1
|
Osterman I, Samra H, Rousset F, Loseva E, Itkin M, Malitsky S, Yirmiya E, Millman A, Sorek R. Phages reconstitute NAD + to counter bacterial immunity. Nature 2024; 634:1160-1167. [PMID: 39322677 DOI: 10.1038/s41586-024-07986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
Bacteria defend against phage infection through a variety of antiphage defence systems1. Many defence systems were recently shown to deplete cellular nicotinamide adenine dinucleotide (NAD+) in response to infection, by cleaving NAD+ into ADP-ribose (ADPR) and nicotinamide2-7. It was demonstrated that NAD+ depletion during infection deprives the phage of this essential molecule and impedes phage replication. Here we show that a substantial fraction of phages possess enzymatic pathways allowing reconstitution of NAD+ from its degradation products in infected cells. We describe NAD+ reconstitution pathway 1 (NARP1), a two-step pathway in which one enzyme phosphorylates ADPR to generate ADPR pyrophosphate (ADPR-PP), and the second enzyme conjugates ADPR-PP and nicotinamide to generate NAD+. Phages encoding NARP1 can overcome a diverse set of defence systems, including Thoeris, DSR1, DSR2, SIR2-HerA and SEFIR, all of which deplete NAD+ as part of their defensive mechanism. Phylogenetic analyses show that NARP1 is primarily encoded on phage genomes, suggesting a phage-specific function in countering bacterial defences. A second pathway, NARP2, allows phages to overcome bacterial defences by building NAD+ using metabolites different from ADPR-PP. Our findings reveal a unique immune evasion strategy in which viruses rebuild molecules depleted by defence systems, thus overcoming host immunity.
Collapse
Affiliation(s)
- Ilya Osterman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Hadar Samra
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Francois Rousset
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Loseva
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Kozlova AP, Muntyan VS, Vladimirova ME, Saksaganskaia AS, Kabilov MR, Gorbunova MK, Gorshkov AN, Grudinin MP, Simarov BV, Roumiantseva ML. Soil Giant Phage: Genome and Biological Characteristics of Sinorhizobium Jumbo Phage. Int J Mol Sci 2024; 25:7388. [PMID: 39000497 PMCID: PMC11242549 DOI: 10.3390/ijms25137388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
This paper presents the first in-depth research on the biological and genomic properties of lytic rhizobiophage AP-J-162 isolated from the soils of the mountainous region of Dagestan (North Caucasus), which belongs to the centers of origin of cultivated plants, according to Vavilov N.I. The rhizobiophage host strains are nitrogen-fixing bacteria of the genus Sinorhizobium spp., symbionts of leguminous forage grasses. The phage particles have a myovirus virion structure. The genome of rhizobiophage AP-J-162 is double-stranded DNA of 471.5 kb in length; 711 ORFs are annotated and 41 types of tRNAs are detected. The closest phylogenetic relative of phage AP-J-162 is Agrobacterium phage Atu-ph07, but no rhizobiophages are known. The replicative machinery, capsid, and baseplate proteins of phage AP-J-162 are structurally similar to those of Escherichia phage T4, but there is no similarity between their tail protein subunits. Amino acid sequence analysis shows that 339 of the ORFs encode hypothetical or functionally relevant products, while the remaining 304 ORFs are unique. Additionally, 153 ORFs are similar to those of Atu_ph07, with one-third of the ORFs encoding different enzymes. The biological properties and genomic characteristics of phage AP-J-162 distinguish it as a unique model for exploring phage-microbe interactions with nitrogen-fixing symbiotic microorganisms.
Collapse
Affiliation(s)
- Alexandra P Kozlova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Victoria S Muntyan
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Maria E Vladimirova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Alla S Saksaganskaia
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Marsel R Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Maria K Gorbunova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Andrey N Gorshkov
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
| | - Mikhail P Grudinin
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
| | - Boris V Simarov
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Marina L Roumiantseva
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| |
Collapse
|
3
|
Barno AR, Green K, Rohwer F, Silveira CB. Snow viruses and their implications on red snow algal blooms. mSystems 2024; 9:e0008324. [PMID: 38647296 PMCID: PMC11097641 DOI: 10.1128/msystems.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024] Open
Abstract
Algal blooms can give snowmelt a red color, reducing snow albedo and creating a runaway effect that accelerates snow melting. The occurrence of red snow is predicted to grow in polar and subpolar regions with increasing global temperatures. We hypothesize that these algal blooms affect virus-bacteria interactions in snow, with potential effects on snowmelt dynamics. A genomic analysis of double-stranded DNA virus communities in red and white snow from the Whistler region of British Columbia, Canada, identified 792 putative viruses infecting bacteria. The most abundant putative snow viruses displayed low genomic similarity with known viruses. We recovered the complete circular genomes of nine putative viruses, two of which were classified as temperate. Putative snow viruses encoded genes involved in energy metabolisms, such as NAD+ synthesis and salvage pathways. In model phages, these genes facilitate increased viral particle production and lysis rates. The frequency of temperate phages was positively correlated with microbial abundance in the snow samples. These results suggest the increased frequency of temperate virus-bacteria interactions as microbial densities increase during snowmelt. We propose that this virus-bacteria dynamic may facilitate the red snow algae growth stimulated by bacteria.IMPORTANCEMicrobial communities in red snow algal blooms contribute to intensifying snowmelt rates. The role of viruses in snow during this environmental shift, however, has yet to be elucidated. Here, we characterize novel viruses extracted from snow viral metagenomes and define the functional capacities of snow viruses in both white and red snow. These results are contextualized using the composition and functions observed in the bacterial communities from the same snow samples. Together, these data demonstrate the energy metabolism performed by viruses and bacteria in a snow algal bloom, as well as expand the overall knowledge of viral genomes in extreme environments.
Collapse
Affiliation(s)
- Adam R. Barno
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kevin Green
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | | |
Collapse
|
4
|
Pozhydaieva N, Wolfram-Schauerte M, Keuthen H, Höfer K. The enigmatic epitranscriptome of bacteriophages: putative RNA modifications in viral infections. Curr Opin Microbiol 2024; 77:102417. [PMID: 38217927 DOI: 10.1016/j.mib.2023.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
RNA modifications play essential roles in modulating RNA function, stability, and fate across all kingdoms of life. The entirety of the RNA modifications within a cell is defined as the epitranscriptome. While eukaryotic RNA modifications are intensively studied, understanding bacterial RNA modifications remains limited, and knowledge about bacteriophage RNA modifications is almost nonexistent. In this review, we shed light on known mechanisms of bacterial RNA modifications and propose how this knowledge might be extended to bacteriophages. We build hypotheses on enzymes potentially responsible for regulating the epitranscriptome of bacteriophages and their host. This review highlights the exciting prospects of uncovering the unexplored field of bacteriophage epitranscriptomics and its potential role to shape bacteriophage-host interactions.
