1
|
Kahne SC, Yoo JH, Chen J, Nakedi K, Iyer LM, Putzel G, Samhadaneh NM, Pironti A, Aravind L, Ekiert DC, Bhabha G, Rhee KY, Darwin KH. Identification of a depupylation regulator for an essential enzyme in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2024; 121:e2407239121. [PMID: 39585979 PMCID: PMC11626117 DOI: 10.1073/pnas.2407239121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/08/2024] [Indexed: 11/27/2024] Open
Abstract
In Mycobacterium tuberculosis (Mtb), proteins that are posttranslationally modified with a prokaryotic ubiquitin-like protein (Pup) can be degraded by bacterial proteasomes. A single Pup-ligase and depupylase shape the pupylome, but the mechanisms regulating their substrate specificity are incompletely understood. Here, we identified a depupylation regulator, a protein called CoaX, through its copurification with the depupylase Dop. CoaX is a pseudopantothenate kinase that showed evidence of binding to pantothenate, an essential nutrient Mtb synthesizes, but not its phosphorylation. In a ∆coaX mutant, pantothenate synthesis enzymes including PanB, a substrate of the Pup-proteasome system (PPS), were more abundant than in the parental strain. In vitro, CoaX specifically accelerated depupylation of Pup~PanB, while addition of pantothenate inhibited this reaction. In culture, media supplementation with pantothenate decreased PanB levels, which required CoaX. Collectively, we propose CoaX regulates PanB abundance in response to pantothenate levels by modulating its vulnerability to proteolysis by Mtb proteasomes.
Collapse
Affiliation(s)
- Shoshanna C. Kahne
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Jin Hee Yoo
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - James Chen
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Kehilwe Nakedi
- Department of Medicine, Weill Cornell Medicine, New York, NY10021
| | - Lakshminarayan M. Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Gregory Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
- Microbial Computational Genomic Core Lab, New York University Grossman School of Medicine, New York, NY10016
| | - Nora M. Samhadaneh
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
- Microbial Computational Genomic Core Lab, New York University Grossman School of Medicine, New York, NY10016
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
- Microbial Computational Genomic Core Lab, New York University Grossman School of Medicine, New York, NY10016
| | - L. Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Damian C. Ekiert
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
- Department of Biology, Johns Hopkins University, Baltimore, MD21218
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
- Department of Biology, Johns Hopkins University, Baltimore, MD21218
| | - Kyu Y. Rhee
- Department of Medicine, Weill Cornell Medicine, New York, NY10021
| | - K. Heran Darwin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| |
Collapse
|
2
|
Kahne SC, Yoo JH, Chen J, Nakedi K, Iyer LM, Putzel G, Samhadaneh NM, Pironti A, Aravind L, Ekiert DC, Bhabha G, Rhee KY, Darwin KH. Identification of a proteolysis regulator for an essential enzyme in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587195. [PMID: 38585835 PMCID: PMC10996600 DOI: 10.1101/2024.03.29.587195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In Mycobacterium tuberculosis proteins that are post-translationally modified with Pup, a prokaryotic ubiquitin-like protein, can be degraded by proteasomes. While pupylation is reversible, mechanisms regulating substrate specificity have not been identified. Here, we identify the first depupylation regulators: CoaX, a pseudokinase, and pantothenate, an essential, central metabolite. In a Δ coaX mutant, pantothenate synthesis enzymes were more abundant, including PanB, a substrate of the Pup-proteasome system. Media supplementation with pantothenate decreased PanB levels in a coaX and Pup-proteasome-dependent manner. In vitro , CoaX accelerated depupylation of Pup∼PanB, while addition of pantothenate inhibited this reaction. Collectively, we propose CoaX contributes to proteasomal degradation of PanB by modulating depupylation of Pup∼PanB in response to pantothenate levels. One Sentence Summary A pseudo-pantothenate kinase regulates proteasomal degradation of a pantothenate synthesis enzyme in M. tuberculosis .
