here, we have further explored how this regulation occur. EloR/KhpA is found at midcell, a localization fully dependent on EloR. Using a bacterial two-hybrid assay we probed EloR against several elongasome proteins and found an interaction with the lytic transglycosylase homolog MltG. By using EloR as bait in immunoprecipitation assays, MltG was pulled down confirming that they are part of the same protein complex. Fluorescent microscopy demonstrated that the Jag domain of EloR is essential for EloR's midcell localization and its interaction with MltG. Since MltG is found at midcell independent of EloR, our results suggest that MltG is responsible for recruitment of the EloR/KhpA complex to the division zone to regulate cell elongation.Importance Bacterial cell division has been a successful target for antimicrobial agents for decades. How different pathogens regulate cell division is, however, poorly understood. To fully exploit the potential for future antibiotics targeting cell division, we need to understand the details of how the bacteria regulate and construct cell wall during this process. Here we have revealed that the newly identified EloR/KhpA complex, regulating cell elongation in S. pneumoniae, forms a complex with the essential peptidoglycan transglycosylase MltG at midcell. EloR, KhpA and MltG are conserved among many bacterial species and the EloR/KhpA/MltG regulatory pathway is most likely a common mechanism employed by many Gram-positive bacteria to coordinate cell elongation and septation.
Collapse
|
7
|
Protein Interactomes of Streptococcus mutans YidC1 and YidC2 Membrane Protein Insertases Suggest SRP Pathway-Independent- and -Dependent Functions, Respectively. mSphere 2021; 6:6/2/e01308-20. [PMID: 33658280 PMCID: PMC8546722 DOI: 10.1128/msphere.01308-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Virulence properties of cariogenic Streptococcus mutans depend on integral membrane proteins. Bacterial cotranslational protein trafficking involves the signal recognition particle (SRP) pathway components Ffh and FtsY, the SecYEG translocon, and YidC chaperone/insertases. Unlike Escherichia coli, S. mutans survives loss of the SRP pathway and has two yidC paralogs. This study characterized YidC1 and YidC2 interactomes to clarify respective functions alone and in concert with the SRP and/or Sec translocon. Western blots of formaldehyde cross-linked or untreated S. mutans lysates were reacted with anti-Ffh, anti-FtsY, anti-YidC1, or anti-YidC2 antibodies followed by mass spectrometry (MS) analysis of gel-shifted bands. Cross-linked lysates of wild-type and ΔyidC2 strains were reacted with anti-YidC2-coupled Dynabeads, and cocaptured proteins were identified by MS. Last, YidC1 and YidC2 C-terminal tail-captured proteins were subjected to two-dimensional (2D) difference gel electrophoresis and MS analysis. Direct interactions of putative YidC1 and YidC2 binding partners were confirmed by bacterial two-hybrid assay. Our results suggest YidC2 works preferentially with the SRP pathway, while YidC1 is preferred for SRP-independent Sec translocon-mediated translocation. YidC1 and YidC2 autonomous pathways were also apparent. Two-hybrid assay identified interactions between holotranslocon components SecYEG/YajC and YidC1. Both YidC1 and YidC2 interacted with Ffh, FtsY, and chaperones DnaK and RopA. Putative membrane-localized substrates HlyX, LemA, and SMU_591c interacted with both YidC1 and YidC2. Identification of several Rgp proteins in the YidC1 interactome suggested its involvement in bacitracin resistance, which was decreased in ΔyidC1 and SRP-deficient mutants. Collectively, YidC1 and YidC2 interactome analyses has further distinguished these paralogs in the Gram-positive bacterium S. mutans. IMPORTANCEStreptococcus mutans is a prevalent oral pathogen and major causative agent of tooth decay. Many proteins that enable this bacterium to thrive in its environmental niche and cause disease are embedded in its cytoplasmic membrane. The machinery that transports proteins into bacterial membranes differs between Gram-negative and Gram-positive organisms, an important difference being the presence of multiple YidC paralogs in Gram-positive bacteria. Characterization of a protein’s interactome can help define its physiological role. Herein, we characterized the interactomes of S. mutans YidC1 and YidC2. Results demonstrated substantial overlap between their interactomes but also revealed several differences in their direct protein binding partners. Membrane transport machinery components were identified in the context of a large network of proteins involved in replication, transcription, translation, and cell division/cell shape. This information contributes to our understanding of protein transport in Gram-positive bacteria in general and informs our understanding of S. mutans pathogenesis.