Collapse
Affiliation(s)
| | | | - Helene Keuthen
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
5
|
Sørensen AN, Kalmár D, Lutz VT, Klein-Sousa V, Taylor NMI, Sørensen MC, Brøndsted L. Agtrevirus phage AV101 recognizes four different O-antigens infecting diverse E. coli. MICROLIFE 2023; 5:uqad047. [PMID: 38234449 PMCID: PMC10791037 DOI: 10.1093/femsml/uqad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Bacteriophages in the Agtrevirus genus are known for expressing multiple tail spike proteins (TSPs), but little is known about their genetic diversity and host recognition apart from their ability to infect diverse Enterobacteriaceae species. Here, we aim to determine the genetic differences that may account for the diverse host ranges of Agrevirus phages. We performed comparative genomics of 14 Agtrevirus and identified only a few genetic differences including genes involved in nucleotide metabolism. Most notably was the diversity of the tsp gene cluster, specifically in the receptor-binding domains that were unique among most of the phages. We further characterized agtrevirus AV101 infecting nine diverse Extended Spectrum β-lactamase (ESBL) Escherichia coli and demonstrated that this phage encoded four unique TSPs among Agtrevirus. Purified TSPs formed translucent zones and inhibited AV101 infection of specific hosts, demonstrating that TSP1, TSP2, TSP3, and TSP4 recognize O8, O82, O153, and O159 O-antigens of E. coli, respectively. BLASTp analysis showed that the receptor-binding domain of TSP1, TSP2, TSP3, and TSP4 are similar to TSPs encoded by E. coli prophages and distant related virulent phages. Thus, Agtrevirus may have gained their receptor-binding domains by recombining with prophages or virulent phages. Overall, combining bioinformatic and biological data expands the understanding of TSP host recognition of Agtrevirus and give new insight into the origin and acquisition of receptor-binding domains of Ackermannviridae phages.
Collapse
Affiliation(s)
- Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Dorottya Kalmár
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Veronika Theresa Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Victor Klein-Sousa
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Martine C Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
6
|
Kallies R, Hu D, Abdulkadir N, Schloter M, Rocha U. Identification of Huge Phages from Wastewater Metagenomes. Viruses 2023; 15:2330. [PMID: 38140571 PMCID: PMC10747093 DOI: 10.3390/v15122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Huge phages have genomes larger than 200 kilobases, which are particularly interesting for their genetic inventory and evolution. We screened 165 wastewater metagenomes for the presence of viral sequences. After identifying over 600 potential huge phage genomes, we reduced the dataset using manual curation by excluding viral contigs that did not contain viral protein-coding genes or consisted of concatemers of several small phage genomes. This dataset showed seven fully annotated huge phage genomes. The phages grouped into distinct phylogenetic clades, likely forming new genera and families. A phylogenomic analysis between our huge phages and phages with smaller genomes, i.e., less than 200 kb, supported the hypothesis that huge phages have undergone convergent evolution. The genomes contained typical phage protein-coding genes, sequential gene cassettes for metabolic pathways, and complete inventories of tRNA genes covering all standard and rare amino acids. Our study showed a pipeline for huge phage analyses that may lead to new enzymes for therapeutic or biotechnological applications.
Collapse
Affiliation(s)
- René Kallies
- Department for Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany; (D.H.); (N.A.)
| | - Die Hu
- Department for Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany; (D.H.); (N.A.)
| | - Nafi’u Abdulkadir
- Department for Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany; (D.H.); (N.A.)
| | - Michael Schloter
- Department of Environmental Health, Helmholtz Munich, Ingolstaedter Landstr. 1, D-85758 Neuherberg, Germany;
| | - Ulisses Rocha
- Department for Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany; (D.H.); (N.A.)
| |
Collapse
|
7
|
Isolation, characterization, and comparative genomic analysis of vB_BviS-A10Y, a novel bacteriophage from mangrove sediments. Arch Virol 2023; 168:54. [PMID: 36609927 DOI: 10.1007/s00705-022-05637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/24/2022] [Indexed: 01/09/2023]
Abstract
Mangrove is among the most carbon-rich biomes on earth, and viruses are believed to play a significant role in modulating local and global carbon cycling. However, few viruses have been isolated from mangrove sediments to date. Here, we report the isolation of a novel Bacillus phage (named phage vB_BviS-A10Y) from mangrove sediments. Phage vB_BviS-A10Y has a hexameric head with a diameter of ~ 79.22 nm and a tail with a length of ~ 548.56 nm, which are typical features of siphophages. vB_BviS-A10Y initiated host lysis at 3.5 h postinfection with a burst size of 25 plaque-forming units (PFU)/cell. The genome of phage vB_BviS-A10Y is 162,435 bp long with 225 predicted genes, and the GC content is 34.03%. A comparison of the whole genome sequence of phage vB_BviS-A10Y with those of other phages from the NCBI viral genome database showed that phage vB_BviS-A10Y has the highest similarity (73.7% identity with 33% coverage) to Bacillus phage PBC2. Interestingly, abundant auxiliary metabolic genes (AMGs) were identified in the vB_BviS-A10Y genome. The presence of a β-1,3-glucosyltransferase gene in the phage genome supported our previous hypothesis that mangrove viruses may manipulate carbon cycling directly through their encoded carbohydrate-active enzyme (CAZyme) genes. Therefore, our study will contribute to a better understanding of the diversity and potential roles of viruses in mangrove ecosystems.