Collapse
|
3
|
Systems Biology Engineering of the Pantothenate Pathway to Enhance 3HB Productivity in Escherichia coli. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0033-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Duncan D, Auclair K. The coenzyme A biosynthetic pathway: A new tool for prodrug bioactivation. Arch Biochem Biophys 2019; 672:108069. [PMID: 31404525 DOI: 10.1016/j.abb.2019.108069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 11/29/2022]
Abstract
Prodrugs account for more than 5% of pharmaceuticals approved worldwide. Over the past decades several prodrug design strategies have been firmly established; however, only a few functional groups remain amenable to this approach. The aim of this overview is to highlight the use of coenzyme A (CoA) biosynthetic enzymes as a recently explored bioactivation scheme and provide information about its scope of utility. This emerging tool is likely to have a strong impact on future medicinal and biological studies as it offers promiscuity, orthogonal selectivity, and the capability of assembling exceptionally large molecules.
Collapse
Affiliation(s)
- Dustin Duncan
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.
| |
Collapse
|
5
|
Liu Y, Orsi RH, Gaballa A, Wiedmann M, Boor KJ, Guariglia-Oropeza V. Systematic review of the Listeria monocytogenes σB regulon supports a role in stress response, virulence and metabolism. Future Microbiol 2019; 14:801-828. [DOI: 10.2217/fmb-2019-0072] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: Among the alternative sigma factors of Listeria monocytogenes, σB controls the largest regulon. The aim of this study was to perform a comprehensive review of σB-regulated genes, and the functions they confer. Materials & methods: A systematic search of PubMed and Web of Knowledge was carried out to identify members of the σB regulon based on experimental evidence of σB-dependent transcription and presence of a consensus σB-dependent promoter. Results: The literature review identified σB-dependent transcription units encompassing 304 genes encoding different functions including stress response and virulence. Conclusion: Our review supports the well-known roles of σB in virulence and stress response and provides new insight into novel roles for σB in metabolism and overall resilience of L. monocytogenes.
Collapse
Affiliation(s)
- Yichang Liu
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Kathryn J Boor
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | | |
Collapse
|
6
|
Zhang M, Zhang X, Tong L, Ou D, Wang Y, Zhang J, Wu Q, Ye Y. Random Mutagenesis Applied to Reveal Factors Involved in Oxidative Tolerance and Biofilm Formation in Foodborne Cronobacter malonaticus. Front Microbiol 2019; 10:877. [PMID: 31118922 PMCID: PMC6504702 DOI: 10.3389/fmicb.2019.00877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
Cronobacter species are linked with life-treating diseases in neonates and show strong tolerances to environmental stress. However, the information about factors involved in oxidative tolerance in Cronobacter remains elusive. Here, factors involved in oxidative tolerance in C. malonaticus were identified using a transposon mutagenesis. Eight mutants were successfully screened based on a comparison of the growth of strains from mutant library (n = 215) and wild type (WT) strain under 1.0 mM H2O2. Mutating sites including thioredoxin 2, glutaredoxin 3, pantothenate kinase, serine/threonine protein kinase, pyruvate kinase, phospholipase A, ferrous iron transport protein A, and alanine racemase 2 were successfully identified by arbitrary PCR and sequencing alignment. Furthermore, the comparison about quantity and structure of biofilms formation among eight mutants and WT was determined using crystal violet staining (CVS), scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Results showed that the biofilms of eight mutants significantly decreased within 48 h compared to that of WT, suggesting that mutating genes play important roles in biofilm formation under oxidative stress. The findings provide valuable information for deeply understanding molecular mechanism about oxidative tolerance of C. malonaticus.
Collapse
Affiliation(s)
- Maofeng Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xiyan Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Liaowang Tong
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Dexin Ou
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Yaping Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
7
|
Chohnan S, Murase M, Kurikawa K, Higashi K, Ogata Y. Antimicrobial activity of pantothenol against staphylococci possessing a prokaryotic type II pantothenate kinase. Microbes Environ 2014; 29:224-6. [PMID: 24759689 PMCID: PMC4103530 DOI: 10.1264/jsme2.me13178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/01/2014] [Indexed: 11/12/2022] Open
Abstract
Pantothenol is a provitamin of pantothenic acid (vitamin B5) that is widely used in healthcare and cosmetic products. This analog of pantothenate has been shown to markedly inhibit the phosphorylation activity of the prokaryotic type II pantothenate kinase of Staphylococcus aureus, which catalyzes the first step of the coenzyme A biosynthetic pathway. Since type II enzymes are found exclusively in staphylococci, pantothenol suppresses the growth of S. aureus, S. epidermidis, and S. saprophyticus, which inhabit the skin of humans. Therefore, the addition of this provitamin to ointment and skincare products may be highly effective in preventing infections by opportunistic pathogens.