Collapse
|
8
|
Mishra S, Crowley PJ, Wright KR, Palmer SR, Walker AR, Datta S, Brady J. Membrane proteomic analysis reveals overlapping and independent functions of Streptococcus mutans Ffh, YidC1, and YidC2. Mol Oral Microbiol 2019; 34:131-152. [PMID: 31034136 PMCID: PMC6625898 DOI: 10.1111/omi.12261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
A comparative proteomic analysis was utilized to evaluate similarities and differences in membrane samples derived from the cariogenic bacterium Streptococcus mutans, including the wild-type strain and four mutants devoid of protein translocation machinery components, specifically ∆ffh, ∆yidC1, ∆yidC2, or ∆ffh/yidC1. The purpose of this work was to determine the extent to which the encoded proteins operate individually or in concert with one another and to identify the potential substrates of the respective pathways. Ffh is the principal protein component of the signal recognition particle (SRP), while yidC1 and yidC2 are dual paralogs encoding members of the YidC/Oxa/Alb family of membrane-localized chaperone insertases. Our results suggest that the co-translational SRP pathway works in concert with either YidC1 or YidC2 specifically, or with no preference for paralog, in the insertion of most membrane-localized substrates. A few instances were identified in which the SRP pathway alone, or one of the YidCs alone, appeared to be most relevant. These data shed light on underlying reasons for differing phenotypic consequences of ffh, yidC1 or yidC2 deletion. Our data further suggest that many membrane proteins present in a ∆yidC2 background may be non-functional, that ∆yidC1 is better able to adapt physiologically to the loss of this paralog, that shared phenotypic properties of ∆ffh and ∆yidC2 mutants can stem from impacts on different proteins, and that independent binding to ribosomal proteins is not a primary functional activity of YidC2. Lastly, genomic mutations accumulate in a ∆yidC2 background coincident with phenotypic reversion, including an apparent W138R suppressor mutation within yidC1.
Collapse
Affiliation(s)
- Surabhi Mishra
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| | - Paula J. Crowley
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| | - Katherine R. Wright
- Division of Biosciences College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Sara R. Palmer
- Division of Biosciences College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Alejandro R. Walker
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| | - Susmita Datta
- Department of Biostatistics, College of Public Health & Health Professions College of Medicine, University of Florida, 2004 Mowry Rd, P.O. Box 117450, Gainesville, FL 32611
| | - Jeannine Brady
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| |
Collapse
|
9
|
Prevention of EloR/KhpA heterodimerization by introduction of site-specific amino acid substitutions renders the essential elongasome protein PBP2b redundant in Streptococcus pneumoniae. Sci Rep 2019; 9:3681. [PMID: 30842445 PMCID: PMC6403258 DOI: 10.1038/s41598-018-38386-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/27/2018] [Indexed: 12/31/2022] Open
Abstract
The RNA binding proteins EloR and KhpA are important components of the regulatory network that controls and coordinates cell elongation and division in S. pneumoniae. Loss of either protein reduces cell length, and makes the essential elongasome proteins PBP2b and RodA dispensable. It has been shown previously in formaldehyde crosslinking experiments that EloR co-precipitates with KhpA, indicating that they form a complex in vivo. In the present study, we used 3D modeling and site directed mutagenesis in combination with protein crosslinking to further study the relationship between EloR and KhpA. Protein-protein interaction studies demonstrated that KhpA forms homodimers and that KhpA in addition binds to the KH-II domain of EloR. Site directed mutagenesis identified isoleucine 61 (I61) as crucial for KhpA homodimerization. When substituting I61 with phenylalanine, KhpA lost the ability to homodimerize, while it still interacted clearly with EloR. In contrast, both homo- and heterodimerization were lost when I61 was substituted with tyrosine. By expressing these KhpA versions in S. pneumoniae, we were able to show that disruption of EloR/KhpA heterodimerization makes the elongasome redundant in S. pneumoniae. Of note, loss of KhpA homodimerization did not give rise to this phenotype, demonstrating that the EloR/KhpA complex is crucial for regulating the activity of the elongasome. In support of this conclusion, we found that localization of KhpA to the pneumococcal mid-cell region depends on its interaction with EloR. Furthermore, we found that the EloR/KhpA complex co-localizes with FtsZ throughout the cell cycle.