Collapse
|
8
|
Batinovic S, Stanton CR, Rice DTF, Rowe B, Beer M, Petrovski S. Tyroviruses are a new group of temperate phages that infect Bacillus species in soil environments worldwide. BMC Genomics 2022; 23:777. [PMID: 36443683 PMCID: PMC9703825 DOI: 10.1186/s12864-022-09023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Bacteriophages are widely considered to be highly abundant and genetically diverse, with their role in the evolution and virulence of many pathogens becoming increasingly clear. Less attention has been paid on phages preying on Bacillus, despite the potential for some of its members, such as Bacillus anthracis, to cause serious human disease. RESULTS We have isolated five phages infecting the causative agent of anthrax, Bacillus anthracis. Using modern phylogenetic approaches we place these five new Bacillus phages, as well as 21 similar phage genomes retrieved from publicly available databases and metagenomic datasets into the Tyrovirus group, a newly proposed group named so due to the conservation of three distinct tyrosine recombinases. Genomic analysis of these large phages (~ 160-170 kb) reveals their DNA packaging mechanism and genomic features contributing to virion morphogenesis, host cell lysis and phage DNA replication processes. Analysis of the three tyrosine recombinases suggest Tyroviruses undergo a prophage lifecycle that may involve both host integration and plasmid stages. Further we show that Tyroviruses rely on divergent invasion mechanisms, with a subset requiring host S-layer for infection. CONCLUSIONS Ultimately, we expand upon our understanding on the classification, phylogeny, and genomic organisation of a new and substantial phage group that prey on critically relevant Bacillus species. In an era characterised by a rapidly evolving landscape of phage genomics the deposition of future Tyroviruses will allow the further unravelling of the global spread and evolutionary history of these Bacillus phages.
Collapse
Affiliation(s)
- Steven Batinovic
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia ,grid.268446.a0000 0001 2185 8709Present address: Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa Japan
| | - Cassandra R. Stanton
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Daniel T. F. Rice
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Brittany Rowe
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Michael Beer
- grid.431245.50000 0004 0385 5290Defence Science and Technology Group, Fishermans Bend, Victoria, Australia
| | - Steve Petrovski
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
9
|
Ledormand P, Desmasures N, Bernay B, Goux D, Rué O, Midoux C, Monnet C, Dalmasso M. Molecular approaches to uncover phage-lactic acid bacteria interactions in a model community simulating fermented beverages. Food Microbiol 2022; 107:104069. [DOI: 10.1016/j.fm.2022.104069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/12/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
|
10
|
Huang Z, Li N, Yu S, Zhang W, Zhang T, Zhou J. Systematic Engineering of Escherichia coli for Efficient Production of Nicotinamide Mononucleotide From Nicotinamide. ACS Synth Biol 2022; 11:2979-2988. [PMID: 35977419 DOI: 10.1021/acssynbio.2c00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Research studies on NAD+ have proven its crucial role in aging and disease. Nicotinamide mononucleotide (NMN), as the key intermediate of NAD+, plays a significant role in supplying and maintaining NAD+ levels. In the present study, a biocatalytic method for the efficient synthesis of NMN was established. First, Escherichia coli was systematically modified to make it more conducive to the biosynthesis and accumulation of NMN. Next, the performance of nicotinamide phosphoribosyltransferase from Vibrio bacteriophage KVP40 (VpNadV) was determined, which has the best catalytic activity to produce NMN from nicotinamide. The accumulation of extracellular NMN was further increased after the introduction of an NMN transporter. Fine-tuning of gene expression and copy number led to the synthesis of NMN at the yield of 2.6 g/L at the shake flask level. The introduction of a nicotinamide transporter, BcniaP, could not obviously increase the production of NMN at the shake flask level, but it decreased the production of NMN at the bioreactor level. Finally, the titer of NMN reached 16.2 g/L with a conversion ratio of 97.0% from nicotinamide, both of which are highest according to currently available reports. The fed-batch fermentation with direct supplementation of nicotinamide could facilitate the industrial-scale production of NMN compared to that achieved by the whole-cell catalysis process. These results also represent the highest reported yield of NMN synthesized from nicotinamide in E. coli.
Collapse
Affiliation(s)
- Zhongshi Huang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ning Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Weiping Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong 250101, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong 250101, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Iyer LM, Burroughs AM, Anantharaman V, Aravind L. Apprehending the NAD +-ADPr-Dependent Systems in the Virus World. Viruses 2022; 14:1977. [PMID: 36146784 PMCID: PMC9503650 DOI: 10.3390/v14091977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
NAD+ and ADP-ribose (ADPr)-containing molecules are at the interface of virus-host conflicts across life encompassing RNA processing, restriction, lysogeny/dormancy and functional hijacking. We objectively defined the central components of the NAD+-ADPr networks involved in these conflicts and systematically surveyed 21,191 completely sequenced viral proteomes representative of all publicly available branches of the viral world to reconstruct a comprehensive picture of the viral NAD+-ADPr systems. These systems have been widely and repeatedly exploited by positive-strand RNA and DNA viruses, especially those with larger genomes and more intricate life-history strategies. We present evidence that ADP-ribosyltransferases (ARTs), ADPr-targeting Macro, NADAR and Nudix proteins are frequently packaged into virions, particularly in phages with contractile tails (Myoviruses), and deployed during infection to modify host macromolecules and counter NAD+-derived signals involved in viral restriction. Genes encoding NAD+-ADPr-utilizing domains were repeatedly exchanged between distantly related viruses, hosts and endo-parasites/symbionts, suggesting selection for them across the virus world. Contextual analysis indicates that the bacteriophage versions of ADPr-targeting domains are more likely to counter soluble ADPr derivatives, while the eukaryotic RNA viral versions might prefer macromolecular ADPr adducts. Finally, we also use comparative genomics to predict host systems involved in countering viral ADP ribosylation of host molecules.
Collapse
Affiliation(s)
| | | | | | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
12
|
Li X, Guo R, Zou X, Yao Y, Lu L. The First Cbk-Like Phage Infecting Erythrobacter, Representing a Novel Siphoviral Genus. Front Microbiol 2022; 13:861793. [PMID: 35620087 PMCID: PMC9127768 DOI: 10.3389/fmicb.2022.861793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Erythrobacter is an important and widespread bacterial genus in the ocean. However, our knowledge about their phages is still rare. Here, a novel lytic phage vB_EliS-L02, infecting Erythrobacter litoralis DSM 8509, was isolated and purified from Sanggou Bay seawater, China. Morphological observation revealed that the phage belonged to Cbk-like siphovirus, with a long prolate head and a long tail. The host range test showed that phage vB_EliS-L02 could only infect a few strains of Erythrobacter, demonstrating its potential narrow-host range. The genome size of vB_EliS-L02 was 150,063 bp with a G+C content of 59.43%, encoding 231 putative open reading frames (ORFs), but only 47 were predicted to be functional domains. Fourteen auxiliary metabolic genes were identified, including phoH that may confer vB_EliS-L02 the advantage of regulating phosphate uptake and metabolism under a phosphate-limiting condition. Genomic and phylogenetic analyses indicated that vB_EliS-L02 was most closely related to the genus Lacusarxvirus with low similarity (shared genes < 30%, and average nucleotide sequence identity < 70%), distantly from other reported phages, and could be grouped into a novel viral genus cluster, in this study as Eliscbkvirus. Meanwhile, the genus Eliscbkvirus and Lacusarxvirus stand out from other siphoviral genera and could represent a novel subfamily within Siphoviridae, named Dolichocephalovirinae-II. Being a representative of an understudied viral group with manifold adaptations to the host, phage vB_EliS-L02 could improve our understanding of the virus–host interactions and provide reference information for viral metagenomic analysis in the ocean.
