1
|
von Rosen T, Pepelnjak M, Quast JP, Picotti P, Weber-Ban E. ATP-independent substrate recruitment to proteasomal degradation in mycobacteria. Life Sci Alliance 2023; 6:e202301923. [PMID: 37562848 PMCID: PMC10415612 DOI: 10.26508/lsa.202301923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Mycobacteria and other actinobacteria possess proteasomal degradation pathways in addition to the common bacterial compartmentalizing protease systems. Proteasomal degradation plays a crucial role in the survival of these bacteria in adverse environments. The mycobacterial proteasome interacts with several ring-shaped activators, including the bacterial proteasome activator (Bpa), which enables energy-independent degradation of heat shock repressor HspR. However, the mechanism of substrate selection and processing by the Bpa-proteasome complex remains unclear. In this study, we present evidence that disorder in substrates is required but not sufficient for recruitment to Bpa-mediated proteasomal degradation. We demonstrate that Bpa binds to the folded N-terminal helix-turn-helix domain of HspR, whereas the unstructured C-terminal tail of the substrate acts as a sequence-specific threading handle to promote efficient proteasomal degradation. In addition, we establish that the heat shock chaperone DnaK, which interacts with and co-regulates HspR, stabilizes HspR against Bpa-mediated proteasomal degradation. By phenotypical characterization of Mycobacterium smegmatis parent and bpa deletion mutant strains, we show that Bpa-dependent proteasomal degradation supports the survival of the bacterium under stress conditions by degrading HspR that regulates vital chaperones.
Collapse
Affiliation(s)
- Tatjana von Rosen
- ETH Zurich, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Monika Pepelnjak
- ETH Zurich, Institute of Molecular Systems Biology, Zurich Switzerland
| | - Jan-Philipp Quast
- ETH Zurich, Institute of Molecular Systems Biology, Zurich Switzerland
| | - Paola Picotti
- ETH Zurich, Institute of Molecular Systems Biology, Zurich Switzerland
| | - Eilika Weber-Ban
- ETH Zurich, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| |
Collapse
|
2
|
Hosfelt J, Richards A, Zheng M, Adura C, Nelson B, Yang A, Fay A, Resager W, Ueberheide B, Glickman JF, Lupoli TJ. An allosteric inhibitor of bacterial Hsp70 chaperone potentiates antibiotics and mitigates resistance. Cell Chem Biol 2021; 29:854-869.e9. [PMID: 34818532 DOI: 10.1016/j.chembiol.2021.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/20/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022]
Abstract
DnaK is the bacterial homolog of Hsp70, an ATP-dependent chaperone that helps cofactor proteins to catalyze nascent protein folding and salvage misfolded proteins. In the pathogen Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), DnaK and its cofactors are proposed antimycobacterial targets, yet few small-molecule inhibitors or probes exist for these families of proteins. Here, we describe the repurposing of a drug called telaprevir that is able to allosterically inhibit the ATPase activity of DnaK and to prevent chaperone function by mimicking peptide substrates. In mycobacterial cells, telaprevir disrupts DnaK- and cofactor-mediated cellular proteostasis, resulting in enhanced efficacy of aminoglycoside antibiotics and reduced resistance to the frontline TB drug rifampin. Hence, this work contributes to a small but growing collection of protein chaperone inhibitors, and it demonstrates that these molecules disrupt bacterial mechanisms of survival in the presence of different antibiotic classes.
Collapse
Affiliation(s)
- Jordan Hosfelt
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Aweon Richards
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Meng Zheng
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Carolina Adura
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Brock Nelson
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Amy Yang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Insitute, New York, NY 10065, USA
| | - William Resager
- Departments of Biochemistry and Molecular Pharmacology, Neurology and Director Proteomics Lab, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Departments of Biochemistry and Molecular Pharmacology, Neurology and Director Proteomics Lab, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - J Fraser Glickman
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
3
|
von Rosen T, Keller LM, Weber-Ban E. Survival in Hostile Conditions: Pupylation and the Proteasome in Actinobacterial Stress Response Pathways. Front Mol Biosci 2021; 8:685757. [PMID: 34179091 PMCID: PMC8223512 DOI: 10.3389/fmolb.2021.685757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022] Open
Abstract
Bacteria employ a multitude of strategies to cope with the challenges they face in their natural surroundings, be it as pathogens, commensals or free-living species in rapidly changing environments like soil. Mycobacteria and other Actinobacteria acquired proteasomal genes and evolved a post-translational, ubiquitin-like modification pathway called pupylation to support their survival under rapidly changing conditions and under stress. The proteasomal 20S core particle (20S CP) interacts with ring-shaped activators like the hexameric ATPase Mpa that recruits pupylated substrates. The proteasomal subunits, Mpa and pupylation enzymes are encoded in the so-called Pup-proteasome system (PPS) gene locus. Genes in this locus become vital for bacteria to survive during periods of stress. In the successful human pathogen Mycobacterium tuberculosis, the 20S CP is essential for survival in host macrophages. Other members of the PPS and proteasomal interactors are crucial for cellular homeostasis, for example during the DNA damage response, iron and copper regulation, and heat shock. The multiple pathways that the proteasome is involved in during different stress responses suggest that the PPS plays a vital role in bacterial protein quality control and adaptation to diverse challenging environments.