Collapse
Affiliation(s)
- Shigeru Chohnan
- Department of Bioresource Science, Ibaraki University College of Agriculture, 3–21–1 Chuo, Ami, Ibaraki 300–0393, Japan
- Department of Applied Life Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai, Fuchu, Tokyo 183–8509, Japan
| | - Misa Murase
- Department of Bioresource Science, Ibaraki University College of Agriculture, 3–21–1 Chuo, Ami, Ibaraki 300–0393, Japan
| | - Kota Kurikawa
- Department of Bioresource Science, Ibaraki University College of Agriculture, 3–21–1 Chuo, Ami, Ibaraki 300–0393, Japan
| | - Kodai Higashi
- Department of Bioresource Science, Ibaraki University College of Agriculture, 3–21–1 Chuo, Ami, Ibaraki 300–0393, Japan
| | - Yuta Ogata
- Department of Applied Life Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai, Fuchu, Tokyo 183–8509, Japan
| |
Collapse
|
8
|
Ogata Y, Katoh H, Asayama M, Chohnan S. Role of prokaryotic type I and III pantothenate kinases in the coenzyme A biosynthetic pathway of Bacillus subtilis. Can J Microbiol 2014; 60:297-305. [PMID: 24784177 DOI: 10.1139/cjm-2013-0793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pantothenate kinases (CoaAs) catalyze the phosphorylation of pantothenate in the first step of the coenzyme A (CoA) biosynthetic pathway. These bacterial enzymes have been categorized into 3 types, the prokaryotic type I, II, and III CoaAs. Bacteria typically carry a single CoaA gene on their genome, but Bacillus subtilis possesses 2 proteins homologous to type I and III CoaAs, known as BsCoaA and BsCoaX, respectively. Both recombinant proteins exhibited the expected kinase activity and the characteristic properties of type I and III CoaAs, i.e., regulation by CoASH and acyl-CoAs in BsCoaA and the requirement of a monovalent cation in BsCoaX. Both gene disruptants appeared to grow in a manner similar to the wild-type strain. With the BsCoaX disruptant, the BsCoaA had the ability to completely fill the intracellular CoA pool, whereas the BsCoaA disruptant did not. These findings clearly indicate that these 2 CoaAs are employed together in the CoA biosynthetic pathway in B. subtilis and that the contribution of the type I CoaA (BsCoaA) to the formation of the intracellular CoA pool is larger than that of the type III CoaA (BsCoaX).
Collapse
Affiliation(s)
- Yuta Ogata
- Department of Bioresource Science, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan
| | | | | | | |
Collapse
|
9
|
Huillet E, Tempelaars MH, André-Leroux G, Wanapaisan P, Bridoux L, Makhzami S, Panbangred W, Martin-Verstraete I, Abee T, Lereclus D. PlcRa, a new quorum-sensing regulator from Bacillus cereus, plays a role in oxidative stress responses and cysteine metabolism in stationary phase. PLoS One 2012; 7:e51047. [PMID: 23239999 PMCID: PMC3519770 DOI: 10.1371/journal.pone.0051047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/29/2012] [Indexed: 12/31/2022] Open
Abstract
We characterized a new quorum-sensing regulator, PlcRa, which is present in various members of the B. cereus group and identified a signaling heptapeptide for PlcRa activity: PapRa7. We demonstrated that PlcRa is a 3D structural paralog of PlcR using sequence analysis and homology modeling. A comparison of the transcriptomes at the onset of stationary phase of a ΔplcRa mutant and the wild-type B. cereus ATCC 14579 strain showed that 68 genes were upregulated and 49 genes were downregulated in the ΔplcRa mutant strain (>3-fold change). Genes involved in the cysteine metabolism (putative CymR regulon) were downregulated in the ΔplcRa mutant strain. We focused on the gene with the largest difference in expression level between the two conditions, which encoded -AbrB2- a new regulator of the AbrB family. We demonstrated that purified PlcRa bound specifically to the abrB2 promoter in the presence of synthetic PapRa7, in an electrophoretic mobility shift assay. We further showed that the AbrB2 regulator controlled the expression of the yrrT operon involved in methionine to cysteine conversion. We found that the ΔplcRa mutant strain was more sensitive to hydrogen peroxide- and disulfide-induced stresses than the wild type. When cystine was added to the culture of the ΔplcRa mutant, challenged with hydrogen peroxide, growth inhibition was abolished. In conclusion, we identified a new RNPP transcriptional regulator in B. cereus that activated the oxidative stress response and cysteine metabolism in transition state cells.