Collapse
Affiliation(s)
- Xuejing Li
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), Xiamen, China
| | - Ruizhe Guo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiao Zou
- Qingdao Central Hospital, Qingdao, China
| | - Yanyan Yao
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai, China
| | - Longfei Lu
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai, China
| |
Collapse
|
13
|
Characterisation of Bacteriophage vB_SmaM_Ps15 Infective to Stenotrophomonas maltophilia Clinical Ocular Isolates. Viruses 2022; 14:v14040709. [PMID: 35458438 PMCID: PMC9025141 DOI: 10.3390/v14040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Recent acknowledgment that multidrug resistant Stenotrophomonas maltophilia strains can cause severe infections has led to increasing global interest in addressing its pathogenicity. While being primarily associated with hospital-acquired respiratory tract infections, this bacterial species is also relevant to ophthalmology, particularly to contact lens-related diseases. In the current study, the capacity of Stenotrophomonas phage vB_SmaM_Ps15 to infect ocular S. maltophilia strains was investigated to explore its future potential as a phage therapeutic. The phage proved to be lytic to a range of clinical isolates collected in Australia from eye swabs, contact lenses and contact lens cases that had previously shown to be resistant to several antibiotics and multipurpose contact lenses disinfectant solutions. Morphological analysis by transmission electron microscopy placed the phage into the Myoviridae family. Its genome size was 161,350 bp with a G + C content of 54.2%, containing 276 putative protein-encoding genes and 24 tRNAs. A detailed comparative genomic analysis positioned vB_SmaM_Ps15 as a new species of the Menderavirus genus, which currently contains six very similar globally distributed members. It was confirmed as a virulent phage, free of known lysogenic and pathogenicity determinants, which supports its potential use for the treatment of S. maltophilia eye infections.
Collapse
|
14
|
Tackling Vibrio parahaemolyticus in ready-to-eat raw fish flesh slices using lytic phage VPT02 isolated from market oyster. Food Res Int 2021; 150:110779. [PMID: 34865794 DOI: 10.1016/j.foodres.2021.110779] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/19/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
The opportunistic pathogen V. parahaemolyticus is a major causative agent for seafood-borne illness worldwide. It also causes severe vibriosis in aquaculture animals, affecting seafood production with huge economic loss. These issues are getting worse due to the current global warming in oceans, spread of antibiotic resistance, and changes in consumer preference toward ready-to-eat (RTE) food items including seafood. To answer the urgent need for sustainable biocontrol agents against V. parahaemolyticus, we isolated and characterized a novel lytic bacteriophage VPT02 from market oyster. VPT02 lysed antibiotic resistant V. parahaemolyticus strains including FORC_023. Moreover, it exhibited notable properties as a biocontrol agent suitable for seafood-related settings, like short eclipse/latent periods, high burst size, broad thermal and pH stability, and no toxin/antibiotic resistance genes in the genome. Further comparative genomic analysis with the previously reported homologue phage pVp-1 revealed that VPT02 additionally possesses genes related to the nucleotide scavenging pathway, presumably enabling the phage to propagate quickly. Consistent with its strong in vitro bacteriolytic activity, treatment of only a small quantity of VPT02 (multiplicity of infection of 10) significantly increased the survival rate of V. parahaemolyticus-infected brine shrimp (from 16.7% to 46.7%). When applied to RTE raw fish flesh slices, the same quantity of VPT02 achieved up to 3.9 log reduction of spiked V. parahaemolyticus compared with the phage untreated control. Taken together, these results suggest that VPT02 may be a sustainable anti-V. parahaemolyticus agent useful in seafood-related settings including for RTE items.
Collapse
|
15
|
Nazir A, Ali A, Qing H, Tong Y. Emerging Aspects of Jumbo Bacteriophages. Infect Drug Resist 2021; 14:5041-5055. [PMID: 34876823 PMCID: PMC8643167 DOI: 10.2147/idr.s330560] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/30/2021] [Indexed: 01/21/2023] Open
Abstract
The bacteriophages have been explored at a huge scale as a model system for their applications in many biological-related fields. Jumbo phages with a large genome size from 200 to 500 kbp were not previously assigned a great value, and characterized by complex structures coupled with large virions with a wide variety of hosts. The origin of most of the jumbo phages was not well understood; however, many other prominent features have been discovered recently. In the current review, we strive to unearth the most advanced characteristics of jumbo phages, particularly their significance and structural organization that holds immense value to the viral life cycle. The unique characteristics of jumbo phages are the basis of variations in different types of phages concerning their organization at the genomic level, virion structure, evolution, and progeny propagation. The presence of tRNA and additional translation-related genes along with chaperonin genes mark the ability of these phages for being independent of host molecular machinery enabling them to have wide host options. A large number of jumbo phages have been isolated from various sources through advanced standard screening methods. The current review has summarized the available data on jumbo phages and discussed the genome orientation of jumbo phages, translational machinery, diversity and evolution of jumbo phages. In the studies conducted, jumbo phages possessed special additional genes that helps to reduce the dependence of jumbo phages on their hosts. Furthermore, their genomes might have evolved from smaller genome phages.