Collapse
Affiliation(s)
- Tatjana von Rosen
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Lena Ml Keller
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Eilika Weber-Ban
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Harnagel A, Lopez Quezada L, Park SW, Baranowski C, Kieser K, Jiang X, Roberts J, Vaubourgeix J, Yang A, Nelson B, Fay A, Rubin E, Ehrt S, Nathan C, Lupoli TJ. Nonredundant functions of Mycobacterium tuberculosis chaperones promote survival under stress. Mol Microbiol 2020; 115:272-289. [PMID: 32996193 DOI: 10.1111/mmi.14615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Bacterial chaperones ClpB and DnaK, homologs of the respective eukaryotic heat shock proteins Hsp104 and Hsp70, are essential in the reactivation of toxic protein aggregates that occur during translation or periods of stress. In the pathogen Mycobacterium tuberculosis (Mtb), the protective effect of chaperones extends to survival in the presence of host stresses, such as protein-damaging oxidants. However, we lack a full understanding of the interplay of Hsps and other stress response genes in mycobacteria. Here, we employ genome-wide transposon mutagenesis to identify the genes that support clpB function in Mtb. In addition to validating the role of ClpB in Mtb's response to oxidants, we show that HtpG, a homolog of Hsp90, plays a distinct role from ClpB in the proteotoxic stress response. While loss of neither clpB nor htpG is lethal to the cell, loss of both through genetic depletion or small molecule inhibition impairs recovery after exposure to host-like stresses, especially reactive nitrogen species. Moreover, defects in cells lacking clpB can be complemented by overexpression of other chaperones, demonstrating that Mtb's stress response network depends upon finely tuned chaperone expression levels. These results suggest that inhibition of multiple chaperones could work in concert with host immunity to disable Mtb.
Collapse
Affiliation(s)
- Alexa Harnagel
- Department of Chemistry, New York University, New York, NY, USA
| | - Landys Lopez Quezada
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Baranowski
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karen Kieser
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Yang
- Department of Chemistry, New York University, New York, NY, USA
| | - Brock Nelson
- Department of Chemistry, New York University, New York, NY, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric Rubin
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
5
|
Abstract
Proteasomes are a class of protease that carry out the degradation of a specific set of cellular proteins. While essential for eukaryotic life, proteasomes are found only in a small subset of bacterial species. In this chapter, we present the current knowledge of bacterial proteasomes, detailing the structural features and catalytic activities required to achieve proteasomal proteolysis. We describe the known mechanisms by which substrates are doomed for degradation, and highlight potential non-degradative roles for components of bacterial proteasome systems. Additionally, we highlight several pathways of microbial physiology that rely on proteasome activity. Lastly, we explain the various gaps in our understanding of bacterial proteasome function and emphasize several opportunities for further study.