Collapse
|
10
|
Streptococcus mutans yidC1
and
yidC2
Impact Cell Envelope Biogenesis, the Biofilm Matrix, and Biofilm Biophysical Properties. J Bacteriol 2019; 201:JB.00396-18. [DOI: 10.1128/jb.00396-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/28/2018] [Indexed: 01/25/2023] Open
Abstract
YidC proteins are membrane-localized chaperone insertases that are universally conserved in all bacteria and are traditionally studied in the context of membrane protein insertion and assembly. Both YidC paralogs of the cariogenic pathogen
Streptococcus mutans
are required for proper envelope biogenesis and full virulence, indicating that these proteins may also contribute to optimal biofilm formation in streptococci. Here, we show that the deletion of either
yidC
results in changes to the structure and physical properties of the EPS matrix produced by
S. mutans
, ultimately impairing optimal biofilm development, diminishing its mechanical stability, and facilitating its removal. Importantly, the universal conservation of bacterial
yidC
orthologs, combined with our findings, provide a rationale for YidC as a possible drug target for antibiofilm therapies.
Collapse
|
11
|
Kolli R, Soll J, Carrie C. Plant Mitochondrial Inner Membrane Protein Insertion. Int J Mol Sci 2018; 19:E641. [PMID: 29495281 PMCID: PMC5855863 DOI: 10.3390/ijms19020641] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
During the biogenesis of the mitochondrial inner membrane, most nuclear-encoded inner membrane proteins are laterally released into the membrane by the TIM23 and the TIM22 machinery during their import into mitochondria. A subset of nuclear-encoded mitochondrial inner membrane proteins and all the mitochondrial-encoded inner membrane proteins use the Oxa machinery-which is evolutionarily conserved from the endosymbiotic bacterial ancestor of mitochondria-for membrane insertion. Compared to the mitochondria from other eukaryotes, plant mitochondria have several unique features, such as a larger genome and a branched electron transport pathway, and are also involved in additional cellular functions such as photorespiration and stress perception. This review focuses on the unique aspects of plant mitochondrial inner membrane protein insertion machinery, which differs from that in yeast and humans, and includes a case study on the biogenesis of Cox2 in yeast, humans, two plant species, and an algal species to highlight lineage-specific similarities and differences. Interestingly, unlike mitochondria of other eukaryotes but similar to bacteria and chloroplasts, plant mitochondria appear to use the Tat machinery for membrane insertion of the Rieske Fe/S protein.
Collapse
Affiliation(s)
- Renuka Kolli
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany.
| | - Jürgen Soll
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany.
- Munich Center for Integrated Protein Science, CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany.
| | - Chris Carrie
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany.