Collapse
Affiliation(s)
- Amina Nazir
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Azam Ali
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| |
Collapse
|
16
|
Králová S, Busse HJ, Bezdíček M, Sandoval-Powers M, Nykrýnová M, Staňková E, Krsek D, Sedláček I. Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov., Two Multidrug-Resistant Psychrotrophic Species Isolated From Antarctica. Front Microbiol 2021; 12:729977. [PMID: 34745033 PMCID: PMC8570120 DOI: 10.3389/fmicb.2021.729977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Despite unfavorable Antarctic conditions, such as cold temperatures, freeze-thaw cycles, high ultraviolet radiation, dryness and lack of nutrients, microorganisms were able to adapt and surprisingly thrive in this environment. In this study, eight cold-adapted Flavobacterium strains isolated from a remote Antarctic island, James Ross Island, were studied using a polyphasic taxonomic approach to determine their taxonomic position. Phylogenetic analyses based on the 16S rRNA gene and 92 core genes clearly showed that these strains formed two distinct phylogenetic clusters comprising three and five strains, with average nucleotide identities significantly below 90% between both proposed species as well as between their closest phylogenetic relatives. Phenotyping revealed a unique pattern of biochemical and physiological characteristics enabling differentiation from the closest phylogenetically related Flavobacterium spp. Chemotaxonomic analyses showed that type strains P4023T and P7388T were characterized by the major polyamine sym-homospermidine and a quinone system containing predominantly menaquinone MK-6. In the polar lipid profile phosphatidylethanolamine, an ornithine lipid and two unidentified lipids lacking a functional group were detected as major lipids. These characteristics along with fatty acid profiles confirmed that these species belong to the genus Flavobacterium. Thorough genomic analysis revealed the presence of numerous cold-inducible or cold-adaptation associated genes, such as cold-shock proteins, proteorhodopsin, carotenoid biosynthetic genes or oxidative-stress response genes. Genomes of type strains surprisingly harbored multiple prophages, with many of them predicted to be active. Genome-mining identified biosynthetic gene clusters in type strain genomes with a majority not matching any known clusters which supports further exploratory research possibilities involving these psychrotrophic bacteria. Antibiotic susceptibility testing revealed a pattern of multidrug-resistant phenotypes that were correlated with in silico antibiotic resistance prediction. Interestingly, while typical resistance finder tools failed to detect genes responsible for antibiotic resistance, genomic prediction confirmed a multidrug-resistant profile and suggested even broader resistance than tested. Results of this study confirmed and thoroughly characterized two novel psychrotrophic Flavobacterium species, for which the names Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov. are proposed.
Collapse
Affiliation(s)
- Stanislava Králová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czechia
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, Vienna, Austria
| | - Matěj Bezdíček
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czechia.,Department of Internal Medicine - Hematology and Oncology, Masaryk University, Brno, Czechia
| | | | - Markéta Nykrýnová
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czechia
| | - Daniel Krsek
- NRL for Diagnostic Electron Microscopy of Infectious Agents, National Institute of Public Health, Prague, Czechia
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
17
|
Michniewski S, Rihtman B, Cook R, Jones MA, Wilson WH, Scanlan DJ, Millard A. A new family of "megaphages" abundant in the marine environment. ISME COMMUNICATIONS 2021; 1:58. [PMID: 37938293 PMCID: PMC9723777 DOI: 10.1038/s43705-021-00064-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 06/01/2023]
Abstract
Megaphages, bacteriophages harbouring extremely large genomes, have recently been found to be ubiquitous, being described from a variety of microbiomes ranging from the animal gut to soil and freshwater systems. However, no complete marine megaphage has been identified to date. Here, using both short and long read sequencing, we assembled >900 high-quality draft viral genomes from water in the English Channel. One of these genomes included a novel megaphage, Mar_Mega_1 at >650 Kb, making it one of the largest phage genomes assembled to date. Utilising phylogenetic and network approaches, we found this phage represents a new family of megaphages. Genomic analysis showed Mar_Mega_1 shares relatively few homologues with its closest relatives, but, as with other megaphages Mar_Mega_1 contained a variety of auxiliary metabolic genes responsible for carbon metabolism and nucleotide biosynthesis, including a NADP-dependent isocitrate dehydrogenase [Idh] and nicotinamide-nucleotide amidohydrolase [PncC], which have not previously been identified in megaphages. Mar_Mega_1 was abundant in a marine virome sample and related phages are widely prevalent in the oceans.
Collapse
Affiliation(s)
- Slawomir Michniewski
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Ryan Cook
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Michael A Jones
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - William H Wilson
- Marine Biological Association, The Laboratory, Plymouth, United MBA, Plymouth, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Andrew Millard
- Dept Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
18
|
Jacobson TB, Callaghan MM, Amador-Noguez D. Hostile Takeover: How Viruses Reprogram Prokaryotic Metabolism. Annu Rev Microbiol 2021; 75:515-539. [PMID: 34348026 DOI: 10.1146/annurev-micro-060621-043448] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To reproduce, prokaryotic viruses must hijack the cellular machinery of their hosts and redirect it toward the production of viral particles. While takeover of the host replication and protein synthesis apparatus has long been considered an essential feature of infection, recent studies indicate that extensive reprogramming of host primary metabolism is a widespread phenomenon among prokaryotic viruses that is required to fulfill the biosynthetic needs of virion production. In this review we provide an overview of the most significant recent findings regarding virus-induced reprogramming of prokaryotic metabolism and suggest how quantitative systems biology approaches may be used to provide a holistic understanding of metabolic remodeling during lytic viral infection. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tyler B Jacobson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Melanie M Callaghan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
19
|
Huang X, Jiao N, Zhang R. The genomic content and context of auxiliary metabolic genes in roseophages. Environ Microbiol 2021; 23:3743-3757. [PMID: 33511765 DOI: 10.1111/1462-2920.15412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/24/2021] [Indexed: 11/26/2022]
Abstract
Marine bacteriophages frequently possess auxiliary metabolic genes (AMGs) that accelerate host metabolism during phage infection. The significance of AMGs in phage infecting the ecologically important Roseobacter clade, found predominantly in marine environments, remains to be determined. Here, we analysed the distribution and genomic context of 180 AMGs, annotated into 20 types, across 50 roseophage genomes. Roseophages share seven high-frequency AMGs (trx, grx, RNR, thyX, DCD, phoH, and mazG), most of them involved in the nucleotide biosynthesis pathway that represent conserved intra and inter operational taxonomic units (OTUs), and share ≥97% full-length DNA sequence similarity. Sporadic AMGs (dUTPase, lexA, degS, Que, NAPRT, AHL, pcnB, ctrA, RTX, RNR-nrdA, RNR-nrdE, wclP, and flgJ), present in only one or two OTUs, show high functional diversity. The roseophage AMG repertoire weakly correlates with environmental factors, while host range partially explains the sporadic AMG distribution. Locally co-linear blocks distribution index (LDI) analysis indicated that high-frequency roseopodovirus AMGs are restricted to particular genomic islands, possibly originating from limited historical acquisition events. Low-frequency roseopodovirus AMGs and all roseosiphovirus AMGs have high LDI values, implying multiple historical acquisition events. In summary, roseophages have acquired a range of AMGs through horizontal gene transfer, and the forces shaping the evolution of roseophages are described.