Collapse
Affiliation(s)
- Eugénie Huillet
- INRA, UMR1319 Micalis, Génétique microbienne et Environnement, Guyancourt, France
- * E-mail: (EH); (DL)
| | - Marcel H. Tempelaars
- Wageningen University, Laboratory of Food Microbiology, Wageningen, The Netherlands
| | | | - Pagakrong Wanapaisan
- INRA, UMR1319 Micalis, Génétique microbienne et Environnement, Guyancourt, France
- Mahidol University, Department of Biotechnology, Faculty of Science, Bangkok, Thailand
| | - Ludovic Bridoux
- INRA, UMR1319 Micalis, Génétique microbienne et Environnement, Guyancourt, France
| | | | - Watanalai Panbangred
- Mahidol University, Department of Biotechnology, Faculty of Science, Bangkok, Thailand
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Laboratoire de Pathogénèse des Bactéries Anaérobies, Paris, France
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Tjakko Abee
- Wageningen University, Laboratory of Food Microbiology, Wageningen, The Netherlands
| | - Didier Lereclus
- INRA, UMR1319 Micalis, Génétique microbienne et Environnement, Guyancourt, France
- * E-mail: (EH); (DL)
| |
Collapse
|
10
|
Eggers CH, Caimano MJ, Malizia RA, Kariu T, Cusack B, Desrosiers DC, Hazlett KRO, Claiborne A, Pal U, Radolf JD. The coenzyme A disulphide reductase of Borrelia burgdorferi is important for rapid growth throughout the enzootic cycle and essential for infection of the mammalian host. Mol Microbiol 2011; 82:679-97. [PMID: 21923763 DOI: 10.1111/j.1365-2958.2011.07845.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In a microarray analysis of the RpoS regulon in mammalian host-adapted Borrelia burgdorferi, bb0728 (cdr) was found to be dually transcribed by the sigma factors σ(70) and RpoS. The cdr gene encodes a coenzyme A disulphide reductase (CoADR) that reduces CoA-disulphides to CoA in an NADH-dependent manner. Based on the abundance of CoA in B. burgdorferi and the biochemistry of the enzyme, CoADR has been proposed to play a role in the spirochaete's response to reactive oxygen species. To better understand the physiologic function(s) of BbCoADR, we generated a B. burgdorferi mutant in which the cdr gene was disrupted. RT-PCR and 5'-RACE analysis revealed that cdr and bb0729 are co-transcribed from a single transcriptional start site upstream of the bb0729 coding sequence; a shuttle vector containing the bb0729-cdr operon and upstream promoter element was used to complement the cdr mutant. Although the mutant was no more sensitive to hydrogen peroxide than its parent, it did exhibit increased sensitivity to high concentrations of t-butyl-hydroperoxide, an oxidizing compound that damages spirochetal membranes. Characterization of the mutant during standard (15% oxygen, 6% CO(2)) and anaerobic (< 1% O(2) , 9-13% CO(2)) cultivation at 37°C revealed a growth defect under both conditions that was particularly striking during anaerobiosis. The mutant was avirulent by needle inoculation and showed decreased survival in feeding nymphs, but displayed no survival defect in unfed flat nymphs. Based on these results, we propose that BbCoADR is necessary to maintain optimal redox ratios for CoA/CoA-disulphide and NAD(+) /NADH during periods of rapid replication throughout the enzootic cycle, to support thiol-disulphide homeostasis, and to indirectly protect the spirochaete against peroxide-mediated membrane damage; one or more of these functions are essential for infection of the mammalian host by B. burgdorferi.