Collapse
Affiliation(s)
- Samuel H Becker
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, Room 312, New York, NY, 10016, USA
| | - Huilin Li
- Van Andel Research Institute, Cryo-EM Structural Biology Laboratory, 333 Bostwick Ave, NE, Grand Rapids, MI, 4950, USA
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, Room 312, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Ziemski M, Jomaa A, Mayer D, Rutz S, Giese C, Veprintsev D, Weber-Ban E. Cdc48-like protein of actinobacteria (Cpa) is a novel proteasome interactor in mycobacteria and related organisms. eLife 2018; 7:34055. [PMID: 29809155 PMCID: PMC6017811 DOI: 10.7554/elife.34055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/21/2018] [Indexed: 01/18/2023] Open
Abstract
Cdc48 is a AAA+ ATPase that plays an essential role for many cellular processes in eukaryotic cells. An archaeal homologue of this highly conserved enzyme was shown to directly interact with the 20S proteasome. Here, we analyze the occurrence and phylogeny of a Cdc48 homologue in Actinobacteria and assess its cellular function and possible interaction with the bacterial proteasome. Our data demonstrate that Cdc48-like protein of actinobacteria (Cpa) forms hexameric rings and that the oligomeric state correlates directly with the ATPase activity. Furthermore, we show that the assembled Cpa rings can physically interact with the 20S core particle. Comparison of the Mycobacterium smegmatis wild-type with a cpa knockout strain under carbon starvation uncovers significant changes in the levels of around 500 proteins. Pathway mapping of the observed pattern of changes identifies ribosomal proteins as a particular hotspot, pointing amongst others toward a role of Cpa in ribosome adaptation during starvation. Cells use proteins to carry out the biological processes necessary for life. If a protein becomes damaged or is no longer needed, cells must dispose of it, just as we might take out the trash. The cell’s main ‘garbage disposal unit’ is the proteasome, a barrel-shaped molecular machine that breaks down unwanted proteins. The proteasome binds to other molecules called regulators, which select the proteins to be dismantled. The proteasomes of mycobacteria – a group that includes the bacteria that cause tuberculosis – help them to survive hostile or rapidly changing environments. Mycobacteria contain a molecule called Cpa whose structure is like a regulator that is found in many non-bacterial cells. Ziemski et al. therefore set out to investigate whether Cpa performs a similar role in bacteria. The results of biochemical experiments performed in test tubes revealed that Cpa forms rings made up of six copies of itself. These rings can bind to proteasomes. Ziemski et al. also created genetically modified mycobacteria that could not produce Cpa and studied how they coped with starvation. These modified bacteria stopped growing sooner than their similarly starved genetically normal counterparts. The two groups of bacteria also produced different amounts of some proteins. Ziemski et al. used a technique that pulled Cpa out of the starving genetically normal cells to analyse the proteins that Cpa physically interacts with. These proteins included building blocks of the ribosome, the cellular machinery that produces new proteins. It therefore appears that Cpa helps mycobacteria to cope with starvation by reducing the amount of protein made by the cell. Cpa may also help mycobacteria to survive in other stressful conditions, such as those that the bacteria experience when they infect the human body. Developing drugs that prevent Cpa from working could therefore potentially lead to new treatments for a number of diseases caused by mycobacteria, such as tuberculosis.
Collapse
Affiliation(s)
- Michal Ziemski
- Institute of Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
| | - Ahmad Jomaa
- Institute of Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
| | - Daniel Mayer
- Laboratory of Biomolecular Research, Paul Scherrer Institute, ETH Zurich, Villigen, Switzerland
| | - Sonja Rutz
- Institute of Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
| | - Christoph Giese
- Institute of Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
| | - Dmitry Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institute, ETH Zurich, Villigen, Switzerland
| | - Eilika Weber-Ban
- Institute of Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Hu K, Jastrab JB, Zhang S, Kovach A, Zhao G, Darwin KH, Li H. Proteasome substrate capture and gate opening by the accessory factor PafE from Mycobacterium tuberculosis. J Biol Chem 2018; 293:4713-4723. [PMID: 29414791 DOI: 10.1074/jbc.ra117.001471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/31/2018] [Indexed: 11/06/2022] Open
Abstract
In all domains of life, proteasomes are gated, chambered proteases that require opening by activators to facilitate protein degradation. Twelve proteasome accessory factor E (PafE) monomers assemble into a single dodecameric ring that promotes proteolysis required for the full virulence of the human bacterial pathogen Mycobacterium tuberculosis Whereas the best characterized proteasome activators use ATP to deliver proteins into a proteasome, PafE does not require ATP. Here, to unravel the mechanism of PafE-mediated protein targeting and proteasome activation, we studied the interactions of PafE with native substrates, including a newly identified proteasome substrate, the ParA-like protein, Rv3213c, and with proteasome core particles. We characterized the function of a highly conserved feature in bacterial proteasome activator proteins: a glycine-glutamine-tyrosine-leucine (GQYL) motif at their C termini that is essential for stimulating proteolysis. Using cryo-electron microscopy (cryo-EM), we found that the GQYL motif of PafE interacts with specific residues in the α subunits of the proteasome core particle to trigger gate opening and degradation. Finally, we also found that PafE rings have 40-Å openings lined with hydrophobic residues that form a chamber for capturing substrates before they are degraded, suggesting PafE has a previously unrecognized chaperone activity. In summary, we have identified the interactions between PafE and the proteasome core particle that cause conformational changes leading to the opening of the proteasome gate and have uncovered a mechanism of PafE-mediated substrate degradation. Collectively, our results provide detailed insights into the mechanism of ATP-independent proteasome degradation in bacteria.
Collapse
Affiliation(s)
- Kuan Hu
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Jordan B Jastrab
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Susan Zhang
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Amanda Kovach
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Gongpu Zhao
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, New York, New York 10016.
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan 49503.
| |
Collapse
|