Collapse
Affiliation(s)
- Xingyu Huang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
20
|
Amarillas L, Villicaña C, Lightbourn-Rojas L, González-Robles A, León-Félix J. The complete genome and comparative analysis of the phage phiC120 infecting multidrug-resistant Escherichia coli and Salmonella strains. G3-GENES GENOMES GENETICS 2021; 11:6114451. [PMID: 33598707 PMCID: PMC8022965 DOI: 10.1093/g3journal/jkab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/06/2021] [Indexed: 11/25/2022]
Abstract
Phages infecting Salmonella and Escherichia coli are promising agents for therapeutics and biological control of these foodborne pathogens, in particular those strains with resistance to several antibiotics. In an effort to assess the potential of the phage phiC120, a virulent phage isolated from horse feces in Mexico, we characterized its morphology, host range and complete genome. Herein, we showed that phiC120 possesses strong lytic activity against several multidrug-resistant E. coli O157: H7 and Salmonella strains, and its morphology indicated that is a member of Myoviridae family. The phiC120 genome is double-stranded DNA and consists of 186,570 bp in length with a 37.6% G + C content. A total of 281 putative open reading frames (ORFs) and two tRNAs were found, where 150 ORFs encoded hypothetical proteins with unknown function. Comparative analysis showed that phiC120 shared high similarity at nucleotide and protein levels with coliphages RB69 and phiE142. Detailed phiC120 analysis revealed that ORF 94 encodes a putative depolymerase, meanwhile genes encoding factors associated with lysogeny, toxins, and antibiotic resistance were absent; however, ORF 95 encodes a putative protein with potential allergenic and pro-inflammatory properties, making needed further studies to guarantee the safety of phiC120 for human use. The characterization of phiC120 expands our knowledge about the biology of coliphages and provides novel insights supporting its potential for the development of phage-based applications to control unwanted bacteria.
Collapse
Affiliation(s)
- Luis Amarillas
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, Sinaloa 80110, México.,Laboratorio de Genética, Instituto de Investigación Lightbourn, Chihuahua 33981, México
| | - Claudia Villicaña
- Laboratorio de Biología Molecular y Genómica Funcional, CONACYT-Centro de Investigación en Alimentación y Desarrollo, Sinaloa 80110, México
| | - Luis Lightbourn-Rojas
- Laboratorio de Genética, Instituto de Investigación Lightbourn, Chihuahua 33981, México
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Ciudad de México 07360, México
| | - Josefina León-Félix
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, Sinaloa 80110, México
| |
Collapse
|
21
|
M. Iyer L, Anantharaman V, Krishnan A, Burroughs AM, Aravind L. Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. Viruses 2021; 13:v13010063. [PMID: 33466489 PMCID: PMC7824862 DOI: 10.3390/v13010063] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Jumbo phages have attracted much attention by virtue of their extraordinary genome size and unusual aspects of biology. By performing a comparative genomics analysis of 224 jumbo phages, we suggest an objective inclusion criterion based on genome size distributions and present a synthetic overview of their manifold adaptations across major biological systems. By means of clustering and principal component analysis of the phyletic patterns of conserved genes, all known jumbo phages can be classified into three higher-order groups, which include both myoviral and siphoviral morphologies indicating multiple independent origins from smaller predecessors. Our study uncovers several under-appreciated or unreported aspects of the DNA replication, recombination, transcription and virion maturation systems. Leveraging sensitive sequence analysis methods, we identify novel protein-modifying enzymes that might help hijack the host-machinery. Focusing on host–virus conflicts, we detect strategies used to counter different wings of the bacterial immune system, such as cyclic nucleotide- and NAD+-dependent effector-activation, and prevention of superinfection during pseudolysogeny. We reconstruct the RNA-repair systems of jumbo phages that counter the consequences of RNA-targeting host effectors. These findings also suggest that several jumbo phage proteins provide a snapshot of the systems found in ancient replicons preceding the last universal ancestor of cellular life.
Collapse
Affiliation(s)
- Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha 760010, India;
| | - A. Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
- Correspondence:
| |
Collapse
|
22
|
Chen LX, Méheust R, Crits-Christoph A, McMahon KD, Nelson TC, Slater GF, Warren LA, Banfield JF. Large freshwater phages with the potential to augment aerobic methane oxidation. Nat Microbiol 2020; 5:1504-1515. [PMID: 32839536 PMCID: PMC7674155 DOI: 10.1038/s41564-020-0779-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022]
Abstract
There is growing evidence that phages with unusually large genomes are common across various microbiomes, but little is known about their genetic inventories or potential ecosystem impacts. In the present study, we reconstructed large phage genomes from freshwater lakes known to contain bacteria that oxidize methane. Of manually curated genomes, 22 (18 are complete), ranging from 159 kilobase (kb) to 527 kb in length, were found to encode the pmoC gene, an enzymatically critical subunit of the particulate methane monooxygenase, the predominant methane oxidation catalyst in nature. The phage-associated PmoC sequences show high similarity to (>90%), and affiliate phylogenetically with, those of coexisting bacterial methanotrophs, including members of Methyloparacoccus, Methylocystis and Methylobacter spp. In addition, pmoC-phage abundance patterns correlate with those of the coexisting bacterial methanotrophs, supporting host-phage relationships. Future work is needed to determine whether phage-associated PmoC has similar functions to additional copies of PmoC encoded in bacterial genomes, thus contributing to growth on methane. Transcriptomics data from Lake Rotsee (Switzerland) showed that some phage-associated pmoC genes were highly expressed in situ and, of interest, that the most rapidly growing methanotroph was infected by three pmoC-phages. Thus, augmentation of bacterial methane oxidation by pmoC-phages during infection could modulate the efflux of this potent greenhouse gas into the environment.