| |
Collapse
|
12
|
Baker LA, Sinnige T, Schellenberger P, de Keyzer J, Siebert CA, Driessen AJM, Baldus M, Grünewald K. Combined 1H-Detected Solid-State NMR Spectroscopy and Electron Cryotomography to Study Membrane Proteins across Resolutions in Native Environments. Structure 2017; 26:161-170.e3. [PMID: 29249608 PMCID: PMC5758107 DOI: 10.1016/j.str.2017.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/02/2017] [Accepted: 11/15/2017] [Indexed: 11/15/2022]
Abstract
Membrane proteins remain challenging targets for structural biology, despite much effort, as their native environment is heterogeneous and complex. Most methods rely on detergents to extract membrane proteins from their native environment, but this removal can significantly alter the structure and function of these proteins. Here, we overcome these challenges with a hybrid method to study membrane proteins in their native membranes, combining high-resolution solid-state nuclear magnetic resonance spectroscopy and electron cryotomography using the same sample. Our method allows the structure and function of membrane proteins to be studied in their native environments, across different spatial and temporal resolutions, and the combination is more powerful than each technique individually. We use the method to demonstrate that the bacterial membrane protein YidC adopts a different conformation in native membranes and that substrate binding to YidC in these native membranes differs from purified and reconstituted systems. CryoET and ssNMR give complementary information about proteins in native membranes One sample can be prepared for both methods without the use of detergents Hybrid method shows differences between purified and native preparations of YidC Sample preparation reduces costs and time and suggests new strategy for assignment
Collapse
Affiliation(s)
- Lindsay A Baker
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; Oxford Particle Imaging Centre, Division of Structural Biology, University of Oxford, The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Tessa Sinnige
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Pascale Schellenberger
- Oxford Particle Imaging Centre, Division of Structural Biology, University of Oxford, The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jeanine de Keyzer
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; The Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 11, 9747 AG Groningen, the Netherlands
| | - C Alistair Siebert
- Oxford Particle Imaging Centre, Division of Structural Biology, University of Oxford, The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; The Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 11, 9747 AG Groningen, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Kay Grünewald
- Oxford Particle Imaging Centre, Division of Structural Biology, University of Oxford, The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
13
|
Kedrov A, Wickles S, Crevenna AH, van der Sluis EO, Buschauer R, Berninghausen O, Lamb DC, Beckmann R. Structural Dynamics of the YidC:Ribosome Complex during Membrane Protein Biogenesis. Cell Rep 2017; 17:2943-2954. [PMID: 27974208 PMCID: PMC5186731 DOI: 10.1016/j.celrep.2016.11.059] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/26/2016] [Accepted: 11/20/2016] [Indexed: 01/30/2023] Open
Abstract
Members of the YidC/Oxa1/Alb3 family universally facilitate membrane protein biogenesis, via mechanisms that have thus far remained unclear. Here, we investigated two crucial functional aspects: the interaction of YidC with ribosome:nascent chain complexes (RNCs) and the structural dynamics of RNC-bound YidC in nanodiscs. We observed that a fully exposed nascent transmembrane domain (TMD) is required for high-affinity YidC:RNC interactions, while weaker binding may already occur at earlier stages of translation. YidC efficiently catalyzed the membrane insertion of nascent TMDs in both fluid and gel phase membranes. Cryo-electron microscopy and fluorescence analysis revealed a conformational change in YidC upon nascent chain insertion: the essential TMDs 2 and 3 of YidC were tilted, while the amphipathic helix EH1 relocated into the hydrophobic core of the membrane. We suggest that EH1 serves as a mechanical lever, facilitating a coordinated movement of YidC TMDs to trigger the release of nascent chains into the membrane.
Collapse
Affiliation(s)
- Alexej Kedrov
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, Munich 81377, Germany.
| | - Stephan Wickles
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, Munich 81377, Germany
| | - Alvaro H Crevenna
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), the NanoSystems Initiative Munich (NIM), Ludwig-Maximilians-University Munich, Butenandtstrasse 11, Munich 81377, Germany
| | - Eli O van der Sluis
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, Munich 81377, Germany
| | - Robert Buschauer
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, Munich 81377, Germany
| | - Otto Berninghausen
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, Munich 81377, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), the NanoSystems Initiative Munich (NIM), Ludwig-Maximilians-University Munich, Butenandtstrasse 11, Munich 81377, Germany; Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-University, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Roland Beckmann
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, Munich 81377, Germany; Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-University, Butenandtstrasse 5-13, Munich 81377, Germany.