Collapse
Affiliation(s)
- Christian H Eggers
- Department of Biomedical Sciences, Quinnipiac University, Hamden, CT 06518, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Parsonage D, Newton GL, Holder RC, Wallace BD, Paige C, Hamilton CJ, Dos Santos PC, Redinbo MR, Reid SD, Claiborne A. Characterization of the N-acetyl-α-D-glucosaminyl l-malate synthase and deacetylase functions for bacillithiol biosynthesis in Bacillus anthracis . Biochemistry 2010; 49:8398-414. [PMID: 20799687 DOI: 10.1021/bi100698n] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce α-d-glucosaminyl l-malate (GlcN-malate) from UDP-GlcNAc and l-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase (→GlcNAc-malate) and the BaBshB deacetylase (→GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternary complex, determined in this work at 3.3 Å resolution, identifies several active-site interactions important for the specific recognition of l-malate, but not other α-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-d-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.
Collapse
Affiliation(s)
- Derek Parsonage
- Center for Structural Biology, Wake Forest University School of Medicine,Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Awasthy D, Ambady A, Bhat J, Sheikh G, Ravishankar S, Subbulakshmi V, Mukherjee K, Sambandamurthy V, Sharma U. Essentiality and functional analysis of type I and type III pantothenate kinases of Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2010; 156:2691-2701. [PMID: 20576686 DOI: 10.1099/mic.0.040717-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pantothenate kinase, an essential enzyme in bacteria and eukaryotes, is involved in catalysing the first step of conversion of pantothenate to coenzyme A (CoA). Three isoforms (type I, II and III) of this enzyme have been reported from various organisms, which can be differentiated from each other on the basis of their biochemical and structural characteristics. Though most bacteria carry only one of the isoforms of pantothenate kinases, some of them possess two isoforms. The physiological relevance of the presence of two types of isozymes in a single organism is not clear. Mycobacterium tuberculosis, an intracellular pathogen, possesses two isoforms of pantothenate kinases (CoaA and CoaX) belonging to type I and III. In order to determine which pantothenate kinase is essential in mycobacteria, we performed gene inactivation of coaA and coaX of M. tuberculosis individually. It was found that coaA could only be inactivated in the presence of an extra copy of the gene, while coaX could be inactivated in the wild-type cells, proving that CoaA is the essential pantothenate kinase in M. tuberculosis. Additionally, the coaA gene of M. tuberculosis was able to complement a temperature-sensitive coaA mutant of Escherichia coli at a non-permissive temperature while coaX could not. The coaX deletion mutant showed no growth defects in vitro, in macrophages or in mice. Taken together, our data suggest that CoaX, which is essential in Bacillus anthracis and thus had been suggested to be a drug target in this organism, might not be a valid target in M. tuberculosis. We have established that the type I isoform, CoaA, is the essential pantothenate kinase in M. tuberculosis and thus can be explored as a drug target.
Collapse
Affiliation(s)
- Disha Awasthy
- AstraZeneca R & D, 'Avishkar' Bellary Road, Hebbal, Bangalore, India
| | - Anisha Ambady
- AstraZeneca R & D, 'Avishkar' Bellary Road, Hebbal, Bangalore, India
| | - Jyothi Bhat
- AstraZeneca R & D, 'Avishkar' Bellary Road, Hebbal, Bangalore, India
| | - Gulebahar Sheikh
- AstraZeneca R & D, 'Avishkar' Bellary Road, Hebbal, Bangalore, India
| | - Sudha Ravishankar
- AstraZeneca R & D, 'Avishkar' Bellary Road, Hebbal, Bangalore, India
| | | | - Kakoli Mukherjee
- AstraZeneca R & D, 'Avishkar' Bellary Road, Hebbal, Bangalore, India
| | | | - Umender Sharma
- AstraZeneca R & D, 'Avishkar' Bellary Road, Hebbal, Bangalore, India
| |
Collapse
|