Collapse
Affiliation(s)
- Lin-Xing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
| | - Raphaël Méheust
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
| | | | - Katherine D McMahon
- Departments of Civil and Environmental Engineering, and Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | - Gregory F Slater
- School of Geography and Earth Science, McMaster University, Hamilton, Ontario, Canada
| | - Lesley A Warren
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada.,School of Geography and Earth Science, McMaster University, Hamilton, Ontario, Canada
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA. .,Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA. .,Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
23
|
Decewicz P, Golec P, Szymczak M, Radlinska M, Dziewit L. Identification and Characterization of the First Virulent Phages, Including a Novel Jumbo Virus, Infecting Ochrobactrum spp. Int J Mol Sci 2020; 21:ijms21062096. [PMID: 32197547 PMCID: PMC7139368 DOI: 10.3390/ijms21062096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/26/2022] Open
Abstract
The Ochrobactrum genus consists of an extensive repertoire of biotechnologically valuable bacterial strains but also opportunistic pathogens. In our previous study, a novel strain, Ochrobactrum sp. POC9, which enhances biogas production in wastewater treatment plants (WWTPs) was identified and thoroughly characterized. Despite an insightful analysis of that bacterium, its susceptibility to bacteriophages present in WWTPs has not been evaluated. Using raw sewage sample from WWTP and applying the enrichment method, two virulent phages, vB_OspM_OC and vB_OspP_OH, which infect the POC9 strain, were isolated. These are the first virulent phages infecting Ochrobactrum spp. identified so far. Both phages were subjected to thorough functional and genomic analyses, which allowed classification of the vB_OspM_OC virus as a novel jumbo phage, with a genome size of over 227 kb. This phage encodes DNA methyltransferase, which mimics the specificity of cell cycle regulated CcrM methylase, a component of the epigenetic regulatory circuits in Alphaproteobacteria. In this study, an analysis of the overall diversity of Ochrobactrum-specific (pro)phages retrieved from databases and extracted in silico from bacterial genomes was also performed. Complex genome mining allowed us to build similarity networks to compare 281 Ochrobactrum-specific viruses. Analyses of the obtained networks revealed a high diversity of Ochrobactrum phages and their dissimilarity to the viruses infecting other bacteria.
Collapse
Affiliation(s)
- Przemyslaw Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (P.D.); (M.R.)
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (P.G.); (M.S.)
| | - Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (P.G.); (M.S.)
| | - Monika Radlinska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (P.D.); (M.R.)
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (P.D.); (M.R.)
- Correspondence: ; Tel.: +48-225-541-406
| |
Collapse
|
24
|
Oduor JMO, Kadija E, Nyachieo A, Mureithi MW, Skurnik M. Bioprospecting Staphylococcus Phages with Therapeutic and Bio-Control Potential. Viruses 2020; 12:E133. [PMID: 31979276 PMCID: PMC7077315 DOI: 10.3390/v12020133] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/27/2023] Open
Abstract
Emergence of antibiotic-resistant bacteria is a serious threat to the public health. This is also true for Staphylococcus aureus and other staphylococci. Staphylococcus phages Stab20, Stab21, Stab22, and Stab23, were isolated in Albania. Based on genomic and phylogenetic analysis, they were classified to genus Kayvirus of the subfamily Twortvirinae. In this work, we describe the in-depth characterization of the phages that electron microscopy confirmed to be myoviruses. These phages showed tolerance to pH range of 5.4 to 9.4, to maximum UV radiation energy of 25 µJ/cm2, to temperatures up to 45 °C, and to ethanol concentrations up to 25%, and complete resistance to chloroform. The adsorption rate constants of the phages ranged between 1.0 × 10-9 mL/min and 4.7 × 10-9 mL/min, and the burst size was from 42 to 130 plaque-forming units. The phages Stab20, 21, 22, and 23, originally isolated using Staphylococcusxylosus as a host, demonstrated varied host ranges among different Staphylococcus strains suggesting that they could be included in cocktail formulations for therapeutic or bio-control purpose. Phage particle proteomes, consisting on average of ca 60-70 gene products, revealed, in addition to straight-forward structural proteins, also the presence of enzymes such DNA polymerase, helicases, recombinases, exonucleases, and RNA ligase polymer. They are likely to be injected into the bacteria along with the genomic DNA to take over the host metabolism as soon as possible after infection.
Collapse
Affiliation(s)
- Joseph M. Ochieng’ Oduor
- KAVI—Institute of Clinical Research, College of Health Sciences, University of Nairobi, P.O. Box, Nairobi 19676–00202, Kenya;
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland
| | - Ermir Kadija
- Department of Biology-Chemistry, University of Shkodra “Luigj Gurakuqi”, 4001 Shkodra, Albania;
| | - Atunga Nyachieo
- Department of Reproductive Health & Biology, Phage Biology Section, Institute of Primate Research, P.O. Box, Karen-Nairobi 24481-00502, Kenya;
| | - Marianne W. Mureithi
- KAVI—Institute of Clinical Research, College of Health Sciences, University of Nairobi, P.O. Box, Nairobi 19676–00202, Kenya;
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00029 HUS Helsinki, Finland
| |
Collapse
|
25
|
Genomic and Seasonal Variations among Aquatic Phages Infecting the Baltic Sea Gammaproteobacterium Rheinheimera sp. Strain BAL341. Appl Environ Microbiol 2019; 85:AEM.01003-19. [PMID: 31324626 PMCID: PMC6715854 DOI: 10.1128/aem.01003-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
Phages are important in aquatic ecosystems as they influence their microbial hosts through lysis, gene transfer, transcriptional regulation, and expression of phage metabolic genes. Still, there is limited knowledge of how phages interact with their hosts, especially at fine scales. Here, a Rheinheimera phage-host system constituting highly similar phages infecting one host strain is presented. This relatively limited diversity has previously been seen only when smaller numbers of phages have been isolated and points toward ecological constraints affecting the Rheinheimera phage diversity. The variation of metabolic genes among the species points toward various fitness advantages, opening up possibilities for future hypothesis testing. Phage-host dynamics monitored over several years point toward recurring “kill-the-winner” oscillations and an ecological niche fulfilled by this system in the Baltic Sea. Identifying and quantifying ecological dynamics of such phage-host model systems in situ allow us to understand and study the influence of phages on aquatic ecosystems. Knowledge in aquatic virology has been greatly improved by culture-independent methods, yet there is still a critical need for isolating novel phages to identify the large proportion of “unknowns” that dominate metagenomes and for detailed analyses of phage-host interactions. Here, 54 phages infecting Rheinheimera sp. strain BAL341 (Gammaproteobacteria) were isolated from Baltic Sea seawater and characterized through genome content analysis and comparative genomics. The phages showed a myovirus-like morphology and belonged to a novel genus, for which we propose the name Barbavirus. All phages had similar genome sizes and numbers of genes (80 to 84 kb; 134 to 145 genes), and based on average nucleotide identity and genome BLAST distance phylogeny, the phages were divided into five species. The phages possessed several genes involved in metabolic processes and host signaling, such as genes encoding ribonucleotide reductase and thymidylate synthase, phoH, and mazG. One species had additional metabolic genes involved in pyridine nucleotide salvage, possibly providing a fitness advantage by further increasing the phages’ replication efficiency. Recruitment of viral metagenomic reads (25 Baltic Sea viral metagenomes from 2012 to 2015) to the phage genomes showed pronounced seasonal variations, with increased relative abundances of barba phages in August and September synchronized with peaks in host abundances, as shown by 16S rRNA gene amplicon sequencing. Overall, this study provides detailed information regarding genetic diversity, phage-host interactions, and temporal dynamics of an ecologically important aquatic phage-host system. IMPORTANCE Phages are important in aquatic ecosystems as they influence their microbial hosts through lysis, gene transfer, transcriptional regulation, and expression of phage metabolic genes. Still, there is limited knowledge of how phages interact with their hosts, especially at fine scales. Here, a Rheinheimera phage-host system constituting highly similar phages infecting one host strain is presented. This relatively limited diversity has previously been seen only when smaller numbers of phages have been isolated and points toward ecological constraints affecting the Rheinheimera phage diversity. The variation of metabolic genes among the species points toward various fitness advantages, opening up possibilities for future hypothesis testing. Phage-host dynamics monitored over several years point toward recurring “kill-the-winner” oscillations and an ecological niche fulfilled by this system in the Baltic Sea. Identifying and quantifying ecological dynamics of such phage-host model systems in situ allow us to understand and study the influence of phages on aquatic ecosystems.