| |
Collapse
|
14
|
Xu D, Gao Y, Wang P, Ran T, Wang W. Presence of an amino acid residue at position 619 required for the function of YidC in Rhodobacter sphaeroides. Biochem Biophys Res Commun 2015; 466:267-71. [PMID: 26362178 DOI: 10.1016/j.bbrc.2015.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 09/05/2015] [Indexed: 11/29/2022]
Abstract
YidC, the bacterial homologous protein of Oxa1 and Alb3, could insert membrane proteins into the membrane. Rhodobacter sphaeroides is a kind of photobacteria with abundant intracytoplasmic membranes. In this study, the functions of R. sphaeroides YidC and its C-terminus were investigated in the Escherichia coli YidC gene depletion strain FTL10. The results showed that RS_YidC could complement the growth of the strain FTL10, but the RS_YidC last 5 residues (619-623, KKRKP) deletion mutant could not. Interestingly, the site-directed RS_YidC mutants of any one or all of these 5 residues were still active. The deletion mutant of the last 4 residues and even the last 4 residues deletion mutant with substitution of the Ala or Glu for Lys619 still had sufficient activity to complement the growth of the strain FTL10. These results indicated that the length of the C-terminus of Rs_YidC is more important for its function than the amino acid composition or the charges of it, and the presence of an amino acid residue at position 619 is required for Rs_YidC function in E. coli. Our result also suggests that Rs_YidC may function differently as compared to its homologs.
Collapse
Affiliation(s)
- Dongqing Xu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yanyan Gao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Ping Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Tingting Ran
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Weiwu Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
15
|
Borowska MT, Dominik PK, Anghel SA, Kossiakoff AA, Keenan RJ. A YidC-like Protein in the Archaeal Plasma Membrane. Structure 2015; 23:1715-1724. [PMID: 26256539 PMCID: PMC4558205 DOI: 10.1016/j.str.2015.06.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/29/2015] [Accepted: 06/21/2015] [Indexed: 01/08/2023]
Abstract
Cells possess specialized machinery to direct the insertion of membrane proteins into the lipid bilayer. In bacteria, the essential protein YidC inserts certain proteins into the plasma membrane, and eukaryotic orthologs are present in the mitochondrial inner membrane and the chloroplast thylakoid membrane. The existence of homologous insertases in archaea has been proposed based on phylogenetic analysis. However, limited sequence identity, distinct architecture, and the absence of experimental data have made this assignment ambiguous. Here we describe the 3.5-Å crystal structure of an archaeal DUF106 protein from Methanocaldococcus jannaschii (Mj0480), revealing a lipid-exposed hydrophilic surface presented by a conserved YidC-like fold. Functional analysis reveals selective binding of Mj0480 to ribosomes displaying a stalled YidC substrate, and a direct interaction between the buried hydrophilic surface of Mj0480 and the nascent chain. These data provide direct experimental evidence that the archaeal DUF106 proteins are YidC/Oxa1/Alb3-like insertases of the archaeal plasma membrane.
Collapse
Affiliation(s)
- Marta T Borowska
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - S Andrei Anghel
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Geng Y, Kedrov A, Caumanns JJ, Crevenna AH, Lamb DC, Beckmann R, Driessen AJM. Role of the Cytosolic Loop C2 and the C Terminus of YidC in Ribosome Binding and Insertion Activity. J Biol Chem 2015; 290:17250-61. [PMID: 26023232 DOI: 10.1074/jbc.m115.650309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 11/06/2022] Open
Abstract
Members of the YidC/Oxa1/Alb3 protein family mediate membrane protein insertion, and this process is initiated by the assembly of YidC·ribosome nascent chain complexes at the inner leaflet of the lipid bilayer. The positively charged C terminus of Escherichia coli YidC plays a significant role in ribosome binding but is not the sole determinant because deletion does not completely abrogate ribosome binding. The positively charged cytosolic loops C1 and C2 of YidC may provide additional docking sites. We performed systematic sequential deletions within these cytosolic domains and studied their effect on the YidC insertase activity and interaction with translation-stalled (programmed) ribosome. Deletions within loop C1 strongly affected the activity of YidC in vivo but did not influence ribosome binding or substrate insertion, whereas loop C2 appeared to be involved in ribosome binding. Combining the latter deletion with the removal of the C terminus of YidC abolished YidC-mediated insertion. We propose that these two regions play an crucial role in the formation and stabilization of an active YidC·ribosome nascent chain complex, allowing for co-translational membrane insertion, whereas loop C1 may be involved in the downstream chaperone activity of YidC or in other protein-protein interactions.