Collapse
|
26
|
Expanding the Diversity of Myoviridae Phages Infecting Lactobacillus plantarum-A Novel Lineage of Lactobacillus Phages Comprising Five New Members. Viruses 2019; 11:v11070611. [PMID: 31277436 PMCID: PMC6669764 DOI: 10.3390/v11070611] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/07/2019] [Accepted: 07/02/2019] [Indexed: 01/01/2023] Open
Abstract
Lactobacillus plantarum is a bacterium with probiotic properties and promising applications in the food industry and agriculture. So far, bacteriophages of this bacterium have been moderately addressed. We examined the diversity of five new L. plantarum phages via whole genome shotgun sequencing and in silico protein predictions. Moreover, we looked into their phylogeny and their potential genomic similarities to other complete phage genome records through extensive nucleotide and protein comparisons. These analyses revealed a high degree of similarity among the five phages, which extended to the vast majority of predicted virion-associated proteins. Based on these, we selected one of the phages as a representative and performed transmission electron microscopy and structural protein sequencing tests. Overall, the results suggested that the five phages belong to the family Myoviridae, they have a long genome of 137,973-141,344 bp, a G/C content of 36.3-36.6% that is quite distinct from their host's, and surprisingly, 7 to 15 tRNAs. Only an average 41/174 of their predicted genes were assigned a function. The comparative analyses unraveled considerable genetic diversity for the five L. plantarum phages in this study. Hence, the new genus "Semelevirus" was proposed, comprising exclusively of the five phages. This novel lineage of Lactobacillus phages provides further insight into the genetic heterogeneity of phages infecting Lactobacillus sp. The five new Lactobacillus phages have potential value for the development of more robust starters through, for example, the selection of mutants insensitive to phage infections. The five phages could also form part of phage cocktails, which producers would apply in different stages of L. plantarum fermentations in order to create a range of organoleptic outputs.
Collapse
|
27
|
Attai H, Boon M, Phillips K, Noben JP, Lavigne R, Brown PJB. Larger Than Life: Isolation and Genomic Characterization of a Jumbo Phage That Infects the Bacterial Plant Pathogen, Agrobacterium tumefaciens. Front Microbiol 2018; 9:1861. [PMID: 30154772 PMCID: PMC6102473 DOI: 10.3389/fmicb.2018.01861] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/24/2018] [Indexed: 01/21/2023] Open
Abstract
Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease, leading to the damage of agriculturally-important crops. As part of an effort to discover new phages that can potentially be used as biocontrol agents to prevent crown gall disease, we isolated and characterized phage Atu_ph07 from Sawyer Creek in Springfield, MO, using the virulent Agrobacterium tumefaciens strain C58 as a host. After surveying its host range, we found that Atu_ph07 exclusively infects Agrobacterium tumefaciens. Time-lapse microscopy of A. tumefaciens cells subjected to infection at a multiplicity of infection (MOI) of 10 with Atu_ph07 reveals that lysis occurs within 3 h. Transmission electron microscopy (TEM) of virions shows that Atu_ph07 has a typical Myoviridae morphology with an icosahedral head, long tail, and tail fibers. The sequenced genome of Atu_ph07 is 490 kbp, defining it as a jumbo phage. The Atu_ph07 genome contains 714 open reading frames (ORFs), including 390 ORFs with no discernable homologs in other lineages (ORFans), 214 predicted conserved hypothetical proteins with no assigned function, and 110 predicted proteins with a functional annotation based on similarity to conserved proteins. The proteins with predicted functional annotations share sequence similarity with proteins from bacteriophages and bacteria. The functionally annotated genes are predicted to encode DNA replication proteins, structural proteins, lysis proteins, proteins involved in nucleotide metabolism, and tRNAs. Characterization of the gene products reveals that Atu_ph07 encodes homologs of 16 T4 core proteins and is closely related to Rak2-like phages. Using ESI-MS/MS, the majority of predicted structural proteins could be experimentally confirmed and 112 additional virion-associated proteins were identified. The genomic characterization of Atu_ph07 suggests that this phage is lytic and the dynamics of Atu_ph07 interaction with its host indicate that this phage may be suitable for inclusion in a phage cocktail to be used as a biocontrol agent.
Collapse
Affiliation(s)
- Hedieh Attai
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Maarten Boon
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Kenya Phillips
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, Hasselt, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
28
|
Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy. Antibiotics (Basel) 2018; 7:antibiotics7010015. [PMID: 29495270 PMCID: PMC5872126 DOI: 10.3390/antibiotics7010015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/27/2022] Open
Abstract
A global distribution in marine, brackish, and freshwater ecosystems, in combination with high abundances and biomass, make vibrios key players in aquatic environments, as well as important pathogens for humans and marine animals. Incidents of Vibrio-associated diseases (vibriosis) in marine aquaculture are being increasingly reported on a global scale, due to the fast growth of the industry over the past few decades years. The administration of antibiotics has been the most commonly applied therapy used to control vibriosis outbreaks, giving rise to concerns about development and spreading of antibiotic-resistant bacteria in the environment. Hence, the idea of using lytic bacteriophages as therapeutic agents against bacterial diseases has been revived during the last years. Bacteriophage therapy constitutes a promising alternative not only for treatment, but also for prevention of vibriosis in aquaculture. However, several scientific and technological challenges still need further investigation before reliable, reproducible treatments with commercial potential are available for the aquaculture industry. The potential and the challenges of phage-based alternatives to antibiotic treatment of vibriosis are addressed in this review.
Collapse
|