Collapse
Affiliation(s)
- Yanping Geng
- From the Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | - Joseph J Caumanns
- From the Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Alvaro H Crevenna
- the Physical Chemistry, Department for Chemistry, Center for Nanoscience, the NanoSystems Initiative Munich and the Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Don C Lamb
- the Physical Chemistry, Department for Chemistry, Center for Nanoscience, the NanoSystems Initiative Munich and the Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, 81377 Munich, Germany
| | | | - Arnold J M Driessen
- From the Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, Nijenborgh 7, 9747 AG Groningen, The Netherlands,
| |
Collapse
|
17
|
Shankar M, Mohapatra SS, Biswas S, Biswas I. Gene Regulation by the LiaSR Two-Component System in Streptococcus mutans. PLoS One 2015; 10:e0128083. [PMID: 26020679 PMCID: PMC4447274 DOI: 10.1371/journal.pone.0128083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022] Open
Abstract
The LiaSR two-component signal transduction system regulates cellular responses to several environmental stresses, including those that induce cell envelope damages. Downstream regulons of the LiaSR system have been implicated in tolerance to acid, antibiotics and detergents. In the dental pathogen Streptococcus mutans, the LiaSR system is necessary for tolerance against acid, antibiotics, and cell wall damaging stresses during growth in the oral cavity. To understand the molecular mechanisms by which LiaSR regulates gene expression, we created a mutant LiaR in which the conserved aspartic acid residue (the phosphorylation site), was changed to alanine residue (D58A). As expected, the LiaR-D58A variant was unable to acquire the phosphate group and bind to target promoters. We also noted that the predicted LiaR-binding motif upstream of the lia operon does not appear to be well conserved. Consistent with this observation, we found that LiaR was unable to bind to the promoter region of lia; however, we showed that LiaR was able to bind to the promoters of SMU.753, SMU.2084 and SMU.1727. Based on sequence analysis and DNA binding studies we proposed a new 25-bp conserved motif essential for LiaR binding. Introducing alterations at fully conserved positions in the 25-bp motif affected LiaR binding, and the binding was dependent on the combination of positions that were altered. By scanning the S. mutans genome for the occurrence of the newly defined LiaR binding motif, we identified the promoter of hrcA (encoding a key regulator of the heat shock response) that contains a LiaR binding motif, and we showed that hrcA is negatively regulated by the LiaSR system. Taken together our results suggest a putative role of the LiaSR system in heat shock responses of S. mutans.
Collapse
Affiliation(s)
- Manoharan Shankar
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Saswat S. Mohapatra
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Saswati Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Lewis NE, Brady LJ. Breaking the bacterial protein targeting and translocation model: oral organisms as a case in point. Mol Oral Microbiol 2014; 30:186-97. [PMID: 25400073 DOI: 10.1111/omi.12088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 12/19/2022]
Abstract
Insights into the membrane biogenesis of oral and throat bacteria have highlighted key differences in protein localization by the general secretion pathway compared with the well-studied Escherichia coli model system. These intriguing novelties have advanced our understanding of both how these microorganisms have adapted to survive and cause disease in the oral cavity, and the field of protein translocation as a whole. This review focuses on findings that highlight where oral bacteria differ from the E. coli paradigm, why these differences are biologically important, and what questions remain about the differences in pathway function. The majority of insight into protein translocation in microbes of the oral cavity has come from streptococcal species, which will be the main topic of this review. However, other bacteria will be discussed when relevant. An overview of the E. coli model of protein targeting and translocation is provided for comparison.
Collapse
Affiliation(s)
- N E Lewis
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|